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Abstract—Due to the exponential growth of biological
DNA sequence databases, some parallel gene prediction
solutions on different high performance platforms have been
proposed. Nevertheless, few exact parallel solutions to the
spliced alignment problem to gene prediction in eukaryotic
organisms have been proposed and none of these solutions
use GPUs as the target platform. In this paper, we present
the development of two GPU accelerators for an exact
solution to the spliced alignment problem applied to gene
prediction. Our main contributions are: (a) the identification
of two forms to exploit parallelism in the spliced alignment
algorithm; (b) two GPU accelerators that achieve speedups
up to 52.62 and 90.86, respectively, when compared to
a sequential implementation. The accelerators performance
scales with input data size, outperforming related work results;
(c) a particular organization for the data structures of the
accelerators in order to optimize their efficiency; (d) a potential
parallelism analysis of the biological data set with the goal of
measuring the amount of parallelism that would in fact be
available to be exploited by a parallel implementation; and
(e) an accurate performance estimation model that enabled
estimating the accelerators performance, before implementing
them.

Keywords—Spliced alignment, Gelfand algorithm,
parallelism, accelerator, GPU.

I. INTRODUCTION

In the last years, new DNA sequencing technologies
have been causing genomic databases to experience a
exponential grow rate in their sizes. As a consequence, a
huge amount of new genomic data needs to be analyzed, in
order to determine their functional content. Gene prediction
is one of the most important steps in the process of
understanding the genome of an organism. It refers to
identifying biologically functional stretches of sequences
(genes) in a DNA sequence.

The spliced alignment algorithm to gene prediction
in eukaryotic organisms uses a similarity-based approach,
where a related protein sequence from an annotated genome
is used to reconstruct the exon structure of the genes
in the investigated sequence. The high time complexity
of the spliced alignment algorithm, which may lead to
high execution times, especially in case of huge genomes,
motivates the development of high performance solutions to
this gene prediction method.

This paper presents two GPU accelerators for an exact
solution to the spliced alignment problem applied to gene
prediction. We identify two forms of exploiting parallelism
in the spliced alignment problem, intra- and inter-exon
parallelism. Our first GPU accelerator exploits only the first
form, while both forms are exploited by the second one.
We propose an organization for the data structures of the
accelerators in order to optimize their efficiency. Besides,

our accelerators are able to handle input data sets with
long sequences. A comprehensive performance evaluation
is performed using a large and representative biological data
set, in order to assess the accelerators performance gain.

Before implementing the accelerators, we perform a
potential parallelism analysis of our biological data set
with the goal of measuring the amount of parallelism that
would in fact be available to be exploited by a parallel
implementation. We also propose a performance estimation
model that enables estimating the accelerators performance
and evaluating if there will be performance gains, compared
to a sequential solution.

To the best of our knowledge, these are the first
GPU-based systems proposed for the acceleration of the
spliced alignment algorithm. The Gelfand algorithm is
difficult to parallelize and there are very few works about
parallel solutions to it in the literature.

This paper is organized as follows. Section II introduces
the spliced alignment problem and the Gelfand algorithm.
In Section III we describe related works in parallel gene
prediction and parallel solutions to the spliced alignment
problem. In Section IV we analyze the data dependences
in the spliced alignment algorithm and identify forms to
exploit parallelism in the algorithm execution. Section V
presents a potential parallelism analysis of a representative
biological data set and propose a performance estimation
model for the parallel solutions to the spliced alignment
problem. In Section VI we describe our GPU accelerators
and their data structure organization. Section VII presents the
accelerators performance evaluation and compares them to
other solutions. The accuracy of the performance estimation
model is also analyzed. Finally, in Section VIII we
summarize the results and suggest future works.

II. GENE PREDICTION AND SPLICED ALIGNMENT

The problem of gene prediction in eukaryotic DNA
sequences consists in finding the initial and final positions
of the genes of the sequence, and for each gene, to find
the initial and final positions of the exons that constitute the
gene [1]. Figure 1 shows an example of a DNA sequence,
its genes and exons.

ATGCATCCAGTCCATAGTCCTAA · · ·ATGACTAGATAG · · ·{

gene

{

gene

{exon {exon {exon {exon {exon

Fig. 1. DNA sequence with genes and exons

Gelfand et al. [2] proposed the spliced alignment
algorithm to gene prediction in eukaryotic sequences, using
a similarity-based approach: a related protein sequence from
an annotated genome is used to reconstruct the exon structure
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of the genes in the investigated sequence. The method starts
with a set of candidate exons of the investigated sequence,
which may contain many false exons, but certainly contains
all the true ones. Then, using a target DNA sequence (derived
from the related protein sequence), it finds the subset of
the candidate exons whose concatenation best aligns to the
target.

Given a base sequence s = s1...sm to be investigated,
with a set β of candidate exons, and a target sequence t =
t1...tn, the spliced alignment problem consists in finding the
subset of β with the highest similarity score to t. Figure 2
illustrates a spliced alignment, where β = {b1, b2, b3, b4, b5}
is the set of candidate exons of s and the subset of β with
highest similarity to t is {b1, b4, b5}.

AATGCATCCCAGTCCAATTAGTAGTTTAGTAGCCTGTGTCTAA

ATGCATCCCCTGTCTAA

s

t

β {b1 {b2 {b3 {b4 {b5

Fig. 2. Spliced alignment between base sequence s, with the set β of
candidate exons, and target sequence t

The number of different subsets of β may be huge,
but the spliced alignment algorithm is able to find the best
alignment among all of them in polynomial time, using a
dynamic programming strategy. The similarity scores are
kept in a three-dimensional structure S, where S(i, j, k) is
the similarity score of the optimal spliced alignment between
the i-prefix of s and the j-prefix of t until exon bk.

For simplicity, a linear gap penalty −ε is used for
insertion or deletion. A scoring matrix δ(u, v) is used for
matches and mismatches of symbols. Let E(k) be the index
of the last symbol of exon bk in s.

The recurrence in Equations 1 and 2 compute S(i, j, k).
If si is not the first symbol of exon bk we have:

S(i, j, k) = max

{
S(i− 1, j − 1, k) + δ(si, tj)
S(i− 1, j, k)− ε
S(i, j − 1, k)− ε

(1)

On the other hand, if si is the first symbol of exon bk,
then:

S(i, j, k) =

max


max∀bl preceding bk S(E(l), j−1, l) + δ(si, tj)

max∀bl preceding bk S(E(l), j, l)− ε
S(i, j − 1, k)− ε

(2)

After computing S, the similarity score of the
optimal spliced alignment is max1≤k≤|β| S(E(k), n, k).
The time complexity of the splice alignment algorithm is
O(n × (

∑|β|
k=1 |bk|) + n × |β|2).

III. RELATED WORK

Some works in parallel gene prediction have been
presented in the literature. However, most of them are
based on statistical approaches to gene prediction and/or
applied to prokaryotic organisms. Gene prediction methods
for eukaryotic organisms tend to be more complex than those
for prokaryotes, because the intron-exon structure of a gene
prevails in eukaryotes [3].

Differently from similarity-based approaches, which uses
a related protein sequence from a previously annotated DNA
sequence as a template for the recognition of unknown
genes in the investigated DNA sequence, statistical methods
look for features that appear frequently in genes and
infrequently elsewhere, and rely on detecting statistical
variations between coding and non-coding regions of the
investigated sequence [1].

The works in [5]–[8] describe parallel solutions to
gene prediction using statistical methods. The parallel
gene prediction system described in [6] runs on a cluster
and combines statistical and homology-based approaches
for prokaryotes. A hardware system for gene prediction
is proposed in [7], based on a statistical approach for
prokaryotes and targeted to a FPGA. A parallel algorithm
to gene prediction is presented in [5], using a statistical
approach for eukaryotes and running on a cluster. Two
accelerators for gene prediction, running on FPGA and GPU,
respectively, are presented in [8] and based on a statistical
approach for eukaryotes.

Sarje and Aluru [9] present parallel solutions to the
global, local, syntenic, and spliced alignment problems,
using the Cell Broadband Engine. Hirschberg [10]’s linear
space method is used to compute the optimal score and
alignment in parallel. With respect to the spliced alignment
and using 16 SPEs (Synergistic Processing Elements), they
achieve speedups up to 6, 7, or 10, depending on the
sequential solution used for comparison. Nevertheless, in
order to solve the spliced alignment problem, the authors
model it as a special case of the syntenic alignment, deriving
a different and simpler problem than that formulated by
Gelfand. One main difference is that in [9], there is no set
of candidate exons from the investigated sequence.

Liu and Schmidt [11] develop a framework to implement
parallel solutions to Bioinformatics problems based on
the dynamic programming technique. According to the
authors, their parallel pattern-based system uses generic
programming techniques that allow the representation of
the algorithms based on the initial values of the dynamic
programming matrices, the dependency relationship of the
cells of the matrices, and an order to compute the matrices.
Details about the spliced alignment solution adopted are not
provided. Using a cluster with 32 processors, a speedup of 36
is achieved for the spliced alignment, when compared to the
execution on only one processor. The super-linear speedup
results are reported to be due to caching effects.

In [4] the authors present a survey of spliced alignment
tools, which apply heuristic solutions based on several
approaches. Some of these tools can be accelerated using
a multi-core processor.

IV. DATA DEPENDENCES AND PARALLELISM

Despite its polynomial execution time, due to the
exponential growth of genomic databases, the spliced
alignment algorithm can be very computationally
demanding, in both time and memory space. An idea
to reduce the algorithm execution time is to calculate cells
of the S structure in parallel. In order to investigate ways to
exploit parallelism in the algorithm execution, we analyzed
the data dependences for computing these cells.



Figures 3 and 4 show (with arrows) the data
dependences for computing cell S(i, j, k) in the spliced
alignment algorithm. Figure 3 does not show the entire
three-dimensional S structure, but only the matrix Sk
corresponding to exon bk. The shaded area represents the
cells related to bk that will be computed by the algorithm.
Dependences in the figure are based on Equation 1, for
computing S(i, j, k) when i is not the first symbol of bk.
In this case, to calculate S(i, j, k), cells S(i − 1, j − 1, k),
S(i− 1, j, k), and S(i, j − 1, k) are used.

Sk
1 · · · j−1 j · · · n

1

...

i−1
i
...

E(k)
...
m

base
sequence

target sequence

exon
bk

Fig. 3. Data dependences for computing S(i, j, k), when i is not the first
symbol of exon bk

Figure 4 shows matrix Sk corresponding to exon bk, and
another matrix Sl corresponding to exon bl, which in the
figure represents all exons that precede bk in base sequence
s. The dependences in the figure are based on Equation 2,
for computing S(i, j, k) when i is the first symbol of bk. In
this case, to calculate S(i, j, k) we use cell S(i, j − 1, k)
from bk and cells S(E(l), j−1, l) and S(E(l), j, l) from all
exons bl preceding bk. The preceding exons are used because
we want to find the subset of candidate exons with the best
alignment to the target sequence.

Sl
1 · · · j−1 j · · · n

1

...

E(l) < i

...

m

base
sequence

target sequence
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1
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E(k)
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m
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Fig. 4. Data dependences for computing S(i, j, k), when i is the first
symbol of exon bk

A. Intra- and Inter-Exon Parallelism

Figure 5 shows the part of matrix Sk corresponding to
exon bk. The shaded area represents cells that have already

been computed and the dashed line indicate the cells in a
anti-diagonal. Given the data dependences for computing
S(i, j, k) when i is not the first symbol of bk (Figure 3),
we obtain the dependences to compute the cells in the
anti-diagonal as indicated by the arrows in Figure 5.

Clearly, all cells in this anti-diagonal can be computed in
parallel, since there are no dependencies between them. We
denominate intra-exon parallelism the parallel computation
of cells in an anti-diagonal of matrix Sk corresponding
to an exon bk. This form of parallelism is found in
some other alignment problems in Bioinformatics. However,
the difficulty is to exploit parallelism beyond the exon
boundaries, that is, to overcome the data dependences shown
in Figure 4.

Sk
target sequence t

exon bk

Fig. 5. Intra-exon parallelism: cells in an anti-diagonal of Sk can be
computed in parallel

The data dependences in Figure 4, for computing
S(i, j, k) when i is the first symbol of bk, prevent matrices Sl
and Sk to be computed in parallel, for all exons bl preceding
exon bk, that is, when bl and bk do not have any stretch of
base sequence s in common. Nevertheless, if bl and bk do
have some stretch of s in common, that is, E(l) ≥ first
symbol of bk, the dependences of Figure 4 do not apply.

Figure 6 shows part of matrices Sl and Sk corresponding
to exons bl and bk, respectively. If bl and bk have some
stretch of base sequence s in common, Sl and Sk can be
computed in parallel. Then an anti-diagonal of Sl can be
computed at the same time as an anti-diagonal of Sk, as
illustrated by the dashed lines in the figure.

We denominate inter-exon parallelism the parallel
computation of cells of matrices Sl and Sk from different
exons bl and bk that have some stretch of s in common.
Both forms of parallelism, intra- and inter-exon parallelism,
can be combined and used in conjunction, as illustrated in
Figure 6.

Sk
target sequence t

exon
bk

Sl
target sequence t

exon
bl

Fig. 6. Inter-exon parallelism: anti-diagonals of Sk and Sl can be
computed in parallel

V. POTENTIAL PARALLELISM ANALYSIS AND
PERFORMANCE ESTIMATION

Even though in theory intra- and inter-exon parallelism
can be exploited in the spliced alignment algorithm, we need
to verify if real biological data exhibit potential parallelism,



i.e., if we can find opportunities to exploit these parallelism
forms in real data.

A. Biological Data

Our biological data set consists of 240 base sequences,
obtained from the ENCODE project [12]. Each sequence
corresponds to a gene, along with its 1.000 preceding
and succeeding bases, from Homo sapiens. For each base
sequence, up to five target sequences are used. These
sequences are cDNA sequences of genes homologous to the
base sequence gene, obtained from the HomoloGene
database, available at NCBI (National Center for
Biotechnology Information) [13]. The GENSCAN [14]
gene identification tool was used to construct the set of
candidate exons of the base sequences, with true and false
exons. More details about the data set construction can be
found in [15].

Table I shows some information about the base sequences
used and its exons, while Table II shows information about
the target sequences. Each execution of the spliced alignment
algorithm uses as input a base sequence, its set of candidate
exons, and a target sequence. The biological data set created
generates a total of 1010 different test cases and provides us
solid ground for performing a comprehensive experimental
evaluation.

TABLE I. BASE SEQUENCES AND EXONS

Information Min Avg Max
Base sequence length 2,848 42,181.10 575,746

# of exons of a base sequence 2 55.08 622
Exon length 1 149.35 4,778

Σ exon length of a base sequence 442 7,711.73 71,873
# of base sequences 240

TABLE II. TARGET SEQUENCES

Information Min Avg Max
# of target sequences per base sequence 1 4.20 5

Target sequence length 189 1,460.48 8,652

B. Potential Parallelism Analysis

We want to measure the amount of parallelism that
would in fact be available to be exploited by a parallel
implementation, using our representative biological data set.

The amount of intra-exon parallelism available to be
exploited in a test case execution depends on the size of the
anti-diagonals (the number of cells that can be computed
in parallel) of matrix Sk, for each exon bk of the base
sequence. The size of the anti-diagonals of Sk is defined
by the smallest of its dimensions, which are the exon length
and the target sequence length, as shown in Figure 5. We
can assume, without loss of generality, that the anti-diagonal
size is determined by the exon length. Therefore, the amount
of intra-exon parallelism available to be exploited depends
on the length of the exons of the base sequence.

For each test case of our data set, we computed the
% of exons with a certain length with respect to the total
number of exons, for each exon length. We summarized the
results from all the test cases, computing an average and
producing what we denominated average test case result.

Figure 7 shows these intra-exon potential parallelism results
for the average test case. This histogram represents the %
of exons with respect to the total number of exons, for
each exon length, in the average test case. The exon length
corresponds to the number of cells that can be computed in
parallel, represented in the graph in ranges of 32 cells. For
instance, the first bar in the histogram indicates that, on the
average test case, there are 16.55% of exons with only 32
cells to be computed in parallel. For clarity, bars with %
of exons inferior to 0.1% (which correspond to exon lengths
longer than 1024) are omitted and sum up 1.14% of the total
number of exons.
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Fig. 7. Potential of intra-exon parallelism in average test case

The amount of inter-exon parallelism available to be
exploited in a test case execution depends on the number of
different exons bk that have some stretch of s in common,
because the matrices Sk corresponding to these exons can
be computed in parallel. In a test case we can have several
groups of exons whose matrices can be computed in parallel
to each other, but sequentially with respect to the other
groups.

For instance, Figure 8 shows a base sequence s with
candidate exons b1, ..., b5. Exons b2 and b3 have symbol T
in common, and b4 and b5 have symbols AT in common.
Therefore, in order to compute the similarity score structure
S respecting the data dependences, matrix S1 corresponding
to b1 must be computed alone (a group of one exon), because
all other matrices depend on it. Then S2 and S3 can be
computed in parallel (a group of two exons), exploiting
inter-exon parallelism, however both S4 and S5 depend on
them and cannot be computed at the same time. Finally,
S4 and S5 can also be computed in parallel to each other
(another group of two exons).

ATGCAGAGTGTGTAGCCATGAs =

{b1 {b3 {b5}

b2

}

b4

Fig. 8. Base sequence s and candidate exons b1, ..., b5: matrices S2 and
S3 can be computed in parallel, as well as S4 and S5

For each test case of our data set, we computed the %
of groups with a certain number of exons with respect to
the total number of groups executed, for each number of
exons. Again we summarized the results from all test cases,
computing an average and producing the average test case
result. Figure 9 shows the inter-exon potential parallelism
results for the average test case. This histogram represents
the % of groups of exons with respect to the total number



of groups executed, for each number of exons in a group,
in the average test case. The number of exons in a group
corresponds to the number of matrices that can be computed
in parallel. For instance, the second bar in the histogram
indicates that, on the average case, there are 21.35% of
groups with two exons (with two matrices to be computed
in parallel).
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Fig. 9. Potential of inter-exon parallelism in average test case

Analyzing the average test case results, we see that in
more than 50% of exons, at least 128 cells can be computed
in parallel, what is a good amount of intra-exon parallelism
to be exploited. Besides, almost 40% of groups of exons have
at least two exons, that is, present inter-exon parallelism to
be exploited. Therefore, combining both forms of parallelism
can be a interesting approach to achieve a good performance
in the spliced alignment problem.

C. Performance Estimation

Before developing and implementing parallel solutions
for the spliced alignment algorithm, we want to estimate
their execution time. The idea is to have a estimative of the
performance gain that the parallel solutions will be able to
achieve, with respect to a sequential solution, in order to
decide if it is worth to implement them or not.

Using the time to compute a cell of the similarity score
structure S as our unit of time, the estimated execution time
of a solution is computed considering which cells can be
computed in parallel and which are computed sequentially
by the solution.

In our performance estimation model, given a base
sequence s = s1...sm with a set β of candidate exons, and
a target sequence t = t1...tn, the estimated execution time
of a sequential solution is simply the total number of cells
of S that must be computed, as indicated in Equation 3,
because the sequential solution will compute these cells one
at a time.

estimated time seq = n×
|β|∑
k=1

|bk| (3)

In a parallel solution that exploits only intra-exon
parallelism, the Sk matrices corresponding to the exons, are
computed sequentially with respect to each other. However,
each matrix Sk has the cells of a anti-diagonal computed in
parallel, while the successive anti-diagonals are computed
one after another. This way, the estimated time to compute
Sk is the number of anti-diagonals on it, which is the sum of

its dimensions (exon length and the target sequence length),
minus one, that is:

|bk|+ n− 1

Then, the estimated execution time of a parallel solution
exploiting intra-exon parallelism is obtained as indicated in
Equation 4.

estimated time intra-exon par =
|β|∑
k=1

(|bk|+ n− 1) (4)

In a parallel solution that exploits both intra- and
inter-exon parallelism, we have groups of exons whose
matrices are computed in parallel to each other, but
sequentially with respect to the other groups.

Given a group G of exons bk, corresponding to matrices
Sk that can be computed in parallel, the anti-diagonals of
these different matrices can be computed in parallel, and
the estimated time to compute the entire group G is defined
by the matrix which has more anti-diagonals to compute.
Therefore, the estimated time to compute the matrices of all
exons in G is:

max
∀bk∈G

|bk|+ n− 1

Finally, the estimated execution time of a parallel solution
exploiting intra- and inter-exon parallelism is obtained as
indicated in Equation 5.

estimated time intra-exon
inter-exonpar =

∑
∀G

max
∀bk∈G

|bk|+ n− 1 (5)

We measured, using Equations 3, 4, and 5, the estimated
execution times, for the sequential, intra-exon only, and
intra- and inter-exon parallel solutions, for all test cases of
our biological data set. Figure 10 compares the results, where
the test cases are ordered by the estimated execution time
of the sequential solution and all estimated times are shown
using logarithmic scale.
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Fig. 10. Estimated execution times: sequential and parallel solutions

Estimated times for the solution exploiting only
intra-exon parallelism show approximately a 100-fold
improvement with respect to the estimated times for the
sequential solution. The estimated times for the solution
that exploits both forms of parallelism are always lower
than or equal to those obtained for the solution that
exploits only intra-exon parallelism, with approximately a
10-fold improvement in many test cases. Therefore, we



conclude that it is worth to develop parallel solutions
to the spliced alignment algorithm exploiting intra- and
inter-exon parallelism. However, when implementing our
parallel solutions we cannot expect to achieve performance
gains in the same proportion as estimated in this analysis,
because our targeted platform may not be able to exploit
all parallelism available in the biological data and our
performance estimation model does not consider any control,
communication or synchronization overhead.

VI. GPU SOLUTIONS TO SPLICED ALIGNMENT

In order to evaluate separately the impact on performance
of the intra- and inter-exon parallelism, we developed two
GPU accelerators to the spliced alignment algorithm. The
first one exploits only intra-exon parallelism, while the
second accelerator exploits both forms of parallelism. Our
accelerators receive as input a test case, that is, a base
sequence s with a set β of candidate exons, and a target
sequence t, and computes the similarity score of the optimal
spliced alignment. The accelerator programs were developed
using the CUDA programming model [16].

A. First GPU Accelerator

Since the first GPU accelerator exploits only intra-exon
parallelism, the Sk matrices corresponding to the exons
are computed sequentially with respect to each other. Each
matrix Sk has the cells of a anti-diagonal computed in
parallel, while the successive anti-diagonals are computed
sequentially. This is implemented through a CUDA kernel
for computing matrix Sk corresponding to exon bk. For
each exon, a new kernel invocation is made, only after
the previous invocation has finished its execution. Each
invocation creates a grid with only one block, associated
to exon bk, and this block can have up to 1024 threads,
depending on the exon length.

The kernel execution has three phases. In the first phase,
we obtain the scores from exons bl preceding bk needed to
compute Sk, as indicated in the first two lines of Equation 2.
Each thread is associated to a symbol of target sequence
t. There is a sequential loop for scanning all exons bl
preceding bk. At each iteration of the loop, one matrix Sl
(corresponding to exon bl) is accessed from GPU global
memory, and row E(l) of Sl (last row of bl) is read.
Each thread reads a different element of the row, in a way
that all threads access the entire row in parallel, achieving
memory coalescency. Each thread compares the value it read
with the maximum value accumulated at the previous loop
iterations, so that at the end of the loop execution, it obtains
the maximum of the values read. These maximum values
computed by the threads are stored in a structure allocated
in GPU shared memory. Computing the maximum values
from exons bl preceding bk and storing them in shared
memory prevent us from performing the same computation
repeatedly, since different cells of Sk have dependences on
the same cells of matrices Sl.

In the second phase, we compute matrix Sk. Each thread
is associated to a symbol of exon bk. There is a sequential
loop for scanning all anti-diagonals of Sk. At each iteration
of the loop, one anti-diagonal is computed, with each thread
computing a different cell of the anti-diagonal, in a way that
all threads compute the entire anti-diagonal in parallel. In

this phase, all scores are accessed in the structure allocated
in shared memory and no access to scores in global memory
is done.

Finally, in the last phase of the kernel execution, we copy
row E(k) of Sk (last row of exon bk) from the structure in
shared memory back to global memory. Again, each thread
is associated to a symbol of target sequence t. Each thread
writes a different element of the row, in a way that all
threads access the entire row in parallel achieving memory
coalescency.

Some thread synchronizations are needed at certain
points in the kernel. After some initializations and before
the first phase, a synchronization is necessary. Between the
first and second phases, too. Finally, inside the second phase,
at the end of each loop iteration, we synchronize the threads
again.

Our GPU accelerator is able to handle input test cases
with exon lengths and/or target sequence length longer than
the maximum number of threads of the GPU used (1024).
In order to do that, we implemented all three phases of the
kernel using the tiling technique [17], with each thread being
associated to several cells, instead of only one.

B. Second GPU Accelerator

The first accelerator does not use all GPU resources and
does not exploits all parallelism available in the application.
Therefore a second and improved solution is proposed. The
second GPU accelerator exploits both intra- and inter-exon
parallelism. Each matrix Sk has the cells of a anti-diagonal
computed in parallel. Besides, for the groups of exons whose
matrices can be computed in parallel to each other, but
sequentially with respect to other groups, we compute the
anti-diagonals of these different matrices in parallel.

Again, this is implemented through a CUDA kernel for
computing matrix Sk corresponding to exon bk. For each
group G of exons bk, corresponding to matrices Sk that
can be computed in parallel, a new kernel invocation is
made, only after the previous invocation has finished its
execution. Each invocation creates a grid with |G| blocks,
each block associated to an exon bk ∈ G, and this block
can have up to 1024 threads, depending on the exon
length. Therefore, this second accelerator uses several SMs
(Streaming Multiprocessors) of the GPU and makes a better
use of the GPU resources than the first accelerator.

The kernel is similar to the one of the first accelerator,
with the same three phases, since its goal is to compute
matrix Sk. The main difference is the execution space
created on the kernel invocation, that for the second
accelerator can have several blocks of threads, instead of
only one.

Another important difference between the accelerators is
that, in the second one, it is necessary to identify the groups
of exons whose matrices can be computed in parallel. This is
performed by the host processor in parallel to the GPU. The
host makes a non-blocking kernel invocation for a group G of
exons. While the GPU computes the matrices of G, the host
identifies the next group G′. Then, when the GPU finishes
executing that first kernel invocation, the host is ready to
issue the kernel invocation for G′.



The second GPU accelerator also applies the tiling
technique to handle input test cases with exon lengths and/or
target sequence length longer than the maximum number of
threads of the GPU used.

C. Data Structure Organization

Equations 1 and 2 compute a total of n ×
∑|β|
k=1 |bk|

cells of the S similarity score three-dimensional structure.
Storing this structure completely in the global memory of
the GPU would limit the size of the input test cases that the
accelerator would be able to handle. A biological test case
with a long target sequence, and/or a base sequence with
many exons and/or long exons could produce a S structure
exceeding the capacity of the GPU global memory.

In order to overcome this limitation, only the last row
(row E(l)) of each matrix Sl, corresponding to exon bl, is
stored in GPU global memory. As Figure 4 shows, this is
the unique row of Sl that can be needed when computing
matrix Sk, of a exon bk succeeding bl.

As described previously, a structure is allocated in GPU
shared memory for storing matrix Sk, while it is computed
in the second phase of the kernel, where the cells in a
anti-diagonal are computed in parallel. Again, storing this
matrix completely in the shared memory could limit the size
of the input test cases of the accelerator. Observing Figure 5
we conclude that, for computing the current anti-diagonal,
only two immediately preceding anti-diagonals are used.
This way, we allocate space in shared memory for only
three anti-diagonals of matrix Sk, and we reuse them for
computing subsequent anti-diagonals of the matrix.

Figure 11(a) shows matrix Sk corresponding to exon bk
organized in its conventional form. Cells with the same color
are in the same anti-diagonal and are computed in parallel
by different threads. Using this conventional organization,
the threads perform relatively complex index calculations in
order to access the cells of an anti-diagonal. Besides, the
approach of allocating only three anti-diagonals and reusing
them to compute all anti-diagonals saves memory space, but
generates divergence among the threads. In a GPU execution,
divergence happens when threads in the same warp take
different execution paths, and these paths are executed
sequentially until the threads join the same execution path
again. Divergences can reduce execution parallelism on GPU
and, consequently, degrade performance [17].
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Fig. 11. (a) Conventional organization of Sk and data dependences
with uniform access pattern; (b) Skewed organization of Sk; (c) Data
dependences with non-uniform access pattern, from skewed organization
of Sk

The solution is to organize the Sk matrix cells in a
skewed form, as shown in Figure 11(b). This way, an

anti-diagonal can be treated as a row, and the cells in the
same anti-diagonal can be handled as occupying contiguous
positions in the memory. For ease of explanation, matrix
cells are numbered sequentially based on their order in the
skewed organization of Sk.

Figure 11(a) also shows, with arrows, the data
dependences for computing some cells of Sk, based on
Equation 1. For instance, for computing cell 5 we use cells 1,
2, and 3. Figure 11(c) highlights how these data dependences
appear in the skewed organization of Sk. We observe that,
in the skewed organization, the data dependences no longer
have an uniform access pattern to the matrix cells. When the
threads access the matrix cells in parallel, this non-uniform
access pattern produces complex index computations and
divergences among threads, which may have a negative
impact on performance.

Once more, the solution is to reorganize Sk matrix cells,
this time, modifying the skewed organization of Sk by
aligning all cells to the right, as shown in Figure 12(a).
Figure 12(b) highlights how the data dependences appear in
the skewed and right-aligned organization of Sk. An uniform
access pattern to the cells is achieved again, eliminating the
complex index computations and the thread divergences.
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Fig. 12. (a) Skewed and right-aligned organization of Sk; (b) Data
dependences with uniform access pattern, from skewed and right-aligned
organization of Sk

In the skewed and right-aligned organization of Sk, the
threads compute in parallel all cells in a row. Each thread is
assigned to a different column of the structure. Only three
rows are allocated in GPU shared memory for this structure
and used to store the current row and the two previous ones,
and them reused for computing all subsequent rows.

We also used pinned memory for optimizing the transfers
of input data structures from host memory to GPU global
memory over the PCI-Express bus [18].

VII. RESULTS AND DISCUSSIONS

The execution platform used in this work consists of a
GPU NVIDIA GeForce GTX 460 with 1GB RAM connected
to a host computer (through a PCI-Express interface) with
an Intel Core 2 Quad processor and 4GB RAM. The
host computer is also used for executing a sequential
implementation of the Gelfand spliced alignment algorithm.

A. Accelerators Performance

We evaluated the GPU accelerators developed using
the same biological data set described in Section V and
used for the potential parallelism analysis and performance



estimation. Now, the goal is to measure the actual
performance gain achieved with the accelerators.

Figure 13 compares the actual execution times of the
sequential implementation of the Gelfand spliced alignment
algorithm and the first and second GPU accelerators, for all
1010 test cases of our data set. The test cases are ordered
by the execution time of the sequential implementation and
execution times are shown using logarithmic scale.
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Fig. 13. Actual execution times: sequential implementation, first and
second GPU accelerators

The execution time of the sequential implementation
depends mainly on the total number of cells to be computed.
The first and second GPU accelerators exploit only intra-
and both intra- and inter-exon parallelism, respectively.
Therefore, their execution times depends on other factors
besides the number of cells to be computed, which includes
the length of the exons (for both accelerators) and the
number and cardinality of groups of matrices Sk that can be
computed in parallel (only for the second accelerator). This
explains why the execution time curves of the accelerators
are ragged, specially the second one, with ups and downs.

The execution times produced by the first accelerator
are almost always much lower than the execution times of
the sequential implementation, while the second accelerator
achieved execution times almost always much lower than the
first one.

The first accelerator produced an execution time longer
than the sequential solution in only 0.4% of the test
cases. Analyzing these test cases, we found out they have
minimum average exon length among all test cases and,
consequently, little intra-exon parallelism available. The
second accelerator was faster than the sequential solution
for all test cases. Finally, in only 0.4% of test cases the
second accelerator produced an execution time longer than
the first one. Analyzing these test cases, we verified they
have no inter-exon parallelism available. Therefore, for
these test cases both accelerators exploited only intra-exon
parallelism, and the second accelerator suffered from a
small overhead from looking for inter-exon parallelism
opportunities. Nevertheless, in these cases the difference in
the execution times of the accelerators is insignificant and
on average 0.002ms.

Figure 14 shows the speedup achieved with the first
and second GPU accelerators with respect to the sequential
implementation of the Gelfand spliced alignment algorithm.

The test cases ordering is the same of Figure 13. The
first accelerator produced a maximum speedup of 7.89, and
3.57 on average, while the second accelerator achieved a
maximum speedup of 31.51, and 7.28 on average.
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Fig. 14. Speedup of first and second GPU accelerators wrt. sequential
solution

The performance gain produced by the first accelerator
is limited by the length of the exons, since it exploits only
the intra-exon parallelism. The second accelerator combines
this form of parallelism with the inter-exon parallelism,
exploiting better the available parallelism in the test case.
Therefore, the speedup of the second accelerator is always
greater than or equal the speedup of the first accelerator,
except for test cases with no inter-exon parallelism available.

We also evaluated the throughput measure CUPS (Cell
Updates per Second), which indicates how many cells of
the dynamic programming matrices are computed in one
second. Table III shows the average and maximum MCUPS
(106 CUPS) achieved by the sequential implementation, first
and second accelerators, among all test cases.

TABLE III. AVERAGE AND MAXIMUM MCUPS FOR SEQUENTIAL
IMPLEMENTATION, FIRST AND SECOND ACCELERATORS

Solution Avg MCUPS Max MCUPS
Sequential implementation 62.01 83.90

First accelerator 219.83 506.71
Second accelerator 452.73 2083.81

B. Accelerators Scalability and Comparison with Related
Work

We want to evaluate how well the accelerators scale for
larger input data sizes and to compare their performance
with other solution in related work. Figure 15 shows the
second GPU accelerator execution times, for all 1010 test
cases of our data set. However, here the test cases are
ordered by the product m× n of base and target sequences
length. Both execution times and products m×n are shown
using logarithmic scale. We observe that the accelerator
performance scales linearly with the product of the input
sequences length, as we expected.

In Figure 16 we reproduce the results from Sarje and
Aluru [9] (described in Section III) for the spliced alignment
running in the Cell Broadband Engine with 16 SPEs using
a synthetic data set. The figure shows the execution times
with respect to the product m × n of the input sequences
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Fig. 15. Second GPU accelerator execution times with biological test
cases ordered by m × n: m and n are base and target sequences length,
respectively

length. Even though the comparison of these results with
those in Figure 15 is not precise given the differences in the
experiments, we can see that the second GPU accelerator
outperforms the results in Figure 16. For instance, the largest
input data size in Figure 16 is 2816 × 2816, which takes
approximately 140ms. For test cases with similar sizes, as
6092 × 1585, the second accelerator takes much shorter
execution times, approximately 10ms. Besides, the second
accelerator is able to handle much larger input data sizes.
Finally, the authors report a maximum of 755 MCUPS,
while our second accelerator achieved a maximum of
2083.81 MCUPS.

Fig. 16. Results from Sarje and Aluru [9]: execution times in the Cell
Broadband Engine with 16 SPEs (m and n are input sequences length)

We also obtained performance results for aligning
a sequence containing the IL1RAPL1 gene, along with
its 400,000 preceding and succeeding bases, from Homo
sapiens chromosome X, to the cDNA sequence of a
homologous gene from Canis lupus familiaris. The base
and target sequences have length 2,168,787 and 2,355,
respectively. Using the GENSCAN tool, a set of 1,878
candidate exons was generated. These input data constitute
a test case much larger than those in our biological data
set. The execution times of the sequential implementation,
the first and second accelerators were 357,506.67ms,
6,794.17ms and 3,934.57ms, respectively. The first and
second accelerators achieved speedups of 52.62 and 90.86,

respectively, with respect to the sequential implementation.
Both accelerators were able to handle this larger input data
and reached much higher speedups than those obtained with
the initial data set.

We also tried to run the IL1RAPL1 gene input data
using the spaln2 spliced alignment heuristic tool [4], using
a multi-core processor, in order to compare the performance
obtained to our exact GPU accelerators. However, this tool
is not able to handle base sequences with length longer than
100,000.

C. Accuracy of Performance Estimation

In Section V we performed a performance estimation,
before implementing the accelerators, with the goal of
estimating their execution times. We concluded it was worth
to implement them, because the results from the analysis
indicated performance gains with solutions exploiting intra-
and inter-exon parallelism. Now that we have the actual
performance results, we can compare the estimative and
actual execution times and evaluate how precise our
performance estimation model is.

In Figure 17 we overlap the estimated execution times
for the intra- and inter-exon parallel solution, taken from
Figure 10, with the actual execution times of the second GPU
accelerator, taken from Figure 13, for all test cases. In both
curves, the test cases ordering is the same of Figure 10. Both
curves are in logarithmic scale, but use different units of
measurement for time. In our performance estimation model
we use the time to compute a cell of the similarity score
structure S as our unit of time, while actual execution time
is given in milliseconds. This explains why the curves have
different ranges in the y-axis. We overlapped the curves to
stress how precise the performance estimation model was.
The ragged shape of both curves match, point by point, with
ups and downs. We conclude that the performance estimation
model predicted accurately the performance of the second
accelerator.
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Fig. 17. Estimated and actual execution times overlapped, for the second
accelerator

Figures 18 and 19 also compare estimated and
actual execution times for the first accelerator and for
the sequential implementation of the spliced alignment
algorithm, respectively. Similar conclusions about the
performance estimation accuracy can be drawn.

VIII. CONCLUSION

This paper presented two GPU accelerators for the
spliced alignment problem applied to gene prediction. To the
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accelerator
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Fig. 19. Estimated and actual execution times overlapped, for the
sequential implementation

authors’ knowledge, these are the first GPU-based solutions
proposed for the spliced alignment problem.

We identified two forms of exploiting parallelism in
the spliced alignment algorithm, intra- and inter-exon
parallelism. Our first GPU accelerator exploits only the first
form, while both forms are exploited by the second one. The
results show that we should exploit both forms of parallelism
in order to have more significant performance gains.

We performed a comprehensive performance evaluation
using a modest GPU and a large and representative
biological data set. The accelerators produced excellent
performance results. The first and second accelerators
achieved maximum speedups of 52.62 and 90.86,
respectively, when compared to a sequential implementation,
and produced the maximum of 506.71 and 2083.81 MCUPS,
respectively. We concluded that the second accelerator
performance scaled linearly with the product of the input
sequences length, outperforming the results from a related
work. Using a more powerful GPU, our accelerators would
achieve an even better performance, since less tiling would
be necessary.

Since the main GPU optimizations involve the efficient
use of the memory hierarchy, we proposed an organization
for the data structures of the accelerators in order to
maximize coalescency in global memory accesses, maximize
the use of shared memory, minimize thread divergences, and
simplify index computations. Besides, our accelerators are
able to handle input data sets with long sequences and exons,
applying the tiling technique.

Before implementing the accelerators, we performed a

potential parallelism analysis of our biological data set
with the goal of measuring the amount of parallelism
that would in fact be available to be exploited by a
parallel implementation. We also proposed a performance
estimation model that enabled estimating the accelerators
performance and evaluating if there would be performance
gains, compared to a sequential solution. The experiments
showed that this model predicted very accurately the
performance of the accelerators.

Despite the excellent results achieved with intra- and
inter-exon parallelism, an interesting research subject is
to investigate other forms of exploiting parallelism in the
spliced alignment algorithm, and how they can be mapped
on a GPU or other platform.
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