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Abstract 
This paper proposes an approach to tune embeddedpmcessor 

datapaths toward a specific application, so as to mazimize 
the application performance. We customize the computation 
capabilities of n base pmcessor, by eztending its instruction 
set to include custom opemtions which are implemented as 
new specialized functional units. We desenbe an automatic 
methodology to select the custom instructions fmm the given 
application code, in a way that there k n o  need of compensa- 
tion code or other modifications in ihe application, simplih- 
ing the code generation. B y  using the ArchC architecture de- 
senption language, fast compilation and simulation ofthe re- 
sulting customized pmcessor code a r ~  achieved, considerably 
reducing the t v n n m v n d  time required to evaluate the best 
set o fcus tom opemtions. Expenmental results show that OUT 

framework provides large perfomance improvements (up to 
9.6 times), when compared to the base general-purpose pm- 
cessor, while significantly speeding up the design pmcess. 

1. Introduction 
In recent years, the market of embcdded processors has 

grown drastically. Gencral-purpose processors frequently do 
not offer the necessary performance, a t  the low cost required 
by embedded systems, because thc instruction set archi- 
tecture (ISA) of these processors is designcd to provide a 
reasonable level of performance for a wido variety of ap- 
plications. Since an embedded processor usually runs in a 
limited application domain, a better cost/performance ra- 
tio can he achieved by customizing the system toward the 
application(8) it nceds to  execute. 

Thc synthesis of application-specific instruction set p r e  
cessors (ASIPs) traditionally involved the generation of a 
complctc ISA for the targcted application. However, this 
full-custom solution is too expensive and has long design 
turnaround times. Wc would rather use an available proces- 
sor and extcnd its instruction set with custom opcrations far 
a specific application or domain. Thesc operations are im- 
plemented in hardware in the farm of specialized functional 
units. The goal of such processor extensions is to  optimize 
the application performance, while kecping the cost of the 
processor down and meeting time-to-market constraints. 

The problem of detcrmining application-specific instruc- 
tion set extensions consists in detecting, in the application, 
clusters of primitive opcratium which, whcn implemented in 
hardware as a single custom instruction, maximize its per- 
formance. Given an application, the number of possible spc- 
cialized instructions grows exponentially with the program 
size, leading to a large design space, whilc the performancc 
gain achieved with them varies significantly. Thus, the p r e  
cess ofcustomization should be ES automatic as possihlc. 

In this work, we propose a framework to automatically 
find specialized instruction set extensions for a bass proces- 
sor, given the intendcd application. Our approach identifies 

clusters of operations that can be rcplaced by custom in- 
structions, in a way that thcre is no violation of data or can- 
trol dependencies and no need of compensation code or other 
modifications in tho application, simplifying substantially 
the code gencration. We also provide automated support 
for compilation and simulation of the resulting customised 
processor code, in a way that the specialized instructions 
are automatically used by our software tool chain. This al- 
lows the designer to efficiently explore the design space, by 
searching fur the best performance for the targct application, 
given the architectural constraints. 

Experiments with scveral benchmark programs indicate 
that custom processors gcnerated using our framework can 
result in large improvements in application performance (up 
to  3.6 times) compared to  a base general-purpose processor, 
while speeding up  the design process significantly. 

This paper is divided as follows. Section 2 describes previ- 
ous work related to instruction set customization. Section 3 
presents our design flow and details the framcwork we p r e  
pose to  solve this problem. In Section 4 a sct of experiments 
is described to  support thc efficiency of proposed approach 
Finally, Scction 5 concludes the work. 

2. Related Work 
Early works on architcctural synthesis for ASIPs study the 

automatic generation of B complete custom instruction sct 
for B giwn application domain 119, 111. Recently, the focus 
has moved to  the synthesis of application specific instruction 
set extcnsions. The selection technique presented in [5] m u -  
imiacs the reuse of spccialized instructions and minimizes the 
number of sclected instructions. It docs not directly m u -  
imize performance and can lead to  the generation of small 
clusters. In [I] the authors use pattern matching and gener- 
ation to  identify frequently occurring patterns in an cxocu- 
tion trace. Since this tram reprcscnts the dynamic behavior 
of the application it can he really large, thus reducing the 
efficiency of thc technique. The approach in [Z] impmm ar- 
chitectural constraints during cluster construction, pruning 
invalid clusters, but it is not able to  completely avoid the 
exponential worst-cax execution time. 

Thc templates are selected in 1181 using performance, en- 
ergy or both BS criteria, but in the experiments they included 
only a limited class of control constructs, i.e., not all "if" and 
"switch" statements were handlcd. In 161 a dataflow graph 
exploration approach is used to  identify subgraphs subject 
to  constraints but the custom instructions arc limited to  
basic block boundaries. The framowork in 141 selects a p r e  
configured extensible processor and code segmcnts for cx- 
tensiblc instructions, which aro generated exhaustively enu- 
merating all sequences of consecutive statements in critical 
functions. The selected segments are manually scarched in 
an instruction library and, if not found, implemented also 
manually. In [8] ISA extcnsions are gencrated by the Ten- 
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Figure  1: Steps of design flow 

silica Instruction Extension System, including instructions 
and rcgister files, and using VLIW and vectoriaation tech- 
niques. The custom instructions corrcsponding to  several 
simple operations were limited to  basic block boundaries. 

Research in reconfigurablc computing investigates the iden- 
tification of application sections that are mapped to  a re- 
configurable fabric. In [12] tbc authors combine template 
matching and generation hascd on the recurrence of pat- 
terns, i.c., the frequency of operation type successions, rather 
than on frcquency of execution. This Icd to  small ternplates 
(such as pairs of operations) which wcre limited to  basic 
block boundaries. The tcmplate generation approach in 13) 
exploits parallcl templates (in which operations can be exe- 
cuted in parallel), besides sequcntial ones, but they do not 
cxtend across hasic block boundaries. In both works, tcm- 
plate matching is based on graph isomorphism. A software 
tool is prescntcd in [13] to  support the implementation of 
user-definahlc instructions in a FPGA, and it relies on man- 
ual idcnt,ificaLion of thc instructions from the application. 

3. Design Flow 
In this section we present our mcthodology to  identify 

specialized ISA extensions. The main steps of OUI design 
flow an? shown in Figuro 1 and detailed in the remaining of 
the section. The kcy design principles behind our framework 
are automation and eficiency, as we will describc. 

3.1. Platform 
In our approach, the applications can be written in C 

or C++ high-level language. We have adapted the well- 
known GCC tool mite 1171 such that it extracts, from thc 
application, clusters of operations which are candidates for 
hardware implementation. The compiler can also generate 
the application executable code for both the base processor 
and thc specialized onc. In the last case, it automatically 
uses the custom instructions, given thc selected clusters. 

The user does not need to  modify thc application source 
code neither to  program in asscmbly language, in order to  
use thespecialized instructions. The application can be com- 
piled with the usual compiler options, including the optimiz- 
ing “-03” option. Moreover, thcre is no nccd to  recompile 
the GGC tool every time a new instruction is added. 

We have used a SPARC V8 procasor as our base proccs- 
SOT, which is extended with the specialiacd functional units 
and custom instructions. These functional units are included 
into the processor datapath and thcir input operands and IC- 

sults are, rospectively, read from and written to  the SPARC 
integer register file. The custom instructions can consume 
a single cycle UT hc a multi-cyclcd instruction. Both base 
and specialized processors arc simulated using cycle-accurate 
models dcvcloped with thc ArcbC architecture description 
language [16]. The base proccssar model is adapted auto- 
matically to  include the custom instructions. 

3.2. Cluster Extraction 
Starting with the application source C/C++ code and a 

rcprcsentative workload, we compilc and simulate the a p  
plication using the h a c  processor model. We then measure 
the performancc of the application for the base processor and 
we computc additional profile information. Using this infor- 
mation, we can identify the performance-critical sections of 
the application, i.e., inner-loops and functions that  consume 
most of the program execution timc. 

Wc fccd the application source code into the modified 
GGC compiler again in order to  automatically cxtract all 
d i d  clusters from the sections identificd previously. A clus- 
ter corresponds to  B piece of the application code and is 
composed by primitivc operations such as add and load. 
Therefore, our approach d o n  not require the programmcr 
to  manually select which parts of the application should be 
implemented as custom instructions. Gencrating clustcrs 
only for the performancecritical sections of the application 
reduccs significantly thc number of extracted clustcrs and is 
“cry important for the efficiency of the framework. 

The clusters arc extracted from GCC intcrmediate r e p  
rcscntation (IR). Using IR instead of machinc instruc- 
tions permits us to  extract tho cluster after all machino 
independent code optimizations, but heforc register alloca- 
tion and machinedependent optimizations. Whenever p a s  
sible, automatic function inlining [15] is applied. Thc appli- 
cation code corrcsponding to a cluster is not limited to  basic 
block boundaries end can contain control constructs, such 
as “if-then”, “if-then-else”, “switch”, and “goto”. 

Valid clustns are those that  can be  rcplaced in the appli- 
cation code by a spccialized instruction, without violating 
data  or control dependencics. That is, tho compiler is ablc 
to  find an instruction schedule which respects the applica- 
tion semantics. Our clustcr extraction algorithm uses domi- 
nance and post-dominance relations betwecn the operations 
in order to  guarantee that only valid clusters are extracted. 
An operation d dominates an operation i (d  dom i) if every 
possible execution path from the beginning of the procedure 
to  i includes d. An operation p post-dominates a n  operation 
i (p pdom i )  if cvcry possible execution path from i to  the 
cnd of the procedurc includes p [151. 

We illustrate these concepts with an example. Given the 
section ofcode shown in Figure 2, the corresponding control- 
flow graph (CFG) represents all possiblc execution paths in 
this code. We can sco that the operations in basic block B2 
dominate all operations in B3, B4, and B5. Also, the opera- 
tions in B5 post-dominate all operations in B2, B3, and B4. 
Wc ensure that a valid cluster is produced by requiring that 
the initial (final) hasic block of thc cluster dominates (post- 
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Algorithm ertract.clusters 
IIIDYT: section S with bmic biocks B 
output: set L of clUStem 
Build CFG, dominance and past-dominance trmz of S 
1-U1 

(4 Code (b) CFC 

Figure 2: Dominance cr i ter ia  for cluster  generat ion 

dominatcs) all blocks in CFG irom thc initial one until the 
final block is reached, and reversely, from the final one until 
the initial block is reached. For cxample, blocks 82, B3, B4, 
and B5 comtitute a valid clustcr. Cluster granularity can 
also vary. In our example, another valid cluster is formed 
by dl basic blocks in thc figure, givcn that B1 (87) dom- 
inatcs (post-dominates) all remaining blocks. Each block 
taken isolated also constitutcs a valid cluster. Moreover, we 
can also generate clusters that do not necessarily include all 
operations from the dominator and post-dominator blocks. 

Figurc 3 presents our'cluster cxtraction algorithm, which 
is applied t o  each performance-critical section identifiod in 
the application. The dominance tests an basic block BL 
(marked with (*) in the algorithm) ensure that thc execu- 
tion of the cluster always Starts and ends on Bi and B;, 
respectively. This guarantccs that only valid clusters are 
gencrated. In the spccial case thc section has no loops or it 
is a structured inner-loop, thcse tests are not neccssary. This 
algorithm has B polynomial time complexity with respect to  
the number of basic blacks of the input section. 
The main advantagc of this extraction technique is that 

the cluster can be entircly replaced by the Custom instruc- 
tion, without violating data or control dependencies. Com- 
pared to strategies involving superblocks or hyperhlocks, our 
approach may lose some clusters but it simplifies substan- 
tially the code gcneration, because it eliminates the need of 
compensation code or modifications in the application. 

Each cluster is automatically transformed into a 
control/datta-flow graph (CDFG), where the vertices reprc- 
sent the primitive operations. The data depcndencies be- 
tween tho opcrations are obtained from the use-definirion 
chains [I51 kept by GCC. We handle control dependencics 
by applying if-convcrsion, inserting selectors into the CDFG, 
and using predication only for memory operations. This is 
done using the control-dependence graph (CDG) 1151, so 
we can handle both structured and non-structured (with 
"got,o") application codc. Besides, our methodology is not 
limited to  tree-shaped clusters, what would precludc many 
potentially interesting clusters, c g . ,  clusters in which pard- 
le1 opcrations share operands, thus reducing the number of 
input data to  thc custom instruction. 

3.3. Cluster Selection 
After identifying a number of clusters in the application, 

we Want t o  know how useful their hardware implcmenta- 
tion would be. For cach cxtracted cluster, we estimate the 
speedup achieved if it is replaced by a spccialiocd instruc- 
tion. In this stcp of the dcsign Aow, wc only estimate the 

- "  
for each Bi. Bj t S 1 B, dom Bj and Bj pdom B. do 

Cllwter + 0 ;valid t true 
I* Depth first search (DFS) from Bi to Bj iii CFG *J 
for each BI reached in DFS and while valid do 

(*) if Bi dom B k  and Bi pdorn B k  then 
Cluster t Cluster U {Bk) . .  

else valid t false 
/* Reverse DFS (R-DFS) from Bi to B. in CFG *I 
for evch Bk roached in R-DFS and while valid do 

i f  not (B; d m  B k  and B, pdom Bk) then (*) 
valid c false 

i f  valid then L + L U (Clumv) 

Figure 3: Clus ter  extract ion algori thm 

speedups rather than generate and simulatc the specialised 
processor. Thc goal is to  make thc framework more efficient, 
givcn that we have not selected a small set ofclustcrs yet. 

In order to  estimate the application speedup with respect 
to a cluster, we need to  measure the number of cycles con- 
sumed by the software and hardware implementations of 
that clustcr. From thc profile information, we gct thc num- 
ber of cycles consumed by the cluster instructions when the 
application was executed in the base processor. In order to 
determinc the number of cycles consumed by the spccializod 
functional unit which implements tho cluster, we schedulc its 
CDFG. We use a list-schcduling algorithm, which cxploits 
chaining of opcrations and uses delays of primitive oper- 
ations obtained from a component library. Resource con- 
straints are imposcd during scheduling, limiting the number 
of hardware blocks available to  the specialized functional 
unit, as well as, the number of registem (of the h u e  proccs- 
SOI datapath) that can be read and written a t  cach cycle. 

The application speedup with respect to a cluster C i s  esti- 
mated using Equation 1, where cydesa... is the t,otal num- 
her of cycles consumed by the application whcn executed 
in the base processor. The number of cycles saved using C 
corresponds to  difference betwecn the total numhcr of cycles 
consumed by the software and hardwarc implementations of 
C (considering all executions of the cluster), as shown in 
Equation 2. The total number of cycles of the software "er- 
sion of C is obtained from thc profiling information, while 
the total numbcr of cycles of the hardwaro implementation is 
determined using Equation 3, where freq(C) corresponds to  
the frequency of execution oi  the cluster (also obtained from 
the profiling information). Finally, delay,, (C) corresponds 
to  the delay (in cycles) of the hardwarc implcmentation of 
C, established by our scheduling stcp. 

cycles,,,,d = cycles,, (C) - tydes,,(C) (2) 

cydes,,(C) = f W C )  x delw,,,,(C) (3) 
Since speedup estimation is very fast, we cvaluate several 

clusters with different rcsource constraints, exploring B large 
portion of the dcsign spacc. Then we sclect the clusters that 
provide the best specdups among all extractcd clusters. 

The generated clusters are not limited to  sequcnces of few 
operations and our cluster sclection approach is bascd on the 
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... 
delta - d e l t a  U 7 ,  

i f  ( delta U 4 ) vpdiff += step:  
i f  ( delta k 2 1 vpdiff +- s t e p n i ;  
i f  ( delta k 1 1 vpdiff += step>>2: 

"piiff = step >> 3 :  

... 
(a) Source code 

inatrehavior(8pecInstr)  { ... 
Sl - readReg(rs1): 
s2 - readReg(rs2); 

tl = a 1  k 7 ;  
t2 - s2 >> 3; 
t3 - s2 >> 1; 

uriteReg(d1. t15); 
setcycles (3) : 
update-ppc 0 ; 

... 

1 
(c) Instruction sirnulator codc (b) CDFG 

F i g u r e  4: Clus ter  from A D P C M  decoder a n d  instruct ion behavior  in t h e  s imula tor  

speedup they provide, and not on their frequency of occw- 
rence. Thereforc, our framework does not includc a pattern 
matching step, in which different occurrences of each cluster 
are searched in the application This stcp would requirc a 
subgraph isomorphism test, which is a NP-complcte problem 
[7j and may consume a long cxecution time. 

3.4. Specialized Processor Generation 
For each selected cluster, we compile the application gen- 

crating the excutable code for the specialized processor. 
We automatically modify the application In, so thc cam- 
piler is able to  replace the cluster operations by thc new 
custom instruction. I t  is not necessary to modify the a p  
plication source code nor to  re-generate the GCC. Also, a 
specializcd processor simulator with the custom instructions 
is automatically generated from the basc processor modcl. 

Given thc CDFG corresponding to  a selected cluster, our 
framework automatically generates the custom instruction 
behavior using ArchC. The number of cycles consumed by 
thc new instruction is also set. The generated codc is in- 
cluded into the base processor model, producing the special- 
ized processor simulator. Figure 4 shows the SOUTCC code and 
CDFG corresponding to  a clustcr extractcd from the AD. 
PCM decoder application of MediaBench benchmark [14]. 
The figure also shows partially the code generated to de- 
scribe the corresponding custom instruction (speclnstr). 

Finally, the application is executed using the ncw simu- 
lator and we measure the performance of this application 
for the specializcd proccssor. Then we compute the ex- 
act speedup achieved when the selected clusters are implc- 
mented as custom instructions. Notice that only thc selected 
clusters 80 through the simulation step, thus reducing the 
size of design space and the design turnaround time. 

The achieved speedup is mainly due to  the hardware im- 
plementation of the cluster, which is more efficient than the 
software one because i t  exploits instruction-level parallelism 
and chaining. Marcover, it reduccs the register pressure, and 
consequently, the memory spills, hecause temporary values 
inside the clusters arc not allocated to  the base processor 
registers any more. Also, given thst  a set of original instruc- 

tiom is replaced hy one custom instruction, thc numbcr of 
instruction cache misses can be reduced. 

Notice that our framework allows the use of different hard- 
ware implementations of the cluster. For example, a loop 
cluster can be implemented in a pipelined way. During the 
specialized processor generation, it is only necessary to  sct 
the number of cycles consumed by the custom instruction. 

4. Experimental Results 
The framework presented above was applied t o  programs 

from the MediaBench [14] and MiBench [Q] suites. Ail appli- 
cations were compiled with the maximum level of optimiza- 
tion (option "-03"). We evaluated the speedup achievcd by 
each ciustcr extracted from each application, under different 
resource constraints. These constraints limit tho numhcr of 
hardware blocks available for the specialized functional unit, 
which BTC arithmetic units (AU), logic-shift units (LSU), 
multipliers (Mul), multiplexors, register file read and writc 
ports, and memory readlwrite ports. 

4.1. Specialized Processor Performance 
The estimated speedups achieved by the specialized p m  

cessors are shown in Figurc 5.  Each C U N ~  corresponds 
to  one clustcr selected from an application and shows the 
speedups obtained with the inclusion of the corresponding 
custom instruction, under sevcral constraints. If two clus- 
ters are totally disjoint, they can both be impiementcd as 
custom instructions, further improving performance. Each 
cluster is labeled with the number of its dominator and past- 
dominator basic blocks. However, the clusters may have 
bcen extracted from different program functions. 

In the experiments we set thc resourcc constraints so as 
to  fix the number of multiplexors and memory ports to  four 
and o m ,  respectively, and vary the number of AUs, LSUs, 
and Muis. For example, the constraint 21311 represents two 
AUs, three LSUs, and one Mul. We also set to  two and onc, 
rcspectixly, the maximum number of registcrs (of the base 
processor datapath) that can be read and written at  each 
cyclc. Sincc we insert the specializcd functional unit into 
the datapath of the hasc processor (which in our experiments 
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Figure  5: Speedup of specialized processor for each  cluster u n d e r  resource constraints  (AU/LSu/Mui) 

is a SPARC VS), thc memory and register constraints must 
conform to the datapsth restrictions. It is important to  note 
that this is not a limitation of the framework and different 
constraints can be uscd with other base processors. We also 
evaluated the clusters undcr loose constraints (represented 
as M a x  in the figurc), in which there wcre unlimited AUs, 
LSUs, arid Muls, but the remaining resources werc fixed with 
the same restrictions described above. 

The figure shows specdups ranging from 1.1 t o  3.7. Notice 
that, for some applications, large speedups were achieved 
with only one custom instruction, even with very strict con- 
straints. Also, for almost all clusters, even with loose con- 
straints, the spcedup can not bc furthcr improved. But, if 
the constraints far read and writc register and memory ports 
werc relaxed, even better speedups would be possible. 

Both ADPCM encodcr and dccoder have only onc inner- 
loop with several basic blocks and few memory access. Since 
these loops consume most of the program execution time, re- 
ducing the cycles spcnt in the loop reflects directly to  the 
total execution time. The best speedup is achieved under 
the constraints fill11 because several comparison operations 
wcre produced by the if-conversion tschnique. The best clus- 
ter for each program corresponds to  thc whole loop body. 

The Rijndacl encodcr and decoder haw symmetric inner- 
loops with high execution Gequcncy and several shift and 
logical opcratious, but also many memory reads. Here we 
have the intcresting situation in which the best clustcrs 
for both applications are identical and achieve the samc 
speedups, so the s m c  specialized proccsso~ can  be used to  
encoder and decodcr programs. Thc maximum speedup is 
nearly 1.8 and it is not further improved due to  thc memory 
access, which brings no gain when implemented in hardware. 

The same situation on the memory reads also happens in thc 
dustcr BB 1 from thc Blowfish decoder. 

The cluster BB 138-149 corresponds to  the body of the 
most cxecuted loop from the GSM decodcr. Due to  the large 
number of shift and logical operations in the cluster, it is ef- 
ficiently implcrnented in hardware, and brings the speedup 
of 3.5 with respect to the loop execution time. However, ac- 
cording to  Amdahl's law [lo], since thc application has other 
performance-critical sections, B speedup of 1.7 is obt.ained 
when considering the complete program. The spcedup of 
cluster BB 140-149 decreased under constraints 2/3/1, even 
though thc numbcr of LSUs increasod. Sincc the heuristic 
list scheduling uses a priority function to  resolve resource 
contention, it delaycd a critical path operation. 

The best clustor from the JPEG decoder has many mem- 
ory, arithmetic, and multiplication opcrations, which have 
long delay and prevent thc schedulcr from exploiting chain- 
ing. Given that the three clusters shown for this application 
are disjoint, we can implemebt all of them as custom instruc- 
tions and obtain a speedup of 1.36. 

4.2. Framework Evaluation 
We also evaluated the efficiency of the proposed frame- 

work with respect its execution time. Table 1 shows the 
erccution time of each stcp of our design flow (enumerated 
in Figure 1) for a sct of benchmarks, using a standard Pen- 
tium IVJLinux desktop. Even though these execution times 
can change significantly by using a different platform, thcy 
give an overall idea of the time consumed at  each step. As 
shown, with the cxceptian of steps 1 and 5 which require 
cycle-accuratc simulation, all steps took only a few scconds. 

In step 2 all valid clusters from all performancecritical 
sections were extracted. 'The specdup provided by each 
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Table 1: Execut ion  t i m e  of design flow steps 

Table 2: Estimated a n d  s imula ted  speedups 

valid cluster w a ~  estimated for a sot of different re~ource 
constraints in step 3. The quick estimation onabled us to  
evaluate many clustcrs with different resource constraints, 
searching for the hest clustcr with the minimum resourc~s. 
Given that the simulation step8 were longer, only the chosen 
best solution WBS simulatcd in step 5.  Both steps 1 and 5 
involved the simulation of tho application, hut step 1 was 
longer because i t  also generated profiling information. 

Finally, we need to  ensure that the estimated speedups 
approach thc real speedups achieved. Table 2 compares the 
estimated and simulated speedups obtained for thc best clus- 
ter of each program. The estimatcd speedups werc very close 
to  the simulated ones for most applications. Given that 
clustcrs are extractcd after all machine-independent opti- 
mizations have been performed and before register alloca- 
tion and machinodependent optimizations, the estimated 
performancc of the software implementation of thc cluster 
can he slightly different from the real porformance. 

5. Conclusions 
This papcr presented a methodology to  automatically iden- 

tify specialized instruction set extensions for a h a c  proces- 
sor, givcn the intendcd application, with the goal of gener- 
ating an ASIP which optimizc its performance. The  clusten 
corresponding to  the custom instructions are extract& from 
the application using a dominatorlpost-dominatar criterion 
which eliminates thc need of compensation codc and ensures 
that the compilcr is able to  schedule thc new instructions. 
An efficient speedup estimation enablc the selection of the 
hest clusters and their waluation under different resource 
constraints. The  implementation of the new instruction is 
automatically generated using an architecture description 
language and included into a base processor modcl, produc- 
ing a specialized processor simulator. 

Experimcnts were performed to  evaluate the efficiency of 
the framework and specialiscd processors were generated far 
a set of benchmarks. For several applications, large speedups 
(ranging from 1.2 t o  3.6) were achieved with only one cus  
tom instruction and very strict resource constraints. The 
software tools which implement the design process took less 
than 1-2 minutes for the stcps requiring simulation, and only 
a fcw seconds for the remaining steps. The speedup esti- 
mation techniquc produced vory accuratc rcsults when com- 

pared to  the speedups obtained through simulation, allowing 
an efficient exploration of the design spacc. 
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