
Fast Instruction Set Customization

Edson Borin' Felipe Klein' Nahri Moreano'' Rodolfo Azevedo. Guido Araujo'

{borinfelipe.klein,nahri,rodo!fo,guido) @ic. unicamp.br
* IC-UNICAMP - Brazil t DCT- UFMS - Brazil

Abstract
This paper proposes an approach to tune embeddedpmcessor

datapaths toward a specific application, so as to mazimize
the application performance. We customize the computation
capabilities of n base pmcessor, by eztending its instruction
set to include custom opemtions which are implemented as
new specialized functional units. We desenbe an automatic
methodology to select the custom instructions fmm the given
application code, in a way that there k n o need of compensa-
tion code or other modifications in ihe application, simplih-
ing the code generation. B y using the ArchC architecture de-
senption language, fast compilation and simulation ofthe re-
sulting customized pmcessor code a r ~ achieved, considerably
reducing the t v n n m v n d time required to evaluate the best
set o fcus tom opemtions. Expenmental results show that OUT

framework provides large perfomance improvements (up to
9.6 times), when compared to the base general-purpose pm-
cessor, while significantly speeding up the design pmcess.

1. Introduction
In recent years, the market of embcdded processors has

grown drastically. Gencral-purpose processors frequently do
not offer the necessary performance, a t the low cost required
by embedded systems, because thc instruction set archi-
tecture (ISA) of these processors is designcd to provide a
reasonable level of performance for a wido variety of ap-
plications. Since an embedded processor usually runs in a
limited application domain, a better cost/performance ra-
tio can he achieved by customizing the system toward the
application(8) it nceds to execute.

Thc synthesis of application-specific instruction set p r e
cessors (ASIPs) traditionally involved the generation of a
complctc ISA for the targcted application. However, this
full-custom solution is too expensive and has long design
turnaround times. Wc would rather use an available proces-
sor and extcnd its instruction set with custom opcrations far
a specific application or domain. Thesc operations are im-
plemented in hardware in the farm of specialized functional
units. The goal of such processor extensions is to optimize
the application performance, while kecping the cost of the
processor down and meeting time-to-market constraints.

The problem of detcrmining application-specific instruc-
tion set extensions consists in detecting, in the application,
clusters of primitive opcratium which, whcn implemented in
hardware as a single custom instruction, maximize its per-
formance. Given an application, the number of possible spc-
cialized instructions grows exponentially with the program
size, leading to a large design space, whilc the performancc
gain achieved with them varies significantly. Thus, the p r e
cess ofcustomization should be ES automatic as possihlc.

In this work, we propose a framework to automatically
find specialized instruction set extensions for a bass proces-
sor, given the intendcd application. Our approach identifies

clusters of operations that can be rcplaced by custom in-
structions, in a way that thcre is no violation of data or can-
trol dependencies and no need of compensation code or other
modifications in tho application, simplifying substantially
the code gencration. We also provide automated support
for compilation and simulation of the resulting customised
processor code, in a way that the specialized instructions
are automatically used by our software tool chain. This al-
lows the designer to efficiently explore the design space, by
searching fur the best performance for the targct application,
given the architectural constraints.

Experiments with scveral benchmark programs indicate
that custom processors gcnerated using our framework can
result in large improvements in application performance (up
to 3.6 times) compared to a base general-purpose processor,
while speeding up the design process significantly.

This paper is divided as follows. Section 2 describes previ-
ous work related to instruction set customization. Section 3
presents our design flow and details the framcwork we p r e
pose to solve this problem. In Section 4 a sct of experiments
is described to support thc efficiency of proposed approach
Finally, Scction 5 concludes the work.

2. Related Work
Early works on architcctural synthesis for ASIPs study the

automatic generation of B complete custom instruction sct
for B giwn application domain 119, 111. Recently, the focus
has moved to the synthesis of application specific instruction
set extcnsions. The selection technique presented in [5] m u -
imiacs the reuse of spccialized instructions and minimizes the
number of sclected instructions. It docs not directly m u -
imize performance and can lead to the generation of small
clusters. In [I] the authors use pattern matching and gener-
ation to identify frequently occurring patterns in an cxocu-
tion trace. Since this tram reprcscnts the dynamic behavior
of the application it can he really large, thus reducing the
efficiency of thc technique. The approach in [Z] impmm ar-
chitectural constraints during cluster construction, pruning
invalid clusters, but it is not able to completely avoid the
exponential worst-cax execution time.

Thc templates are selected in 1181 using performance, en-
ergy or both BS criteria, but in the experiments they included
only a limited class of control constructs, i.e., not all "if" and
"switch" statements were handlcd. In 161 a dataflow graph
exploration approach is used to identify subgraphs subject
to constraints but the custom instructions arc limited to
basic block boundaries. The framowork in 141 selects a p r e
configured extensible processor and code segmcnts for cx-
tensiblc instructions, which aro generated exhaustively enu-
merating all sequences of consecutive statements in critical
functions. The selected segments are manually scarched in
an instruction library and, if not found, implemented also
manually. In [8] ISA extcnsions are gencrated by the Ten-

0-7803-863 I-O104/$20.00 02004 IEEE. 53

+
PW“’ L y r d U P

Figure 1: Steps of design flow

silica Instruction Extension System, including instructions
and rcgister files, and using VLIW and vectoriaation tech-
niques. The custom instructions corrcsponding to several
simple operations were limited to basic block boundaries.

Research in reconfigurablc computing investigates the iden-
tification of application sections that are mapped to a re-
configurable fabric. In [12] tbc authors combine template
matching and generation hascd on the recurrence of pat-
terns, i.c., the frequency of operation type successions, rather
than on frcquency of execution. This Icd to small ternplates
(such as pairs of operations) which wcre limited to basic
block boundaries. The tcmplate generation approach in 13)
exploits parallcl templates (in which operations can be exe-
cuted in parallel), besides sequcntial ones, but they do not
cxtend across hasic block boundaries. In both works, tcm-
plate matching is based on graph isomorphism. A software
tool is prescntcd in [13] to support the implementation of
user-definahlc instructions in a FPGA, and it relies on man-
ual idcnt,ificaLion of thc instructions from the application.

3. Design Flow
In this section we present our mcthodology to identify

specialized ISA extensions. The main steps of OUI design
flow an? shown in Figuro 1 and detailed in the remaining of
the section. The kcy design principles behind our framework
are automation and eficiency, as we will describc.

3.1. Platform
In our approach, the applications can be written in C

or C++ high-level language. We have adapted the well-
known GCC tool mite 1171 such that it extracts, from thc
application, clusters of operations which are candidates for
hardware implementation. The compiler can also generate
the application executable code for both the base processor
and thc specialized onc. In the last case, it automatically
uses the custom instructions, given thc selected clusters.

The user does not need to modify thc application source
code neither to program in asscmbly language, in order to
use thespecialized instructions. The application can be com-
piled with the usual compiler options, including the optimiz-
ing “-03” option. Moreover, thcre is no nccd to recompile
the GGC tool every time a new instruction is added.

We have used a SPARC V8 procasor as our base proccs-
SOT, which is extended with the specialiacd functional units
and custom instructions. These functional units are included
into the processor datapath and thcir input operands and IC-

sults are, rospectively, read from and written to the SPARC
integer register file. The custom instructions can consume
a single cycle UT hc a multi-cyclcd instruction. Both base
and specialized processors arc simulated using cycle-accurate
models dcvcloped with thc ArcbC architecture description
language [16]. The base proccssar model is adapted auto-
matically to include the custom instructions.

3.2. Cluster Extraction
Starting with the application source C/C++ code and a

rcprcsentative workload, we compilc and simulate the a p
plication using the h a c processor model. We then measure
the performancc of the application for the base processor and
we computc additional profile information. Using this infor-
mation, we can identify the performance-critical sections of
the application, i.e., inner-loops and functions that consume
most of the program execution timc.

Wc fccd the application source code into the modified
GGC compiler again in order to automatically cxtract all
d i d clusters from the sections identificd previously. A clus-
ter corresponds to B piece of the application code and is
composed by primitivc operations such as add and load.
Therefore, our approach d o n not require the programmcr
to manually select which parts of the application should be
implemented as custom instructions. Gencrating clustcrs
only for the performancecritical sections of the application
reduccs significantly thc number of extracted clustcrs and is
“cry important for the efficiency of the framework.

The clusters arc extracted from GCC intcrmediate r e p
rcscntation (IR). Using IR instead of machinc instruc-
tions permits us to extract tho cluster after all machino
independent code optimizations, but heforc register alloca-
tion and machinedependent optimizations. Whenever p a s
sible, automatic function inlining [15] is applied. Thc appli-
cation code corrcsponding to a cluster is not limited to basic
block boundaries end can contain control constructs, such
as “if-then”, “if-then-else”, “switch”, and “goto”.

Valid clustns are those that can be rcplaced in the appli-
cation code by a spccialized instruction, without violating
data or control dependencics. That is, tho compiler is ablc
to find an instruction schedule which respects the applica-
tion semantics. Our clustcr extraction algorithm uses domi-
nance and post-dominance relations betwecn the operations
in order to guarantee that only valid clusters are extracted.
An operation d dominates an operation i (d dom i) if every
possible execution path from the beginning of the procedure
to i includes d. An operation p post-dominates a n operation
i (p pdom i) if cvcry possible execution path from i to the
cnd of the procedurc includes p [151.

We illustrate these concepts with an example. Given the
section ofcode shown in Figure 2, the corresponding control-
flow graph (CFG) represents all possiblc execution paths in
this code. We can sco that the operations in basic block B2
dominate all operations in B3, B4, and B5. Also, the opera-
tions in B5 post-dominate all operations in B2, B3, and B4.
Wc ensure that a valid cluster is produced by requiring that
the initial (final) hasic block of thc cluster dominates (post-

54

Algorithm ertract.clusters
IIIDYT: section S with bmic biocks B
output: set L of clUStem
Build CFG, dominance and past-dominance trmz of S
1-U1

(4 Code (b) CFC

Figure 2: Dominance cr i ter ia for cluster generat ion

dominatcs) all blocks in CFG irom thc initial one until the
final block is reached, and reversely, from the final one until
the initial block is reached. For cxample, blocks 82, B3, B4,
and B5 comtitute a valid clustcr. Cluster granularity can
also vary. In our example, another valid cluster is formed
by dl basic blocks in thc figure, givcn that B1 (87) dom-
inatcs (post-dominates) all remaining blocks. Each block
taken isolated also constitutcs a valid cluster. Moreover, we
can also generate clusters that do not necessarily include all
operations from the dominator and post-dominator blocks.

Figurc 3 presents our'cluster cxtraction algorithm, which
is applied t o each performance-critical section identifiod in
the application. The dominance tests an basic block BL
(marked with (*) in the algorithm) ensure that thc execu-
tion of the cluster always Starts and ends on Bi and B;,
respectively. This guarantccs that only valid clusters are
gencrated. In the spccial case thc section has no loops or it
is a structured inner-loop, thcse tests are not neccssary. This
algorithm has B polynomial time complexity with respect to
the number of basic blacks of the input section.
The main advantagc of this extraction technique is that

the cluster can be entircly replaced by the Custom instruc-
tion, without violating data or control dependencies. Com-
pared to strategies involving superblocks or hyperhlocks, our
approach may lose some clusters but it simplifies substan-
tially the code gcneration, because it eliminates the need of
compensation code or modifications in the application.

Each cluster is automatically transformed into a
control/datta-flow graph (CDFG), where the vertices reprc-
sent the primitive operations. The data depcndencies be-
tween tho opcrations are obtained from the use-definirion
chains [I51 kept by GCC. We handle control dependencics
by applying if-convcrsion, inserting selectors into the CDFG,
and using predication only for memory operations. This is
done using the control-dependence graph (CDG) 1151, so
we can handle both structured and non-structured (with
"got,o") application codc. Besides, our methodology is not
limited to tree-shaped clusters, what would precludc many
potentially interesting clusters, c g . , clusters in which pard-
le1 opcrations share operands, thus reducing the number of
input data to thc custom instruction.

3.3. Cluster Selection
After identifying a number of clusters in the application,

we Want t o know how useful their hardware implcmenta-
tion would be. For cach cxtracted cluster, we estimate the
speedup achieved if it is replaced by a spccialiocd instruc-
tion. In this stcp of the dcsign Aow, wc only estimate the

- "
for each Bi. Bj t S 1 B, dom Bj and Bj pdom B. do

Cllwter + 0 ;valid t true
I* Depth first search (DFS) from Bi to Bj iii CFG *J
for each BI reached in DFS and while valid do

(*) if Bi dom B k and Bi pdorn B k then
Cluster t Cluster U {Bk) . .

else valid t false
/* Reverse DFS (R-DFS) from Bi to B. in CFG *I
for evch Bk roached in R-DFS and while valid do

i f not (B; d m B k and B, pdom Bk) then (*)
valid c false

i f valid then L + L U (Clumv)

Figure 3: Clus ter extract ion algori thm

speedups rather than generate and simulatc the specialised
processor. Thc goal is to make thc framework more efficient,
givcn that we have not selected a small set ofclustcrs yet.

In order to estimate the application speedup with respect
to a cluster, we need to measure the number of cycles con-
sumed by the software and hardware implementations of
that clustcr. From thc profile information, we gct thc num-
ber of cycles consumed by the cluster instructions when the
application was executed in the base processor. In order to
determinc the number of cycles consumed by the spccializod
functional unit which implements tho cluster, we schedulc its
CDFG. We use a list-schcduling algorithm, which cxploits
chaining of opcrations and uses delays of primitive oper-
ations obtained from a component library. Resource con-
straints are imposcd during scheduling, limiting the number
of hardware blocks available to the specialized functional
unit, as well as, the number of registem (of the h u e proccs-
SOI datapath) that can be read and written a t cach cycle.

The application speedup with respect to a cluster C i s esti-
mated using Equation 1, where cydesa... is the t,otal num-
her of cycles consumed by the application whcn executed
in the base processor. The number of cycles saved using C
corresponds to difference betwecn the total numhcr of cycles
consumed by the software and hardwarc implementations of
C (considering all executions of the cluster), as shown in
Equation 2. The total number of cycles of the software "er-
sion of C is obtained from thc profiling information, while
the total numbcr of cycles of the hardwaro implementation is
determined using Equation 3, where freq(C) corresponds to
the frequency of execution oi the cluster (also obtained from
the profiling information). Finally, delay,, (C) corresponds
to the delay (in cycles) of the hardwarc implcmentation of
C, established by our scheduling stcp.

cycles,,,,d = cycles,, (C) - tydes,,(C) (2)

cydes,,(C) = f W C) x delw,,,,(C) (3)
Since speedup estimation is very fast, we cvaluate several

clusters with different rcsource constraints, exploring B large
portion of the dcsign spacc. Then we sclect the clusters that
provide the best specdups among all extractcd clusters.

The generated clusters are not limited to sequcnces of few
operations and our cluster sclection approach is bascd on the

55

...
delta - d e l t a U 7 ,

i f (delta U 4) vpdiff += step:
i f (delta k 2 1 vpdiff +- s t e p n i ;
i f (delta k 1 1 vpdiff += step>>2:

"piiff = step >> 3 :

...
(a) Source code

inatrehavior(8pecInstr) { ...
Sl - readReg(rs1):
s2 - readReg(rs2);

tl = a 1 k 7 ;
t2 - s2 >> 3;
t3 - s2 >> 1;

uriteReg(d1. t15);
setcycles (3) :
update-ppc 0 ;

...

1
(c) Instruction sirnulator codc (b) CDFG

F i g u r e 4: Clus ter from A D P C M decoder a n d instruct ion behavior in t h e s imula tor

speedup they provide, and not on their frequency of occw-
rence. Thereforc, our framework does not includc a pattern
matching step, in which different occurrences of each cluster
are searched in the application This stcp would requirc a
subgraph isomorphism test, which is a NP-complcte problem
[7j and may consume a long cxecution time.

3.4. Specialized Processor Generation
For each selected cluster, we compile the application gen-

crating the excutable code for the specialized processor.
We automatically modify the application In, so thc cam-
piler is able to replace the cluster operations by thc new
custom instruction. I t is not necessary to modify the a p
plication source code nor to re-generate the GCC. Also, a
specializcd processor simulator with the custom instructions
is automatically generated from the basc processor modcl.

Given thc CDFG corresponding to a selected cluster, our
framework automatically generates the custom instruction
behavior using ArchC. The number of cycles consumed by
thc new instruction is also set. The generated codc is in-
cluded into the base processor model, producing the special-
ized processor simulator. Figure 4 shows the SOUTCC code and
CDFG corresponding to a clustcr extractcd from the AD.
PCM decoder application of MediaBench benchmark [14].
The figure also shows partially the code generated to de-
scribe the corresponding custom instruction (speclnstr).

Finally, the application is executed using the ncw simu-
lator and we measure the performance of this application
for the specializcd proccssor. Then we compute the ex-
act speedup achieved when the selected clusters are implc-
mented as custom instructions. Notice that only thc selected
clusters 80 through the simulation step, thus reducing the
size of design space and the design turnaround time.

The achieved speedup is mainly due to the hardware im-
plementation of the cluster, which is more efficient than the
software one because i t exploits instruction-level parallelism
and chaining. Marcover, it reduccs the register pressure, and
consequently, the memory spills, hecause temporary values
inside the clusters arc not allocated to the base processor
registers any more. Also, given thst a set of original instruc-

tiom is replaced hy one custom instruction, thc numbcr of
instruction cache misses can be reduced.

Notice that our framework allows the use of different hard-
ware implementations of the cluster. For example, a loop
cluster can be implemented in a pipelined way. During the
specialized processor generation, it is only necessary to sct
the number of cycles consumed by the custom instruction.

4. Experimental Results
The framework presented above was applied t o programs

from the MediaBench [14] and MiBench [Q] suites. Ail appli-
cations were compiled with the maximum level of optimiza-
tion (option "-03"). We evaluated the speedup achievcd by
each ciustcr extracted from each application, under different
resource constraints. These constraints limit tho numhcr of
hardware blocks available for the specialized functional unit,
which BTC arithmetic units (AU), logic-shift units (LSU),
multipliers (Mul), multiplexors, register file read and writc
ports, and memory readlwrite ports.

4.1. Specialized Processor Performance
The estimated speedups achieved by the specialized p m

cessors are shown in Figurc 5. Each C U N ~ corresponds
to one clustcr selected from an application and shows the
speedups obtained with the inclusion of the corresponding
custom instruction, under sevcral constraints. If two clus-
ters are totally disjoint, they can both be impiementcd as
custom instructions, further improving performance. Each
cluster is labeled with the number of its dominator and past-
dominator basic blocks. However, the clusters may have
bcen extracted from different program functions.

In the experiments we set thc resourcc constraints so as
to fix the number of multiplexors and memory ports to four
and o m , respectively, and vary the number of AUs, LSUs,
and Muis. For example, the constraint 21311 represents two
AUs, three LSUs, and one Mul. We also set to two and onc,
rcspectixly, the maximum number of registcrs (of the base
processor datapath) that can be read and written at each
cyclc. Sincc we insert the specializcd functional unit into
the datapath of the hasc processor (which in our experiments

56

ADPCM decoder ADPCM coder JPEGdecoder

11111 21111 31111 41111 61111 Max
Scheduling constraints

Riindael enmderldecoder

a 3 0

a t:

11111 21111 31111 41111 61111 Max
Scheduling constraints

GSM decoder

Scheduling mnStrainls

Blowfish decoder

0 0 3 -
~ 'i-1 00 138-146 ~ ~ ~ . x . - - .

. . . = ~ ~ ~ ~ ~ ~ ~ j(~ 4 1.6 ~ ~ ~ . . ~ . ~ ~ .,..... ~...*.
P*.. 1.4 / B 1.4

....

1.2 1.2

....... *

11111 21111 21311 31111 31411 Max 111/1 21111 21311 Max 11111 21111 31111 Max
Scheduling mnstraints Scheduling conslrainls Scheduling constraints

Figure 5: Speedup of specialized processor for each cluster u n d e r resource constraints (AU/LSu/Mui)

is a SPARC VS), thc memory and register constraints must
conform to the datapsth restrictions. It is important to note
that this is not a limitation of the framework and different
constraints can be uscd with other base processors. We also
evaluated the clusters undcr loose constraints (represented
as M a x in the figurc), in which there wcre unlimited AUs,
LSUs, arid Muls, but the remaining resources werc fixed with
the same restrictions described above.

The figure shows specdups ranging from 1.1 t o 3.7. Notice
that, for some applications, large speedups were achieved
with only one custom instruction, even with very strict con-
straints. Also, for almost all clusters, even with loose con-
straints, the spcedup can not bc furthcr improved. But, if
the constraints far read and writc register and memory ports
werc relaxed, even better speedups would be possible.

Both ADPCM encodcr and dccoder have only onc inner-
loop with several basic blocks and few memory access. Since
these loops consume most of the program execution time, re-
ducing the cycles spcnt in the loop reflects directly to the
total execution time. The best speedup is achieved under
the constraints fill11 because several comparison operations
wcre produced by the if-conversion tschnique. The best clus-
ter for each program corresponds to thc whole loop body.

The Rijndacl encodcr and decoder haw symmetric inner-
loops with high execution Gequcncy and several shift and
logical opcratious, but also many memory reads. Here we
have the intcresting situation in which the best clustcrs
for both applications are identical and achieve the samc
speedups, so the s m c specialized proccsso~ can be used to
encoder and decodcr programs. Thc maximum speedup is
nearly 1.8 and it is not further improved due to thc memory
access, which brings no gain when implemented in hardware.

The same situation on the memory reads also happens in thc
dustcr BB 1 from thc Blowfish decoder.

The cluster BB 138-149 corresponds to the body of the
most cxecuted loop from the GSM decodcr. Due to the large
number of shift and logical operations in the cluster, it is ef-
ficiently implcrnented in hardware, and brings the speedup
of 3.5 with respect to the loop execution time. However, ac-
cording to Amdahl's law [lo], since thc application has other
performance-critical sections, B speedup of 1.7 is obt.ained
when considering the complete program. The spcedup of
cluster BB 140-149 decreased under constraints 2/3/1, even
though thc numbcr of LSUs increasod. Sincc the heuristic
list scheduling uses a priority function to resolve resource
contention, it delaycd a critical path operation.

The best clustor from the JPEG decoder has many mem-
ory, arithmetic, and multiplication opcrations, which have
long delay and prevent thc schedulcr from exploiting chain-
ing. Given that the three clusters shown for this application
are disjoint, we can implemebt all of them as custom instruc-
tions and obtain a speedup of 1.36.

4.2. Framework Evaluation
We also evaluated the efficiency of the proposed frame-

work with respect its execution time. Table 1 shows the
erccution time of each stcp of our design flow (enumerated
in Figure 1) for a sct of benchmarks, using a standard Pen-
tium IVJLinux desktop. Even though these execution times
can change significantly by using a different platform, thcy
give an overall idea of the time consumed at each step. As
shown, with the cxceptian of steps 1 and 5 which require
cycle-accuratc simulation, all steps took only a few scconds.

In step 2 all valid clusters from all performancecritical
sections were extracted. 'The specdup provided by each

57

Table 1: Execut ion t i m e of design flow steps

Table 2: Estimated a n d s imula ted speedups

valid cluster w a ~ estimated for a sot of different re~ource
constraints in step 3. The quick estimation onabled us to
evaluate many clustcrs with different resource constraints,
searching for the hest clustcr with the minimum resourc~s.
Given that the simulation step8 were longer, only the chosen
best solution WBS simulatcd in step 5. Both steps 1 and 5
involved the simulation of tho application, hut step 1 was
longer because i t also generated profiling information.

Finally, we need to ensure that the estimated speedups
approach thc real speedups achieved. Table 2 compares the
estimated and simulated speedups obtained for thc best clus-
ter of each program. The estimatcd speedups werc very close
to the simulated ones for most applications. Given that
clustcrs are extractcd after all machine-independent opti-
mizations have been performed and before register alloca-
tion and machinodependent optimizations, the estimated
performancc of the software implementation of thc cluster
can he slightly different from the real porformance.

5. Conclusions
This papcr presented a methodology to automatically iden-

tify specialized instruction set extensions for a h a c proces-
sor, givcn the intendcd application, with the goal of gener-
ating an ASIP which optimizc its performance. The clusten
corresponding to the custom instructions are extract& from
the application using a dominatorlpost-dominatar criterion
which eliminates thc need of compensation codc and ensures
that the compilcr is able to schedule thc new instructions.
An efficient speedup estimation enablc the selection of the
hest clusters and their waluation under different resource
constraints. The implementation of the new instruction is
automatically generated using an architecture description
language and included into a base processor modcl, produc-
ing a specialized processor simulator.

Experimcnts were performed to evaluate the efficiency of
the framework and specialiscd processors were generated far
a set of benchmarks. For several applications, large speedups
(ranging from 1.2 t o 3.6) were achieved with only one cus
tom instruction and very strict resource constraints. The
software tools which implement the design process took less
than 1-2 minutes for the stcps requiring simulation, and only
a fcw seconds for the remaining steps. The speedup esti-
mation techniquc produced vory accuratc rcsults when com-

pared to the speedups obtained through simulation, allowing
an efficient exploration of the design spacc.

6. Acknowledgments
This work was partially supported by fellowship grants

(CNPq 301731/2003-9 and 3821203-0, CAPES, and
FAPESP 02/08139-3), and Mindspeed Technologies and
FAPESP (00/15083-9) research awards.

I. References
[1] M. Arnold and H. Corpo~aal. Designing domain-specific

U ~ C ~ S S O ~ S . In CODES, m. 61-66. 2001. ..
[2] K. Atasu, L. Pozai, and P. Ienne.'Automatic

application-specific instruction-set extenaims under
microarchitectural constraints. In DAC, pp. 256261, 2003.

[3] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafiadeh.
lnstruction generation and regularity extraction for
recorifigurable processors. In CASES, pp. 262-269, 2002.

141 N. Cheung, S. Paramesweran, and J. Henkel. INSIDE
Instruction selectioniidentification & design exploration for
extensible processors. In ICCAD, pp. 291-297, 2003.

C. Kyung. Synthesis of application specific instructions for
embedded DSP software. IEEE Tbnsactions on
Computers, 48(6):603-614, 1999.

161 N. Clerk, H. Zhong, W. Tang, and S. Mahlke. Automatic
design of application specific instruction set extensions
through datalow graph exploration. Internotional Journal
0,' Pamllel Progmmming, 31(6):42Y449, 2003.

17) M. Garey and D. Johnson. Computers and Intmctability ~

A Guide to the Theory of NP-Completeness. R e m a n and
cn 1470

[S] H. Chai, J . Kim, C. Yoon, I. Park, S. Hwang, and

-.. .i.
[SI D. Goodwin and D. Petkov. Automatic generation of

application specific processors. In CASES, pp. 137-147,
2003.

[Y] M. Guthaus, J. Ringenberg, D. Emst, T. Austin,
T. Mudge, and R. Brown. Mibench A free, commercially
representative embedded benchmark suite. In WWC, pp.
3-14, 2001.

Architecture: A Quantitative Appmaeh. Morgan Kaufmsnn
Publishers, 2002.

instruction sets. IEEE TCAD, 14(6):663675, 1995.

E. Bozorgzadeh. Instruction generation for hybrid
reconfipirable system. ACM TODAES, 7(4):605-627,
7nn7

[lo] J . Hennessy, D. Patterson, and D. Goldberg. Computer

Ill] I. Huang and A. Despain. Syntheis of application specific

[I21 R. Kastner, A. Kaplan, S. Ogrenci Memik, and

I131 A. La Ross, L. Lavagno, and C. Passerone.
Hardware/software design space exploration for e.
recanfimrsble DTOC~ESOT. In DATE, DD. 570-575. 2003.

I . ..
1141 C. Lee, M. Potkonjak, and W. MangioncSmith.

MediaBench: A tool far evaluating and synthesising
multimedia and communication systems. In MICRO, pp.
33W335, 1997.

[I51 S. Muchnick. Advanced Compiler Deaign and
Implementation. Morgan Kaufmann Publishers, 1997.

[l6] S. Rigo, G. Araujo, M. Bartholome", and R. Azevedo.
ArchC A SystemC-based architecture description language.
Accepted for publication at the 16th Sarmposium on
Computer Axhitecture and High Perfonnonce Computing
(SBAC), 2004. See http://wa?v.archc.org.

1171 R. Stallman. GNU Compiler Collection Intern&, 2002.
1181 F. Sun, S. Ravi, A. Raghumthan, and N. Jha.

Custom-instruction synthesis for extensible-processor
platforms. IEEE TCAD, 23(2):216-228, 2004.

[I91 J. Van Praet, G. Goossens, D. Lanner, and H. De Man.
Instruction set definition and instruction selection for
ASIPs. In Proceedings of the 7th International S p p s i v m
an High-level Synthesis, pp. 11-16, 1994.

http://wa?v.archc.org

