
DNA Physical Mapping
on a Reconfigurable Platform

Adriano Idalgo and Nahri Moreano

Department of Computing,
Federal University of Mato Grosso do Sul, Brazil
adriano.idalgo@gmail.com, nahri@dct.ufms.br

Abstract. Reconfigurable architectures enable the hardware function
to be implemented by the user and, due to its characteristics, have been
used in many areas, including Bioinformatics. One application of Bioin-
formatics is the consecutive ones problem, which consists in finding a
permutation of columns in a binary matrix, in such a way that all the
ones in each row are consecutive. This matrix represents information
about DNA fragments and probes, which allow the determination of the
order of the nitrogenated bases that form the original DNA.

This work proposes a hybrid software/hardware system for solving the
consecutive ones problem. Since this problem processes large volumes of
data, the goal is to reduce its execution time, compared to a SW algo-
rithm. We present and analyze several implementations, in the reconfig-
urable hardware, of sections of this algorithm, using a Virtex-II FPGA.
Experiments performed using real chromosomes produced speedups of up
to 29.62 and show potential for further optimizations exploiting dynamic
reconfiguration.

Keywords: Consecutive ones problem, Reconfigurable architectures,
Software/hardware partitioning.

1 Introduction

Reconfigurable computing characterizes the hardware in which the logic imple-
mented is created and modified by the user and not by the manufacturer. It
introduces many application possibilities that could not be developed using a
hardware with fixed and predefined functionality. There is also a performance
improvement potential of the application implemented on a reconfigurable hard-
ware with respect to their implementation in software [1].

In another research area, the Bioinformatics, achievements have been reached
recently on DNA mapping, using computational techniques to assist the sequenc-
ing task, which consists of identifying the order of base pairs in a chromosome.
Due to technical limitations, the DNA is not directly sequenced and must be bro-
ken into fragments. One approach is to represent the information of fragments
and probes as a binary matrix and to arrange the columns of the matrix so that
all ones in each row are consecutive, in order to determine the order among the
fragments. This problem is called the Consecutive Ones Problem [2].

R. Woods et al. (Eds.): ARC 2008, LNCS 4943, pp. 27–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 A. Idalgo and N. Moreano

Besides its vast practical application, DNA mapping requires manipulating
huge volumes of data. In particular, the consecutive ones problem handles bi-
nary data. Such characteristics motivate the study and implementation, on re-
configurable devices, of solutions to this problem, in order to obtain a better
performance in its execution.

In this work we present a hybrid Software/Hardware (SW/HW) solution for
the consecutive ones problem. We developed several implementations, on a recon-
figurable hardware, of operations with high execution frequency in a well-known
algorithm [3] to the consecutive ones problem. These implementations exploit
different trade-offs between computation and communication costs, on the pro-
cessor/FPGA platform used. We performed an experimental evaluation, in order
to analyze our solutions and compare them to the pure SW solution, using chro-
mosomes of two living beings. The results show large performance gains and
possibilities for improvements using reconfiguration.

This paper is organized as follows: Section 2 describes previous works with
solutions for Bioinformatics problems using reconfigurable architectures. The
consecutive ones problem and an algorithm for it are introduced in Section 3.
Section 4 presents our hybrid implementations for this problem, while the results
obtained through experiments are analyzed in Section 5. Finally, in Section 6
the conclusions and future extensions of this work are discussed.

2 Related Work

Most of works which solve Bioinformatics problems using reconfigurable archi-
tectures focus on the sequence alignment problem using the Smith-Waterman
algorithm, which is based on the dynamic programming technique. The works in
[4,5] implemented this algorithm on a FPGA, using processing elements which
form a linear structure and operate in parallel. This processing elements com-
pute the similarity between two sequences and compute in parallel all the values
in each diagonal of the dynamic programming matrix.

The authors in [6] implemented the Smith-Waterman algorithm on a multi-
FPGA network. In [7], a prefetching scheme for search in a sequence database
is implemented, in order to accelerate the sequence alignment task on a FPGA,
overlapping computation with communication.

The work in [8] presents a hybrid SW/HW system for the reconstruction of the
phylogenetic tree of DNA sequences. This tree represents the evolution history of
different organisms. A genetic algorithm is implemented in SW and a maximum
likelihood function is implemented on a FPGA.

In [9] the authors designed a variant of BLAST, a well-known similarity search
tool to compare DNA sequences. The goal was to build a specialized BLAST
accelerator using a system with a general-purpose processor and a reconfigurable
hardware (FPGA) associated with the disk controller.

There is not, to our knowledge, any previous solution to the consecutive ones
problem in hardware, with either fixed or reconfigurable logic.

DNA Physical Mapping on a Reconfigurable Platform 29

3 DNA Physical Mapping

Many DNA molecules are over millions of base pairs long, therefore too large
to be sequenced as a whole. A physical map of a DNA contains the location of
certain markers along the molecule. Given a sequenced fragment of the DNA, the
physical map is used to locate the fragment in the DNA by matching markers
in the fragment and the physical map.

In order to create a physical map, it is necessary to obtain several copies of
the DNA, to use restriction enzymes to break each copy into fragments, and to
clone each fragment, producing a collection of clones. Then we need to examine
the clones for overlaps among them. The hybridization technique can be applied
to obtain overlap information from the clones, using probes (short sequences)
and verifying if each probe binds to each clone. If a probe hybridizes to two
clones, then the clones overlap each other. Using the overlap information from
the clones, it is possible to determine their relative order in the DNA.

3.1 Consecutive Ones Problem and Algorithm

The information produced by hybridization experiments with n clones and m
probes can be modeled by a binary matrix M , n × m, where the Mij position
says if probe j hybridized (Mij = 1) or not (Mij = 0) to clone i. M is said to
own the consecutive ones property for rows (C1P), if all ones in each row are
consecutive. In order to get the DNA physical map it is necessary to solve the
consecutive ones problem, i.e., to find a permutation of columns (probes) such
that all ones in each row (clone) are consecutive.

We describe briefly the polynomial time complexity algorithm proposed in [3]
to this problem. Other solutions can be found in [10,11]. The algorithm uses
certain criteria to separate the rows of M into components. If each component
has the C1P, then M will also have this property. The algorithm performs the
following steps: separate rows into components, permute the columns of each
component, and join the components [2]. The following relations between rows
and the number of intersections between their column sets are used to form the
components and to guide the permutation of their columns.

Definition 1. For each row i of M , let Si be the set of columns k where Mik = 1.
Given two rows i and j three situations can arise:

1. Si ∩ Sj = ∅;
2. Si ⊆ Sj or Sj ⊆ Si;
3. Si ∩ Sj �= ∅, and none of them is a subset of the other.

An undirected graph GC is built, where each vertex in GC corresponds to a row
of M . There is an edge between vertices i and j if Si ∩Sj �= ∅, and none of them
is a subset of the other. The components of M are the connected components
of GC . Thus, each component is a sub-matrix of M with the same number of
columns and possibly fewer rows than M .

30 A. Idalgo and N. Moreano

In order to permute the columns of a component, the rows are processed one
by one. We permute the first two rows placing the exclusive 1s of one row in a
direction (right or left), the exclusive 1s of the other in the opposite direction,
and the intersection 1s in the middle. To insert a new row k it is necessary to find
two previously placed rows, i and j, such that there are edges (k, i) and (i, j) in
GC . If |Sj ∩ Sk| < min(|Sj ∩ Si|, |Si ∩ Sk|), k is placed in the same direction of
i (with respect to j); otherwise, k will have the opposite direction.

We represent the permutation solutions by associating a set of possible
columns to each component column. These sets indicate which original matrix
columns correspond to the component column. In the end, the column sets cod-
ify the order in which the columns must be arrange so that matrix M has all 1s
consecutive in each row.

To join the components, a directed graph GM is built, where vertices corre-
spond to components of GC . There is a directed edge from vertex α to β if, for
every row i of component β, the set Si is contained at least in one set Sj of com-
ponent α. Since the relationship between components is given by edge direction,
the topological order of GM vertices indicates the order the components must be
joined. The first component, α, is fixed, and to join another component β, the
row l of β that has the leftmost 1 is chosen. Let cβ be this column. We must find
all rows in α that contain Sl, and find the leftmost column cα where all these
rows have 1. Then, cα and cβ are made the same column and the rows of β are
joined to α. The final matrix with C1P is obtained after joining all components.

Fig. 1 illustrates the algorithm steps [2]. Matrix M in Fig. 1(a) represents
hybridization results of 8 clones with 9 probes, and the corresponding graphs
GC , with four connected components, and GM are shown in Figs. 1(b) and 1(c).
Fig. 1(d) shows the result from the permutation of M .

4 Hardware/Software Solution

We use, in our solutions to the consecutive ones problem, an hybrid architec-
ture composed of general purpose processor with a reconfigurable component
attached to it. The reconfigurable hardware (a FPGA) is used to implement
a hardware accelerator for this application. Due to the characteristics of this
architecture, the coupling between host processor and FPGA is weak, and the
fastest available communication between them is through the network interface
present in both devices. Therefore, the communication overhead can cause a
major impact on the application total execution time, and consequently, the
implementation strategy chosen for the communication is very important.

Initially, we implemented a SW solution to the problem, which uses only the
host processor. Then, we profiled this implementation, determining the sections
of the algorithm that consume most of the execution time. Based on these profile
information, we performed the SW/HW partitioning. The application operations
are divided, such that operations that can not be easily mapped on reconfigurable
logic are executed on the host processor, and operations that can benefit from
hardware implementation and consume substantial execution time are executed

DNA Physical Mapping on a Reconfigurable Platform 31

{1} {2} {3} {4} {5} {6} {7} {8} {9}
l1 1 1 0 1 1 0 1 0 1
l2 0 1 1 1 1 1 1 1 1
l3 0 1 0 1 1 0 1 0 1
l4 0 0 1 0 0 0 0 1 0
l5 0 0 1 0 0 1 0 0 0
l6 0 0 0 1 0 0 1 0 0
l7 0 1 0 0 0 0 1 0 0
l8 0 0 0 1 1 0 0 0 1

(a)

l1

l2

l3

l4

l5

l6

l7l8

α

β
γ

δ

(b)

{1} {5, 9} {4} {7} {2} {6} {3} {8}
l1 1 1 1 1 1 1 0 0 0
l2 0 1 1 1 1 1 1 1 1
l3 0 1 1 1 1 1 0 0 0
l4 0 0 0 0 0 0 0 1 1
l5 0 0 0 0 0 0 1 1 0
l6 0 0 0 1 1 0 0 0 0
l7 0 0 0 0 1 1 0 0 0
l8 0 1 1 1 0 0 0 0 0

(d)

α β

γδ

(c)

Fig. 1. (a) Matrix M and corresponding (b) graph GC (with components α, β, γ, and
δ), (c) graph GM , and (d) final matrix

on the FPGA. Thus, some sections of the application code executed originally in
software have been replaced by function calls for communication to the FPGA.

We selected for hardware implementation two critical operations: clones com-
parison and construction of the column sets for each component. For each opera-
tion, we developed different hardware implementations, producing several hybrid
SW/HW solutions. The main goal is to reduce the execution time of the consec-
utive ones problem solution, when compared to its SW implementation.

The HW component of the hybrid solutions is composed of the main modules
described below. In addition to these modules, it can use memory banks available
on the board that contains the FPGA to increase the processing capacity.

– Control: Manages the data flow necessary for the other modules in the
FPGA, so it is the most complex module. The control consists of a state
machine which coordinates all steps of the HW operations.

– Compare clones: Compares two rows and counts their intersections.
– Construct sets: Constructs the column sets for each component.
– Receive data: Receives input data from the SW part of the application.
– Send data: Sends the operation results to the SW part of the application.

32 A. Idalgo and N. Moreano

4.1 Comparing Clones

The comparison of rows (clones) of M determines whether two rows belong to
same component and also the number of intersections between their column sets.
The rows, represented as sequences of bits, are sent from the SW program to
the FPGA. Given that the rows can be very long, the HW implementation of
this operation performs comparisons and intersection counting in blocks of bits.
In order to process two rows i and j, we operate the first block of i with the
first block of j, then the second block of i with the second one of j, and so on.
At each clock cycle, the circuit processes a pair of blocks, until the two rows are
entirely operated. We use 32 bit-blocks.

The circuit of Fig. 2 shows how the row comparison operation is implemented
in HW. At each cycle, the row comparator performs the following operations:

– Perform an AND operation with the two blocks, obtaining the auxiliary
result R.

– In parallel:
• If R is different from 0, the blocks have intersection. The relation result

is set appropriately.
• Perform a XOR operation with the first block and R. If the result is

different from 0, the first block is not contained by the second one. The
relation result is set accordingly.

• Perform a XOR operation with the second block and R. If the result is
different from 0, the second block is not contained by the first one. The
relation result is set accordingly.

• Count the number of 1s in R and accumulate the partial result.

Fig. 2. Circuit for clone comparison

DNA Physical Mapping on a Reconfigurable Platform 33

4.2 Constructing Column Sets

After permuting the component columns, the construction of the column sets
of each component is performed processing the components by columns. When
scanning column c, if the position corresponding to row i contains 1, it indicates
that at least one element from the set Si of columns of row i belongs also to the
column set of c. If this is the first 1 found, the set Si is copied to this column set.
Otherwise, only the columns belonging to both sets will be part of the column
set of c. If the position corresponding to row i contains 0, the columns belonging
to Si do not belong to this column set. So any element in Si should be removed
from the column set of c.

The column set construction operation implemented in HW uses memory
banks of the FPGA board to store the matrix M , the permuted component stored
by columns, and the indexes of the rows of M that belong to the component.
The set constructor uses the same strategy of the clone comparator and process
the input data in blocks. The input data to the set constructor are a block from
the component column and a block from the column set of a row. The output is
the block from the column set of the component.

The circuit of Fig. 3 shows how this operation is implemented in HW. The
constructor receives a column block every 32 clock cycles and a row block each
cycle. It maintains the partial result P and an index indicating the position to
be accessed in the column. After receiving a row block, the constructor verify
the column current position and performs the following operations:

– If this position has 0, the block of the row set is inverted (operation NOT)
and perform an AND operation with this result and P .

– If this position has 1, perform an AND with the block of the row set and P .
– The result is stored in P , and the column index is decremented.

Fig. 3. Circuit for column set construction

34 A. Idalgo and N. Moreano

4.3 Hybrid Implementations

We developed five different hybrid solutions using several implemented versions
of the two operations (clone comparison and set construction), with increasingly
functionality and control complexity, and exploring different trade-offs between
computation and communication costs.

SW/HW 1: Demand Sending and Clone Comparison
This solution implements in HW only the row comparison operation. There
is no use of memory banks and the communication is stream-based. The
SW determines which pairs of rows must be compared and for each pair,
sends a package containing the two rows to be compared. The rows are
processed in HW in a pipelined way: while some blocks are unpacked, others
are compared.

SW/HW 2: Complete Sending and Demand Clone Comparison
The second solution also implements in HW only the row comparison op-
eration, but it uses a memory bank to store the entire matrix M . The SW
initially sends the entire M to the HW. Then the SW determines which
pairs of rows must be compared and for each pair, sends a package contain-
ing only the two row indexes (rather than the two entire rows). The packages
are smaller and the replicated sending of the same row is eliminated (when it
is compared to several distinct rows). Therefore the communication overhead
can decrease.

SW/HW 3: Complete Sending, Demand Clone Comparison, and Set
Construction
This solution is similar to the previous one, but it includes the column set
construction operation in HW. Since more memory banks are used, the con-
trol becomes more complex accordingly.

SW/HW 4: Complete Clone Comparison, and Set Construction
The fourth solution implements in HW both the row comparison and the
column set construction operations. The SW initially sends the entire M
to the HW, which performs all row comparisons (each row is compared to
every row). The SW does not need to send a comparison request for each
pair of rows. The goal is to reduce the communication overhead when there
are many row comparisons. The set construction control is not changed with
respect to the previous implementation.

SW/HW 5: Parallel Clone Comparison and Parallel Set Construction
The last solution also implements in HW both operations and introduces the
exploitation of parallelism in their execution. There are in the HW two mod-
ules for row comparison and another two for set construction. Additional
memory banks are used and matrix M is stored in an interleaved way in
two banks. This way, both row comparison modules (as well as the set con-
structors) can work in parallel and provide twice the performance for each
operation.

DNA Physical Mapping on a Reconfigurable Platform 35

5 Experimental Results

The platform used to implement our solutions consists of a computer with a
general purpose processor Athlon 64 with 2.2 GHz clock frequency, 2 GB of
RAM, and a 100 Mb/s network connection, and a multimedia board from Xilinx
[12] containing a Virtex-II XCV2000 FPGA operating at 50 MHz clock frequency
and five memory banks of 2 MB each one. The pure SW implementation, as well
as the SW parts of the hybrid solutions were developed in the C programming
language. The HW parts of the hybrid solutions were developed using the VHDL
hardware description language and synthesized with the Xilinx/ISE tool.

We used chromosomes from two living beings to generate the clones and
probes, which in turn produced the binary matrices used in the experiments.
The first was the chromosome 5 of Arabidopsis thaliana (a plant of the mustard
family), and the second was a chromosome 2 contig of Homo sapiens, both ob-
tained from NCBI [13]. For the first chromosome, 3,285 clones and 4,096 probes
were generated, and for the second chromosome, 2,881 clones and 4,096 probes.

For each input matrix, the pure SW algorithm and the five hybrid solutions
described in Subsection 4.3 were executed. Table 1 shows the results for the var-
ious solutions, applied to the matrix formed with the Arabidopsis thaliana data.
For each operation implemented in HW (row comparison and set construction),
we show the time spent only on FPGA processing and the total time spent per-
forming the operation. The latter includes communication, FPGA processing,
and SW processing times. The number of row comparisons performed is also
shown. Finally, the table shows the total execution time of the solution and the
speedup of each hybrid implementation with respect to the SW algorithm.

The results show that, for the Arabidopsis thaliana data, a few compar-
isons between rows are necessary, indicating that the matrix has few compo-
nents. Therefore, the comparison of all row pairs (performed by implementations
SW/HW 4 and 5) offers no benefits because it makes a far greater number of
comparisons than are actually necessary. For this operation, the best solutions
are implementations SW/HW 2 and 3.

Considering the set construction operation, the first two hybrid implementa-
tions perform the set construction in SW, while implementations SW/HW 3 and
4 use one single constructor module in HW, and reduce in more than 16 times

Table 1. Results for Arabidopsis thaliana chromosome (execution times in seconds)

Implementation
Row Comparison Set Construction

Total Speedup
Number of Time in Total Time in Total time wrt. SW

comparisons FPGA time FPGA time
SW 7,879 – 0.70 – 571.45 573.11 –

SW/HW 1 7,879 0.04 1.30 – 589.34 591.45 0.97
SW/HW 2 7,879 0.04 0.67 – 572.59 574.11 1.00
SW/HW 3 7,879 0.04 0.63 34.45 35.17 36.67 15.63
SW/HW 4 5,393,970 27.72 29.95 34.45 35.16 65.89 8.70
SW/HW 5 5,393,970 13.92 16.14 17.22 17.94 34.86 16.44

36 A. Idalgo and N. Moreano

Table 2. Results for Homo sapiens chromosome (execution times in seconds)

Implementation
Row Comparison Set Construction

Total Speedup
Number of Time in Total Time in Total time wrt. SW

comparisons FPGA time FPGA time
SW 2,080,334 – 214.83 – 272.42 487.73 –

SW/HW 1 2,080,334 10.65 351.53 – 280.55 633.56 0.77
SW/HW 2 2,080,334 11.07 137.08 – 248.28 386.47 1.26
SW/HW 3 2,080,334 11.15 124.12 15.11 15.61 145.53 3.35
SW/HW 4 4,148,640 21.32 23.06 15.11 15.59 39.02 12.50
SW/HW 5 4,148,640 10.70 12.44 7.55 8.03 20.84 23.40

the total time spent on this operation. In the last implementation, the introduc-
tion of a new set constructor module provided a performance gain around 100%
when compared to the previous solution.

We can see from the SW solution results that, for this matrix, most of the
total execution time is spent on the set construction operation. We can develop
a SW/HW implementation 6, combining Complete Sending and Demand Clone
Comparison (as SW/HW 3) and Parallel Set Construction (as SW/HW 5). This
solution produces the best results for the Arabidopsis thaliana matrix, with 19.35
seconds of total execution time and yielding a speedup of 29.62 with respect to
the SW algorithm.

Table 2 presents the results obtained with the second matrix, containing the
Homo sapiens data. We can see that, for this matrix, it is necessary to compare
many more row pairs, and consequently the time spent on the row comparison
operation represents a considerable portion of the SW algorithm total execution
time. Thus, the implementation of this operation in HW has enabled all hybrid
implementations (except the first one) a substantial performance gain when com-
pared to the SW solution. The approach used in solution SW/HW 1 sends to the
FPGA a message with the pair of rows, for each row comparison, and produces
a negative impact on the communication time. Solutions SW/HW 2 and 3 send
all M rows once and, for each comparison, send only the row indexes, reducing
the communication time and yielding an average performance gain of 65%, for
this operation, with respect to the SW algorithm. Implementation SW/HW 4,
which makes all comparisons and does not send row indexes, reduces even fur-
ther the communication time and produces a performance gain of 832% in the
time spent on this operation, compared to the SW algorithm. The last hybrid
solution nearly doubles this gain, using two row comparison modules. Therefore,
we can conclude that if the number of comparisons is significant, it is better to
perform all comparisons than to send messages with comparison requests.

The results from Table 2 also show significant performance gains for imple-
mentations that perform in FPGA the set construction operation. The use of
parallel row comparison and set construction (solution SW/HW 5) produced the
hybrid implementation with the best results, for this matrix, yielding a speedup
of 23.4 when compared to the SW algorithm. Both operations benefit from par-
allelism, because their data can be partitioned and processed independently.

DNA Physical Mapping on a Reconfigurable Platform 37

(a) (b)

Fig. 4. Execution time for (a) Arabidopsis thaliana and (b) Homo sapiens chromosomes

Fig. 4 shows the total execution time for all implementations and for both
chromosomes. In order to analyze the impact of communication overhead in
each hybrid solution, the figure also shows the execution time without the com-
munication overhead, but including both FPGA and SW processing. We can
see that, for the Homo sapiens chromosome, some hybrid solutions can benefit
from a platform with a stronger coupling between processor and FPGA, and
consequently lower communication overhead.

6 Conclusions and Future Research

This paper presented several SW/HW solutions to the consecutive ones problem,
used in DNA physical mapping. We developed these solutions on a platform with
a processor and a reconfigurable component attached to it, and also implemented
the pure SW algorithm. The hybrid solutions perform in hardware operations
that most contribute to the SW algorithm total execution time. We performed
experiments with real chromosomes in order to compare the performance of these
solutions to the SW implementation, and analyze different trade-offs between
communication overhead and computation.

The results showed the reconfigurable device capability in efficiently execute
the operations, clone comparison and set construction, and both provided perfor-
mance gains. These operations perform repetitive tasks that require a continuous
data flow and present a considerable amount of data parallelism, features that
are benefited from the implementation in hardware.

We achieved drastic performance improvements using approaches with re-
duced communication and with pipeline and parallelism. The hybrid implemen-
tations yielded speedups up to 29.62, with respect to the SW algorithm, for
the Arabidopsis thaliana chromosome. For the Homo sapiens chromosome, we
produced speedups up to 23.4.

We can further improve these results using an architecture with stronger cou-
pling and a reconfigurable component without the strict limitations of low clock
frequency and small memory capacity. This way, communication time can be
reduced and more parallelism can be exploited. The solutions developed employ

38 A. Idalgo and N. Moreano

at most two hardware modules, for each operation, working in parallel, due to
memory limitations. However, the application offers more parallelism potential
and there was still plenty of area available in the FPGA.

From the experimental evaluation we conclude that the choice of the best
SW/HW solution may be different for each input matrix with clones and probes
data. A challenging approach is to identify which characteristics of this matrix
influence it to have a few or many components and affect the demand of a few
or many clone comparisons. Based on this investigation, we can dynamically
reconfigure the FPGA to implement the best solution to that matrix.

References

1. Bondalapati, K., Prasanna, V.K.: Reconfigurable Computing Systems. Proceedings
of the IEEE 90(7), 1201–1217 (2002)

2. Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology.
PWS Publishing Company (1997)

3. Fulkerson, D., Gross, O.: Incidence Matrices and Interval Graphs. Pacific Journal
of Mathematics 15(3), 835–855 (1965)

4. Jacobi, R.P., Rincón, M.A., Carvalho, L.G., Llanos, C.H., Hartenstein, R.W.: Re-
configurable Systems for Sequence Alignment and for General Dynamic Program-
ming. In: Proceedings of the Brazilian Workshop on Bioinformatics, pp. 25–32
(2004)

5. Oliver, T., Schmidt, B., Maskell, D.: Hyper Customized Processors for Bio-
Sequence Database Scanning on FPGAs. In: Proceedings of the International Sym-
posium on Field-Programmable Gate Arrays, pp. 229–237 (2005)

6. Regester, K., Byun, J.H., Mukherjee, A., Ravindran, A.: Implementing Bioinfor-
matics Algorithms on Nallatech-Configurable Multi-FPGA Systems. Xcell Journal
Online (53), 100–103 (2005)

7. Meng, X., Chaudhary, V.: An Adaptive Data Prefetching Scheme for Biosequence
Database Search on Reconfigurable Platforms. In: Proceedings of the ACM Sym-
posium on Applied Computing, pp. 140–141 (2007)

8. Mak, T.S.T., Lam, K.P.: Embedded Computation of Maximum-Likelihood Phy-
logeny Inference Using Platform FPGA. In: Proceedings of the IEEE Computa-
tional Systems Bioinformatics Conference, pp. 512–514 (2004)

9. Krishnamurthy, P., Buhler, J., Chamberlain, R.D., Franklin, M.A., Gyang, K.,
Jacob, A., Lancaster, J.: Biosequence Similarity Search on the Mercury System.
In: Proceedings of the International Conference on Application-Specific Systems,
Architectures and Processors, pp. 365–375 (2004)

10. Hsu, W.L.: A Simple Test for the Consecutive Ones Property. In: Ibaraki, T.,
Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS,
vol. 650, pp. 459–468. Springer, Heidelberg (1992)

11. Booth, K.S., Lueker, G.S.: Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-tree Algorithms. Journal of Computer
and System Sciences 13(3), 335–379 (1976)

12. Xilinx: Xilinx Multimedia Board (2005), http://www.xilinx.com
13. NCBI - National Center for Biotechnology Information: NCBI (2007),

http://www.ncbi.nlm.nih.gov/

 http://www.xilinx.com
http://www.ncbi.nlm.nih.gov/

	DNA Physical Mapping on a Reconfigurable Platform
	Introduction
	Related Work
	DNA Physical Mapping
	Consecutive Ones Problem and Algorithm

	Hardware/Software Solution
	Comparing Clones
	Constructing Column Sets
	Hybrid Implementations

	Experimental Results
	Conclusions and Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

