INSTITUTO DE COMPUTACAO
UNIVERSIDADE ESTADUAL DE CAMPINAS

CDFG Merging for
Reconfigurable Architectures

Nahri Moreano Guido Araujo
Cid C. de Souza

Technical Report - 1C-03-018 - Relatério Técnico

October - 2003 - Outubro

The contents of this report are the sole responsibility of the authors.
O contetdo do presente relatério é de Gnica responsabilidade dos autores.

CDFG Merging for Reconfigurable Architectures

Nahri Moreano*f Guido Araujo* Cid C. de Souza*

Abstract

Reconfigurable systems have been proved to achieve significant performance speedup
through architectures that map the most time-consuming application kernel modules
or inner-loops to a reconfigurable datapath. As each portion of the application starts
to execute, the system reconfigures the datapath so as to perform the corresponding
computation. The reconfigurable datapath should have as few and simple hardware
blocks and interconnections as possible, in order to reduce its cost, area, power con-
sumption, and reconfiguration overhead. Thus hardware blocks and interconnections
should be reused across the application as much as possible. We represent each piece of
the application as a control/data-flow graph (CDFG) and merge them together, synthe-
sizing a single reconfigurable datapath. The CDFG merging process enables the reuse
of hardware blocks and interconnections by identifying similarities among the CDFGs,
and producing a resulting datapath that can be dynamically reconfigured to work for
each CDFG and has a minimum area cost, when considering both hardware blocks and
interconnections. In this report we formalize the CDFG merge problem and we present
a proof that it is NP-complete, by reducing the subgraph isomorphism problem to it.

1 Introduction

It is well known that embedded systems must meet strict constraints of high-throughput,
low power consumption and low cost, specially when designed for signal processing and
multimedia applications [5]. These requirements lead to the design of application specific
components, ranging from specialized functional units and coprocessors to entire ASIP
processors. Such components are designed to exploit the peculiarities of the application
domain in order to achieve the necessary performance and to meet the design constraints.

With the advent of reconfigurable systems, the availability of large/cheap arrays of
programmable logic has created a new set of architectural alternatives for the design of
complex digital systems. Reconfigurable logic brings together the flexibility of software and
the performance of hardware [1]. As a result, it became possible to design application specific
components, like specialized datapaths, that can be reconfigured to perform a different
computation, according to the the specific part of the application that is running (for
instance kernel modules and/or inner loops of the application). At run-time, as each portion

“Institute of Computing, University of Campinas, 13083-970 Campinas, SP
fDepartment of Computing and Statistics, Federal University of Mato Grosso do Sul, 79070-900 Campo
Grande, MS

CDFG 1 CDFG 2 Resulting datapath

Figure 1: Control/data-flow graph merging

of the application starts to execute, the system reconfigures the datapath so as to perform
the corresponding computation. Recent work in reconfigurable computing research has
shown that a significant performance speedup can be achieved through architectures that
map the most time-consuming application kernel modules or inner-loops to a reconfigurable
datapath ([4, 3]).

The reconfigurable datapath should have as few and simple hardware blocks (functional
units and registers) and interconnections (multiplexors and wires) as possible, in order to
reduce its cost, area, and power consumption. Thus hardware blocks and interconnections
should be reused across the application as much as possible. Resource sharing has also
crucial impact in reducing the system reconfiguration overhead, both in time and space.

To design such a reconfigurable datapath, one must represent each selected piece of the
application as a control/data-flow graph (CDFG) and merge them together, synthesizing a
single reconfigurable datapath. The control/data-flow graph merging process enables the
reuse of hardware blocks and interconnections by identifying similarities among the CDFGs,
and producing a resulting datapath that can be dynamically reconfigured to work for each
CDFG. Ideally the resulting datapath should have the minimum area cost, when considering
both hardware blocks and interconnections.

Figure 1 illustrates the concept of control/data-flow graph merging. When CDFGs 1
and 2 are merged, one possible resulting datapath produced is shown in the figure'. Notice
that in the resulting datapath there are interconnections originated from only one CDFG
(e.g., the (4, x) interconnection from CDFG 1) and interconnections shared by both CDFGs
(e.g., the (+,—) interconnection).

In this report we formalize the CDFG merge problem and we present a proof that it is
NP-complete, by reducing the subgraph isomorphism problem to it.

This report is organized as follows. In the next section we describe our datapath archi-
tecture model. Section 3 presents the problem more formally, exposing its difficulty. We
present in Section 4 the proof that the CDFG merge problem is NP-complete. Finally,
Section 5 concludes the work.

'For simplicity, the multiplexor which selects the multiplier input from the adder or the subtractor, is
not showed in the figure.

-]

Interconnection network %

FU FU RG

L I

Figure 2: Architecture model

2 Architecture Model

The datapath architecture model used in this work consists of a set of functional units
(FUs) and registers (RGs) organized around an interconnection network forming a pro-
grammable datapath, as shown in Figure 2. The interconnection network is based on a set
of multiplexors (MUXes) that select the input data for functional units and registers.

As the computation progresses, the system reconfigures the datapath through the inter-
connection network, such that computational intensive pieces of the application are mapped
onto it. Given the (coarse) granularity of the logic blocks (FUs and RGs), the number of bits
required to encode them is much smaller than in the case of fine-grained architectures. As
a result, fewer bits are needed to reconfigure the datapath, thus diminishing the size of the
memory required to store the reconfiguration bits (the so called reconfiguration context).
This is a central issue in SoC (System-on-a-Chip) designs where on-chip area is a premium
asset. Moreover, the smaller the size of the context, the smaller the time overhead required
for reconfiguration. Reconfiguration time is a critical feature in such systems, given that the
final performance is determined by the sum of the computation time and the reconfiguration
latency (if latency hidden techniques are not used).

3 The Control/Data-flow Graph Merge Problem

In this section we formulate the CDFG merge problem more formally. We want to merge
several CDFGs (corresponding to application portion), in order to build a reconfigurable
datapath which is capable of performing the computation of each portion, multiplexed in
time, and has the minimum area cost of hardware blocks (functional units and registers)
and interconnections. Each application portion ¢, ¢ = 1...n is modeled as a CDFG G, as
defined below.

Definition 1 A control/data-flow graph (CDFG) is a directed graph G = (V, E), where:

e A vertexrv € V represents an operation or a variable. Each vertex v has a set of input
ports ip = 1...n_inports, and attributes specifying its type and width (in bits).

e An arc e = (u,v,ip) € E indicates a data transfer from vertex u to the input port ip
of vertez v.

Given a vertex of a CDFG, there may be (in the component library) several hardware
blocks where it can be executed.

Definition 2 The set of hardware blocks HB(v) of a CDFG vertex v contains the hardware
blocks from the component library which can perform the computation represented by v.

The resulting reconfigurable datapath is the merge of all CDFGs G;, 1 =1...n and is
modeled as a merged graph G, as defined below. The merged graph G is the overlapping of
all G, such that only vertices which can be implemented by the same hardware block can
be overlapped.

]:_)eﬁni_tio_n 3 A merged graph, corresponding to CDFGs G;, 1 =1...n, is a directed graph
G = (V,F), where:

o Avertexv €V represents a mapping of n_mapg vertices v;, 1 < n_mapy < n, each

one from a different V;, such that (N, HB(v;) # 0.

e An arc & = (u,0,ip) € E represents a mapping of n_mape arcs e; = (uj,v;,ip;),
1 < n_-maps < n, each one from a different E;, such that all u; have been mapped on
@, all v; have been mapped on v, and all ip; match?.

The reconfigurable datapath will have one hardware block for each vertex v in V. This
hardware block is capable of performing the computation represented by all vertices v;
mapped on ©. Also, for each arc € = (u,0,ip) in E, there will be in the reconfigurable
datapath a “path” connecting the two hardware blocks corresponding to @ and ¥, more
specifically, going from the output of the former to the input port ip of the latter. Moreover,
for each input port ip of each vertex ¥ which has more than one incoming arc (*,7,ip), the
reconfigurable datapath will have a MUX selecting the input operand.

We describe the vertex mapping represented by a vertex o € V with a n-tuple
(v1/v2/ ... /v,) enumerating the vertices v; € V; mapped on v. If there is no vertex from a
given V; mapped on v, the corresponding element in the n-tuple is empty, as, for instance,
in (—/vy/.../v,). Similarly, the arc mapping represented by an arc € € E is described by
a n-tuple (e1/e2/ ... /e,) enumerating the arcs e; € F; mapped on e, with empty elements
whenever necessary.

Given a set of n input CDFGs G, it is possible to build several different merged graphs
G corresponding to them. The optimal solution for G is the one which produces the recon-
figurable datapath with minimum area cost, considering both hardware blocks and inter-
connections.

The area cost of the reconfigurable datapath generated from a merged graph G is the sum
of hardware block area cost and interconnection area cost. The hardware block area cost is
the sum of the area cost of all hardware blocks of the datapath, in the component library.

?The meaning of matching input ports will be further elaborated in Subsection 3.1.

CDFG G, CDFG G» G G’

(ar/=) (—=/b1) (a2/bs) (a1/b1) (az/b2)
V
ag/bg a3/b3

Figure 3: CDFGs G and G5 and two different merged graphs G' and G’

Each hardware block (corresponding to a vertex v of V) is selected from the component
library accordingly to the vertices v; mapped on 9. For example, given the CDFGs Gy
and G5 in Figure 3, we can build two different merged graphs G and G’. In G, vertices
a1 from G and b; from G9 are not mapped, so the reconfigurable datapath corresponding
to G would have four hardware blocks (the functional units adder, subtractor, shifter, and
multiplier). In G’, those vertices are mapped, resulting in a reconfigurable datapath with
three hardware blocks (an adder/subtractor, a shifter, and a multiplier).

Since in our architecture model the interconnection network is based on MUXes, the
interconnection area cost is proportional to the number of MUX inputs. For each arc
e = (u,v,1p) € E which is a mapping of n_map; arcs e; from CDFGs Gy, the MUX (if
exists) in the input port ip of hardware block @ has n_map; — 1 fewer inputs than it would
have if no arcs were overlapped. In Figure 3, the reconfigurable datapath corresponding to
the merge graph G would have a MUX in the first input port of the multiplier, selecting the
input operand from the adder or subtractor results. In G’, since the vertices addition and
subtraction are mapped to the same hardware block, it also became possible to map (a1, as3)
onto (by,b3) from CDFGs G and G, respectively, thus eliminating the need for the MUX.
Regarding each MUX as a tree of 2-input MUXes, there is a linear dependency between the
number of 2-input MUXes and the number of wires, so the interconnection area cost can
be expressed in terms of the number of wires.

The area cost of the reconfigurable datapath is defined below.

Definition 4 Given a merged graph G = (V, E), let Apy(9) be the area cost of the hardware
block allocated to © € V', and let Apus be the area cost equivalent to one MUX input of the
suitable width, both determined by the component library. The total area cost A(G) of the
reconfigurable datapath corresponding to G is:

A(G) = Apy(G) + Aie(G)

where Apy(G) = Y vser Anp(0) and Aie(G) = |E| X Apmus are the hardware block and inter-
connection area cost, respectively, of the reconfigurable datapath.

We can now define the CDFG merge problem, as follows.

Definition 5 Given n input CDFGs Gy, 1 =1...n, and a component library, find the
corresponding merged graph G, such that A(G) is minimum.

ot

CDFG G4 CDFG G» CDFG G CDFG ¢

a as as by by (a/b1) (az/bz) (as/—) (a/b1) (a2/=) (as/b2)
ONONOENONG
(&) >)
>)

Qs (a5/b3)

Figure 4: CDFGs G and G and two different merged graphs G and G": Apy(G) = Apy(G"),
but A;(G) > Aic(G')

Finding a mapping of the vertices from the CDFGs so as to minimize the hardware block
area, cost is not a difficult task. On the other hand, mapping the arcs from the CDFGs
S0 as to minimize the interconnection area is a hard problem because the mapping of arcs
depends on the mapping of their adjacent vertices. That is, two arcs from two CDFGs can
only be mapped if their source vertices are mapped as well as their destination vertices. So,
if we map vertices without considering the interconnection costs or using only estimates, we
may get a solution where the interconnection area cost is not minimized and consequently,
the total area cost is also non-optimal. For example, Figure 4 shows two different merged
graphs G and G’ obtained from CDFGs G and G5. G and G’ represent different vertex
mappings. In G vertex by of Gy is mapped onto vertex ay of G, while it is mapped on a3 in
G'. The vertex mappings represented by G and G’ may appear equivalent and, as a matter
of fact, Apy(G) is equal to Apy(G'). But they allow for different arc mappings. In G, no
arcs are overlapped, so two MUXes are needed at the two input ports of vertex as/bs. In
G', the arcs (a3, as) and (bg, b3) are mapped (highlighted in the figure), thus eliminating the
need for one of the MUXes. As a result, A;.(G) is larger than A;.(G') and consequently,
A(G) is also larger than A(G").

In order to compute the optimal solution for G’ we have to find out which vertex mapping,
among several possibilities, gives the best arc mapping, i.e., which mapping minimizes the
total area cost.

3.1 Input Ports and Commutativity

Several two-input operations are commutative, so properly exchanging the sources of these
operations can enable arc mappings that would not exist otherwise, thus eliminating wires
and MUXes and reducing the interconnection area cost of the reconfigurable datapath. Each
operation has a set of input ports which represent the input operands it expects, for instance
an addition has two input ports ip; and ips. From Definition 3, two arcs (u;,v;,ip;) € G;
and (uj,v;,1pj) € Gj can be mapped if u; and u; can be mapped, as well as v; and vj;, and
ip; and ip; match. The input ports ip; and ip; match if: (a) they are equal; or (b) v; and/or
v; represent two-input commutative operations.

4 Proof of NP-Completeness

In this section we prove that the CDFG merge problem is NP-complete. We use the decision
version of the problem in the proof, which is defined below.

Definition 6 Given n input CDFGs G; = (V;, E;), i = 1...n, an integer k, and a compo-
nent library with integer area costs, the CDFG merge decision problem (MERGE)_consists
in determining if there is a corresponding merged graph G = (V, E), such that A(G) < k.

In order to prove that MERGE is NP-complete, we must show that MERGE belongs to
NP and that it is NP-hard. We prove that MERGE is NP-hard by reducing the subgraph
isomorphism problem (applied to directed graphs), which is NP-complete [2, GT48], to it.
The subgraph isomorphism problem is defined below.

Definition 7 Given the directed graphs G1 = (V1, E1) and Gy = (Va, Es), the subgraph
isomorphism problem (ISO) consists in determining if Gy contains a directed subgraph H =
(Vi, Ey) isomorphic to Ga, i.e., there exists a bijective function f : Vo — Vi, such that

(u,v) € By < (f(u), f(v)) € Eg.
We now present the following theorem and its proof.
Theorem 1 The MERGE problem is NP-complete.

Proof: MERGE belongs to NP since we can construct, non-deterministically, and verify
the merged graph G = (V, E) in polynomial-time. We need to guess, for each v € V;, the
vertex o € V on which it is mapped, and, for each e¢ € Ej, the arc € on which it is mapped,
for all ¢ = 1,...,n. In the verification phase, we check, for each & € V, if the vertex
mapping it represents is valid, that is, if Nvy maepped on 5B (v) # 0. Similarly, we check, for
each € € E, if the arc mapping it represents is valid, that is, if for all e = (u, v, ip) mapped
on €, ip’s match. Finally, we check if A(G) < k.

To prove that MERGE is NP-hard, we transform an arbitrary instance of ISO, G; =
(V1, E1) and Go = (Va, E»), into an instance of MERGE. We establish n = 2, construct
CDFGs G| = (V{, E]) and G}, = (V3, E}) corresponding to Gy and G, respectively, and
determine k£ and the component library, such that:

e Vv € Vj, there is a vertex v’ € V/, Vi = 1,2, representing a commutative operation
and with n_inports, equal to the in-degree of v;

e Ve = (u,v) € Ej, there is an arc ¢’ = (u/,v',ip) € E}, Vi = 1,2, with ip’s assigned
sequentially from 1 to n_inports, for all arcs of the form (x,v) € Ej;

e The component library has only one hardware block with area cost 1, which can
perform the computation represented by all ' € V/,Vi = 1,2. Moreover, Az is 1.

o k=A(G]) = Vil + |EL.

We claim that G; has a subgraph isomorphic to Gg if and only if there is a merged
graph G = (V, E) corresponding to G| and G} such that A(G) < k. Suppose that H =
(Vi, Ey) is a subgraph of Gy isomorphic to G, and that f : Vo — Vjy is the isomorphism
bijective function. Let V be a set of vertices such that, for each v; € Vi and vy € Vi with
f(v2) = vy, there is a vertex o = (v} /v}) € V. Also, for each v; € Vi — Vyy, there is a vertex
v = (v]/—) € V. Similarly, let E be a set of arcs such that, for each e; = (u1,v1) € Ey
and ey = (ug,v2) € Ey with f(ug) = u; and f(ve) = vy, there is an arc € = (e} /e}) € E.
Also, for each e; € Vi — Vp, there is an arc € = (e}/—) € E. Since H is isomorphic to
G and all operations in G| and GY are commutative and implemented by the same unique
hardware block of the component library, V and E define the merged graph G = (V, E).
Furthermore, A(G) = k because |V| = |Vi|, |E| = |E1|, App(?) = 1,0 € V, and Apye = 1.

Conversely, suppose that G = (V, E) is a merged graph corresponding to G} and G
such that A(G) < k. Since k = A(G}), G has all vertices and arcs from G, mapped on
vertices and arcs from G'. Let Vy be the set of vertices v; € Vi with v = (v]/vh) € V,
and let f : Vo — Vy be a function such that f(ve) = v1. Similarly, let Ey be the set of
arcs e; € By with e = (¢} /e}) € E. Vi and Ey define the subgraph H = (Vi, Ey) of Gy
isomorphic to Go, and f is the isomorphism function.

This reduction can be performed in polynomial time since it requires only the con-
struction of G} and G}, from G; and Gy, and the computation of k&, in order to transform
an instance of ISO into an instance of MERGE. Also, the result of MERGE is trivially

transformed into the result of ISO. O

5 Conclusion

This report presented the control/data-flow graph merge problem. Performance speedup
can be achieved through architectures that map the most time-consuming application ker-
nel modules and/or inner-loops to a reconfigurable datapath. We represent each such mod-
ules/loops as CDFGs and merge them together into a single reconfigurable datapath, min-
imizing its area cost. Using a polynomial-time reduction from the subgraph isomorphism
problem, we proved that CDFG-merge problem is NP-complete.

References

[1] K. Compton and S. Hauck. Reconfigurable computing: A survey of systems and software.
ACM Computing Surveys, 34(2):171-210, June 2002.

[2] M.R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the Theory
of NP-Completeness. Freeman and CO., 1979.

[3] H. Schmit et al. PipeRench: A virtualized programmable datapath in 0.18 micron
technology. In Proceedings of the IEEE Custom Integrated Circuits Conference, pages
63-66, 2002.

[4] H. Singh et al. MorphoSys: Case study of a reconfigurable computing system targeting
multimedia applications. In Proceedings of the Design Automation Conference, pages
573-578, June 2000.

[6] W. Wolf. Computers as Components — Principles of Embedded Computing System De-
sign. Morgan Kaufmann Publishers, 2001.

