Computational biology, bioinformatics and mathematical biology are all interdisciplinary approaches to the life sciences that draw from quantitative disciplines such as mathematics and information science.
Bioinformatics and computational biology are rooted in life sciences as well as computer and information sciences and technologies. Both of these interdisciplinary approaches draw from specific disciplines such as mathematics, physics, computer science and engineering, biology, and behavioral science. Bioinformatics and computational biology each maintain close interactions with life sciences to realize their full potential. Bioinformatics applies principles of information sciences and technologies to make the vast, diverse, and complex life sciences data more understandable and useful. Computational biology uses mathematical and computational approaches to address theoretical and experimental questions in biology. Although bioinformatics and computational biology are distinct, there is also significant overlap and activity at their interface.
The National Institutes of Health (NIH) Biomedical Information Science and Technology Initiative Consortium agreed on the following definitions of bioinformatics and computational biology recognizing that no definition could completely eliminate overlap with other activities or preclude variations in interpretation by different individuals and organizations.
Computational biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems.
Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data.