
The Design of Dynamically Reconfigurable
Datapath Coprocessors

ZHINING HUANG and SHARAD MALIK
Department of Electrical Engineering, Princeton University
and
NAHRI MOREANO and GUIDO ARAUJO
Institute of Computing—UNICAMP Campinas

Increasing nonrecurring engineering and mask costs are making it harder to turn to hardwired ap-
plication specific integrated circuit (ASIC) solutions for high-performance applications. The volume
required to amortize these high costs has been increasing, making it increasingly expensive to af-
ford ASIC solutions for medium-volume products. This has led to designers seeking programmable
solutions of varying sorts using these so-called programmable platforms. These programmable plat-
forms span a large range from bit-level programmable field programmable gate arrays to word-level
programmable application-specific, and in some cases even general-purpose processors. The pro-
grammability comes with a power and performance overhead. Attempts to reduce this overhead
typically involve making some core hardwired ASIC like logic blocks accessible to the programmable
elements. This paper presents one such hybrid solution in this space—a relatively simple processor
with a dynamically reconfigurable datapath acting as an accelerating coprocessor. This datapath
consists of hardwired function units and reconfigurable interconnect. We present a methodology for
the design of these solutions and illustrate it with two complete case studies: an MPEG2 coder, and
a GSM coder, to show how significant speedups can be obtained using relatively little hardware.
This work is part of the MESCAL project, which is geared towards developing design environments
for the development of application-specific platforms.

Categories and Subject Descriptors: J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD)

General Terms: Algorithm, Design, Performance

Additional Key Words and Phrases: Loop pipelining, reconfigurable datapath, coarse-grain recon-
figurable fabric, interconnection design, datapath synthesis

1. INTRODUCTION

Deep submicron issues of interconnect delay and signal integrity have signif-
icantly increased the design costs of application specific integrated circuits

This research was supported by the Gigascale Silicon Research Center (GSRC), sponsored by
MARCO and DARPA.
Authors’ addresses: Z. Huang, S. Malik, Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544; email:{znhuang,sharad}@ee.princeton.edu; N. Moreano, G.
Araujo, Institute of Computing—UNICAMP Campinas, SP Brazil 13084-971; email:{nahri,guido}@
ic.unicamp.br.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.
C© 2004 ACM 1539-9087/04/0500-0361 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004, Pages 361–384.

362 • Z. Huang et al.

(ASICs)—both due to the higher engineering costs resulting from longer de-
sign cycles, as well as due to the increasing cost of design tools [Keutzer et al.
2000]. This increase in nonrecurring engineering (NRE) costs, coupled with
increasing mask costs, has pushed up the break-even volume point at which
the per-device cost for the manufactured product is viable. As a consequence,
for many products below this break-even volume mark there is a desperate
need to satisfy the application performance (timing and power) requirements
using specialized programmable solutions. These programmable solutions are
increasingly referred to as programmable platforms, and their design (and use)
is an exercise in trying to match application concurrency with architectural
concurrency. The goal here is to provide the efficiency of ASICs combined with
the flexibility of general purpose processors (GPPs).

There is a vast range of these platforms, from bit-level programmable fine-
and coarse-grained field programmable gate arrays (FPGAs) to word-level pro-
grammable application-specific processors. The application-specific processors
themselves span a fairly large range—from specialized VLIW processors with
complete instruction sets tailored to the application domain, to simple RISC
processors with a few specialized instructions implemented using hardwired
logic blocks [Wang et al. 2001]. These processors bridge the ASIC-GPP gap by
adding the efficiency of ASICs to the flexibility of GPPs. A relatively new class of
platforms consists of simple processors with programmable coprocessors, which
are essentially accelerating datapaths with very little, if any, control. These co-
processors bridge the ASIC-GPP gap by moving in the other direction, by adding
the flexibility of GPPs to the efficiency of ASICs.

Early research on programmable coprocessors uses generic reconfigurable
logic to accelerate application kernels. These reconfigurable coprocessors can be
divided into the fine-grained category, such as GARP [Hauser and Wawrzynek
1997], NAPA [Rupp et al. 1998], Chimaera [Hauck et al. 1997], and PRISC
[Razdan and Smith 1994]; and the coarse-grained category, such as Pleiades
[Wan et al. 2000], PipeRench [Goldstein et al. 1999], Chameleon [Salefski
and Caglar 2001], and RAPID [Ebeling et al. 1996]. Coarse-grained config-
urable logic has the advantage of providing for faster reconfiguration, fewer
configuration bits and faster clock speed in the reconfigurable logic. Usually
coarse-grained configurable architectures are more suitable for data-intensive
applications in the multimedia and communication domains, while fine-grained
architectures are better for bit-level computation.

In this paper, we present the design of a coarse-grained dynamically reconfig-
urable datapath, working as a coprocessor to accelerate application kernels. The
reconfigurable datapath has fixed hardwired logic blocks and programmable in-
terconnections. The number and type of logic blocks in the datapath, as well
as the interconnections between them, are selected specific to a given appli-
cation. The application is specified by providing its key computation kernels.
The reconfigurable datapath is constructed by first designing a dedicated data-
path for each of these kernels that will result in the maximum throughput, and
then combining these datapaths into a single reconfigurable datapath using
programming interconnections. The reconfigurable datapath can be configured
into any of the kernel-specific datapaths at run-time. We provide a complete

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 363

Fig. 1. Architectural model.

methodology for the design of such a datapath coprocessor given an applica-
tion. The design methodology has been implemented and fully automated. The
design flow is illustrated through two nontrivial case studies, an MPEG2 en-
coder and a GSM encoder. Two reconfigurable datapaths are formed, for the two
applications respectively, from their C language descriptions. We show signifi-
cant speedups through the two reconfigurable datapaths using relatively little
hardware.

To further improve the performance of a datapath coprocessor, some care-
fully designed complex function units can be used in a datapath to replace the
function of several simple function units. Usually this results in lower datap-
ath latency. However, introducing complex irregular function units results in
less sharing across the datapaths of different kernel loops, thus increasing the
hardware cost of the reconfigurable datapath. In this paper, we propose the
idea of merging function units on the critical path to improve the datapath per-
formance while avoiding excessive hardware cost. Preliminary experimental
results show significant performance improvement through this function unit
merging process.

The rest of the paper is organized as follows. Section 2 introduces the archi-
tectural model and Section 3 covers the overview of the design flow. In Section 4,
we explain how to design a custom loop datapath for a selected kernel loop and
in Section 5, we give an algorithm to merge all the custom loop datapaths into
a single reconfigurable datapath. We provide experimental results in Section 6,
and Section 7 has some conclusions and future research topics.

2. ARCHITECTURAL MODEL

The architectural model we propose in this paper consists of a master proces-
sor and a reconfigurable coprocessor as illustrated in Figure 1. The master
processor controls the execution of programs as well as the reconfiguration of
the datapath coprocessor. When the master processor hit a kernel loop during
execution that can benefit from running on the coprocessor, it reconfigures the
reconfigurable datapath and switches the execution to the coprocessor.

The coprocessor is built on the same chip as the master processor. We as-
sume the coprocessor can access different levels of on- and off-chip cache and

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

364 • Z. Huang et al.

Fig. 2. Routing box for function units.

main memory as the master processor can. The coprocessor mainly consists
of a reconfigurable datapath and some control logic. The controller works as
a state machine and controls the start and end of the datapath execution as
well as the dynamical reconfiguration of the datapath during execution. The re-
configurable datapath has fixed ASIC-like functional blocks and reconfigurable
interconnections.

In the reconfigurable datapath, there is a routing box in front of each function
unit as shown in Figure 2. The routing box is used to select inputs from different
interconnections for the function unit (FU). The configuration bits for a routing
box to select the inputs are called configuration word. The configuration words
for all routing boxes in the reconfigurable datapath form a reconfiguration con-
text. During execution, the interconnections of the datapath are dynamically
reconfigured at each clock cycle by selecting configuration words for the routing
boxes according to the configuration address, which is obtained from the data-
path controller. The function units in the datapath are hardwired logic blocks.
No control bits are necessary. By programming the interconnections, the recon-
figurable datapath forms the kernel-specific datapath for a specific kernel loop.

3. METHODOLOGY OVERVIEW

In this paper, we focus on the design methodology of the application-specific
reconfigurable datapath. The design methodology can be partitioned into two
major stages as shown in Figure 3. The first stage is to design a custom datapath
for each selected kernel loop. The second stage is to merge all the datapaths
for selected kernel loops into one reconfigurable datapath for an application or
application domain.

The first step in the design flow is the identification of the computation in-
tensive loops (kernel loops) in the application. For each kernel loop an initial
custom datapath is designed with the maximum possible operation and loop
level parallelism under no hardware resource limit. Then, given the hardware
resource constraints in the system, function units and registers in the datapath
are shared and allocated to make a new datapath. After optimization, a final
custom datapath is designed for each selected kernel loop.

Datapaths designed for different loops in an application are then merged
into a single reconfigurable datapath, using a maximum clique graph-theoretic

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 365

Fig. 3. Design methodology flow.

formulation. The reconfigurable datapath reconfigures itself into different ker-
nel loop datapaths through the programming of interconnections between logic
blocks. The interconnection program bits for a loop datapath are referred to as
the reconfiguration contexts of the loop. If the size of this program is small (as
we will demonstrate) and the number of contexts is small (as we will also show),
then the contexts can all be stored locally in the coprocessor and need not be
brought in from external memory. This enables rapid switching of contexts—a
switch can be accomplished within a single cycle.

4. DATAPATHS FOR KERNEL LOOPS

This section describes the first stage in the design flow—how to design custom
loop datapaths for each kernel loop given high-level language descriptions of
an application.

4.1 Extracting Kernel Loops

We use the IMPACT compiler [Chang et al. 1991] as the front end to do prepro-
cessing, including performance profiling and loop detection. The application is
described in C and this is the input to the front-end compiler. As we only map
the innermost loops to custom datapaths in the coprocessor at this stage, the
result of extracting kernel loops is a list of the most-executed innermost loops
in Lcode (a meta-assembly language), which is the intermediate representation
of the IMPACT compiler.

In order to map kernel loops to customized pipelined datapaths, we need to
perform data dependence analysis to derive the following: register live-in set of
the loop body; register live-out set of the loop body; data dependence between

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

366 • Z. Huang et al.

instructions within loop iterations; data dependence between instructions in
different loop iterations.

The live-in and live-out sets are used during the switch between the master
processor and the coprocessor. When the execution of the application hits the
loop, the general processor switches the execution to the coprocessor. During
the switch, the values of registers in the live-in set are copied into the copro-
cessor. The live-out set contains registers whose value has changed during the
loop execution and will be used later. After the loop execution, the coprocessor
switches execution back to the master processor and writes back the live-out
register values.

The data dependence information helps in constructing the datapath for the
loop body.

4.2 Direct Mapping of Kernel Loop Datapath

Given the Lcode intermediate representation for a kernel loop, our custom dat-
apath design for that loop proceeds by starting with a direct hardware mapping
of the Lcode to hardware blocks. Direct mapping here means that one instruc-
tion in software corresponds to one function unit in the hardware. By connecting
all the function units in the hardware according to data flow, we form the initial
datapath for a loop body.

Each function unit in the hardware executes an instruction in the software.
Since the data goes through the datapath, no write back to the register file is
needed. This further implies no register bandwidth limitation within loops. The
advantage of direct mapping is the simplicity of the methodology, which makes
it easy to implement automatically. If there is more than one basic block in the
loop body, the two sides of branch instructions result in different datapaths,
which are then merged using multiplexes.

4.3 Pipelining the Execution

The techniques used in this section are similar to software pipelining [Lam
1988, Rau 1996]. As the first step in pipelining the execution, we need to assign
the function units to different pipe stages in the datapath. Function units in
the following discussion refer to all hardware blocks, including memory ports,
registers, adders, multipliers, and so on.

The scheduling of the pipeline stages for the datapath maximizes the par-
allelism of the loop body within the iteration. The scheduling of execution of
consecutive loop iterations maximizes the parallelism between loop iterations.
If there is no data dependence between loop iterations, at each clock cycle, we
can fetch and begin to execute the next loop iteration until we finish all the
iterations. If there is data dependence between loop iterations, we look at the
pipeline stages of the instructions that cause the dependence to decide whether
a delay or a bypass is needed. The delay of fetching consecutive loop iterations
is referred to as the iteration interval or initial interval (II).

Assume that data dependence between loop iterations occurs between func-
tion unit A and function unit B. The dependence arc is from B to A, which means
the output of B is used as input of A in the next loop iteration. If FU A and FU

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 367

Fig. 4. Inter loop iteration data dependence determines the loop II.

B are scheduled at pipeline stages i and j respectively, the output of B is avail-
able at pipe stage j + Delay(B) and is used at stage i as the input to A in the
next iteration. Delay(B) represents the latency of function unit B measured in
clock cycles. If j + Delay(B) ≤ i+ 1, the output of B is always generated before
it is used in A because of the pipelined execution. The next iteration is always
one step behind this iteration during the pipeline execution. So all we need is
a bypass from function unit B to function unit A. If j + Delay(B) > i + 1, the
output of B is available only after it is needed in A if new loop iterations are
still fetched every clock cycle. Obviously this is not feasible. In this case, an
extra delay is needed in starting the new iteration. The new initial interval for
fetching new loop iterations is II= j+Delay(B)− i. A feedback interconnection
is now needed from FU B to FU A. The two cases are illustrated in Figure 4.

There are two kinds of interconnections in the datapath. The first one is nor-
mal connections from data dependence within a loop iteration. The second one
is feedback connections from data dependence between loop iterations. The first
one determines the total pipeline stage number of the loop datapath. The sec-
ond one determines the II of loop iteration fetch. To synchronize the execution,
after scheduling, a certain number of pipeline registers are inserted between
function units if necessary.

We assume that function units which take multiple cycles to complete can be
internally pipelined. For example, an integer multiplier typically takes three
cycles. So each multiplier occupies three pipeline stages in the datapath. Simi-
larly, memory ports also take three pipeline stages.

4.4 Estimation of the Pipeline Execution Time

The pipeline execution of the datapath exploits the maximum parallelism that
exists within the loop body and between loop iterations. If there is not much
parallelism in a loop, it may not be worth switching the execution to the recon-
figurable datapath. Due to the limited on-chip memory size, only a few kernel
loops can be mapped and executed on the reconfigurable datapath. The ker-
nel loops are selected based on the estimation of execution time and speedup
obtained using their datapaths.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

368 • Z. Huang et al.

The total execution time of a loop on the datapath is given by

T = [S + II× (N − 1)]+ O cycles (1)

S denotes the total number of pipeline stages. II is the iteration interval, which
represents the delay between consecutive loop iterations. N is the loop iteration
count. O is the overhead of execution switch (read-in and write-back between
master processor and reconfigurable coprocessor) in cycles.

4.5 Function Unit Merging on Critical Path

From equation (1), obviously II is a dominant factor for the total loop execu-
tion time on the reconfigurable datapath, since usually N is a large number.
For the pipelined datapath, the minimum II value is 1. From the analysis in
Section 4.3, II> 1 denotes that there is some data dependence between loop
iterations. Assume the data dependence happens between operation A and op-
eration B, where A is scheduled at pipeline stage i, B is scheduled at pipeline
stage j . The II value is (j − i)+ Delay(B). Thus, the value (j − i) should be
reduced so that II of the datapath is minimized.

In a datapath, each feedback arc represents a data dependence between loop
iterations, and has a minimum requirement of II, say IIarc. Then II of this
datapath can be determined as

II = max{IIarc} for any arc in the datapath. (2)

The normal arcs in a datapath represent the data flow within loop iteration.
The critical path of a feedback arc r is defined as the set of all direct normal
paths from operation A to operation B, where feedback arc r is from operation
B to operation A. Normal path means a path only including normal arcs (no
feedback arcs). Obviously, the critical path of feedback arcs in a datapath is
the key to minimize II, since the total delay of the critical path determines
the pipeline stage distance between operation A and operation B. Sometimes a
rescheduling of the operations A and operation B can reduce II. One extreme
case is shown in Figure 5(b), where there is no critical path between operation
A and operation B. Operation A is rescheduled to a later pipeline stage that
is the same as operation B. In this way II is reduced to the minimum value,
II = 1. However, a reschedule may enlarge the total pipeline stage number
of the datapath. The direct mapping scheme guarantees the minimum total
pipeline stage number. Although the total pipeline stage number is larger after
rescheduling, it is easy to prove that the total execution time of this kernel loop
on the datapath is reduced when the loop iteration count N > 2.

However, in most cases there is a critical path between operation A and
operation B. One way to reduce the delay of the critical path is to merge function
units on the critical path and make a special complex function unit, which can
perform the exact same function. Previous study has shown that such complex
function units usually have much less delay compared to the total delay of the
several regular function units [Wang et al. 2001].

This leads to the following question: How do we determine the entire function
unit set on a critical path? For a feedback arc B to A, there are three possibilities
for the critical path as shown in Figure 5. Figure 5(a) shows the most common

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 369

Fig. 5. Finding critical path for feedback arcs.

Fig. 6. FU merging on critical path.

case. Figure 5(b) considers the case when no critical path exists. In Figure 5(c),
there is no direct normal path from operation A to operation B. However, there
is another feedback arc D to C. There are direct normal paths from A to D and
from C to B. Both the paths should be considered as the critical path since there
is no way to reschedule A, B, C, D to achieve the minimum II. They depend on
each other and result in a scheduling deadlock.

If there is no memory port, all the function units on a critical path form
a merging candidate set. You can either merge all the function units in the
candidate set, as shown in Figure 6(a), or merge some subset of function units
according to a match in any complex function unit library. If there are memory
ports on the critical path, the critical path set is broken into several subsets as
required by the memory ports, as shown in Figure 6(b). Each subset becomes a
merging candidate set.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

370 • Z. Huang et al.

Our preliminary solution for the function unit merging problem is to merge
all the function units in a merging candidate set. We assume the delay of the
special function unit is the maximum delay among normal function units in the
merging set. While this holds in some cases, this is not universal and needs to
be relaxed. However, it does give us the upper bound on the benefits obtained
from function unit merging process for a datapath.

4.6 Hardware Resource Sharing and Allocation

The datapath generated by direct mapping fully exploits the operational level
parallelism under no hardware resource constraint. Usually, the number of
function units in a datapath is the same as the number of instructions in the
kernel loop. Since there is no integrated register file in the datapath, there is no
register file bandwidth limit. However, since the datapath coprocessor shares
the same memory system as the master processor, the memory bandwidth is
limited. In another words, the number of memory ports in a datapath is limited.
Currently, we do not limit other hardware resources (adders, multipliers, MUXs,
registers) under the assumption of enough silicon area for the system.

If the number of memory ports in a datapath exceeds the bandwidth limit,
one memory port needs to be shared by different memory operations at different
clock cycles. Loop iterations can no longer be fetched at each clock cycle. This
results in an increase in the iteration interval, to say IImem. The new II for the
loop datapath is

II = max{IIdep, IImem} (3)

IImem =
⌈

Memory Port Number
Memory Port Number Limit

⌉
. (4)

In (3), IIdep is the II from data dependence analysis in Sections 4.3 and 4.5.
If II of the loop datapath is larger than 1, loop iterations are not fetched ev-
ery clock cycle. Just as memory ports are shared by different memory oper-
ations, other function units can be shared as well. The problem we need to
solve now is to schedule the datapath to minimize the requirement of hardware
resources while keeping the maximum operational level parallelism. There is
significant prior research in this area. The scheduling problem for minimiz-
ing the hardware resources in datapath synthesis has been formalized into
an integer linear programming (ILP) problem [Lee et al. 1989]. We follow this
work and combine the scheduling process of simultaneously maximizing opera-
tion level parallelism and minimizing hardware resources in the following ILP
formulation.

As pointed out in Section 4.5, direct mapping optimizes the total pipeline
stage number S. However, loosening the constraint of using this S and
rescheduling some operations in the datapath can minimize the II as shown in
Figure 5(b) at the cost of increasing S. Also, after introducing the memory band-
width limitation, II may be changed. The memory ports need to be rescheduled,
which may cause the total pipeline stage number S to increase. To minimize II
and S, we integrate the optimization into the scheduling problem and use the
ILP solver in three steps.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 371

Operations here represent function units in initial datapaths. Since initial
datapaths are generated using direct mapping, they can also be viewed as the
data flow graph (DFG) of a kernel loop. The variables used in the ILP formula-
tions are listed as the following:

Mk is the number of function units of type k.
Ck is the hardware cost of function unit type k.

X i, j =
{

1 if Oi is scheduled into pipe stage j ;
0 otherwise.

AN operation (function unit) in the datapath is labeled Oi, 1 ≤ i ≤ n.
Oi → O j denotes a direct connection from operation Oi to O j .

The ILP formulations we consider have the following objective functions,

Minimize II; (5.1)

Minimize
n∑

i=1

S∑
j=0

j × X i, j ; (5.2)

Minimize
m∑

k=1

Ck × Mk (5.3)

The ILP formulations have the following constraints:

Mk=mem port ≤Memory Port Limit; (6.1)

n∑
i=1,Type(i)=k

⌊
s− j
II

⌋∑
p=0

X i, j+p×II − Mk ≤ 0, for 0 ≤ j < II, 1 ≤ k ≤ m; (6.2)

S∑
j=0

X i, j = 1, for 1 ≤ i ≤ n; (6.3)

S∑
j=0

j × X i, j −
S∑

j=0

j × X k, j ≤ −Di, for all Oi → Ok ; (6.4)

S∑
j=0

j × X i, j + Di −
S∑

j=0

j × X k, j ≤ II, for all feedback arc Oi → Ok . (6.5)

The objective function in (5.1) minimizes II based on data dependence. The
objective function in (5.2) minimizes the total pipeline stage number S. The
objective function in (5.3) minimizes the total hardware cost of function units.
Here Ck is the cost of function unit of type k. Currently, all Ck are of unit cost,
which means the objective function minimizes the total number of function
units. Constraint function (6.1) states that number of memory ports in the
datapath cannot exceed the system bandwidth limit. Constraint function (6.2)
states that at any clock cycle, the active operations in the datapath cannot
exceed the number of function units of that type. If II is 1, which means every
operation is active at any clock cycle, the minimum number of functions is
the number of operations in the datapath. Constraint function (6.3) states that

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

372 • Z. Huang et al.

any operation should be schedule to one and only one pipeline stage. Constraint
function (6.4) states the normal connections in the datapath. If there is a normal
direct connection from Oi to Ok ,Ok should be scheduled at least Di stages below
Oi, where Di is the delay of function unit i. Constraint function (6.5) ensures
the II is not violated during operation rescheduling.

The ILP solver is used in three steps as illustrated in the following:

Step 1: Solve objective function (5.1), subject to constraints (6.3)–(6.5);
Step 2: Solve objective function (5.2), subject to constraints (6.1)–(6.5);
Step 3: Solve objective function (5.3), subject to constraints (6.1)–(6.5).

In Step 1, the ILP solver finds the best II for data dependence. The datapath
II is then determined by formula (3). This value of II is then used in Step 2 to
determine the minimum total pipeline stage number S. Usually, 2S (here S is
the original minimum value) is enough to solve the ILP problem in practice.
In Step 3, the ILP solver determines the optimal scheduling, which needs the
smallest number of function units, under the constraint of optimal II and S
determined in Steps 1 and 2.

Using the scheduling results from Step 3, operations are allocated to func-
tion units in the final datapath. Connections between operations correspond
to interconnections between function units. Distributed registers are inserted
for pipelined execution. A final datapath is generated to perform the kernel
loop execution. If II is 1, the final datapath is the same as the initial datap-
ath from direct mapping, unless there is some scheduling change during the
optimization. The interconnections are not changed during the kernel loop ex-
ecution in this case. If II is larger than 1, the interconnections are dynamically
reconfigured at every cycles between the II sets of configuration words. This is
because the same function unit can be shared between operations within the
same iteration. In this case, for each kernel loop executing on the reconfigurable
datapath, multiple configuration words may be necessary for a routing box at
different clock cycles (see Figure 2). The number of configuration words equals
the value II of this kernel loop. In this case, for each kernel loop, multiple (up
to II) reconfiguration contexts may be needed.

For each selected kernel loop, a customized datapath is designed using the
methodology described above. The next step of the design process is to merge
all those datapaths together to make a single reconfigurable datapath.

5. RECONFIGURABLE DATAPATH DESIGN

The goal of the reconfigurable datapath design is to design a datapath with the
minimum number of function units and interconnections, which can be recon-
figured at run time to execute different preselected kernel loops at the fastest
speed. The design methodology here is to first design the optimal datapath for
each kernel loop, as described in Section 4, and then merge them all together
to make the reconfigurable datapath. The datapath-merging problem is solved
using graph-based techniques. In this section, we first describe how to model
the problem and then how to solve it using an algorithm based on a maximum
clique formulation.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 373

Fig. 7. Graph merging.

5.1 Graph Modeling

Each loop datapath i is modeled as a directed graph Gi = (Vi, Ei), where the
vertices in Vi represent the hardware blocks in the datapath, and the arcs
in Ei are associated with the interconnections between the hardware blocks.
The types of hardware blocks (e.g., adders, multipliers, registers, and so on) are
modeled by a labeling function Li of Vi, such that, for each vertex u ∈ Vi, Li(u) =
Tij is a label that represents the type of the hardware block associated with u.
More specifically, we say that vertex u in graph Gi is associated with the j th
hardware block of type T . For example, Figure 7 shows two directed graphs G1
and G2, corresponding to the two datapaths of loop 1 and 2. Each vertex in G1
and G2 is identified by its label. For instance, vertex A23 is associated with the
third unit of type A in graph G2.

The design of the reconfigurable datapath is equivalent to constructing a
graph G as follows:

1. Create a graph G such that, Gi ⊆ G for all i = 1, . . . , N .
2. The cost of G is least, where the cost of G is |E|, the total number of edges

in G.
3. The number of vertices of type k in graph G is equal to the maximum number

of vertices of type k among all datapath Gi,

|V , L(v) = K | = max{|Vi, L(vi) = K |, i = 1, . . . , N }.
Obviously, this vertex number is the least possible number given Condition 1

above.
Clearly adding any more vertices (hardware blocks of any type, except mem-

ory ports) cannot increase parallelism for any kernel loop since each loop datap-
ath is already the optimal result of the design process under a certain constraint
(e.g., memory bandwidth).

The vertex set of graph G is easily determined. We pick the maximum number
of each type of function unit among all the loop datapaths. The problem now
is how to label the vertices associated with all the loop datapath Gi, in other
words, how to map the vertices of Gi onto vertices of G in order to minimize the
number of interconnections. Figure 7 shows an example mapping.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

374 • Z. Huang et al.

Fig. 8. All possible mappings of arcs from G1 and G2.

Fig. 9. The compatibility graph. (a) Incompatible mappings. (b) Clique on the compatibility
graph H.

5.2 The Compatibility Graph

We solve the problem of finding the merged graph G using an arc mapping
approach. Initially all possible arc mappings between two graphs Gi and Gj
are generated. Two arcs (interconnections), (t, u) and (v, w), from Gi and Gj
respectively, can be mapped (overlapped) if and only if Li(t) = L j (v) and Li(u) =
L j (w). In other words, the source vertex of the arcs must have the same label, as
well as their destination vertices. Figure 8 lists those arcs from graphs G1 and
G2 in Figure 7 that can be overlapped. In Figure 8 each mapping is represented
by a double-arrow line uniting the arcs that can be overlapped. We represent a
possible mapping using a “/”, for example, in (A11, B11)/(A21, B21) arcs (A11, B11)
and (A21, B21) can be overlapped.

A compatibility graph H is constructed, where each vertex of H corresponds
to a possible mapping of two arcs, one from Gi and another from Gj . There
exists an edge between two vertices of H if the arc mappings represented by
the vertices are compatible. In order to build the compatibility graph we need to
define the notion of mapping compatibility. Two arc mappings are not compati-
ble if and only if they map the same vertex of Gi to two different vertices of Gj ,
or vice versa. This problem is illustrated in Figure 9(a). In this figure, two loop
datapath graphs G1 and G2 are shown. There are two possible arc mappings be-
tween G1 and G2, which are (A11, B11)/(A21, B21) and (A11, C11)/(A22, C21). These
two mappings are incompatible since they map the same vertex A11 from G1 to
two different vertices, A21 and A22, in G2.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 375

By using the compatibility criterion discussed above the compatibility graph
H can be easily constructed. Figure 9(b) shows the compatibility graph H re-
sulting from the mappings of arcs from G1 and G2 in Figure 8. For example, in
mappings (A11, B11)/(A21, B21) (vertex 1 in H) and (B11, C11)/(B21, C21) (vertex 5
in H), no vertex from G1 maps to two distinct vertices in G2 and vice versa. As
a result, these two mappings are compatible, and an edge (1, 5) is required in
H. On the other hand, no edge exists in H between vertex 2 and 3. The reason
is that the mappings represented by 2 and 3 are incompatible, since A11 in G1
maps to both A22 and A23 in G2.

5.3 Maximum Clique Formulation

Each node in the compatibility graph H means a pair of possible vertex map-
pings, which share the same arc in the merging graph G. To minimize the arcs
in the merging graph G, it is necessary to find the maximum number of arc
mappings that are compatible with each other. This is actually the problem of
finding the maximum clique of the compatibility graph H. For example, in the
compatibility graph H in Figure 9(b), a possible maximum clique has vertices 1,
4, and 5. The maximum clique problem is known to be NP-complete [Garey and
Johnson 1979]. A heuristic algorithm is used to solve the problem in polynomial
time [Battiti and Protasi 2000].

After finding the maximum clique of the compatibility graph, the mapping
represented by the vertices from the maximum clique of H is used to construct
the merging graph G. Each vertex from the clique gives an arc mapping between
Gi and Gj (and their corresponding vertices). Those vertices are mapped to-
gether to the same vertices in the graph G and share the same arc in G. After
that, the vertices from Gi that were not mapped can be mapped with any vertex
of Gj , provided it has the same label and has not been mapped yet. If there are
no more such vertices in Gj , the vertex in Gi just maps itself to any unused
vertex of the same type in G. The same is done for vertices in Gj .

The solution presented above merges two datapath graphs. In order to merge
several graphs, this method is used as a heuristic and applied iteratively as
described in Figure 10.

5.4 Reconfigurable Datapath

After datapath merging, the result datapath graph G is used to construct the
reconfigurable datapath. Vertices are the selected function units, including reg-
isters. Arcs are the interconnections between them. There is a routing box in
front of each function unit, as shown in Figure 2, to select inputs for the func-
tion units from the various interconnections. During kernel loop execution on
the datapath coprocessor, the reconfigurable datapath is reconfigured at every
clock cycle. The reconfiguration patterns repeat every II cycles, which means
that there are II reconfiguration contexts for each kernel loop. For an applica-
tion, the total number of contexts is

N∑
i=1

IIi, for N selected kernel loops.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

376 • Z. Huang et al.

Fig. 10. Algorithm datapath merging.

However, the actual number of stored contexts may be far less than this
number, since many kernel loops share the same datapath and have the same
configuration context. For such cases, only one copy is stored. Since only the
interconnections of the datapath coprocessor are reconfigurable, each configu-
ration context is small enough that we can store the entire configuration context
for the application into the distributed cache on the coprocessor. During each
kernel loop execution, the reconfiguration word of a routing box is preload into
the active configuration word in the previous clock cycle as shown in Figure 2.
At the next cycle, the routing box switches its configuration word to the active
word. The correct interconnections are selected for the function unit. The delay
of the routing box is about two-gate delays.

The critical path in the reconfigurable datapath determines the clock speed
in the coprocessor. In the reconfigurable datapath, the critical path of a pipeline
stage is the critical path of the fixed function unit plus the delay of the routing
box plus wire delays. Sometimes a complicated function unit is pipelined inside
and executed in multiple clock cycles. Since the functional units are hardwired,
their delay is the same as it would be if the functional unit was in the general
processor. The same is true for the wire delays. As the routing box just needs
to select between its inputs, its delay is just two-gate delays, which is not sig-
nificant. In a general purpose processor, the critical path is no longer in the
functional unit stage, but rather in the more sophisticated branch control and
decoding stage. This may be significantly larger than a functional unit delay. In
fact, two arithmetic logic units (ALUs) on the Pentium IV processors are clocked
at twice the core processor frequency. Thus, it is reasonably safe to assume that
the coprocessor clock period is no slower than the master processor clock speed,
with the potential for significant speed up.

6. EXPERIMENTAL RESULTS

We have implemented the design methodology of the dynamically reconfig-
urable datapath described in this paper. The custom loop datapaths for the

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 377

kernel loops and the final reconfigurable datapath are generated fully auto-
matically. The applications we studied are specified in C. The software is com-
piled and profiled using the IMPACT compiler. The IR (Lcodes) we used to
extract the kernel loop datapaths is generated using the processor platform
“EPIC 1G 1BL” (EPIC 1-issue 1-branch processor) [Schlansker and Rau 2000],
which is representative of today’s single-issue speculative processor.

The datapath coprocessor execution time for a kernel loop is estimated us-
ing formula (1), where the total pipeline stage number S and loop iteration
fetch initial interval II are obtained from the results of the loop datapath de-
sign process. The loop iteration number N is obtained from the profiling data
from the front-end compilation. The reconfiguration overhead is mainly from
the reading and writing of live-in and live-out register values from/to master
processor. Usually the two register sets contain 10–20 register for each kernel
loop. In our experiments we assume four register values can be accessed each
time. Thus, the transfer of 10 register values introduces a three clock cycle
overhead.

The execution time is measured in clock cycles. The speed up is calculated
under the assumption that the datapath coprocessor is running at the same
clock speed as the master general processor.

We did experiments on several applications from Mediabench [Lee et al.
1997], including the MPEG2 video coder and GSM coder. Their results are
listed in the following sections.

6.1 MPEG2 Video Coder

The source code and test data files of the MPEG2 encoder are from Media-
bench. The data file for test coding is a bit-stream of YUV components (four
frames). Those innermost loops with software time more than 1 million cycles
are selected as kernel loops. Software time is the execution cycle count on the
single-issue speculative processor. There are 23 loops satisfying this execution
time requirement of kernel loops. Table I gives the performance analysis of the
reconfigurable datapath. In the table, the first “hardware time” with a ′ stands
for the performance of the initial datapaths generated from the direct map-
ping. The initial datapaths have no hardware resource constraint. The second
“hardware time” measures the performance of the final loop datapath. The fi-
nal datapaths are generated after hardware resource sharing and allocation.
The final datapaths contain only regular function units. The experiment of
merging function units on the critical path is shown at Section 6.3. The only
hardware constraint we used in the experiments is the memory bandwidth.
For each loop datapath, the memory port number is limited to 2. The over-
all hardware time is the sum of the kernel loop execution time on the datap-
ath coprocessor and the execution time of the remaining code on the master
processor.

From Table I, we see that the reconfigurable datapath can result in a speed
up of the execution of kernel loops from around 2 to 20 times. The overall speed
up of the dynamically reconfigurable datapath system against a single-issue
processor for the application is 4.49. With no memory bandwidth limit, the

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

378 • Z. Huang et al.

Table I. Performance Analysis for MPEG2 Coder

Software Timea II′ Hardware Time′ Speedup′ II Hardware Time Speedup
Loop 1 820 16 105 7.81 16 104 7.88
Loop 3 85 1 8.29 10.25 3 17.9 4.75
Loop 15 35.7 1 7.57 4.72 1 7.57 4.72
Loop 4 33.5 1 4.12 8.13 2 6.6 5.08
Loop 5 33.1 1 4.08 8.11 2 6.52 5.08
Loop 16 31.4 1 7.03 4.47 1 7.03 4.47
Loop 8 20.2 1 0.625 32.32 2 1.0 20.20
Loop 7 13.6 1 0.675 20.15 5 2.05 6.63
Loop 6 11.5 16 1.42 8.10 16 1.41 8.16
Loop 2 10.6 16 1.32 8.03 16 1.31 8.09
Loop 10 8.3 1 0.270 30.74 2 0.428 19.39
Loop 9 7.31 2 0.856 8.54 2 0.861 8.49
Loop 17 6.08 1 1.28 4.75 2 1.89 3.22
Loop 12 5.23 1 1.26 4.15 1 1.26 4.15
Loop 13 5.07 1 0.52 9.75 1 0.52 9.75
Loop 14 4.46 1 1.01 4.42 2 1.55 2.88
Loop 21 4.05 1 0.224 18.08 5 0.625 6.48
Loop 11 3.86 1 0.201 19.20 2 0.362 10.66
Loop 22 2.57 1 0.495 5.19 1 0.495 5.19
Loop 19 2.35 1 0.192 12.24 1 0.192 12.24
Loop 18 2.19 1 0.271 8.08 3 0.622 3.52
Loop 23 1.45 1 0.28 5.18 2 0.438 3.31
Loop 20 1.1 1 0.174 6.32 1 0.174 6.32
Rest 117 – 117 1 – 117 1
Overall 1266 – 264 4.80 – 282 4.49

aSoftware time and hardware time in million cycles.

intermediate datapaths run only slightly faster. The reason is that only a small
number of kernel loops have IImem > IIdep, which means (1) lots of loops have no
more than two memory operations; (2) loops which have more than two memory
operations suffer from data dependence too.

Table II shows the datapath details for the 23 kernel loops. Again, column
names with a ′ stand for the data for the initial datapaths obtained from direct
mapping. As stated above, the memory port number of the final datapath is no
more than 2. In the table, FU stands for real function units such as adders,
multipliers, and so on, not including memory ports and registers. |E| stands for
the interconnection number.

After the datapath merging, the reconfigurable datapath has 176 nodes and
732 arcs (interconnections). Among the 172 nodes, 2 are memory ports, 41 are
function units, 96 are pipeline registers, and 37 are constant registers.

An estimation of total reconfiguration bit size for programming the intercon-
nections is about 1.1K bits. This is the size of one configuration context for the
interconnections. For the MPEG application, the total number of configuration
contexts for the 23 kernel loops is

∑
II = 89. However, many kernel loops share

the same datapath, for example, loops 1, 2, and 6 (in Table II). The total number
of different contexts is actually 54. We believe it is very reasonable to store the
60K bits required for this in the distributed cache.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 379

Table II. Loop Datapaths for MPEG

MEM PORT #′ FU′ RG′ |E|′ MEM PORT # FU RG |E|a
Loop 1 32 83 62 308 2 7 4 80
Loop 2 32 83 62 308 2 7 4 80
Loop 3 5 11 8 41 2 7 3 36
Loop 4 3 9 5 30 2 7 3 28
Loop 5 3 9 5 30 2 7 3 28
Loop 6 32 83 62 308 2 7 4 80
Loop 7 9 28 54 129 2 10 12 96
Loop 8 3 24 186 244 2 18 94 242
Loop 9 3 24 65 121 2 15 34 119
Loop 10 3 23 174 230 2 16 90 227
Loop 11 3 15 34 71 2 10 19 71
Loop 12 1 5 2 14 1 5 2 13
Loop 13 2 7 1 19 2 7 1 17
Loop 14 3 3 8 21 2 2 4 20
Loop 15 2 5 1 15 2 5 1 15
Loop 16 2 4 0 13 2 4 0 13
Loop 17 4 4 15 32 2 2 8 28
Loop 18 6 5 12 36 2 2 5 29
Loop 19 2 10 2 26 2 10 2 24
Loop 20 2 4 0 12 2 4 0 11
Loop 21 9 26 55 125 2 9 12 85
Loop 22 1 5 2 14 1 5 2 13
Loop 23 3 4 8 23 2 3 4 22

a |E| = interconnection number.

6.2 GSM Coder

GSM (Global System for Mobile communication) is one of the most popular
wireless communication standards. In this section, we present experiment re-
sults for the GSM encoder, which compresses speech signals. More specifically,
GSM 06.10 compresses frames of 160 16-bit linear samples into 33-byte frames.
Both the source code and test data in this experiment are from Mediabench.
Table III shows the speedup of the datapath coprocessor against a single-issue
speculative processor. Again, those table heads with a ′ stand for the data for the
initial datapath obtained using direct mapping. The final datapaths are con-
structed with regular function units under the memory bandwidth constraint of
two memory ports. Those innermost loops with software time more than 100K
cycles are selected as kernel loops. For the 21 kernel loops, the speed up of the
final loop datapaths ranges from around 2 to 20 times. The overall speed up for
the GSM application is 4.02.

Table IV gives the details of the 21 loop datapaths. For the final datapaths,
the memory port number is limited to no more than 2. After merging the 21
loop datapaths, the reconfigurable datapath has 164 nodes and 935 arcs (inter-
connections). Among the 164 nodes, 2 are memory ports, 43 are function units,
41 are pipeline registers, and 90 are constant registers.

An estimation of the total reconfiguration bit size for programming the inter-
connections is about 1.4K bits. The total number of configuration contexts for
the 21 kernel loops is

∑
II = 67. There are 60 distinct sets of contexts that need

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

380 • Z. Huang et al.

Table III. Performance Analysis for the GSM Coder

Hardware Hardware
Software Timea II′ Time′ Speedup′ II Time Speedup

Loop 9 610 1 5.09 119.8 20 61.2 9.97
Loop 21 333 7 91.8 3.63 3 59.2 5.63
Loop 1 57.6 1 2.21 26.06 5 8.12 7.09
Loop 12 42.1 1 1.48 28.45 5 7.08 5.95
Loop 4 28.5 1 1.51 18.87 2 2.61 10.92
Loop 3 20.7 1 1.84 11.25 2 3.32 6.23
Loop 7 20.7 1 1.70 12.18 1 1.70 12.18
Loop 11 20.6 1 1.53 13.46 1 1.53 13.46
Loop 14 14.0 1 1.48 9.46 1 1.48 9.46
Loop 13 12.6 1 1.48 8.51 1 1.48 8.51
Loop 10 11.9 1 1.73 6.88 1 1.73 6.88
Loop 15 10.5 5 5.61 1.87 5 5.61 1.87
Loop 8 10.4 1 1.73 6.01 2 1.73 6.01
Loop 16 9.42 1 1.23 7.66 4 1.87 5.04
Loop 17 6.79 1 0.701 9.69 1 0.701 9.69
Loop 5 6.19 1 0.328 18.87 2 0.569 10.88
Loop 20 4.28 1 0.701 6.11 2 0.996 4.30
Loop 2 2.95 1 0.701 4.21 1 0.701 4.21
Loop 18 2.08 1 0.194 10.72 3 0.323 6.44
Loop 19 2.08 1 0.194 10.72 3 0.323 6.44
Loop 6 1.91 1 0.101 18.91 2 0.172 11.10
Rest 191 − 191 1 − 191 1
Overall 1419 − 314 4.52 − 353 4.02

aSoftware time and hardware time in 100K cycles.

Table IV. Loop Datapaths for GSM

MEM PORT #′ FU′ RG′ |E|′ MEM PORT # FU RG |E|a
Loop 1 10 27 78 153 2 11 18 120
Loop 2 2 3 3 14 2 3 3 14
Loop 3 3 11 25 55 2 7 13 53
Loop 4 4 13 37 73 2 10 19 70
Loop 5 4 13 37 73 2 10 19 70
Loop 6 4 13 37 73 2 10 19 70
Loop 7 1 10 6 30 1 10 6 30
Loop 8 2 3 4 15 2 3 4 15
Loop 9 40 164 461 870 2 12 29 441
Loop 10 1 5 0 12 1 5 0 11
Loop 11 1 10 6 30 1 10 6 30
Loop 12 9 20 51 109 2 5 11 67
Loop 13 2 5 6 21 2 5 6 21
Loop 14 2 5 6 21 2 5 6 21
Loop 15 0 12 13 39 0 7 4 34
Loop 16 8 29 55 133 2 11 16 107
Loop 17 1 10 6 30 1 10 6 30
Loop 18 5 23 47 105 2 13 18 98
Loop 19 5 23 40 98 2 13 15 91
Loop 20 3 41 79 176 2 23 41 160
Loop 21 3 25 77 134 2 11 27 114

a |E| = interconnection number.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 381

Fig. 11. Performance of datapaths before/after FU merging.

to be stored. The total size of contexts that need to be stored in the distributed
cache is about 84K bits. Again, this is very reasonable for storage in the on-chip
distributed memory.

6.3 Function Unit Merging on the Critical Path

We did the function unit merging experiment on several benchmarks from Medi-
abench. Not all the kernel loop datapaths are affected by function unit merging,
for example, those loop datapaths with II= 1. Figure 11 shows some loops from
several benchmarks that affected by function unit merging on the critical path.
In Figure 11, “original datapath” represents the initial datapath after direct
mapping. FU merging experiments are based on the initial datapaths.

In Figure 11, FU merging on critical path brings significantly more speed up
for the loop datapaths. As described in Section 4.5, the reason is FU merging
greatly reduces the value of II, which is the most important factor in determin-
ing the loop datapath performance.

The experimental results shown in Figure 11 give the largest possible per-
formance improvement from FU merging process. The maximum improvement
can be gained when the assumption on the clock period of the special function
units holds, that is, the delay of the special function unit is the maximum delay
among each function unit in the merging set. Usually, the number of FUs in
the merging set is a good sign of how reasonable this is. In Table V, the FUs in
the merging sets of the nine loops are listed.

In Table V, JPEG loop 5 and loop 6 only need to reschedule function units to
minimize II down to 1. Very likely, set 1 and set 2 of loop 1 in ADPCM coder
cannot find any special function unit replacements. However, replacing part of
the function units in the merging set can still gain speed up, although not as
much as in Figure 11. The three MPEG loops have the same merging set as
shown in Figure 12(a). Although there is no such special function unit with a
delay of 1 cycle to replace the merging set, after doing some datapath transform,
the II can still be reduced to 1, as shown in Figure 12(b). Furthermore, an
optimized version of the datapath is shown in (c), which has only a 5 cycle

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

382 • Z. Huang et al.

Table V. Function Unit Merging Sets

Set 1 SET 2 Set 3
MPEG loop 1 16 adders
MPEG loop 2 16 adders
MPEG loop 6 16 adders
GSM loop 15 4 shifters, 1 adder, 1 shifter,

1 MUX 1 comparator,
1 sub, 1 MUX

GSM loop 21 2 adders, 2 comparators
2 adders, 2 MUX

ADPCM Coder 4 subs, 5 comparators, 1 shifter, 4 adders, 6 MUXs, 1 adder,
loop 1 7 MUXs, 3 shifters, 3 ors 3 comparators, 1 sub 2 comparators,

2 MUXs, 1 shifter
ADPCM decoder 1 adder, 2 comparator, 1 sub, 1 adder,

loop 1 2 MUXs 2 comparators, 3 MUXs
JPEG loop 5 3 MUXs
JPEG loop 6 1 adder, 1 MUX 1 adder, 1 MUX

Fig. 12. Datapath transforms for the merging set.

total delay instead of 16 cycles as in (a) and (b). As shown above, merging
sets are important for improving the datapath performance. There are various
ways to optimize loop datapaths, by replacing function units in the merging
set with special function units, rescheduling function units in merging set,
or doing datapath transforms for the merging sets. The goal is to reduce the
impact of data dependence. Usually, this needs to be combined with improving
memory systems. For example, in the three MPEG loops shown above, the best
performance in Figure 11 is achieved with 32 memory ports in the datapath.
Although we can improve the IIdep to 1, if the memory bandwidth is limited to
two ports, which means IImem = 16, there is no way to improve the performance
from the original datapath.

7. CONCLUSION AND FUTURE WORK

This paper presents a design methodology for a dynamically reconfigurable
datapath coprocessor for a specific application (domain). We first describe how

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

Design of Coprocessors • 383

to construct a datapath for a selected kernel loop with the goal of exploiting
maximum operation level parallelism, and then how to merge all kernel loop
datapaths to make a single reconfigurable datapath. Through the two case stud-
ies on an MPEG2 video coder and a GSM coder, we demonstrate how significant
speedups compared to a single processor execution can be obtained.

We also show some preliminary experimental results for function units merg-
ing on the critical path for a datapath. Introducing complex function units low-
ers the potential of sharing hardware resources among kernel loops, but such
complex function units that replace regular function units on critical paths can
significantly improve the datapath performance.

In this paper, we have been quite conservative about the parallelism and
speed of the coprocessor. We have assumed that the coprocessor clock speed
is the same as the master general processor, a fact that we have argued is
likely to be conservative. A detailed analysis is needed to determine how much
faster the clock on the coprocessor can be compared to the master processor.
A faster clock speed can bring further speedup. In the experiments, we have
limited the memory bandwidth into two memory ports. Today’s memory system
design for embedded systems can bring larger memory bandwidth, for example,
by introducing multiple memory banks. Also, we have not implemented any
sophisticated compilation techniques to reduce the memory operations in a loop
body. Such improvements can further add to the speedup that can be obtained.

To design a datapath coprocessor from selected kernel loops ensures the op-
timal performance of such kernel loops on the datapath coprocessor. To bring
additional design flexibility to such a datapath coprocessor system, it is very
interesting to develop techniques to compile a new loop onto an existing recon-
figurable datapath as described here. With such compiler techniques, a minor
change in the application kernels will not require a change of the system hard-
ware, but rather a change of the configuration contexts. For this additional
flexibility to be exploited, additional flexibility in constructing datapaths on
the fly may be required in the form of some general functional units as well
as interconnections. The design of these additional “flexible” components in an
existing application-specific reconfigurable datapath bears further study.

REFERENCES

BATTITI, R. AND PROTASI, M. 2000. Reactive local search for the maximum clique problem. Algo-
rithmica 29, 4, 610–637.

CHANG, P. P., MAHLKE, S. A., CHEN, W. Y., WARTER, N. J., AND HWU, W. W. 1991. IMPACT: An
architectural framework for multiple-instruction-issue processors. In Proceedings of the 18th
International Symposium on Computer Architecture. 266–275.

EBELING, C., CRONQUIST, D., AND FRANKLIN, P. 1996. RaPiD—Reconfigurable Pipelined Datapath.
In The 6th International Workshop on Field-Programmable Logic and Applications.

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability—A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company.

GOLDSTEIN, S. C., SCHMIT, H., MOE, M., BUDIU, M., CADAMBI, S., TAYLOR, R., AND LAUFER, R. 1999.
PipeRench: A coprocessor for streaming multimedia acceleration. In Proceedings of the 26th
Annual International Symposium on Computer Architecture. 28–39.

HAUSER, J. R. AND WAWRZYNEK, J. 1997. Garp: A MIPS processor with a reconfigurable coprocessor.
In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM ’97). 24–33.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

384 • Z. Huang et al.

HAUCK, S., FRY, T. W., HOSLER, M. M., AND KAO, J. P. 1997. The chimaera reconfigurable functional
unit. In IEEE Symposium on Field-Programmable Custom Computing Machines.

HUANG, Z. AND MALIK, S. 2001. Managing dynamic reconfiguration overhead in system-on-a-chip
design using reconfigurable datapaths and optimized interconnection networks. In Proceedings
of the Design Automation and Test in Europe, Conference, Munich, Germany, 735–740.

HUANG, Z. AND MALIK, S. 2002. Exploiting operation level parallelism through dynamically re-
configurable datapaths. In Proceedings of the 39th Design Automation Conference, New Orleans,
LA, 337–342.

KEUTZER, K., MALIK, S., RABAEY, J. M., NEWTON, A. R., AND SANGIOVANNI-VINCENTELLI A. 2000. System
level design: Orthogonolization of concerns and platform-based design. IEEE Trans. Comput.-
Aided Des. 19, 12.

LAM, M. 1998. Software pipelining: An effective scheduling technique for VLIW machines. In
Proceedings of the SIGPLAN 88 Conference on Programming Language Design and Implemen-
tation, Atlanta, GA.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. MediaBench: A tool for evaluating and
synthesizing multimedia and communications systems. In Proceedings of 30th Annual Interna-
tional Symposium on Microarchitecture, Research Triangle Park, NC, 330–335.

LEE, J.-H., HSU, Y.-C., AND LIN, Y.-L. 1989. A new integer linear programming formulation for the
scheduling problem in data path synthesis. In Proceedings of IEEE ICCAD 89, Santa Clara, CA,
20–23.

MOREANO, N., ARAUJO, G., HUANG, Z., AND MALIK, S. 2002. Datapath merging and interconnection
sharing for reconfigurable architectures. In Proceedings of the 15th International Symposium on
System Synthesis, Kyoto, Japan, 38–43.

RAU, B. 1996. Iterative modulo scheduling. Int. J. Parallel Process. 24, 1.
RAZDAN, R. AND SMITH, M. 1994. High-performance microarchitectures with hardware-

programmable functional units. In Proceedings of the 27th Annual IEEE/ACM International
Symposium on Microarchitecture. 172–180.

RUPP, C. R., LANDGUTH, M., GARVERICK, T., GOMERSALL, E., HOLT, H., ARNOLD, J. M., AND GOKHALE, M.
1998. The NAPA adaptive processing architecture. In IEEE Symposium on Field-Programmable
Custom Computing Machines.

SALEFSKI, B. AND CAGLAR, L. 2001. Re-configurable computing in wireless. In Proceedings of the
38th Design Automation Conference, Las Vegas, Nevada, 178–183.

SCHLANSKER, M. S. AND RAU, B. R.. 2000. EPIC: Explicitly parallel instruction computing. IEEE
Comput. 33, 2 (Feb.), 37–45.

WAN, M., ZHANG, H., GEORGE, V., BENES, M., ABNOUS, A., PRABHU, V., AND RABAEY, J. 2000. Design
methodology of a low-energy reconfigurable single-chip DSP system. J. VLSI Signal Process.

WANG, A., KILLIAN, E., ROWEN, C., AND MAYDAN, D. 2001. Hardware/software instruction set config-
urability for system-on-chip processors. In Proceedings of the 38th Design Automation Conference,
Las Vegas, Nevada, 184–188.

Received January 2003; revised July 2003; accepted August 2003

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

