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Abstract—Comparing a biological sequence to a family of
sequences is an important task in Bioinformatics, commonly
performed using tools such as HMMer [1], [2]. The Viterbi algo-
rithm is applied as HMMer main step to compute the similarity
between the sequence and the family. Due to the exponential
growth of biological sequence databases, implementations of
the Viterbi algorithm on several high performance platforms
have been proposed. Nevertheless, few implementations of the
Viterbi algorithm use GPUs as main platform. In this paper,
we present the development and optimization of an accelerator
for the Viterbi algorithm applied to biological sequence analysis
on GPUs. Some of the optimizations analyzed are applied to
the sequence comparison problem for the first time in the
literature and others are evaluated in more depth than in
related works. Our main contributions are: (a) an accelerator
that achieves speedups up to 102.90 and 60.46, with respect
to HMMer2 and HMMer3 execution on a general purpose
computer, respectively; (b) the use of the multi-platform OpenCL
programming model for the accelerator; (c) a detailed evaluation
of several optimizations such as memory, control flow, execution
space, instruction scheduling, and loop optimizations; and (d) a
methodology of optimizations and evaluation that can also be
applied to other sequence comparison algorithms, such as the
HMMer3 MSV.

Keywords-Sequence-profile alignment; Viterbi algorithm;
GPU; Accelerator; Optimization; OpenCL

I. INTRODUCTION

The exponential growth of biological sequence databases

has been making the tasks of sequence comparison and

classification more and more computationally demanding.

As examples, the protein database UniProtKB TrEMBL [3]

contains 23,165,610 sequences and its size almost doubles

in every two years; the sequence family database Pfam [4]

contains 13,672 families and it is currently 6× larger than its

first version.

Given a family of sequences represented by a profile HMM

(Hidden Markov Model) [5], a newly identified sequence

is compared to the profile HMM using a sequence-profile

comparison tool and a similarity score is produced. The

sequence is classified as part of the family or not, based on a

significance threshold applied to the score.

HMMer [1], [2] is a widely used sequence-profile compar-

ison tool and is based on the Viterbi algorithm [6]. However,

depending on the sizes of the sequence and family databases,

HMMer can take up to 500 days to perform the comparison

process using a conventional processor [7]. Therefore, several

implementations of the Viterbi algorithm on high performance

platforms have been proposed.

GPUs (Graphic Processing Units) combine low cost, mas-

sively parallel processing capability and increasing pro-

grammability, allowing researchers to use them as a high per-

formance computing platform. Nevertheless, few implemen-

tations use this platform for the sequence-profile comparison

problem.

This work evaluates the use of GPUs for the sequence-

profile comparison problem. We perform a detailed analysis

of several memory optimizations for the data structures of the

problem. We also apply and evaluate optimizations such as

control flow optimization, execution space and occupancy tun-

ning, and loop unrolling combined with instruction schedul-

ing. Some of the optimizations are applied to the sequence

comparison problem for the first time in the literature, while

others are evaluated in more depth than in related works.

An optimized accelerator for sequence-profile comparison

is presented, evaluated and compared to other accelerators.

Our accelerator is the first described in literature to use the

multi-platform OpenCL programming model [8] and achieves

higher performance than other GPU accelerators.

This paper is organized as follows. Section II introduces

profile HMMs, the sequence-profile comparison problem, and

the Viterbi algorithm. In Section III we describe related

works in sequence-profile comparison accelerators. Section IV

presents a basic accelerator developed and preliminary results

obtained. In Section V we describe and analyze the optimiza-

tions applied. Section VI presents an optimized accelerator

and its performance evaluation. Finally, in Section VII we

summarize the results and suggest future works.

II. SEQUENCE-PROFILE COMPARISON

A sequence family is a set of sequences with similar

functionalities, similar 2D/3D structure, or common evolu-

tionary history. A multiple alignment of the sequences in a

family can be used to produce a profile HMM, a theoretical

model that represents statistically the similarities among the

sequences [5]. This model employs a set of states to record the

residue distribution at each position of the multiple alignment,

and to describe the variations in the family.

The classification of a newly identified sequence as part of

a family allows inferring the function and/or structure of the

sequence. Therefore, the sequence is compared to the profile

HMMs representing several known families, in search for

similarities. The sequence-profile comparison process aligns

the sequence of interest to the profile HMM, and produces

a similarity score. If the score is significant, the sequence is
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classified as part of the family and the alignment is used to

insert the sequence into the HMM.
Figure 1 shows a profile HMM H following the Plan7

architecture [5] and representing a sequence family. When a

sequence S is compared to H , the residues of S are aligned

to the states of H . Each Match state Mj emits a residue

of S, matching it to a column of the multiple alignment

of the family. An Insert state Ij allows residues of S to

be emitted between consecutive Match states. Each Delete

state Dj allows S to jump Match states without emitting

residues. Special states N , C, B, E, and J allow different

alignment algorithms to be applied, such as global alignment,

local alignment with respect to S, local alignment with respect

to H , and multi-hit alignment. There are residue emission

probabilities associated to Match and Insert states, as well as

transition probabilities associated to state transitions. A group

of {Ij , Mj , Dj} states is called the node j of the profile

HMM.

Figure 1. Plan7 profile HMM with 3 nodes

Given a sequence S = s1s2 . . . s|S| to be aligned to a

profile HMM H of Q nodes, there may be many different

alignments that generate S using H , each one producing a

different similarity score. The Viterbi algorithm applies the

dynamic programming technique to find the best alignment of

S to H , i.e., the one with highest score. It calculates:

• Matrices M , I , and D, for Match, Insert, and Delete

states, respectively, where the element [i, j] of each

matrix is the score of the best alignment that emits the

first i residues of S and reaches the corresponding state

in node j;

• Vectors N , B, E, C, and J , where the i-th element of

each vector is the score of the best alignment that emits

the first i residues of S and reaches the state associated

to the vector.

The following recurrence equations describe the Plan7

Viterbi algorithm, where Ptt1,t2 is the transition probability

from state t1 to t2 and Pet(s) the emission probability of

residue s at state t.

M [i][j] = PeMj (si) +max

⎧⎪⎪⎨
⎪⎪⎩

M [i− 1, j − 1] + PtMj−1,Mj

I[i− 1, j − 1] + PtIj−1,Mj

D[i− 1, j − 1] + PtDj−1,Mj

B[i− 1] + PtB,Mj

I[i][j] = PeIj (si) +max

{
M [i− 1, j] + PtMj ,Ij

I[i− 1, j] + PtIj ,Ij

D[i][j] = max

{
M [i, j − 1] + PtMj−1,Dj

D[i, j − 1] + PtDj−1,Dj

N [i] = N [i− 1] + PtN,N

E[i] = max

⎧⎪⎪⎨
⎪⎪⎩

M [i, 1] + PtM1,E

M [i, 2] + PtM2,E
...

M [i, Q] + PtMQ,E

J [i] = max

{
J [i− 1] + PtJ,J

E[i] + PtE,J

B[i] = max

{
N [i] + PtN,B

J [i] + PtJ,B

C[i] = max

{
C[i− 1] + PtC,C

E[i] + PtE,C

The time complexity of the Viterbi algorithm for Plan7

HMMs is O(Q×|S|). Despite its polynomial execution time,

due to the exponential growth of sequence and sequence fam-

ily databases, the Viterbi algorithm can be very computation-

ally demanding, in both time and memory space. One of the

simplest alternatives to improve Viterbi algorithm performance

is to calculate matrices elements in parallel. However, the data

dependencies between them, shown in Figure 2, prevent the

parallel computation of any two elements in a matrix.

Figure 2. Data dependencies in the Plan7 Viterbi algorithm

When comparing a set of sequences to a profile HMM, there

are no dependencies between the score matrices corresponding

to two different sequences, which can be computed in parallel,

exploiting the coarse-grained sequence parallelism.

The Viterbi algorithm calculates the score of the best

alignment of S to H , however, it does not return the alignment

itself, which is the sequence of states of H that generates S
with highest score. A traceback algorithm, executed only when

the similarity score is superior to a threshold, calculates the

best alignment using the Viterbi algorithm matrices.

It is possible to execute the Viterbi algorithm storing only

two rows of the score matrices and vectors, the current row

and the previous one. In this case the Viterbi algorithm works

as a filter, with reduced memory requirements. However, if

the resulting score is significant, it is necessary to re-execute
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the algorithm, this time storing the entire matrices, to be able

to perform the traceback.

III. RELATED WORK

HMMer [1], [2] is a set of programs that uses profile HMMs

for biological sequence comparison and classification. One of

main operations of this tool is hmmsearch, which compares

a sequence database to a sequence family profile HMM.

HMMer2 hmmsearch operation uses the Viterbi algorithm as

its main step, while HMMer3 uses the Viterbi algorithm as

the second step of its filter pipeline. The first step is the MSV

(Multiple Segment Viterbi) algorithm, which is a simplified

version of Viterbi algorithm with less data dependencies.

HMMer is widely used and many optimizations have been

proposed to improve its performance.

ClawHMMer [9] is an implementation of HMMer2 hmm-

search operation on GPU using the Brook language. It uses

profile HMMs with only M , I , and D states and exploits

sequence parallelism. The sequence database is sorted by

sequence length and divided into batches, in order to fit in

GPU memory and provide load balance, with sequences in

the same batch having similar lengths. The accelerator works

as a filter, storing only two rows of the score matrices, and

traceback is performed on host if necessary. ClawHMMer,

executing on a ATI R520, reached a speedup of 36 compared

to HMMer2 executing on Intel Pentium 4 2.8GHz.

GPU-HMMer [10] implements HMMer2 hmmsearch op-

eration as a filter on GPU, using the CUDA programming

model. It uses Plan7 profile HMMs and exploits sequence

parallelism. The sequence database is sorted to provide load

balance and the inner loop of Viterbi algorithm is unrolled.

Score matrices are stored in GPU global memory and accessed

with coalescency, while transition and emission probabilities

are kept in constant and texture memory, taking advantage

of caching. Using a GeForce GTX 8800 Ultra, GPU-HMMer

reached speedups between 12 and 38.6 compared to HMMer2

executing on AMD Athlon 2.2GHz.

CuHMMer [11] also implements HMMer2 hmmsearch op-

eration as a filter on GPU with CUDA, using Plan7 pro-

file HMMs and exploiting sequence parallelism. The main

difference is that, instead of keeping the host idle while

the GPU executes, CuHMMer executes HMMer on the host

in parallel to the GPU. The sequences are grouped based

on their length to provide load balance, and transition and

emission probabilities are stored in GPU shared or texture

memory. CuHMMer, executing on a GeForce GTX 8800,

reached speedups between 13 and 45 compared to HMMer2

executing on AMD Athlon64 X2 Dual Core processor.

Du et al. [12] implements HMMer2 hmmsearch operation

on GPU using CUDA and profile HMMs with only M , I , and

D states, allowing only global sequence-profile alignments.

Once the J state does not exist, the cyclical data dependency

shown in Figure 2 is broken and it is possible to calculate

M , I , and D anti-diagonal cells in parallel, one anti-diagonal

at a time. They implement three different approaches: storing

the whole score matrices in GPU global memory, accessing

them with coalescency, and performing traceback on the GPU;

storing only two anti-diagonals on GPU, copying old anti-

diagonals back to the host using overlapping, and performing

traceback on the host, but without re-executing Viterbi algo-

rithm; preprocessing the sequences on the host in order to

find homologous segments among them and executing Viterbi

algorithm on GPU for the other segments. Using a GeForce

GTX 9800, they reached speedups between 1.97 and 72.21

compared to HMMer2 executing on Intel Dual Core 2.83GHz.

Ganesan et al. [13] implements HMMer2 hmmsearch oper-

ation on GPU using CUDA and Plan7 profile HMMs. They

iterate the Viterbi algorithm recurrences, allowing cells of

the same row of M and D score matrices to be calculated

in parallel, while successive rows are computed sequentially.

This way, they exploit both data and sequence parallelism.

Using a cluster of four NVIDIA Tesla C1060 GPUs, they

reached a speedup of 100 compared to HMMer executing on

AMD Opteron 2.33GHz.

Li et al. [14] implements a speculative version of the

HMMer3 MSV filter on GPU using CUDA, applying opti-

mizations such as memory coalescing, asynchronous transfers

between CPU and GPU, load balancing by sorting the se-

quences, and loop unrolling. Auxiliary threads are executed

on CPU to control I/O, prepare the data for the GPU and

run the other steps of HMMer3 pipeline (Viterbi and Forward

algorithms). Using a NVIDIA Tesla C2050 GPU, they reached

a speedup of up to 6.5 compared to HMMer3 SSE serial

version executing on Intel Xeon E5506.

Most FPGA (Field-Programmable Gate Array) accelera-

tors [7], [15]–[17] for the Viterbi algorithm implement a

systolic array and eliminate state J , exploiting anti-diagonal

data parallelism, but decreasing similarity score accuracy.

Strategies to reduce the accuracy loss are applied, by duplicat-

ing the profile HMM [7] or recalculating part of the score ma-

trices [17]. Some accelerators exploit limited sequence paral-

lelism [18] or combine anti-diagonal and sequence parallelism,

by interleaving two sequences [16]. Abbas and Derrien [19]

implement an accelerator for the HMMer3 MSV and Viterbi

algorithms in FPGA, rewriting the recurrence equations to

expose more parallelism. Cluster-based solutions are also

used to improve HMMer performance, exploiting sequence

parallelism [20], [21]. In general, FPGA accelerators achieve

good performance results, at the expense of accuracy loss,

while cluster solutions produce accurate similarity results,

however with smaller performance gains.

IV. BASIC ACCELERATOR AND PRELIMINARY RESULTS

The execution platform used in this work consists of a

GPU GeForce GTX 460 1GB GDDR5 connected to a host

computer (through a PCI-Express interface) with 4GB and an

AMD Athlon II X3 processor. The accelerator programs were

written using OpenCL 1.0 and were executed on the CUDA

architecture. OpenCL and CUDA have many similarities,

however OpenCL may suffer from a small performance loss

on NVIDIA GPUs compared to programs using CUDA [22].

One of the main advantages of OpenCL is the portability,
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allowing the execution of the same code in several different

architectures.

We used in the experiments the profile HMMs correspond-

ing to the 20 families with highest number of sequences

(top twenty) from Pfam [4] sequence family database. These

HMMs have length between 23 and 488, and 173 on average.

A subset of 70,000 sequences with length between 550 and

1,500 was randomly extracted from the UniProtKB Swiss-Prot

database [23] and used in preliminary experiments. The final

optimized accelerator was evaluated using the entire database,

composed of more than 500,000 sequences.

We developed a basic GPU accelerator for the Viterbi

algorithm. Given a set of N sequences S = {S1, S2, ..., SN}
to be compared to a profile HMM H of length Q, we execute

in parallel N instances of the Viterbi algorithm, each one

comparing a different sequence Sk to the same HMM H ,

exploiting sequence parallelism.

Since the Viterbi algorithm instances are independent, each

instance must have its own set of score matrices and vectors.

Table I shows, in the second column, the memory space

required to store the entire score structures when executing

the Viterbi algorithm on GPU for the complete Swiss-Prot

database and a profile HMM with the average length of the

top twenty families. The other structures (sequences, transition

and emission probabilities) are much smaller than the scores,

fitting into GPU global memory. Therefore, there should be at

least 370GB available on GPU to store the score structures,

an amount that is not supported by current GPUs.

In order to reduce the amount of memory required, our GPU

accelerator works as a filter. Instead of storing the entire score

matrices and vectors, only two rows are kept. Table I shows,

in the third column, the memory space required to execute

the Viterbi filter algorithm in parallel on GPU for the same

typical data inputs. There should be at least 2GB available on

GPU to store the score structures, an amount easily supported

by several current GPUs.

Table I
MEMORY SPACE REQUIREMENTS OF COMPLETE AND FILTER VITERBI

ALGORITHM ON GPU

Score structures
Viterbi algorithm with Viterbi filter algorithm with

complete score structures reduced score structures

M , I , D 3×Q×4×
N∑

k=1

|Sk| bytes 3×Q×4×2×N bytes

N , B, E, C, J 5×4×
N∑

k=1

|Sk| bytes 5×4×2×N bytes

Typical total size 388,684,295.06KB 2,170,768.25KB

When the similarity score produced is significant (a hit is

obtained), it is necessary to re-execute the Viterbi algorithm

on the host, keeping the entire score structures in order to

perform traceback. Nevertheless, the comparison of the entire

Swiss-Prot database to the top twenty profile HMMs resulted

in only 0.29% hits, on average. The memory requirement

reduction combined with the small hit rate justify the use of

Viterbi algorithm as a filter. Figure 3 shows the workflow

implemented by our GPU accelerator.

In our basic GPU accelerator, all data structures required to

execute the Viterbi algorithm are stored in global memory and

no optimizations are applied. We compared the performance

of the accelerator to HMMer2 and HMMer3 using the entire

SwissProt sequence database, for each profile HMM. Table II

shows the average execution time of the basic accelerator,

HMMer2, and HMMer3, where the accelerator time includes

the Viterbi algorithm execution on GPU and all host-GPU

data transfers. The HMMer2 and HMMer3 execution times

correspond to the sequential execution on the host of the main

filters of the hmmsearch operation of these tools, with SSE2

instructions disabled in the latter.
Table II

PERFORMANCE COMPARISON BETWEEN BASIC GPU ACCELERATOR AND

HMMER2 AND HMMER3

Average Basic accelerator HMMer2 HMMer3
execution time (s) 494.84 548.44 423.12

The basic accelerator is, on average, only 1.11 times faster

than HMMer2 and it performs worse than HMMer3. These

results show that implementing algorithms on GPU in a similar

way to implementations on general-purpose processors may

not produce performance gains over conventional implemen-

tations, stressing the importance of applying optimizations

in order to achieve performance improvements when using

GPUs.

Figure 3. Workflow of the proposed accelerator on GPU

V. OPTIMIZATION STRATEGIES

This section presents the optimizations applied to our basic

GPU accelerator and the results achieved.

A. Memory Optimizations

The correct use of each kind of GPU memory is important

to achieve good performance. We reorganize the allocation
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and access of the Viterbi algorithm data structures in order to

find out the best memory to allocate each structure and the

best way to access it.

In OpenCL, the instances of the Viterbi algorithm are

executed by work-items organized in work-groups, which

are assigned to the GPU multiprocessors. Work-items in the

same work-group are divided in groups of 32 work-items,

called warps, and executed in lockstep using SIMD (Single

Instruction, Multiple Data) instructions. In order to optimize

global memory accesses, work-items in the same warp must

access words belonging to the same 128-byte memory seg-

ment, generating a coalesced access, which is served by only

one 128-byte memory transaction [24].

The score matrices and vectors are the most frequently

accessed structure of the Viterbi algorithm and consume much

memory space, as seen in Table I, therefore the global memory

is the only one that fits them. If the score matrices M are

sequentially allocated in global memory, when each work-

item k (associated to sequence Sk+1) in a warp access the

element Mk+1[1, 1], uncoalesced accesses are generated to

different memory segments, requiring one 128-byte memory

transaction for each work-item. Therefore, we interleave the

M matrices elements in a way that when each work-item k
in a warp access the element Mk+1[1, 1], a coalesced access

is generated to the same memory segment, requiring only one

128-byte memory transaction to serve all work-items. This

strategy is applied to all score structures to achieve memory

coalescency and improve performance.

Even when accesses are coalesced, if the number of se-

quences is not multiple of 32, some extra transactions are

needed to serve some warps accessing scores. We can avoid

these extra transactions by applying memory padding to the

score structures in order to make their sizes multiple of 32.

We also evaluated allocating the score structures in private

memory, which is an off-chip memory whose scope is local to

the work-item. Private memory is mapped into global memory

and used by the compiler to hold automatic variables when it

determines they do not fit into registers. Figure 4 shows score

matrix M allocated in private memory and how it would be

automatically mapped into global memory.

Figure 4. Matrix M allocated in private memory and mapped into global
memory

As private memory resides in global memory, it is subject to

the same requirements for memory coalescing, except for the

fact that accesses to private memory are naturally coalesced as

long as work-items in a warp access the same relative address

of the structure [25].

Figure 5 shows how the position [i, j] of the score matrix

M is accessed in global memory and in private memory,

respectively. In Figure 5(a), the expression i×Q×N + j×N
represents an offset applied by each work-item to access the

portion of M score matrix which stores the elements M [i, j]
of all sequences. Figure 5(b) shows that index computations

are simpler in private memory, because the matrix is accessed

as an ordinary kernel variable and each work-item views its

matrix as a separated structure.

M [i×Q×N + j ×N + work item id]

(a) Access in global memory

M [i×Q + j]

(b) Access in private memory

Figure 5. Accesses to the position [i, j] of score matrix M allocated in
different memories

Table III shows the average execution time of the GPU

accelerator with different strategies for the allocation and

access of the score structures. Although coalescency in global

memory along with padding achieved an excellent perfor-

mance gain, the use of private memory brought even more

gain, showing that coalescency is more effective in this

memory, since it is easier to achieve and it simplifies index

computations.

The sequences are allocated in global memory due to the

same memory limitations faced with the score structures. The

same strategy applied to the score structures is used to achieve

coalescency with the sequences, with the difference that, in

order to facilitate interleaving, the sequences are sorted by

length. The sequence access coalescency achieved an average

reduction of 8% in the execution time of the basic accelerator.

This reduction is smaller than the one achieved with the

score coalescency because the sequences are accessed less

frequently than scores.
Table III

PERFORMANCE COMPARISON OF STRATEGIES FOR SCORE STRUCTURES

ALLOCATION AND ACCESS

Strategy Average execution time (s)
Basic accelerator (scores in global memory) 144.13
Scores in global memory with coalescency 20.43
Scores in global memory

18.10
with coalescency and padding
Scores in private memory 6.70

The transition probabilities are divided in two categories:

regular transitions, involving states M , I , and D of the profile

HMM, and special transitions, which connect only the special

states B, N , E, C, and J , and are much smaller than regular

ones, since they do not depend on the length of the HMM.

Figure 6 shows the access pattern of work-items in a warp

to the transition probabilities. Since all work-items use the

same profile HMM, they always request the same transition

probability. The transition probabilities are a small structure

and it is possible to allocate it in the constant memory or local

memory, besides the global memory.

The constant memory is a small part of the global memory

which is constant and whose access is as fast as reading

from registers, as long as work-items in a warp read from the
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same address, which is the exact pattern shown in Figure 6.

Allocating regular transitions in constant memory is quite

simple and requires changing only one parameter.

Figure 6. Access pattern of work-items in a warp for the transition
probabilities

The local memory is a small on-chip memory inside each

GPU multiprocessor. It is extremely fast and, when used

properly, has an access latency up to 100× shorter than global

memory [24]. Local memory is shared only by work-items

in the same work-group, thus, each work-group must have

a copy of the regular transitions in its local memory. The

work-items copy the regular transitions from global memory to

local memory coalescedly, in a way that no extra transactions

are generated. In order to avoid serialization of accesses from

different work-groups to the same transition probability, the

probabilities are replicated in global memory for each work-

group. Finally, a synchronization barrier is needed to ensure

the work-items execute only after all the transitions are copied

to local memory.
We allocated special transitions exclusively in global mem-

ory, but replicating transitions for each work-item and in-

terleaving them, in order to produce coalesced accesses. We

also evaluated allocating special transitions in local memory,

but with some differences with respect to regular transitions.

Since there are only a few special transitions, only a few

work-items per work-group copy the transitions from global

memory to local memory, while the others are kept inactive.

We replicate the special transitions in local memory for each

warp, so that no barrier synchronization is needed. Finally, we

allocated special transitions in constant memory, however, no

significant performance gain was achieved, probably because

this structure is accessed less frequently than the regular

transitions.
Table IV shows the results of the memory optimizations

applied to the transitions. The use of local memory and

constant memory for regular transitions produced similar small

performance gains, although using local memory consumes

more global memory (transitions were replicated in global

memory) and inhibits the use of local memory for other

structures that might achieve better performance gains, since

this memory is very small. For special transitions, the use

of global memory with coalescency and local memory also

produced similar performance gains, but two conclusions can

be draw. First, although special transitions are accessed less

frequently than regular ones, using local memory for special

transitions achieved a better performance than using it for reg-

ular transitions, due to the absence of barrier synchronization.

Second, the performance gain obtained with replication and

coalescency of special transitions in global memory shows

that eliminating concurrent accesses of work-items in the same

warp to the same position of the global memory can produce

performance gains.
Table IV

PERFORMANCE COMPARISON OF STRATEGIES FOR TRANSITION

PROBABILITIES STRUCTURES ALLOCATION AND ACCESS

Strategy Avg. execution time (s)
Basic accelerator (transitions in global memory) 144.13
Regular transitions in constant memory 143.40
Regular transitions in local memory 142.54
Special transitions in global mem. w/ coalescency 140.44
Special transitions in local memory 140.99

The emission probabilities have different characteristics.

They are organized as two different matrices, for emission

probabilities of M and I states, and are shared among all

work-items. We reorganized these matrices in global memory,

transposing them, in order to improve the spatial locality.

Nevertheless, it did not produce performance gains.

Since the work-items handle different sequences and the

emission probabilities they need depend on the residues of

the sequences, it is not possible to predict the access pattern

for these probabilities. As a consequence, it is not possible

to reorganize the probabilities in order to generate coalesced

accesses to global memory. Their pattern of access is also not

suitable for allocation in constant memory. Therefore, local

memory is the one that best fits emission probabilities, because

it is faster than global memory and the accesses do not have to

be coalesced. We also padded some positions in the emission

probabilities structure in order to avoid bank conflicts during

the accesses of a warp.

Allocating emission probabilities in local memory improved

the execution time in 7%, on average, compared to the

basic accelerator, which allocates the probabilities in global

memory. The longer the profile HMM, the better the per-

formance improvement, because the emissions probabilities

are accessed more often. Nevertheless, the insufficient space

in local memory for the emission probabilities of very long

profile HMMs prevent its use.

B. General Optimizations

Instruction scheduling is the process of determining the

execution order of program instructions to reduce delays

caused by conflicts between instructions [26]. Static instruc-

tion scheduling is usually performed by compilers during the

optimization and code generation phases. Conflicts between

instructions do not influence the GPU performance as long

as there are available warps to execute while other warps

execute long-latency arithmetic operations [24]. This happens

when GPU occupancy, the ratio of the number of active warps

per multiprocessor to the maximum number of possible active

warps [24], is higher than 18.75% (for devices with compute

capability 1.2 or above).

Using the NVIDIA occupancy calculator, we determined

the occupancy of 50% for our basic accelerator, using 256

work-items per work-group. Therefore, conflicts between in-

structions should not cause delays during the execution of our

accelerator. Nonetheless, we applied instruction scheduling

manually in the high-level source program of our accelerator,
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increasing the distance between dependent instructions. We

also applied the register renaming technique [26], in order to

eliminate false dependencies between instructions, but increas-

ing the amount of registers needed to execute the accelerator.

To illustrate this approach, Figures 8(a) and 8(b) show the

main section of the Viterbi kernel before and after instruction

scheduling and register renaming were applied, respectively.

Loop unrolling consists in replacing the body of a loop

with several copies of the same body, reducing the loop

overhead and facilitating instruction scheduling. We applied

loop unrolling to the Viterbi algorithm inner loop in our

accelerator, using unroll factors 2, 4, and 8. We also evaluated

combining loop unrolling and instruction scheduling.

Figure 7 compares the performance of the basic accelerator

to the loop unrolled accelerator, with different unroll factors,

each one with and without instruction scheduling. Instruction

scheduling alone achieved performance gains over the basic

accelerator, showing that, even when the GPU occupancy

is higher than the recommended threshold, increasing the

distance between dependent instructions can improve the

performance. It also shows that the code generated by the

GPU compiler is not effectively scheduled. The loop unrolling

itself did not produce a significant performance gain. However,

when combined with instruction scheduling, the gain is poten-

tialized and, as the unroll factor increases, the performance

gain also increases. The best performance is achieved with

instruction scheduling combined to loop unrolling with factor

8. We did not applied a bigger unroll factor because the

number of registers needed increases as we increase the unroll

factor and we had already reached the limit of registers per

work-item.

Figure 7. Performance comparison of accelerators with and without
instruction scheduling and loop unrolling

It is possible to improve the performance by overlapping

data transfers between host and GPU with GPU execution.

We applied this technique to our accelerator, by overlapping

the GPU execution with the copy of part of the sequences

from host to GPU. However, it did not produce performance

gains, because the time spent with data transfers is too small

compared to the time spent executing the accelerator. In the

basic accelerator, more than 99% of the execution time is spent

in GPU computation.

In a GPU execution, a divergence happens when work-items

in the same warp take different execution paths, and these

paths are executed sequentially until the work-items join the

same execution path again. Divergences can reduce execution

parallelism on GPU and should be minimized [24]. There

are three control flow structures in the Viterbi algorithm that

can generate divergences: the outer loop, that iterates over

the sequence residues; the inner loop, that iterates over the

HMM nodes; and the conditional statements used to check the

conditions of the dynamic programming recurrences shown in

Section II. We created some synthetic sets of sequences to

evaluate the impact of the divergences caused by each control

flow structure. The inner loop does not cause divergences,

because all the Viterbi algorithm instances handle the same

profile HMM, then the work-items iterate over the same

number of nodes. The outer loop generates divergences for

sequences with different lengths. However, these divergences

did not cause performance loss. Finally, the conditional state-

ments did not generate divergences, because they guard only

a few instructions and, in these cases, the compiler replaces

the conditional branches with predicated instructions [24].

VI. OPTIMIZED ACCELERATOR AND RESULTS

Based on the experiments performed, we ranked the pro-

posed optimizations according to the performance gains they

achieved, as follows:

1) Scores in private memory with coalescency;

2) Loop unrolling with unroll factor 8;

3) Instruction scheduling;

4) Sequences in global memory with coalescency and

sorted by their lengths;

5) Special transition probabilities in local memory, repli-

cated for each warp;

6) Regular transition probabilities in constant memory.

After determining the optimizations that provide perfor-

mance gains, we need to evaluate how they behave in

combination with the others. Table V shows the results of

the execution of the accelerators created by applying the

optimizations listed previously, one at a time, in that order. The

subset of 70,000 sequences from SwissProt database and the

profile HMM Oxidored q1 from Pfam database, with length

270, were used in this experiment. The different accelerators

evaluated are identified by the numbers of the optimizations

applied, as defined in the previous optimization list.

Table V
GPU ACCELERATOR PERFORMANCE COMBINING OPTIMIZATIONS

Accelerator / Optimizations Execution time (s)
Basic 220.85
1 10.60
1 + 2 11.94
1 + 2 + 3 8.04
1 + 3 10.40
1 + 2 + 3 + 4 5.20
1 + 2 + 3 + 4 + 5 5.17
1 + 2 + 3 + 4 + 5 + 6 4.36

The coalesced access of the scores in private memory

(optimization 1) is the strategy that achieves the highest

performance gain, because memory coalescency is a important

optimization and the score structures are the most frequently

accessed by the work-items.
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for i = 1 to |S| do
. . .
for j = 1 to Q do

aux = M [iprevious, j − 1] + PtMj−1,Mj

if I[iprevious, j − 1] + PtIj−1,Mj > aux then
aux = I[iprevious, j − 1] + PtIj−1,Mj

end if
if D[iprevious, j − 1] + PtDj−1,Mj > aux then

aux = D[iprevious, j − 1] + PtDj−1,Mj

end if
if B[iprevious] + PtB,Mj > aux then

aux = B[iprevious] + PtB,Mj

end if
M [icurrent, j] = aux+ PeMj (si)
aux = M [iprevious, j] + PtMj ,Ij

if I[iprevious, j] + PtIj ,Ij > aux then
aux = I[iprevious, j] + PtIj ,Ij

end if
I[icurrent, j] = aux+ PeIj (si)
aux = M [icurrent, j − 1] + PtMj−1,Dj

if D[icurrent, j − 1] + PtDj−1,Dj > aux then
aux = D[icurrent, j − 1] + PtDj−1,Dj

end if
D[icurrent, j] = aux
. . .

end for
. . .

end for
(a) Before instruction scheduling and register renaming

for i = 1 to |S| do
. . .
for j = 1 to Q do

auxM = M [ianterior, j − 1] + PtMj−1,Mj

auxI = M [ianterior, j] + PtMj ,Ij

auxD = M [iatual, j − 1] + PtMj−1,Dj

if I[ianterior, j − 1] + PtIj−1,Mj > auxM then
auxM = I[ianterior, j − 1] + PtIj−1,Mj

end if
if I[ianterior, j] + PtIj ,Ij > auxI then

auxI = I[ianterior, j] + PtIj ,Ij
end if
if D[iatual, j − 1] + PtDj−1,Dj > auxD then

auxD = D[iatual, j − 1] + PtDj−1,Dj

end if
if D[ianterior, j − 1] + PtDj−1,Mj > auxM then

auxM = D[ianterior, j − 1] + PtDj−1,Mj

end if
I[iatual, j] = auxI + PeIj (si)
D[iatual, j] = auxD

if B[ianterior] + PtB,Mj > auxM then
auxM = B[ianterior] + PtB,Mj

end if
M [iatual, j] = auxM + PeMj (si)
. . .

end for
. . .

end for
(b) After instruction scheduling and register renaming

Figure 8. Instruction scheduling and register renaming applied to the Viterbi kernel, in order to reduce execution delays caused by conflicts between instructions

The combination of loop unrolling (optimization 2) to

the first optimization caused a small performance loss, that

was eliminated by the insertion of instruction scheduling

(optimization 3). In order to evaluate if the instruction schedul-

ing would achieve more performance gain combined with

optimization 1 without loop unrolling, we implemented the

accelerator version 1+3, which produced a worse performance

than version 1+2+3, confirming that loop unrolling itself does

not produce performance gain, but potentialize the gain of

instruction scheduling.

The combination of optimization 4, the coalescency of

sequences, to the previous ones, produced a good performance

gain, which was enhanced by sorting the sequences, reducing

wasted bandwidth during accesses to the score structures.

Allocating special transition probabilities in local mem-

ory (optimization 5) combined with previous optimizations

achieved a small performance gain, proportional to the gain

produced when it was applied to the basic accelerator. Opti-

mization 6, the allocation of regular transition probabilities

in constant memory, achieved a much higher performance

gain when combined to optimizations 1+2+3+4+5 than when

applied to the basic accelerator. Therefore, some memory

optimizations may cause more impact when most of memory

accesses are already optimized.

The final optimized accelerator includes optimizations 1,

2, 3, 4, 5, and 6. In order to evaluate its performance,

we executed this accelerator using the entire SwissProt se-

quence database, sorted by length and divided in batches of

70,000 sequences due to memory limitations. The batches

were executed one at a time, for each top twenty profile

HMM. The sorting is performed only once and the time

spent on it was negligible. Table VI shows the optimized

accelerator execution time and the speedup it achieves with

respect to the basic accelerator, to HMMer2, HMMer3, and

GPU-HMMer [10]. The performance is also reported using

the throughput measure CUPS (Cell Updates per Second),

which indicates how many cells of the dynamic programming

matrices are computed in one second.

The optimized GPU accelerator is on average 44.45 times

faster than the basic one, even though both of them exploit the

same amount of sequence parallelism, using exactly the same

GPU as execution platform. Therefore, the performance gain

is obtained exclusively from the optimizations applied. This

shows how important it is to use the GPU resources efficiently

in order to achieve performance gains.

The speedup of the optimized accelerator with respect to

HMMer2 ranged from 40.35 to 102.90, with average of 49.27,

as shown in Table VI. The accelerator CUPS is uniform in all

executions, ranging from 8.36 to 10.05 GCUPS, with average

of 8.99 GCUPS. The CUPS achieved by HMMer2 for the

families Pkinase and Response reg are much lower than for

other families, probably due to a bad performance accessing

host memory hierarchy. This explains the anomalous speedups

of 101.75 and 102.90 achieved by our accelerator with respect

to HMMer2, when processing these two families.
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Table VI
PERFORMANCE COMPARISON BETWEEN OPTIMIZED GPU ACCELERATOR AND HMMER2, HMMER3, AND GPU-HMMER

Profile HMM
Optimized accelerator GCUPS (109 CUPS)

family
Execution Speedup wrt. Optimized

HMMer2 HMMer3 GPU-HMMer
time (s) Basic accelerator HMMer2 HMMer3 GPU-HMMer accelerator

ABC tran 7.52 44.41 43.14 41.30 14.31 9.07 0.21 0.22 0.63
Cytochrom B C 6.52 44.53 42.99 54.10 14.24 9.06 0.21 0.17 0.64
Cytochrom B N 12.01 44.82 42.71 50.27 15.22 9.00 0.21 0.18 0.59
Pkinase 16.62 45.38 101.75 48.93 15.36 8.97 0.09 0.18 0.58
Response reg 7.05 44.70 102.90 30.57 14.54 9.18 0.09 0.30 0.63
RVP 6.36 44.67 45.01 24.90 14.28 9.11 0.20 0.37 0.64
RVT 1 13.69 44.10 43.02 25.94 14.89 8.97 0.21 0.35 0.60
zf-C2H2 1.68 35.63 40.35 33.57 12.86 8.36 0.21 0.25 0.65
adh short 10.81 44.05 42.28 37.19 14.51 8.89 0.21 0.24 0.61
COX1 28.98 44.08 42.87 24.36 16.05 8.82 0.21 0.36 0.55
HTH 1 3.89 43.19 42.46 25.77 14.03 9.03 0.21 0.35 0.64
Helicase C 5.04 43.47 42.38 41.37 13.99 9.00 0.21 0.22 0.64
Oxidored q1 17.28 44.10 42.64 39.25 15.88 8.96 0.21 0.23 0.56
WD40 2.68 40.37 40.94 35.54 12.94 8.64 0.21 0.24 0.67
BPD transp 1 11.90 44.58 42.42 29.27 14.86 8.94 0.21 0.31 0.60
Acetyltransf 1 4.80 48.89 47.44 28.80 15.36 10.05 0.21 0.35 0.65
HATPase c 7.13 44.01 42.57 31.07 14.20 9.00 0.21 0.29 0.63
RVT thumb 4.54 43.32 42.27 23.62 13.87 8.99 0.21 0.38 0.65
MFS 1 22.74 44.51 43.42 60.46 15.83 8.91 0.21 0.15 0.56
GP120 31.41 45.16 43.04 38.73 16.37 8.88 0.21 0.23 0.54

Average 11.13 44.45 49.27 38.01 15.28 8.99 0.20 0.27 0.61

The speedup of the optimized accelerator with respect

to HMMer3 ranged from 23.62 to 60.46, with average of

38.01. The CUPS achieved by HMMer3 is less uniform than

HMMer2 because the number of calculated cells depends

on its pipeline of filters, which can discard some sequences

without executing all steps. We also compared our acceler-

ator with HMMer3 with SSE2 instructions enabled and we

achieved speedups up to 4.15. Our accelerator optimized the

Viterbi algorithm, which is not the main step of HMMer3,

and nevertheless achieved excellent speedups. If the MSV

algorithm were included and optimized in our accelerator, an

even better performance would be achieved.

From the main implementations of the Viterbi algorithm on

GPUs, described in Section III, GPU-HMMer [10] is the only

one with source code available. We executed and evaluated

GPU-HMMer on the same platform used for our optimized

accelerator and with the same families and sequences. Our

accelerator is on average 15.28 faster than GPU-HMMer, even

though the latter exploits the same sequence parallelism of

ours. This experiment enabled us to factor out differences of

platform and GPU generations and to compare the accelerators

using the same execution platform and the same input data.

Table VII compares our accelerator to the main imple-

mentations of the Viterbi algorithm on GPUs, described in

Section III, with respect to the speedups reported. GCUPS

results are not reported in these works. The solutions proposed

by ClawHMMer [9] and Du et al. [12] did not implement the

full Plan7 architecture and both achieved maximum speedups

lower than the speedups produced by our accelerator. GPU-

HMMer [10] and CuHMMer [11] implemented the full Plan7

architecture and achieved a maximum speedup lower than

the average speedup produced by our accelerator. Ganesan

et al. [13] also implemented the full Plan7 architecture and

achieved an average speedup higher than the average speedup

of our accelerator. However, they used four GPUs Tesla

C1060, each one containing 240 cores operating at 1.3GHz

and 4GB of global memory. Li et al. [14] implemented the

MSV algorithm and achieved speedups up to 6.5 with respect

to HMMer3 SSE serial execution. They used a Tesla C2050

GPU, with 448 cores and 3GB of global memory. In our

experiments we used only one simpler GPU containing 336

cores and 1GB of global memory. A GPU with more memory

would allow us to process more sequences in parallel and less

batches serially, producing better speedups.

Table VII
PERFORMANCE COMPARISON BETWEEN MAIN GPU ACCELERATORS FOR

VITERBI ALGORITHM AND OUR OPTIMIZED ACCELERATOR

Implementation
HMM

GPU Speedup
architecture

[9] M , I and D ATI R520 36 (max.)
[10] Plan7 GeForce GTX 8800 Ultra 12 to 38.6
[11] Plan7 GeForce GTX 8800 13 to 45
[12] M , I and D GeForce 9800 GTX 1.97 to 72.21
[13] Plan7 4 Tesla C1060 100
[14] MSV Tesla C2050 6.5 (max.)

Optimized
40.35 (min.)

accelerator
Plan7 GeForce GTX 460 49.27 (avg.)

102.83 (max.)

VII. CONCLUSION AND FUTURE WORK

This paper proposed an accelerator on GPU for the

sequence-profile comparison problem. The accelerator was

evaluated using an intermediate GPU and real sequence

database and sequence families, achieving an excellent per-

formance, with average and maximum speedup of 38.01 and

60.46, respectively, when compared to the widely used HM-

Mer3 tool executing on a conventional processor. Compared

to HMMer2, better speedups were achieved, with average

and maximum of 49.27 and 102.90, respectively. Besides,
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it is the first sequence-profile comparison tool presented in

the literature to use the OpenCL programming model. The

performance achieved is also higher than the performance

reported by other GPU accelerators described in the literature,

allowing the comparison of huge sequence databases to long

profile HMMs in a few seconds. Using a more powerful GPU,

our accelerator would achieve an even better performance.

We performed an extensive analysis of the viability of

many optimizations, which is not found in literature for

the sequence-profile comparison problem. This analysis can

contribute to the development of optimized GPU solutions to

other problems, such as HMMer3 MSV algorithm, which is

very similar and even simpler than the Viterbi algorithm.

The experiments showed that the main optimizations to be

exploited on GPU involve the efficient use of the memory

hierarchy through memory coalescency and reduction of mem-

ory transactions. Besides, simple optimizations such as loop

unrolling and instruction scheduling help reducing conflicts

between instructions, producing performance gains.

To the authors’ knowledge, this is the first time the GPU

global memory is used through private memory mapping

for allocating the score structures, allowing more natural

coalescency of accesses and simpler index computations.

Our final accelerator achieved an excellent performance,

however, the basic accelerator also exploited sequence paral-

lelism and did not produce performance gains. In this basic so-

lution, the Viterbi algorithm was implemented without taking

the characteristics of the platform into account, showing that

GPU solutions without any optimizations may not produce

performance gains.

Throughout the experiments we verified that classic com-

piler optimizations, such as instruction scheduling, were not

effectively applied by the GPU tool chain. A very interesting

research subject is to investigate the GPU compilation process

and develop new optimizations for GPU compilers.
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