
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

INSTITUTO DE COMPUTAÇ�O

UNIVERSIDADE ESTADUAL DE CAMPINAS

CDFG Merging for

Reon�gurable Arhitetures

Nahri Moreano Guido Araujo

Cid C. de Souza

Tehnial Report - IC-03-018 - Relatório Ténio

Otober - 2003 - Outubro

The ontents of this report are the sole responsibility of the authors.

O onteúdo do presente relatório é de únia responsabilidade dos autores.



CDFG Merging for Reon�gurable Arhitetures

Nahri Moreano

�y

Guido Araujo

�

Cid C. de Souza

�

Abstrat

Reon�gurable systems have been proved to ahieve signi�ant performane speedup

through arhitetures that map the most time-onsuming appliation kernel modules

or inner-loops to a reon�gurable datapath. As eah portion of the appliation starts

to exeute, the system reon�gures the datapath so as to perform the orresponding

omputation. The reon�gurable datapath should have as few and simple hardware

bloks and interonnetions as possible, in order to redue its ost, area, power on-

sumption, and reon�guration overhead. Thus hardware bloks and interonnetions

should be reused aross the appliation as muh as possible. We represent eah piee of

the appliation as a ontrol/data-ow graph (CDFG) and merge them together, synthe-

sizing a single reon�gurable datapath. The CDFG merging proess enables the reuse

of hardware bloks and interonnetions by identifying similarities among the CDFGs,

and produing a resulting datapath that an be dynamially reon�gured to work for

eah CDFG and has a minimum area ost, when onsidering both hardware bloks and

interonnetions. In this report we formalize the CDFG merge problem and we present

a proof that it is NP-omplete, by reduing the subgraph isomorphism problem to it.

1 Introdution

It is well known that embedded systems must meet strit onstraints of high-throughput,

low power onsumption and low ost, speially when designed for signal proessing and

multimedia appliations [5℄. These requirements lead to the design of appliation spei�

omponents, ranging from speialized funtional units and oproessors to entire ASIP

proessors. Suh omponents are designed to exploit the peuliarities of the appliation

domain in order to ahieve the neessary performane and to meet the design onstraints.

With the advent of reon�gurable systems, the availability of large/heap arrays of

programmable logi has reated a new set of arhitetural alternatives for the design of

omplex digital systems. Reon�gurable logi brings together the exibility of software and

the performane of hardware [1℄. As a result, it beame possible to design appliation spei�

omponents, like speialized datapaths, that an be reon�gured to perform a di�erent

omputation, aording to the the spei� part of the appliation that is running (for

instane kernel modules and/or inner loops of the appliation). At run-time, as eah portion

�

Institute of Computing, University of Campinas, 13083-970 Campinas, SP

y

Department of Computing and Statistis, Federal University of Mato Grosso do Sul, 79070-900 Campo

Grande, MS

1



CDFG 1

+ �

�

CDFG 2

+ �

�

Resulting datapath

+ �

�

Figure 1: Control/data-ow graph merging

of the appliation starts to exeute, the system reon�gures the datapath so as to perform

the orresponding omputation. Reent work in reon�gurable omputing researh has

shown that a signi�ant performane speedup an be ahieved through arhitetures that

map the most time-onsuming appliation kernel modules or inner-loops to a reon�gurable

datapath ([4, 3℄).

The reon�gurable datapath should have as few and simple hardware bloks (funtional

units and registers) and interonnetions (multiplexors and wires) as possible, in order to

redue its ost, area, and power onsumption. Thus hardware bloks and interonnetions

should be reused aross the appliation as muh as possible. Resoure sharing has also

ruial impat in reduing the system reon�guration overhead, both in time and spae.

To design suh a reon�gurable datapath, one must represent eah seleted piee of the

appliation as a ontrol/data-ow graph (CDFG) and merge them together, synthesizing a

single reon�gurable datapath. The ontrol/data-ow graph merging proess enables the

reuse of hardware bloks and interonnetions by identifying similarities among the CDFGs,

and produing a resulting datapath that an be dynamially reon�gured to work for eah

CDFG. Ideally the resulting datapath should have the minimum area ost, when onsidering

both hardware bloks and interonnetions.

Figure 1 illustrates the onept of ontrol/data-ow graph merging. When CDFGs 1

and 2 are merged, one possible resulting datapath produed is shown in the �gure

1

. Notie

that in the resulting datapath there are interonnetions originated from only one CDFG

(e.g., the (+,�) interonnetion from CDFG 1) and interonnetions shared by both CDFGs

(e.g., the (+,�) interonnetion).

In this report we formalize the CDFG merge problem and we present a proof that it is

NP-omplete, by reduing the subgraph isomorphism problem to it.

This report is organized as follows. In the next setion we desribe our datapath arhi-

teture model. Setion 3 presents the problem more formally, exposing its diÆulty. We

present in Setion 4 the proof that the CDFG merge problem is NP-omplete. Finally,

Setion 5 onludes the work.

1

For simpliity, the multiplexor whih selets the multiplier input from the adder or the subtrator, is

not showed in the �gure.

2



Interonnetion network

FU FU RG

...

...

Figure 2: Arhiteture model

2 Arhiteture Model

The datapath arhiteture model used in this work onsists of a set of funtional units

(FUs) and registers (RGs) organized around an interonnetion network forming a pro-

grammable datapath, as shown in Figure 2. The interonnetion network is based on a set

of multiplexors (MUXes) that selet the input data for funtional units and registers.

As the omputation progresses, the system reon�gures the datapath through the inter-

onnetion network, suh that omputational intensive piees of the appliation are mapped

onto it. Given the (oarse) granularity of the logi bloks (FUs and RGs), the number of bits

required to enode them is muh smaller than in the ase of �ne-grained arhitetures. As

a result, fewer bits are needed to reon�gure the datapath, thus diminishing the size of the

memory required to store the reon�guration bits (the so alled reon�guration ontext).

This is a entral issue in SoC (System-on-a-Chip) designs where on-hip area is a premium

asset. Moreover, the smaller the size of the ontext, the smaller the time overhead required

for reon�guration. Reon�guration time is a ritial feature in suh systems, given that the

�nal performane is determined by the sum of the omputation time and the reon�guration

lateny (if lateny hidden tehniques are not used).

3 The Control/Data-ow Graph Merge Problem

In this setion we formulate the CDFG merge problem more formally. We want to merge

several CDFGs (orresponding to appliation portion), in order to build a reon�gurable

datapath whih is apable of performing the omputation of eah portion, multiplexed in

time, and has the minimum area ost of hardware bloks (funtional units and registers)

and interonnetions. Eah appliation portion i, i = 1 : : : n is modeled as a CDFG G

i

, as

de�ned below.

De�nition 1 A ontrol/data-ow graph (CDFG) is a direted graph G = (V;E), where:

� A vertex v 2 V represents an operation or a variable. Eah vertex v has a set of input

ports ip = 1 : : : n inports

v

and attributes speifying its type and width (in bits).

3



� An ar e = (u; v; ip) 2 E indiates a data transfer from vertex u to the input port ip

of vertex v.

Given a vertex of a CDFG, there may be (in the omponent library) several hardware

bloks where it an be exeuted.

De�nition 2 The set of hardware bloks HB(v) of a CDFG vertex v ontains the hardware

bloks from the omponent library whih an perform the omputation represented by v.

The resulting reon�gurable datapath is the merge of all CDFGs G

i

, i = 1 : : : n and is

modeled as a merged graph

�

G, as de�ned below. The merged graph

�

G is the overlapping of

all G

i

, suh that only verties whih an be implemented by the same hardware blok an

be overlapped.

De�nition 3 A merged graph, orresponding to CDFGs G

i

, i = 1 : : : n, is a direted graph

�

G = (

�

V ;

�

E), where:

� A vertex �v 2

�

V represents a mapping of n map

�v

verties v

i

, 1 � n map

�v

� n, eah

one from a di�erent V

i

, suh that

T

8v

i

HB(v

i

) 6= ;.

� An ar �e = (�u; �v;

�

ip) 2

�

E represents a mapping of n map

�e

ars e

i

= (u

i

; v

i

; ip

i

),

1 � n map

�e

� n, eah one from a di�erent E

i

, suh that all u

i

have been mapped on

�u, all v

i

have been mapped on �v, and all ip

i

math

2

.

The reon�gurable datapath will have one hardware blok for eah vertex �v in

�

V . This

hardware blok is apable of performing the omputation represented by all verties v

i

mapped on �v. Also, for eah ar �e = (�u; �v;

�

ip) in

�

E, there will be in the reon�gurable

datapath a \path" onneting the two hardware bloks orresponding to �u and �v, more

spei�ally, going from the output of the former to the input port

�

ip of the latter. Moreover,

for eah input port

�

ip of eah vertex �v whih has more than one inoming ar (�; �v;

�

ip), the

reon�gurable datapath will have a MUX seleting the input operand.

We desribe the vertex mapping represented by a vertex �v 2

�

V with a n-tuple

(v

1

=v

2

= : : : =v

n

) enumerating the verties v

i

2 V

i

mapped on �v. If there is no vertex from a

given V

i

mapped on �v, the orresponding element in the n-tuple is empty, as, for instane,

in (�=v

2

= : : : =v

n

). Similarly, the ar mapping represented by an ar �e 2

�

E is desribed by

a n-tuple (e

1

=e

2

= : : : =e

n

) enumerating the ars e

i

2 E

i

mapped on �e, with empty elements

whenever neessary.

Given a set of n input CDFGs G

i

, it is possible to build several di�erent merged graphs

�

G orresponding to them. The optimal solution for

�

G is the one whih produes the reon-

�gurable datapath with minimum area ost, onsidering both hardware bloks and inter-

onnetions.

The area ost of the reon�gurable datapath generated from a merged graph

�

G is the sum

of hardware blok area ost and interonnetion area ost. The hardware blok area ost is

the sum of the area ost of all hardware bloks of the datapath, in the omponent library.

2

The meaning of mathing input ports will be further elaborated in Subsetion 3.1.

4



CDFG G

1

+ �

�

a

1

a

2

a

3

CDFG G

2

� �

�

b

1

b

2

b

3

�

G

+ � �

�

(a

1

=�) (�=b

1

) (a

2

=b

2

)

(a

3

=b

3

)

�

G

0

+=� �

�

(a

1

=b

1

) (a

2

=b

2

)

(a

3

=b

3

)

Figure 3: CDFGs G

1

and G

2

and two di�erent merged graphs

�

G and

�

G

0

Eah hardware blok (orresponding to a vertex �v of

�

V ) is seleted from the omponent

library aordingly to the verties v

i

mapped on �v. For example, given the CDFGs G

1

and G

2

in Figure 3, we an build two di�erent merged graphs

�

G and

�

G

0

. In

�

G, verties

a

1

from G

1

and b

1

from G

2

are not mapped, so the reon�gurable datapath orresponding

to

�

G would have four hardware bloks (the funtional units adder, subtrator, shifter, and

multiplier). In

�

G

0

, those verties are mapped, resulting in a reon�gurable datapath with

three hardware bloks (an adder/subtrator, a shifter, and a multiplier).

Sine in our arhiteture model the interonnetion network is based on MUXes, the

interonnetion area ost is proportional to the number of MUX inputs. For eah ar

�e = (�u; �v;

�

ip) 2

�

E whih is a mapping of n map

�e

ars e

i

from CDFGs G

i

, the MUX (if

exists) in the input port

�

ip of hardware blok �v has n map

�e

� 1 fewer inputs than it would

have if no ars were overlapped. In Figure 3, the reon�gurable datapath orresponding to

the merge graph

�

G would have a MUX in the �rst input port of the multiplier, seleting the

input operand from the adder or subtrator results. In

�

G

0

, sine the verties addition and

subtration are mapped to the same hardware blok, it also beame possible to map (a

1

; a

3

)

onto (b

1

; b

3

) from CDFGs G

1

and G

2

respetively, thus eliminating the need for the MUX.

Regarding eah MUX as a tree of 2-input MUXes, there is a linear dependeny between the

number of 2-input MUXes and the number of wires, so the interonnetion area ost an

be expressed in terms of the number of wires.

The area ost of the reon�gurable datapath is de�ned below.

De�nition 4 Given a merged graph

�

G = (

�

V ;

�

E), let A

hb

(�v) be the area ost of the hardware

blok alloated to �v 2

�

V , and let A

mux

be the area ost equivalent to one MUX input of the

suitable width, both determined by the omponent library. The total area ost A(

�

G) of the

reon�gurable datapath orresponding to

�

G is:

A(

�

G) = A

hb

(

�

G) +A

i

(

�

G)

where A

hb

(

�

G) =

P

8�v2

�

V

A

hb

(�v) and A

i

(

�

G) = j

�

Ej �A

mux

are the hardware blok and inter-

onnetion area ost, respetively, of the reon�gurable datapath.

We an now de�ne the CDFG merge problem, as follows.

De�nition 5 Given n input CDFGs G

i

, i = 1 : : : n, and a omponent library, �nd the

orresponding merged graph

�

G, suh that A(

�

G) is minimum.

5



CDFG G

1

� + +

&

�

a

1

a

2

a

3

a

4

a

5

CDFG G

2

� �

�

b

1

b

2

b

3

CDFG

�

G

� +=� +

&

�

(a

1

=b

1

) (a

2

=b

2

) (a

3

=�)

(a

4

=�)

(a

5

=b

3

)

CDFG

�

G

0

� + +=�

&

�

(a

1

=b

1

) (a

2

=�) (a

3

=b

2

)

(a

4

=�)

(a

5

=b

3

)

Figure 4: CDFGs G

1

and G

2

and two di�erent merged graphs

�

G and

�

G

0

: A

hb

(

�

G) = A

hb

(

�

G

0

),

but A

i

(

�

G) > A

i

(

�

G

0

)

Finding a mapping of the verties from the CDFGs so as to minimize the hardware blok

area ost is not a diÆult task. On the other hand, mapping the ars from the CDFGs

so as to minimize the interonnetion area is a hard problem beause the mapping of ars

depends on the mapping of their adjaent verties. That is, two ars from two CDFGs an

only be mapped if their soure verties are mapped as well as their destination verties. So,

if we map verties without onsidering the interonnetion osts or using only estimates, we

may get a solution where the interonnetion area ost is not minimized and onsequently,

the total area ost is also non-optimal. For example, Figure 4 shows two di�erent merged

graphs

�

G and

�

G

0

obtained from CDFGs G

1

and G

2

.

�

G and

�

G

0

represent di�erent vertex

mappings. In

�

G vertex b

2

of G

2

is mapped onto vertex a

2

of G

1

, while it is mapped on a

3

in

�

G

0

. The vertex mappings represented by

�

G and

�

G

0

may appear equivalent and, as a matter

of fat, A

hb

(

�

G) is equal to A

hb

(

�

G

0

). But they allow for di�erent ar mappings. In

�

G, no

ars are overlapped, so two MUXes are needed at the two input ports of vertex a

5

=b

3

. In

�

G

0

, the ars (a

3

; a

5

) and (b

2

; b

3

) are mapped (highlighted in the �gure), thus eliminating the

need for one of the MUXes. As a result, A

i

(

�

G) is larger than A

i

(

�

G

0

) and onsequently,

A(

�

G) is also larger than A(

�

G

0

).

In order to ompute the optimal solution for

�

G we have to �nd out whih vertex mapping,

among several possibilities, gives the best ar mapping, i.e., whih mapping minimizes the

total area ost.

3.1 Input Ports and Commutativity

Several two-input operations are ommutative, so properly exhanging the soures of these

operations an enable ar mappings that would not exist otherwise, thus eliminating wires

and MUXes and reduing the interonnetion area ost of the reon�gurable datapath. Eah

operation has a set of input ports whih represent the input operands it expets, for instane

an addition has two input ports ip

1

and ip

2

. From De�nition 3, two ars (u

i

; v

i

; ip

i

) 2 G

i

and (u

j

; v

j

; ip

j

) 2 G

j

an be mapped if u

i

and u

j

an be mapped, as well as v

i

and v

j

, and

ip

i

and ip

j

math. The input ports ip

i

and ip

j

math if: (a) they are equal; or (b) v

i

and/or

v

j

represent two-input ommutative operations.

6



4 Proof of NP-Completeness

In this setion we prove that the CDFG merge problem is NP-omplete. We use the deision

version of the problem in the proof, whih is de�ned below.

De�nition 6 Given n input CDFGs G

i

= (V

i

; E

i

), i = 1 : : : n, an integer k, and a ompo-

nent library with integer area osts, the CDFG merge deision problem (MERGE) onsists

in determining if there is a orresponding merged graph

�

G = (

�

V ;

�

E), suh that A(

�

G) � k.

In order to prove that MERGE is NP-omplete, we must show that MERGE belongs to

NP and that it is NP-hard. We prove that MERGE is NP-hard by reduing the subgraph

isomorphism problem (applied to direted graphs), whih is NP-omplete [2, GT48℄, to it.

The subgraph isomorphism problem is de�ned below.

De�nition 7 Given the direted graphs G

1

= (V

1

; E

1

) and G

2

= (V

2

; E

2

), the subgraph

isomorphism problem (ISO) onsists in determining if G

1

ontains a direted subgraph H =

(V

H

; E

H

) isomorphi to G

2

, i.e., there exists a bijetive funtion f : V

2

! V

H

, suh that

(u; v) 2 E

2

, (f(u); f(v)) 2 E

H

.

We now present the following theorem and its proof.

Theorem 1 The MERGE problem is NP-omplete.

Proof : MERGE belongs to NP sine we an onstrut, non-deterministially, and verify

the merged graph

�

G = (

�

V ;

�

E) in polynomial-time. We need to guess, for eah v 2 V

i

, the

vertex �v 2

�

V on whih it is mapped, and, for eah e 2 E

i

, the ar �e on whih it is mapped,

for all i = 1; : : : ; n. In the veri�ation phase, we hek, for eah �v 2

�

V , if the vertex

mapping it represents is valid, that is, if \

8v mapped on �v

HB(v) 6= ;. Similarly, we hek, for

eah �e 2

�

E, if the ar mapping it represents is valid, that is, if for all e = (u; v; ip) mapped

on �e, ip's math. Finally, we hek if A(

�

G) � k.

To prove that MERGE is NP-hard, we transform an arbitrary instane of ISO, G

1

=

(V

1

; E

1

) and G

2

= (V

2

; E

2

), into an instane of MERGE. We establish n = 2, onstrut

CDFGs G

0

1

= (V

0

1

; E

0

1

) and G

0

2

= (V

0

2

; E

0

2

) orresponding to G

1

and G

2

, respetively, and

determine k and the omponent library, suh that:

� 8v 2 V

i

, there is a vertex v

0

2 V

0

i

, 8i = 1; 2, representing a ommutative operation

and with n inports

v

0

equal to the in-degree of v;

� 8e = (u; v) 2 E

i

, there is an ar e

0

= (u

0

; v

0

; ip) 2 E

0

i

, 8i = 1; 2, with ip's assigned

sequentially from 1 to n inports

v

0

for all ars of the form (�; v) 2 E

i

;

� The omponent library has only one hardware blok with area ost 1, whih an

perform the omputation represented by all v

0

2 V

0

i

;8i = 1; 2. Moreover, A

mux

is 1.

� k = A(G

0

1

) = jV

1

j+ jE

1

j.

7



We laim that G

1

has a subgraph isomorphi to G

2

if and only if there is a merged

graph

�

G = (

�

V ;

�

E) orresponding to G

0

1

and G

0

2

suh that A(

�

G) � k. Suppose that H =

(V

H

; E

H

) is a subgraph of G

1

isomorphi to G

2

, and that f : V

2

! V

H

is the isomorphism

bijetive funtion. Let

�

V be a set of verties suh that, for eah v

1

2 V

H

and v

2

2 V

2

with

f(v

2

) = v

1

, there is a vertex �v = (v

0

1

=v

0

2

) 2

�

V . Also, for eah v

1

2 V

1

�V

H

, there is a vertex

�v = (v

0

1

=�) 2

�

V . Similarly, let

�

E be a set of ars suh that, for eah e

1

= (u

1

; v

1

) 2 E

H

and e

2

= (u

2

; v

2

) 2 E

2

with f(u

2

) = u

1

and f(v

2

) = v

1

, there is an ar �e = (e

0

1

=e

0

2

) 2

�

E.

Also, for eah e

1

2 V

1

� V

H

, there is an ar �e = (e

0

1

=�) 2

�

E. Sine H is isomorphi to

G

2

and all operations in G

0

1

and G

0

2

are ommutative and implemented by the same unique

hardware blok of the omponent library,

�

V and

�

E de�ne the merged graph

�

G = (

�

V ;

�

E).

Furthermore, A(

�

G) = k beause j

�

V j = jV

1

j, j

�

Ej = jE

1

j, A

hb

(�v) = 1;8�v 2

�

V , and A

mux

= 1.

Conversely, suppose that

�

G = (

�

V ;

�

E) is a merged graph orresponding to G

0

1

and G

0

2

suh that A(

�

G) � k. Sine k = A(G

0

1

),

�

G has all verties and ars from G

0

2

mapped on

verties and ars from G

0

1

. Let V

H

be the set of verties v

1

2 V

1

with �v = (v

0

1

=v

0

2

) 2

�

V ,

and let f : V

2

! V

H

be a funtion suh that f(v

2

) = v

1

. Similarly, let E

H

be the set of

ars e

1

2 E

1

with �e = (e

0

1

=e

0

2

) 2

�

E. V

H

and E

H

de�ne the subgraph H = (V

H

; E

H

) of G

1

isomorphi to G

2

, and f is the isomorphism funtion.

This redution an be performed in polynomial time sine it requires only the on-

strution of G

0

1

and G

0

2

from G

1

and G

2

, and the omputation of k, in order to transform

an instane of ISO into an instane of MERGE. Also, the result of MERGE is trivially

transformed into the result of ISO. �

5 Conlusion

This report presented the ontrol/data-ow graph merge problem. Performane speedup

an be ahieved through arhitetures that map the most time-onsuming appliation ker-

nel modules and/or inner-loops to a reon�gurable datapath. We represent eah suh mod-

ules/loops as CDFGs and merge them together into a single reon�gurable datapath, min-

imizing its area ost. Using a polynomial-time redution from the subgraph isomorphism

problem, we proved that CDFG-merge problem is NP-omplete.

Referenes

[1℄ K. Compton and S. Hauk. Reon�gurable omputing: A survey of systems and software.

ACM Computing Surveys, 34(2):171{210, June 2002.

[2℄ M.R. Garey and D. S. Johnson. Computers and Intratability { A Guide to the Theory

of NP-Completeness. Freeman and CO., 1979.

[3℄ H. Shmit et al. PipeRenh: A virtualized programmable datapath in 0.18 miron

tehnology. In Proeedings of the IEEE Custom Integrated Ciruits Conferene, pages

63{66, 2002.

8



[4℄ H. Singh et al. MorphoSys: Case study of a reon�gurable omputing system targeting

multimedia appliations. In Proeedings of the Design Automation Conferene, pages

573{578, June 2000.

[5℄ W. Wolf. Computers as Components { Priniples of Embedded Computing System De-

sign. Morgan Kaufmann Publishers, 2001.

9


