
Datapath Merging and Interconnection Sharing
for Reconfigurable Architectures

Nahri Moreanoy� and Guido Araujo�

� IC-UNICAMP
Campinas, SP 13084-971

y DCT-UFMS
Campo Grande, MS 79070-900

Brazil

fnahri,guidog@ic.unicamp.br

Zhining Huang and Sharad Malik
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

USA

fznhuang,malikg@ee.princeton.edu

ABSTRACT
Recent work in recon�gurable computing research has shown
that a substantial performance speedup can be achieved
through architectures that map the most relevant applica-
tion inner-loops to a recon�gurable datapath. Any solution
to this problem must be able to synthesize a datapath for
each loop and to merge them together into a single recon-
�gurable datapath. The main contribution of this paper is
a novel graph-based technique for the datapath merge prob-
lem. This approach is based on the solution of a maximum
clique problem that merges datapaths one at a time. A set
of experiments, using the MediaBench benchmark, shows
that the proposed technique produces 24% fewer datapath
interconnections than a previous solution to this problem.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles|Adaptable architectures

General Terms
Performance

Keywords
Recon�gurable computing, high level and architectural syn-
thesis

1. INTRODUCTION
The availability of large/cheap arrays of programmable

(recon�gurable) logic has created a new set of architectural
alternatives for the design of complex digital systems. Re-
con�gurable logic brings together the exibility of software
to the performance of hardware. In most recon�gurable ar-
chitecture designs, an array of programmable logic is coupled

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

to a microprocessor, enabling the designer to partition the
application between (slow) software running on the proces-
sor and (fast) hardware running on the recon�gurable array.
There are a number of solutions to the design of recon�g-

urable systems. In general, the resulting architectures can
be classi�ed according to: the level of coupling between the
recon�gurable array and the processor; and the size of the
logic blocks in the array [4]. In highly coupled systems, re-
con�gurable hardware is used solely to provide functional
units within a host processor [18, 13]. The recon�gurable
array can be used as a co-processor [7, 14] or as another pro-
cessing unit of a multiprocessor architecture [6] in medium
coupled systems. In loosely coupled systems, recon�gurable
units communicate with the host processor through a net-
work. When the size of the logic block is considered, re-
con�gurable hardware can be divided into: (a) �ne-grained
units, where logic blocks are boolean function cells (e.g., typ-
ical FPGAs); (b) medium-grained units, formed by bit-slices
of functional units (e.g., 4-bit adder) that can be used to im-
plement wider operation units (e.g.,32-bit adder) [7, 11]; and
(c) coarse-grained units containing entire functional units [5]
(or tiny processors [12]) interconnected so as to implement
word-width datapaths.
Recent work in recon�gurable computing research has

shown that a substantial performance speedup can be
achieved through architectures that map the most relevant
application inner-loops to a recon�gurable datapath [17, 2].
At runtime, as each loop of the application starts to ex-
ecute, the system recon�gures the datapath so as to per-
form the loop computation. In the case of coarse-grained
architectures, in which a set of functional units communi-
cate through a recon�gurable network, any solution to this
problem must be able to perform two tasks: (a) synthesize a
datapath for each such loop; and (b) to merge them together
into a single recon�gurable datapath.
The recon�gurable datapath should have as few hardware

blocks and interconnections as possible, in order to reduce
its cost, area, power consumption and recon�guration over-
head. Hence we want to reuse the hardware blocks and inter-
connections across the loop datapaths as much as possible.
The datapath merging process enables this reuse by identi-
fying similarities among the loop datapaths and producing
a resulting datapath that can be dynamically recon�gured
to work for each loop datapath, with the minimum number
of hardware blocks and interconnections.

38

Datapath 1

+ �

�

Datapath 2

+ �

�

Datapath 1 + 2

+ �

�

Figure 1: Datapaths merging.

Figure 1 illustrates the concept of datapath merging. The
goal is to design a recon�gurable datapath which incorpo-
rates all the loop datapaths and has as least functional units
and interconnections as possible. When the Datapaths 1 and
2 from Figure 1 are merged, we get the resulting Datapath
1 + 2, also shown in the �gure. Notice that in the result-
ing datapath there are interconnections originated from only
one datapath (e.g., the (+,�) interconnection from Datap-
ath 1) and interconnections shared by both datapaths (e.g.,
the (+,�) interconnection).
Huang and Malik [8] proposed a technique to merge the

individual loop datapaths into a single recon�gurable datap-
ath. Their heuristic adds one datapath to the �nal datapath
at a time. At each step, it solves a maximum weight bipar-
tite matching problem that maps hardware blocks (func-
tional units and registers) vertices while trying to maximize
the sharing of interconnections. A similar approach was pre-
sented in [15], which describes a method for combining two
designs into a recon�gurable one, based on the identi�ca-
tion of common components of these designs. This work is
also based on an algorithm for vertex matching on weighted
bipartite graphs, but at a lower granularity.
The main contribution of this paper is a novel graph-based

technique for the datapath merge problem. Our approach
is based on the solution of a maximum clique problem that
merges datapaths one at a time. Contrary to [8], which
is based on vertex mapping, our approach maps datapath
interconnections (arcs) to compute the recon�gurable data-
path. Experimental results, using the MediaBench bench-
mark [10], reveal that this technique produces on average
24% fewer datapath interconnections than the solution in [8],
while using the same number of hardware blocks.
As described in Section 4, a preliminary Integer Linear

Programming (ILP) lower bound analysis [16] shows that
this approach produces, in the worst case, 8.6% more in-
terconnections than the optimum solution, for the MPEG
application, and �nds optimal datapaths for two other ap-
plications in MediaBench.
This paper is divided as follows. Section 2 describes our

recon�gurable architecture model. Section 3 details the dat-
apath merge problem and describes our maximum clique ap-
proach used to solve this problem. In Section 4 a set of ex-
periments are described to support the proposed approach.
Finally, Section 5 concludes the work.

On chip
caches

Embedded
processor

Reconfigurable interconnection
Fine-

grained
FPGA

FU RG FU

FU RG FU

Figure 2: Architectural model.

2. ARCHITECTURAL MODEL
The recon�gurable architecture studied in this paper is a

medium-coupled coarse-grained system (Figure 2) similar to
the one proposed in [8]. In this model, a set of functional
units is organized around an interconnection network result-
ing in a programmable datapath. As shown in Figure 2, it
consists of an embedded processor coupled to an on-chip
SRAM and a recon�gurable array through a bus. The re-
con�gurable array is composed of a set of Functional Units
(FUs) and Registers (RGs) wired together to an interconnec-
tion network. A �ne-grained FPGA is used for the control
logic required to re-shape the network so it implements the
desired datapath.
As the computation progresses, the system recon�gures

the datapath through the interconnection network, such that
computational intensive pieces of the application are mapped
to it. Given the (coarse) granularity of the logic blocks (FUs
and RGs), the number of bits required to encode them is
much smaller than in the case of �ne-grained architectures.
As a result, fewer bits are needed to recon�gure the data-
path, thus diminishing the size of the memory required to
store the recon�guration bits (the so called recon�guration
context). This is a central issue in SOC designs where on-
chip area is a premium asset. Moreover, the smaller the size
of the context the smaller the time overhead required for
recon�guration. Recon�guration time is a critical feature in
such systems, given that the �nal performance is determined
by the sum of the computation time and the recon�guration
latency (if latency hidden techniques are not used).

3. THE DATAPATH MERGING PROBLEM
The approach to recon�gurable computing used in this

work follows closely the one proposed in [8]. The IMPACT
compiler [3] is used to extract pro�ling information from
programs. Enough experimental evidence exist to support
the fact that inner loops account for the largest share of
program execution time. Therefore, these loops are the best
candidates for mapping onto the recon�gurable logic.
In order to do that, the execution time (cycle count) of

each loop is measured using the scheduled/allocated lcode1

representation of the program. Inner loops are then ranked
according to their contribution to program execution time,

1lcode is the intermediate representation format of IM-
PACT.

39

G1

A12 C11

A11 B11

G2

A22 C21

A21 B21

A23

G = G1 +G2

A11

A21

B11

B21

A22

C11

C21

A12

A23

Figure 3: Two graphs G1 and G2 and the resulting
graph G = G1 +G2.

and the set of the most 7-10 relevant loops are selected. Af-
ter loop pro�ling, a direct mapping technique [9] is used to
generate the datapath for each selected loop, from IMPACT
lcode. The output of each loop synthesis is the design of an
optimized datapath that implements the loop computation.
Notice that not all loops are amenable for synthesis. Loops
that violate the hardware resource limits of the target re-
con�gurable array should be discarded.
The next step in this approach is to merge together all

loop datapaths into a single datapath. The resulting data-
path should be recon�gured as program execution reaches
each mapped loop. To achieve that, a exible interconnec-
tion network is used, combined with a distributed cache
mechanism to store the loop con�guration contexts. The
work in [8] describes this recon�guration mechanism in de-
tails, and thus it will not be described further.

3.1 Graph Modeling
In this section we formulate datapath merge as a graph

theoretical problem. More formally, we want to merge sev-
eral datapaths (corresponding to application loops), in order
to build a recon�gurable datapath that has as least hardware
blocks (functional units and registers) and interconnections
as possible.
Each loop datapath i is modeled as a directed graph Gi =

(Vi; Ei), where the vertices in Vi represent the hardware
blocks in the datapath, and the arcs in Ei are associated
to the interconnections between the hardware blocks. The
types of hardware blocks (e.g. adders, multipliers, registers,
etc) are modeled by a labeling function Li of Vi, such that,
for each vertex u 2 Vi, Li(u) = Tij is a label that repre-
sents the type of the hardware block associated to u. More
speci�cally, we say that vertex u in graph Gi is associated
to the jth hardware block of type T . Consider, for example,
Figure 3. It shows two directed graphs G1 and G2, corre-
sponding to two loop datapaths. Each vertex in G1 and G2

is identi�ed by its label. For instance, vertex A23 is associ-
ated to the third unit of type A in graph G2.
The resulting recon�gurable datapath is the merge of all

N loop datapaths represented by Gi; i = 1 : : : N . As before,
it can also be modeled as a directed graph G = (V;E) and
a labeling function L of V , such that Gi � G, for all Gi.
Each vertex u 2 V maps to one vertex v in at least one Vi,
such that L(u) = Li(v)

2. Moreover, each arc of E maps to

one arc from at least one Ei. The �nal graph G =
Pi=N

i=1 Gi

is the result of overlapping all Gi, such that only vertices

2We say that two labels are the same if they are associated
to the same type of hardware block.

Arcs from G1

A11B11

A11C11

A12C11

B11C11

Arcs from G2

A21B21

A22B21

A23C21

B21C21

C21A22

Figure 4: All possible mappings of arcs from G1 and
G2.

with the same label can be overlapped. A good solution for
G should overlap vertices and arcs from all Gi as much as
possible. Ideally, the optimum solution for G is the one in
which: (a) jEj is minimum (i.e. the resulting graph G has
the smallest possible number of interconnections); and (b)
the number of hardware blocks of type T in G is equal to
the maximum number of blocks of that type encountered
across all datapaths Gi. To compute that we have to �nd
out which mapping of vertices from all Gi, among several
possibilities, gives the best mapping of arcs, i.e. the one
that overlaps the interconnections the most. The resulting
graph G = G1 + G2 after merging G1 and G2 is shown
in Figure 3. Each vertex (arc) in G is identi�ed with a(n)
vertex (arc) from G1 and/or G2.

3.2 The Compatibility Graph
We solve the problem of �nding the resulting graph G =Pi=N

i=1 Gi using an arc mapping approach. Initially all pos-
sible arc mappings between two graphs Gi and Gj are gen-
erated. Two arcs (interconnections), (t; u) and (v; w), from
Gi and Gj respectively, can be mapped (overlapped) if and
only if, Li(t) = Lj(v) and Li(u) = Lj(w). In other words,
the source vertex of the arcs must have the same label, as
well as their destination vertices. Figure 4 lists those arcs
from graphs G1 and G2 in Figure 3 that can be overlapped
to each other. In Figure 4 each mapping is represented
by a double-arrow line uniting the arcs that can be over-
lapped. We represent a possible mapping using a bar, e.g.
in (A11; B11)=(A21; B21) arcs (A11; B11) and (A21; B21) can
be overlapped.
A compatibility graphH is constructed, where each vertex

ofH corresponds to a possible mapping of two arcs, one from
Gi and another from Gj . There exist an edge between two
vertices of H if the arc mappings represented by the vertices
are compatible. In order to build the compatibility graph
we need to de�ne the notion of mapping compatibility. Two
arc mappings are not compatible if and only if they map the
same vertex of Gi to two di�erent vertices of Gj , or vice-
versa. This problem is illustrated in Figure 5. In that �gure
two loop datapath graphs Gi and Gj are shown. There are
two possible arc mappings between Gi and Gj , which are
(Ai1; Bi1)=(Aj1; Bj1) and (Ai1; Ci1)=(Aj2; Cj1). These two
mappings are incompatible since they map the same vertex
Ai1 from Gi to two di�erent vertices, Aj1 and Aj2, in Gj .
By using the compatibility criterion discussed above the

compatibility graph H can be easily constructed. Figure 6
shows the compatibility graph H resulting from the map-
pings of arcs from G1 and G2 in Figure 4. Consider, for

40

Gi

Ai1 Bi1

Ci1

Gj

Aj1

Aj2

Bj1

Cj1

Figure 5: Incompatible mappings: Ai1 maps to Aj1

and Aj2.

1

2

3

4

5

A11B11

A21B21

A11B11

A22B21

A11C11

A23C21

A12C11

A23C21

B11C11

B21C21

Figure 6: Maximum clique on the compatibility
graph H.

example, mappings (A11; B11)=(A21; B21) (vertex 1 in H)
and (B11; C11)=(B21; C21) (vertex 5 in H). For those map-
pings, no vertex from G1 maps to two distinct vertices in G2

and vice-versa. As a result, these two mapping are compat-
ible, and an edge (1,5) is required in H. On the other hand,
no edge exist in H between vertices 2 and 3. The reason is
that the mappings represented by 2 and 3 are incompatible,
since A11 in G1 maps to both A22 and A23 in G2.

3.3 Maximum Clique Solution
In order to determine the resulting graph G =

Pi=N

i=1 Gi

such that jEj is minimum, it is necessary to �nd the maxi-
mum number of arc mappings that are compatible to each
other. This can be achieved by computing the maximum
clique of the compatibility graph H. The maximum clique
problem is known to be NP-complete, and thus a heuristic
polinomial-time algorithm is used to solve it [1]. For ex-
ample, in the compatibility graph H of Figure 6, a possible
maximum clique has vertices 1, 4, and 5.
Finally, the mappings represented by the vertices from the

maximum clique of H are used to construct the resulting
graph G. Each vertex from the clique gives an arc mapping
between Gi and Gj (and their corresponding vertices). After
that, the vertices from Gi that were not mapped can be
mapped to any vertex of Gj , provided it has the same label
and has not been mapped yet. If no such vertex is available
the vertex of Gi is introduced into G. The same is also valid
for the remaining vertices from Gj .
The solution presented above merges two datapath graphs.

In order to merge several graphs, this method is used as a
heuristic and applied iteratively. First, two input graphs are
merged, then the resulting graph is merged with another in-
put graph, and so on, as described in Algorithm 1. This
algorithm runs in polynomial time, since we use a polyno-
mial time heuristic for the maximum clique problem.

Algorithm 1 Datapath Merging

procedure Datapath Merging(G1; : : : ; GN ; G)
input: N directed graphs Gi = (Vi; Ei) and
labeling functions Li : Vi ! T , 1 � i � N

output: directed graph G = (V;E) and
labeling function L : V ! T ,
such that jV j and jEj are minimum, and 8u 2 V ,
u maps possibly one vertex with label L(u) from
each Vi

/* Initially, G is the �rst input graph G1 */
G G1;
L L1;
/* Iteratively merge G with input graph Gi */
for i 2 to N do

H Construct Compatibility Graph(G;Gi; L; Li);
C Find Maximum Clique(H);
(G;L) Reconstruct Resulting Graph(C;G;Gi; L; Li);

4. EXPERIMENTAL RESULTS
The solution to the merging datapath problem presented

above was applied to a number of programs from the Media-
Bench benchmark (MPEG, GSM, G.721 and ADPCM) [10].
Each program was compiled using the IMPACT compiler,
and pro�led at the lcode level, so as to determine which loops
contributed the most to the program execution time. To
maximize the speedup through datapath execution, predica-
tion and software pipelining between di�erent loop iterations
(if permitted by data dependence analysis) were applied.
The code of each loop was synthesized as a loop datapath,
from which a datapath graph was generated. The graphs
were then merged iteratively using Algorithm 1. Three ex-
periments were designed to evaluate the eÆciency of the
proposed algorithm.
In the �rst experiment, the number of interconnections of

the �nal recon�gurable datapath was measured after merg-
ing all loop datapaths. This number was then compared to
the number of interconnections produced by a previous tech-
nique [8]. As shown in Table 1, Algorithm 1, based on arc
mapping, produces on average 24% fewer interconnections
in its resulting datapath G, than the number of interconnec-
tions from datapath G0, obtained using the vertex mapping
approach described in [8]. For instance, 28.9% fewer inter-
connections result when Algorithm 1 is used to compute the
GSM datapath.
The goal of the second experiment was to compare the

number of interconnections jEj of the resulting recon�g-
urable datapath G to its lower and upper bound. We de�ne

Table 1: Comparison of arc mapping and vertex
mapping approaches
Program Datapath G0 � Datapath G y Arcs

Vertices Arcs Vertices Arcs reduction
MPEG 51 114 51 88 22.8%
GSM 67 197 67 140 28.9%

ADPCM 108 219 108 168 23.3%
G.721 42 77 42 62 19.5%

* Obtained with the vertex mapping approach [8]

y Obtained with the arc mapping approach

41

0

50

100

150

200

250

300

350

MPEG GSM ADPCM G.721

N
um

be
r

of
 in

te
rc

on
ne

ct
io

ns

Application

44

88

157

Lower bound
Interconnections of the resulting datapath

Upper bound

Figure 7: Number of interconnections, lower and
upper bounds.

the lower bound of jEj as the maximum number of intercon-
nections from one loop datapath, across all loop datapaths.
The upper bound of jEj is de�ned as the sum of the intercon-
nections from all loop datapaths. So, for an application in
which the N loop datapaths are represented by the directed
graphs Gi; i = 1 : : : N , we have:

Lower bound of jEj =
N

max
i=1
jEij

Upper bound of jEj =
NX

i=1

jEij

Notice that this lower bound is highly optimistic, while the
upper bound is highly pessimistic. The lower bound rep-
resents the datapath merging in which all loop datapaths
are entirely embedded into one of them, i.e. no extra inter-
connections are required. The upper bound represents the
situation in which the loop datapaths are merged without
any interconnections sharing.
Figure 7 shows the number of interconnections of the re-

sulting datapaths, as well as its lower and upper bounds, for
four applications from MediaBench. In Figure 8 we show
the number of interconnections (and its lower and upper
bounds) of the partial recon�gurable datapaths obtained at
each iteration during the construction of the MPEG recon-
�gurable datapath. Since seven inner-loops were extracted,
six iterations were needed to merge each loop datapath to
the �nal datapath.
A preliminary ILP lower bound analysis [16] permitted

the evaluation of the maximum error of the solution ob-
tained with the proposed technique, when compared to an
optimal solution (with respect to the sharing of interconnec-
tions), as shown in Table 2. This analysis showed that there
is no resulting datapath with less than 81 interconnections,
for the MPEG application. So, Algorithm 1 produced, in the
worst case, only 8.6% more interconnections than the opti-
mum solution, for this application. This result stress our
observation that the lower bounds in Figures 7 and 8 are
extremely optimistic. The lower bound from Figure 7 for
MPEG is 44, but from ILP analysis is 81. For the ADPCM
and G.721 benchmarks, our approach found optimal data-
paths. The maximum error of the GSM solution is 44.9%.
This is probably because more loop datapaths are merged,
so more iterations of Algorithm 1 are required, accumulating
the error produced by our greedy approach. Notice that this

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6 7

N
um

be
r

of
 in

te
rc

on
ne

ct
io

ns

Number of combined datapaths from MPEG

Lower bound
Interconnections of the resulting datapath

Upper bound

Figure 8: Number of interconnections, lower and
upper bounds, for each iteration of MPEG.

ILP analysis runs in exponential time, while our datapath
merging algorithm is polynomial.
In the third experiment, we evaluated the ability of the

proposed technique to enable the sharing of the interconnec-
tions from the datapaths of a given application. To do that,
we measured the percentage of the interconnections in the
�nal datapath which result from the overlap of n intercon-
nections, n = 1 : : : N , N the number of loop datapaths in
the application. Notice that this measure reects not only
the ability of Algorithm 1 to maximize the interconnection
sharing, but also how similar the structure of the datapaths
are. Observe from Figure 9, that on average 50%-60% of
the interconnections in the �nal datapath are the result of
no overlap, i.e. around half of the resulting interconnections
are not shared. Moreover, only nearly 30% of the intercon-
nections are shared by two datapaths. As the sharing num-
ber (horizontal axis in Figure 9) increases, the percentage
of interconnections in the �nal datapath having this shar-
ing number decreases almost exponentially. For applications
having more than three loops, we have not noticed any case
where an interconnection of the resulting datapath is shared
by all loop datapaths.
In Figure 9 the results for the G.721 application show

that nearly 70% of the interconnections of the recon�gurable
datapath are not shared. Interesting enough, from Table 2
we observe that the resulting datapath, constructed for this
program using the proposed algorithm, is optimum, i.e., it
has the minimum number of interconnections. We conclude
from this that the sharing eÆciency of this application is low
because its loop datapaths are structurally very di�erent.

5. CONCLUSIONS
This paper presented a novel graph-based technique for

the datapath merge problem. Performance speedup can
be achieved through architectures that map the most rel-
evant application inner-loops to a recon�gurable datapath.
We synthesized datapaths for each such loops and merged
them together into a single recon�gurable datapath. Our
approach merges the individual loop datapaths into a sin-
gle recon�gurable datapath one at a time. At each step, it
solves a maximum clique problem that matches FUs while
maximizing the sharing of interconnections.
Experiments were performed to evaluate the eÆciency of

the proposed algorithm. First, the number of interconnec-

42

Table 2: Maximum error analysis (wrt. optimal)

Program Datapath G y Lower bound� Maximum
(# arcs) (# arcs) error

MPEG 88 81 8.6%
GSM 140 98 42.9%

ADPCM 168 168 0%
G.721 62 62 0%

y Obtained with the arc mapping approach

* Obtained with ILP analysis [16]

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

%
 in

te
rc

on
ne

ct
io

ns
 o

f r
es

ul
tin

g
da

ta
pa

th

Sharing number: number of overlapped interconnections

31.4%

MPEG
GSM

ADPCM
G.721

Figure 9: Interconnection sharing eÆciency.

tions in the �nal recon�gurable datapath was compared to
the number of interconnections produced by a previous ap-
proach and our technique produced, on average, 24% fewer
interconnections. Moreover, an Integer Linear Programming
lower bound analysis showed that, for two applications, our
technique found optimum solutions. For the MPEG appli-
cation, we produced, in the worst case, only 8.6% more in-
terconnections than the optimum solution.
We also evaluated the ability of the proposed approach to

maximize the interconnection sharing and how similar the
structure of the datapaths are. We observed that an aver-
age 50%-60% of the interconnections in the �nal datapath
are the result of no overlap, i.e. around half of the result-
ing interconnections are not shared. As the sharing degree
increases, the percentage of interconnections in the �nal dat-
apath having this degree decreases almost exponentially.

6. ACKNOWLEDGMENTS
This work was partially supported by ProTem-CC

CNPq/NSF project 68.0059/99, CNPq research grant
300156/97, FAPESP research grant 2000/15083-9, and a
CAPES fellowship award.

7. REFERENCES
[1] R. Battiti and M. Protasi. Reactive local search for the

maximum clique problem. Algorithmica, 29(4), 2000.

[2] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The
Garp architecture and C compiler. IEEE Computer,
April 2000.

[3] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,
and W. W. Hwu. IMPACT: An architectural
framework for multiple-instruction-issue processors. In

18th International Symposium on Computer
Architecture, 1991.

[4] K. Compton and S. Hauck. Recon�gurable computing:
A survey of systems and software. ACM Computing
Surveys, 34(2), 2002.

[5] C. Ebeling, D. C. Cronquist, and D. Franklin. RaPid {
Recon�gurable pipelined datapath. Lecture Notes in
Computer Science 1142 | Field Programmable Logic:
Smart Applications, New Paradigms and Compilers,
1996.

[6] S. C. Goldstein et al. PipeRench: A recon�gurable
architecture and compiler. IEEE Computer, 33, 2000.

[7] J. R. Hauser and J. Wawrzynek. Garp: A MIPS
processor with a recon�gurable coprocessor. In IEEE
Symposium on Field-Programmable Custom
Computing Machines, 1997.

[8] Z. Huang and S. Malik. Managing dynamic
recon�guration overhead in systems-on-a-chip design
using recon�gurable datapaths and optimized
interconnection networks. In Design, Automation and
Test in Europe Conference, 2001.

[9] Z. Huang and S. Malik. Exploiting operation level
parallelism through dynamically recon�gurable
datapaths. In 39th Design Automation Conference,
2002.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A tool for evaluating and synthesizing
multimedia and communication systems. In 30th
Annual International Symposium on
Microarchitecture, 1997.

[11] A. Marshall et al. A recon�gurable arithmetic array
for multimedia applications. In ACM/SIGDA
International Symposium on FPGAs, 1999.

[12] T. Miyamori and K. Olukotun. A quantitative
analysis of recon�gurable coprocessors for multimedia
applications. In IEEE Symposium on
Field-Programmable Custom Computing Machines,
1998.

[13] R. Razdan and M. D. Smith. A high-performance
microarchitecture with hardware-programmable
functional units. In 27th Annual International
Symposium on Microarchitecture, 1994.

[14] C. R. Rupp et al. The NAPA adaptive processing
architecture. In IEEE Symposium on
Field-Programmable Custom Computing Machines,
1998.

[15] N. Shirazi, W. Luk, and P. Cheung. Automating
production of run-time recon�gurable designs. In
IEEE Symposium on Field-Programmable Custom
Computing Machines, 1998.

[16] C. C. Souza and A. M. Morais. Private
communication. Applied Combinatorics Laboratory,
IC-UNICAMP, March 2002.

[17] M. Weinhardt and W. Luk. Pipeline vectorization for
recon�gurable systems. In IEEE Symposium on
Field-Programmable Custom Computing Machines,
1999.

[18] A. Ye et al. Chimaera: A high-performance
architecture with a tightly-coupled recon�gurable
functional unit. In 27th Annual International
Symposium on Computer Architecture, 2000.

43

