Fast Instruction Set Customization

Edson Borin* Felipe Klein*

* JC-UNICAMP — Brazil

Nahr1 Moreano*!

Rodolfo Azevedo* Guido Araujo”
t DCT-UFMS - Brazil

{borin felipe.klein,nahri,rodolfo, guido}@ic.unicamp.br

Abstract

This paper proposes an approach to tune embedded processor
datapaths toward a specific application, so as to mazimize
the application performance. We custornize the computation
capabilities of a base processor, by ertending its instruction
set to include custom operations which are implemented as
new specialized functional units. We describe an automatic
methodology to sclect the custom instructions from the given
epplication code, in a way that there is no need of compensa-
tion code or other modifications in the application, simplify-
ing the code generation. By using the ArchC architecture de-
scription language, fast compilation and simulation of the re-
sulting customized processor code are achieved, considerably
reducing the turnaround time required to evaluate the best
set of custom operations. Ezperimental results show that our
Sframework provides large performance improvements {up to
3.6 times), when compared to the base general-purpose pro-
cessor, while significantly speeding up the design process.

1. Introduction

In recent years, the market of embedded processors has
grown drastically. Gencral-purpose processors frequently do
not offer the necessary performance, at the low cost required
by embedded systems, because the instruction set archi-
tecture (ISA) of these processors is designed to provide a
reasonable level of performance for a wide variety of ap-
plications. Since an embedded processor usually runs in a
limited application domain, a better cost/performance ra-
tio can be achieved by customizing the system toward the
application(s) it nceds to execute.

The synthesis of application-specific instriction set pro-
cessors (ASIPs) traditionally involved the generation of a
complete ISA for the targeted application. However, this
full-custom solution is too expensive and has long design
turnaround times. We would rather use an available proces-
sor and extend its instruction set with custom operations for
a specific application or domain. Thesc operations are im-
plemented in hardware in the form of specialized functional
units. The goal of such processor extensions is to optimize
the application performance, while keeping the cost of the
processor down and meeting time-to-market constraints.

The problem of determining application-specific instruc-
tion set extensions consists in detecting, in the application,
clusters of primitive operations which, when implemented in
hardware as a single custom instruction, maximize its per-
formance. Given an application, the number of possible spe-
cialized instructions grows exponentially with the program
size, leading to a large design space, while the performance
gain achieved with them varies significantly. Thus, the pro-
cess of customization should be as automatic as possible.

In this work, we propose a framework to automatically
find specialized instruction set extensions for a base proces-
sor, given the intended application. Qur approach identifies

0-7803-8631-0/04/$20.00 ©2004 IEEE.

53

clusters of operations that can be replaced by custom in-
structions, in a way that there is no violation of data or con-
trol dependencies and no need of compensation code or other
modifications in the application, simplifying substantially
the code gencration. We also provide automated support
for compilation and simulation of the resulting customized
processor code, in a way that the specialized instructions
are automatically used by our software tool chain. This al-
lows the designer to efficiently explore the design space, by
searching for the best performance for the target application,
given the architectural constraints.

Experiments with several benchmark programs indicate
that custom processors generated using our framework can
result in large improvements in application performance (up
to 3.6 times) compared to a base general-purpose processor,
while speeding up the design process significantly.

This paper is divided as follows. Section 2 describes previ-
ous work related to instruction set customization. Section 3
presents our design flow and details the framework we pro-
pose to solve this problem. In Section 4 a sct of experiments
is described to support the efficiency of proposed approach.
Finally, Section 5 concludes the work.

2. Related Work

Early works on architectural synthesis for ASIPs study the
automatic generation of a complete custom instruction sct
for a given application domain [19, 11]. Recently, the focus
has moved to the synthesis of application specific instruction
set extensions. The selection technique presented in [5] max-
imizes the reuse of specialized instructions and minimizes the
number of sclected instructions. It does not directly max-
imize performance and can lead to the generation of small
clusters. In [1] the authors use pattern matching and gener-
ation to identify frequently occurring patterns in an execu-
tion trace. Since this trace represents the dynamic behavior
of the application it can be really large, thus reducing the
efficiency of the technique. The approach in [2] imposes ar-
chitectural constraints during cluster construction, pruning
invalid clusters, but it is not able to completely avoid the
exponential worst-casc executjon time.

The templates are sclected in [18] using performance, en-
ergy or both as criteria, but in the experiments they included
only a limited class of control constructs, i.e., not all “if” and
“switch” statements were handled. In [6] a dataflow graph
exploration approach is used to identify subgraphs subject
to constraints but the custom instructions are limited to
basic block boundaries. The framework in (4] selects a pre-
configured extensible processor and code segments for ex-
tensible instructions, which are generated exhaustively enu-
merating all sequences of consecutive statements in critical
functions. The selected segments are manually scarched in
an instruction library and, if not found, implemented also
manually. In [8] ISA extcnsions are generated by the Ten-

representative
warkload

application
souree code

Compilation & Simulation
1 (for base processor)
wrofile
1
(2 Cluster Extraction
l clnsters

g Speedup Fstimation &
Cluster Selection

selected clusters

Campiler & Simubator
4 Configuration

Compilation & Simulation
5 (for specialized processor)

precise speedups
Figure 1: Steps of design flow

silica Instruction Extension System, including instructions
and register files, and using VLIW and vectorization tech-
niques. The custom instructions corrcsponding to several
simple operations were limited to basic block boundaries,
Research in reconfigurable computing investigates the iden-
tification of application sections that are mapped to a re-
configurable fabric. In [12] the authers combine template
matching and generation based on the recurrence of pat-
terns, i.c., the frequency of operation type successions, rather
than on frequency of execution. This led to small templates
(such as pairs of operations) which were limited to basic
block boundaries. The template generation approach in [3]
exploits paraliel templates (in which operations can be exe-
cuted in parallel), besides sequential ones, but they do not
extend across basic block boundaries. In both works, tem-
plate matching is based on graph isomorphism. A software
tool is presented in [13] to support the implementation of
user-definable instructions in a FPGA, and it relies on man-
ual identification of the instructions from the application.

3. Design Flow

In this scction we present our mcthodology to identify
specialized ISA extensions. The main steps of our design
flow are shown in Figure 1 and detailed in the remaining of
the section. The key design principles behind our framework
are automation and efficiency, as we will describe.

3.1. Platform

In our approach, the applications can be written in C
or C++ high-level language. We have adapted the well-
known GCC tool suite [17] such that it extracts, from the
application, clusters of operations which are candidates for
hardware implementation. The compiler can also generate
the application executable code for both the base processor
and the specialized one. In the last case, it automatically
uses the custom instructions, given the selected clusters.

The user does not need to medify the application source
code neither to program in assembly language, in order to
use the specialized instructions. The application can be com-
piled with the usual compiler options, including the optimiz-
ing “-03” option. Moreover, there is no need to recompile
the GCC tool every time a new instruction is added.

‘We have used a SPARC V8 processor as our base proces-
sor, which is extended with the specialized functional units
and custom instructions. These functional units are included
into the processor datapath and their input operands and re-
sults are, respectively, read from and written to the SPARC
integer register file, The custom instructions can consume
a single cycle or be a multi-cycled instruction. Both base
and specialized processors arc simulated using cycle-accurate
models developed with the ArchC architecture description
language [16). The base processor model is adapted auto-
matically to include the custom instructions.

3.2. Cluster Extraction

Starting with the application source C/C++ code and a
representative workload, we compile and simulate the ap-
plication using the base processor model. We then mecasure
the performance of the application for the basc processor and
we compute additional profile information. Using this infor-
mation, we can identify the performance-critical sections of
the application, i.e., inner-loops and functions that consume
most of the program execution time.

We feed the application source code into the modified
GCC compiler again in order to automatically extract all
valid clusters from the sections identified previously. A clus-
ter corresponds to a piece of the application code and is
composed by primitive operations such as gdd and load.
Therefore, our approach does not require the programmer
to manually select which parts of the application should be
implemented as custom instructions. Gencrating clusters
only for the performance-critical sections of the application
reduces significantly the number of extracted clusters and is
very important for the efficiency of the framework.

The clusters are extracted from GCC intermediate rep-
rescntation (IR). Using IR instead of machine instruc-
tions permits us to extract the cluster after all machine-
independent code optimizations, but before register alloca-
tion and machine-dependent opiimizations. Whenever pos-
sible, automatic function inlining [15] is applied. The appli-
cation code corresponding to a cluster is not limited to basic
block boundaries and can contain control constructs, such
as “if-then”, “if-then-else”, “switch”, and “goto”.

Walid clusters are those that can be replaced in the appli-
cation code by a specialized instruction, without violating
data or control dependencics. That is, the compiler is ablc
to find an instruction schedule which respects the applica-
tion semantics. Our cluster extraction algorithm uses domi-
nance and post-dominance relations between the operations
in order to guarantee that only valid clusters are extracted.
An operation d dominates an operation ¢ {d doem i) if every
possible execution path from the beginning of the procedure
to 1 includes d. An operation p post-dominates an operation
i (p pdom 1) if every possible execution path from i to the
end of the procedurc includes p [15].

We illustrate these concepts with an example. Given the
section of code shown in Figure 2, the corresponding control-
flow graph (CFG) represents all possible execution paths in
this code. We can sce that the operations in basic block B2
dominate all operations in B3, B4, and B5. Also, the opera-
tions in B5 post-dominate all operations in B2, B3, and B4.
We ensure that a valid cluster is produced by requiring that
the initial (final) basic block of the cluster dominates (post-

{a) Code

(b} CFG

Figure 2: Dominance criteria for cluster generation

dominates) all blocks in CFG from the initial one until the
final block is reached, and reversely, from the final one until
the initial block is reached. For example, blocks B2, B3, B4,
and B5 constitute a valid cluster. Cluster granularity can
also vary. In our example, another valid cluster is formed
by all basic blocks in the figure, given that Bl (B7) dom-
inates {post-dominates) all remaining blocks. Each block
taken isolated also constitutes a valid cluster. Moreover, we
can also generate clusters that do not necessarily include all
operations from the dominator and post-dominator blocks.

Figurc 3 presents our cluster extraction algorithm, which
is applied to cach performance-critical section identified in
the application. The dominance tests on basic block Bi
(marked with () in the algorithm) ensure that the execu-
tion of the cluster always starts and ends on B; and By,
respectively. This guarantecs that only valid clusters are
gencrated. In the special case the section has no loops or it
is a structured inner-loop, these tests are not necessary. This
algorithm has a polynomial time complexity with respect to
the number of basic blocks of the input section.

The main advantage of this extraction technique is that
the cluster can be entircly replaced by the custom instruc-
tion, without violating data or control dependencies. Com-
pared to strategies involving superblocks or hyperblocks, our
approach may lose some clusters but it simplifies substan-
tially the code generation, because it eliminates the need of
compensation code or modifications in the application.

Each cluster is automatically transformed into a
control/data-flow graph (CDFG), where the vertices repre-
sent the primitive operations. The data dependencies be-
tween the operations are obtained from the use-definition
chains [15] kept by GCC. We handle control dependencies
by applying if-conversion, inserting selectors into the CDFG,
and using predication only for memory operations. This is
done using the control-dependence graph (CDG) {i5], so
we can handle both structured and non-structured (with
“goto”) application code. Besides, our methodology is not
limited to tree-shaped clusters, what would preclude many
potentialiy interesting clusters, e.g., clusters in which paral-
lel operations share operands, thus reducing the number of
input data to the custom instruction.

3.3, Cluster Selection

After identifying a number of ¢lusters in the application,
we want to know how useful their hardware implementa-
tion would be. For cach extracted cluster, we estimate the
speedup achieved if it is replaced by a specialized instruc-
tion. In this step of the design flow, we only estimate the

55

Algorithm extract_clusters
Input: section S with basic blocks B
Output: set L of clusters
Build CFG, dominance and post-dominance trees of §
L—#
for each B;, B; € 8 | By dom B; and B; pdom B; do
Cluster « @ ; valid + trye
/* Depth first search (DFS) from B, to B; in CFG */
for each By reached in DFS and while valid do
if B; dom By, and B; pdom By, then
Cluster +— Cluster U {B,}
else valid + false
/* Reverse DF3 (R-DFS) from B; to B; in CFG */
for each By reached in R-DFS and while valid do
if not (B; dom Bi and B; pdom By) then
valid — false
if valid then L — L U {Cluster}

(=)

{x)

Figure 3: Cluster extraction algorithm

speedups rather than generate and simulate the specialized
processor. The goal is to make the framework more efficient,
given that we have not selected a small set of clusters yet.

In order to estimate the application speedup with respect
to a cluster, we need to measure the number of ¢ycles con-
sumed by the software and hardware implementations of
that cluster. From the profile information, we get the num-
ber of cycles consumed by the cluster instructions when the
application was executed in the base processor. In order to
determine the number of cycles consumed by the specialized
functional unit which implements the cluster, we schedule its
CDFG. We use a list-scheduling algorithm, which exploits
chaining of operations and uses delays of primitive oper-
ations obtained from a component library. Resource con-
straints are imposed during scheduling, limiting the number
of hardware blocks available to the specialized functional
unit, as well as, the number of registers (of the base proces-
sor datapath) that can be read and written at each cycle.

The application speedup with respect to a cluster C is csti-
mated using Equation 1, where cyclespase is the total num-
ber of cycles consumed by the application when executed
in the base processor. The number of cycles saved using &
corresponds to difference between the total number of cycles
consumed by the software and hardware implementations of
C' (considering all executions of the cluster), as shown in
Equation 2. The total number of cycles of the software ver-
sion of C' is obtained from the profiling information, while
the total pumber of cycles of the hardware implementation is
determined using Equation 3, where freg(C) corresponds to
the frequency of execution of the cluster {(also obtained from
the profiling information). Finally, delay,,, (C) corresponds
to the delay (in cycles) of the hardware implementation of
C, established by our scheduling step.

cyclesyase

speedup = cyclestase — cyclessaved(C) @)
cyelessgvea = cyclesg,, (C) — eydles ., (C) (2)
cyclesyy, (C) = freq(C) x delayy, (C) (3)

Since speedup estimation is very fast, we evaluate several
clusters with different resource constraints, exploring a large
portion of the design space. Then we select the clusters that
provide the best specdups among all extracted clusters.

The generated clusters are not limited to sequences of few
operations and our cluster sclection approach is based on the

delta = delta & 7;
vpdiff = step >> 3;
if (delta & 4) vpdiff += step;

if (delta & 2) vpdiff += step>>i; R —
if (delta & 1) vpdiff += step>>2;
{a) Source code

inetr _behavior(specInstr) {

sl = readReg(rsi);

52 = readReg(rs2);

tl=81&7T;

t2 = 52 » 3; —

=82 > 1;

t3

writeReg(dl, t15);
setCycles(3d);
update_p<{);

(c) Instruction simulator code

speedup they provide, and not on their frequency of occur-
rence. Therefore, our framework does not include a pattern
matching step, in which different occurrences of each cluster
are searched in the application. This step would require a
subgraph isomorphism test, which is a NP-complete problem
[7] and may consumc a long execution time.

3.4. Specialized Processor Generation

For each selected cluster, we compile the application gen-
crating the exccutable code for the specialized processor.
We automatically modify the application IR, so the com-
piler is able to replace the cluster operations by the new
custom instruction. It is not necessary to modify the ap~
plication source code nor to re-generate the GCC. Also, a
specialized processor simulator with the custorn instructions
i& automatically generated from the base processor model.

Given the CDFG corresponding to a selected cluster, our
framework automatically generates the custom instruction
behavior using ArchC. The numnber of cycles consumed by
the new instruction is also set. The generated code is in-
cluded into the base processor model, producing the special-
ized processor simulator. Figure 4 shows the source code and
CDFG corresponding to a cluster extracted from the AD-
PCM decoder application of MediaBench benchmark {14].
The figure also shows partially the code generated to de-
scribe the corresponding custom instruction {speclnstr).

Finally, the application is executed using the new simu-
lator and we measure the performance of this application
for the specialized proccssor. Then we compute the ex-
act speedup achieved when the selected clusters are imple-
mented as custom instructions. Notice that only the selected
clusters go through the simmlation step, thus reducing the
size of design space and the design turnarcund time.

The achieved speedup is mainly due to the hardware im-
plementation of the cluster, which is more efficient than the
software one because it exploits instruction-level parallelism
and chaining. Moreover, it reduccs the register pressure, and
consequently, the memory spills, because temporary values
inside the clusters arc not allocated to the base processor
registers any more. Also, given that a set of original instruc-

56

(b) CDFG
Figure 4: Cluster from ADPCM decoder and instruction behavior in the simulator

tions is replaced by one custom instruction, the number of
instruction cache misses can be reduced.

Notice that our framework allows the use of different hard-
ware implementations of the cluster. For example, a loop
cluster can be implemented in a pipelined way. During the
specialized processor generation, it is only necessary to set
the number of cycles consumed by the custom instruction.

4. Experimental Results

The framework presented above was applied to programs
from the MediaBench [14] and MiBench [9] suites. "All appli-
cations were compiled with the maximum level of optimiza-
tion (option “-03"}. We evaluated the speedup achieved by
each cluster extracted from each application, under different
resource constraints, These constraints limit the number of
hardware blocks available for the specialized functional unit,
which are arithmetic units (AU), logic-shift units (LSU),
multipliers (Mul), multiplexors, register file read and write
ports, and memory read/write ports.

4.1, Specialized Processor Performance

The estimated speedups achieved by the specialized pro-
cessors are shown in Figure 5. Each curve corresponds
to one cluster selected from an application and shows the
speedups obtained with the inclusion of the corresponding
custom instruction, under several constraints. If two clus-
ters are totally disjoint, they can both be implemented as
custom instructions, further improving performance. Each
cluster is labeled with the number of its dominator and post-
dominator basic blocks. However, the clusters may have
been extracted from different program functions.

In the experiments we set the resource constraints so as
to fix the number of multiplexors and memory ports to four
and one, respectively, and vary the number of AUs, LSUs,
and Muls. For example, the constraint 2/3/1 represents two
AUs, three LSUs, and one Mul. We also set to two and one,
respectively, the maximum number of registers (of the base
processor datapath) that can be read and written at each
cycle. Since we insert the specialized functional unit into
the datapath of the base processor {which in our experiments

ADPCM decoder ADPCM cader JPEG decoder
a (=8 =3
=1 = =
3 b 3
& 4 2
w 2] 1]
L L . . 1k " L o . E L L
211 31h 41 B Mex 1 21 31 41 BHA Max tHA 217 34 31/2 11732 Max
Scheduting consiraints Scheduling constraints Scheduling constraints
Rijndael encoder/decoder GSM decoder Blowfish decoder
2 r T v ——m 2 T T 2 T
BB3 —— BB 138-149 —+— BB ——
BB 3 - BB 138-146 —x— BB 03 -—r—
1.8 BB4 - 1.8 [BB 140-149 ~omom 1 18| BB28-30 - 1
e 16 = g 18 -
- el =
g g - 4 8
& 14 - & 14 - E &
12 g 1.2 b
i 241 284 34A 3MH Max 1141 211 2/3N1 Max 111 211 3NN Max

Scheduling constraints

Scheduling constraints

Scheduling constraints

Figure 5: Speedup of specialized processor for each cluster under resource constraints {AU/LSU/Mul)

is a SPARC V8), the memory and register constraints must
conform to the datapath restrictions. It is important to note
that this is not a limitation of the framework and different
constraints can be used with other base processors. We also
evaluated the clusters under loose constraints (represented
as Max in the figure), in which there were unlimited AUs,
LSUs, and Muls, but the remaining resources werc fixed with
the same restrictions described above.

The figure shows speedups ranging from 1.1 to 3.7. Notice
that, for some applications, large speedups were achieved
with only one custom instruction, even with very strict con-
straints. Also, for almost all clusters, even with loose con-
straints, the speedup can not he further improved. But, if
the constraints for read and write register and memory ports
were relaxed, even better speedups would be possible.

Both ADPCM encoder and decoder have only one inner-
loop with several basic blocks and few memory access. Since
these loops consume most of the prograin execution time, re-
ducing the cycles spent in the loops reflects directly to the
total execution time. The best speedup is achieved under
the constraints 6/1/1 because several comparison operations
were produced by the if-conversion technique. The best clus-
ter for each program corresponds to the whole loop body.

The Rijndacl encoder and decoder have symmetric inner-
foops with high execution frequency and scveral shift and
logical operations, but also many memory reads. Hcre we
have the interesting situation in which the best clusters
for both applications are identical and achieve the samc
speedups, so the same specialized processor can be used to
encoder and decoder programs. The maximum speedup is
nearly 1.8 and it is not further improved due to the memory
access, which brings no gain when implemented in hardware.

57

The same situation on the memory reads also happens in the
cluster BB 1 from the Blowfish decoder.

The cluster BB 138-149 corresponds to the body of the
most executed loop from the GSM decoder. Due to the large
mmnber of shift and logical operations in the cluster, it is ef-
ficiently implemented in hardware, and brings the speedup
of 3.5 with respect to the loop execution time. However, ac-
cording to Amdahl's law {10], since the application has other
performance-critical sections, a speedup of 1.7 is obtained
when considering the complete program. The spcedup of
cluster BB 140-149 decreased under constraints 2/3/1, even
though the number of LSUs increased. Since the heuristic
list scheduling uses a priority function to resolve resource
contention, it delayed a critical path operation.

The best cluster from the JPEG decoder has many mem-
ory, arithmetic, and multiplication operations, which have
long delay and prevent the scheduler from exploiting chain-
ing. Given that the three clusters shown for this application
are disjoint, we can implement all of them as custom instruc-
tions and obtain a speedup of 1.36.

4.2, Framework Evaluation

We also evaluated the efficiency of the proposed frame-
work with respect its execution time. Table 1 shows the
execution time of each step of our design flow (enumerated
in Figure 1) for a sct of benichmarks, using a standard Pen-
tium IV /Linux desktop. Even though these execution times
can change significantly by using a different platform, they
give an overall idea of the time consumed at each step. As
shown, with the cxception of steps 1 and 5 which require
cycle-accurate simulation, all steps took oniy a few scconds.

In step 2 all valid clusters from all performance-critical
sections were extracted. The specdup provided by each

Table 1: Execution time of design flow steps
Application Step 1 [Step 2 [Step 3 1 Step 4 | Step &
ADPCM dec. 228 0s s 55 3s
ADPCM enc. 27s [0s 4s 4s
Rijndeel dec. | 1m25s 1s Os 5s 32s
Rijndael enc. | 1m26s 0s Os Y 358
JPEG dec. 158 21s 27s 44s 13s
GSM dec, 4mi0s 4s 11s 11s | 1m35s
Blowfish dec. | Imd3s 1s Os Bs 508

Table 2: Estimated and simulated speedups

Application Estimated speedup | Simulated speedup
ADPCM dec. 3.7 3.60
ADPCM enc. 2.86 2.63
Rijndael dec. 1.77 1.88
Rijndael enc. 1.77 1.91
JPEG dec. 1.17 1.23
GSM dec. 1.72 1.66
Biowfish dec. 1.34 1.34

valid cluster was estimated for a sct of different resource
constraints in step 3. The quick estimation enabled us to
evaluate many clusters with different resource constraints,
searching for the best cluster with the minimum resources.
Given that the simulation steps were longer, only the chosen
best solution was simulated in step 5. Both steps 1 and 5
involved the sirmilation of the application, but step 1 was
longer because it also gencrated profiling information.

Finally, we need to ensure that the estimated speedups
approach the real speedups achieved. Table 2 compares the
estimated and simulated speedups obtained for the best clus-
ter of each program. The estimated speedups werc very close
to the simulated ones for most applications. Given that
clusters are extracted after all machine-independent opti-
mizations have been performed and before register alloca-
tion and machine-dependent optimizations, the estimated
performance of the software implementation of the cluster
can be slightly different from the real performance.

5. Conclusions

This paper presented a methodology to automatically iden-
tify specialized instruction set extensions for a base proces-
sor, given the intended application, with the goal of gener-
ating an ASIP which optimize its performance. The clusters
corresponding to the custom instructions are extracted from
the application using a dominator/post-dominator criterion
which eliminates the need of compensation codc and ensures
that the compiler is able to schedule the new instructions.
An efficient speedup estimation enable the selection of the
best clusters and their evaluation under different resource
constraints. The implementation of the new instruction is
automatically generated using an architecture description
langurage and included into a base processor model, produc-
ing a specialized processor simulator.

Experiments were performed to evaluate the efficiency of
the framework and specialized processors were generated for
a set of benchmarks. For several applications, large speedups
(ranging from 1.2 to 3.6) were achieved with only one cus-
tom instruction and very strict resource constraints. The
software tools which implement the design process took less
than 1-2 minutes for the steps requiring simulation, and only
a few seconds for the remaining steps. The speedup esti-
mation technique produced very accurate results when com-

58

pared to the speedups obtained through simulation, allowing
an efficient exploration of the design space.

6. Acknowledgments

This work was partially supported by feliowship grants
(CNPq 301731/2003-9 and 3821203-0, CAPES, and
FAPESP 02/08139-3), and Mindspeed Technologies and
FAPESP {00/15083-9) research awards.

7. References

[1] M. Arncld and H. Corporaal. Designing domain-specific
processors. In CODES, pp. 61-66, 2001.

[2] K. Atasu, L. Pozzi, and P. Ienne. Automatic

application-specific instruction-set extensions under

microgrchitectural constraints. In DAC, pp. 256-261, 2003,

P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh.

Instruction generation and regularity extraction for

reconfigurable processors. In CASES, pp. 262-269, 2002.

N. Cheung, S. Parameswaran, and J. Henkel. INSIDE:

Instruction selection/identification & design exploration for

extensible processors. In JCCAD, pp. 291-297, 2003.

H. Chei, J. Kim, C. Yoon, 1. Park, 5. Hwang, and

C. Kyung. Synthesis of application specific instructions for

embedded DSP software. JEEE Trunsactions on

Computers, 48(6):603-614, 1999.

N. Clark, H. Zhong, W, Tang, and 5. Mahlke. Automatic

design of application specific instruction set extensions

through dataflow graph exploration. Mnternationel Journal

of Parallel Programming, 31(6):420—449, 2003,

M. Garey and D. Johnson. Computers and Intractability —

A Guide to the Theory of NP-Clompleteness. Freeman and

CO., 1979.

D. Goodwin and D. Petkov. Automatic generation of

application specific processors. In CASES, pp. 137-147,

2003.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,

T. Mudge, and R. Brown. Mibench: A free, commercially

representative embedded benchmark suite. In WWC, pp.

3-14, 2001.

J. Hennessy, D. Patterson, and D. Goldberg. Computer

Architecture: A Quantitative Approech. Morgan Kaufmann

Publishers, 2002.

I. Huang and A. Despain. Synthesis of application specific

instruction sets. JEEE TCAD, 14(6):663-675, 1995.

R. Kastner, A. Kaplan, 8. Ogrenci Memik, and

E. Bozorgzadeh. Instruction generation for hybrid

reconfigurable systems, ACM TODAES, 7(4):605-627,

2002,

A. La Rosa, L. Lavagno, and C. Passerone.

Hardware/software design space exploration for a

reconfigurable processor. In DATE, pp. 570-575, 2003.

C. Lee, M. Potkonjak, and W. Mangione-Smith.

MediaBench: A tool for evaluating and synthesizing

multimedia and communication systems, In MICRO, pp.

330-335, 1997.

S. Muchnick. Advanced Compiler Design and

Implementation. Morgan Kaufmann Publishers, 1997,

S. Rigo, G. Araujo, M, Barthclomeu, and R. Azevedo.

ArchC: A SystemC-based architecture description language.

Accepted for publication at the 16th Symposium on

Computer Architecture and High Performance Computing

(SBAC), 2004. See hitp:/ /www.archc.org.

R. Stallman. GNU Compiler Collection Internals, 2002.

F. Sun, S. Ravi, A. Raghunathan, and N. Jha.

Custom-instruction synthesis for extensible-processor

platforms. IEEE TCAD, 23{2):216-228, 2004.

J. Van Praet, G. Goossens,). Lanneer, and H. De Man.

Instruction set definition and instruction selection for

ASIPs. In Proceedings of the Tth International Symposium

on High-level Synthesis, pp. 11-16, 1994,

8

[4

6

gl

(8

[10]

{11]

(12]

(18]

[14]

(18]

[18

[17
(18}

(19]

http://wa?v.archc.org

