
The Datapath Merging Problem in
Reconfigurable Systems: Complexity, Dual
Bounds and Heuristic Evaluation

CID C. DE SOUZA, ANDRE M. LIMA and GUIDO ARAUJO

Universidade Estadual de Campinas

and

NAHRI B. MOREANO

Universidade Federal de Mato Grosso do Sul

In this paper, we investigate the data path merging problem (DPM) in reconfigurable systems. DPM

is modeled as a graph optimization problem and is shown to be NP-hard. An Integer Programming

(IP) formulation of the problem is presented and some valid inequalities for the convex hull of

integer solutions are introduced. These inequalities form the basis of a branch-and-cut algorithm

that we implemented. This algorithm was used to compute lower bounds for a set of DPM instances,

allowing us to assess the performance of two heuristics proposed earlier in the literature for the

problem. Moreover, the branch-and-cut algorithm also was proved to be a valuable tool to solve

small-sized DPM instances to optimality.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture

Styles—Adaptable architectures; C.3 [Special-Purpose and Application-Based Systems]:

Real-Time and Embedded Systems; G.1.6 [Numerical Analysis]: Optimization—Integer
Programming

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Data path merging, heuristics, lower bounds, reconfigurable

systems

1. INTRODUCTION

It is well known that embedded systems must meet strict constraints of high
throughput, low power consumption and low cost, especially when designed for
signal processing and multimedia applications [Wolf 2001]. These requirements

Authors’ address: Cid C. de Souza, André Lima, and Guido Araujo, Instituto de ComputaÇāo, Uni-

versidade Estadual de Campinas, C.P. 6176, 13084-970 Campinas, SP, Brazil, email: (cid,andre.

lima,guido)@ic.unicamp.br; Nahri B. Moreano, Departamento de ComputaÇāo e Estatística,

Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil, email:

nahri@dct.ufms.br.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C©

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2005, Pages 1–19.

2005 ACM 1084-6654/05/0001-ART2.11 $5.00

2 • C. C. de Souza et al.

lead to the design of application-specific components, ranging from special-
ized functional units and coprocessors to entire application-specific processors.
Such components are designed to exploit the peculiarities of the application
domain in order to achieve the necessary performance and to meet the design
constraints.

With the advent of reconfigurable systems, the availability of large/cheap ar-
rays of programmable logic has created a new set of architectural alternatives
for the design of complex digital systems [DeHon and Wawrzynek 1999; Schau-
mont et al. 2001]. Reconfigurable logic brings together the flexibility of software
and the performance of hardware [Compton and Hauck 2002; Bondalapati and
Prasanna 2002]. As a result, it became possible to design application-specific
components, like specialized data paths, that can be reconfigured to perform
a different computation, according to the specific part of the application that
is running. At run-time, as each portion of the application starts to execute,
the system reconfigures the data path so as to perform the corresponding com-
putation. Recent work in reconfigurable computing research has shown that
a significant performance speedup can be achieved through architectures that
map the most time-consuming application kernel modules or inner loops to a
reconfigurable data path [Callahan et al. 2000; Singh et al. 2000; Schmit et al.
2002].

The reconfigurable data path should have as few and simple hardware blocks
(functional units and registers) and interconnections (multiplexors and wires)
as possible, in order to reduce its cost, area, and power consumption. Thus
hardware blocks and interconnections should be reused across the application
as much as possible. Resource sharing also has crucial impact in reducing the
system reconfiguration overhead, both in time and space.

To design such a reconfigurable data path, one must represent each selected
piece of the application as a control/data-flow graph (CDFG) and merge them
together, synthesizing a single reconfigurable data path. The control/data-flow
graph merging process enables the reuse of hardware blocks and interconnec-
tions by identifying similarities among the CDFGs, and produces a single data
path that can be dynamically reconfigured to work for each CDFG. Ideally, the
resulting data path should have the minimum area cost. Ultimately, this corre-
sponds to minimize the amount of hardware blocks and interconnections in the
reconfigurable data path. The data path merging problem (DPM) seeks such
an optimal merging and is shown to be NP-hard in this article. Similar com-
plexity results are given in Moreano et al. [2003] for a more general variant of
the problem.

To minimize the area cost; one has to minimize the total area required by
both hardware blocks and interconnections in the reconfigurable data path.
However, since the area occupied by hardware blocks is typically much larger
than that occupied by the interconnections, the engineers are only interested
in solutions that use as few hardware blocks as possible. Clearly, the minimum
quantity of blocks required for each type of hardware block is given by the
maximum number of such blocks that are needed among all CDFGs passed at
the input. The minimum amount of hardware blocks in the reconfigurable data
path can be computed as the sum of these individual minima. As a consequence,

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 3

Fig. 1. Example of a DPM instance.

DPM reduces to the problem of finding the minimum number of interconnec-
tions necessary to implement the reconfigurable data path.

Figure 1 illustrates the concept of control/data-flow graph merging and the
problem we are tackling. For simplicity, the multiplexors, who select the inputs
for certain functional blocks, are not represented. The graphs G ′ and G repre-
sent two mappings of the CDFGs G1 and G2. In both these mappings, vertices
a1 and a5 from G1 are mapped onto vertices b1 and b3 from G2, respectively,
while vertex a4 of G1 has no counterpart in G2. The difference between the
two mappings is that, in G ′ vertex b2 of G2 is mapped onto vertex a2 of G1,
while it is mapped onto a3 in G. The mappings G ′ and G are both feasible,
since they only match hardware blocks that are logically equivalent. Although
their reconfigurable data paths have the same amount of hardware blocks, in
G ′ no arcs are overlapped while in G the arcs (a3, a5) and (b2, b3) coincide (see
the highlighted arc in Figure 1). In practical terms, this means that one less
multiplexor is needed and, therefore, G is a better solution for DPM than G ′.

In this paper, we present an IP formulation for DPM and introduce some
valid inequalities for the convex hull of integer solutions. These inequalities
form the basis of a branch-and-cut (B&C) algorithm that we implemented. The
contributions of our work are twofold. First the B&C algorithm was able to
compute lower bounds for a set of DPM instances, allowing us to assess the
performance of two heuristics available for the problem. Second, the B&C also
proved to be a valuable tool to solve small-sized DPM instances to optimality.

The paper is organized as follows. The next section gives a formal description
of DPM in terms of graph theory and contains our proof that the problem is
NP-hard. Sections 3 and 4 briefly discusses the two heuristic algorithms that
we used in our computations. Section 5 presents an IP formulation for DPM,
together with some classes of valid inequalities that can be used to tighten the
original model. In Section 6, we report our computational experiments with
the B&C algorithm and analyze the performance of the heuristics. Finally, in
Section 7, we draw some conclusions and point out future investigations.

2. GRAPH MODEL FOR DPM

This section formulates DPM as a graph-optimization problem. The input is
assumed to be composed of n data paths corresponding to application loops of
a computer program. The goal is to find a merging of those data paths into

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

4 • C. C. de Souza et al.

a reconfigurable one that is able to work as each individual loop data path
alone and has the least hardware blocks (functional units and registers) and
interconnections as possible. That is, the reconfigurable data path must be
capable of performing the computation of each loop, multiplexed in time.

The ith data path is modeled as a directed graph Gi = (Vi, Ei), where the
vertices in Vi represent the hardware blocks in the data path, and the arcs in
Ei are associated to the interconnections between the hardware blocks. The
types of hardware blocks (e.g., adders, multipliers, and registers) are modeled
through a labeling function πi : Vi → T, where T is the set of labels representing
hardware block types. For each vertex u ∈ Vi, πi(u) is the type of the hardware
block associated to u. A feasible solution for DPM is given by three elements:

� A reconfigurable data path modeled as a directed graph G = (V , E)
� A labeling function π : V → T

� For each i ∈ {1, . . . , n}, a mapping μi which associates every vertex of Vi

to a distinct vertex in V , such that, if v ∈ Vi, u ∈ V and μi(v) = u, then
πi(v) = π (u). Moreover, whenever the arc (v, v′) is in Ei, the arc (μi(v), μi(v′))
must be in E.

Finally, in a feasible solution, for all T ∈ T, the number of vertices of G with
label T must be equal to the maximum number of vertices with that label
encountered across all data paths Gi. The latter condition forces the usage of
as few hardware blocks as possible in the reconfigurable data path which, as
cited before, is a requirement of the practitioners. An optimal solution for DPM
is a feasible one for which |E| is minimum.

We now prove that the decision version of DPM (DPM-D) is NP-complete. In
the decision problem, an integer k is given in the input and one has to decide
whether or not there exists a feasible solution with |E| = k. Before, we continue,
let us recall the definition of the subgraph isomorphism problem (ISO).

Definition 2.1. Given two directed graphs G1 = (V1, E1) and G2 = (V2, E2),
does G1 contain a directed subgraph H = (VH , EH) isomorphic to G2, i.e., is
there a bijective function f : V2 → VH , such that (u, v) ∈ E2 ⇔ (f (u), f (v)) ∈
EH ?

It is well-known that ISO is NP-complete (see [Garey and Johnson 1979,
GT48]).

THEOREM 2.2. DPM-D is NP-complete.

PROOF. Since DPM-D can be easily seen to be in NP, we only show that
the problem is NP-hard. To do so, we reduce an arbitrary instance of ISO to
an instance of DPM-D. Let G1 = (V1, E1) and G2 = (V2, E2) be the graphs
in the input of ISO. Assume that |V1| ≥ |V2| and |E1| ≥ |E2|, since otherwise
ISO can be solved trivially. For the DPM instance, we set n = 2 and the input
graphs G ′

1 = G1 and G ′
2 = G2. Besides, the set T of labels is created with a

single element T , which represents a type of hardware block that performs a
commutative operation. The label functions π1 and π2 map all vertices of G ′

1

and G ′
2, respectively, to the unique label T . Finally, the parameter k is set to

|E1|. Clearly, this reduction can be done in polynomial time.

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 5

We now claim that G1 has a subgraph isomorphic to G2 if, and only if, there
is a merged graph G = (V , E) corresponding to G ′

1 and G ′
2, such that (a) the

number of vertices of G with label T is equal to V1, and (b) |E| = k.
Suppose that G1 and G2 is a yes-instance for ISO. Thus, there exists a sub-

graph H = (VH , EH) of G1 that is isomorphic to G2. Let f : V2 → VH be the
bijective function corresponding to this isomorphism. A feasible solution for
DPM-D is built as follows. First, let the resulting graph G = (V , E) be such
that |V | = |V1|. Let the mapping function μ1 be any bijection from V1 to V .
Now, define the mapping μ2 : V2 → V as the composition of μ1 and f , i.e.,
μ2 = μ1 ◦ f . Clearly, in this case, E = E1. Therefore, G has k = |E1| arcs and
we have a yes-instance for DPM-D.

Conversely, suppose that DPM-D has a yes answer. Assume that G = (V , E)
is a merged graph corresponding to a feasible solution of the problem, which also
includes the two mapping functions μ1 : V1 → V and μ2 : V2 → V . Feasibility
implies that |E| = k and that all vertices in V have label T . By hypothesis,
since |V1| ≥ |V2| and the labels of all vertices in V1 and in V2 are identical
to T , the sizes of V and V1 must be equal. Since |E| = k = |E1|, mapping
μ2 : V2 → V ; must be such that; for every (u, v) in E2, (μ−1

1 (μ2(u)), μ−1
1 (μ2(v)))

is in E1. Hence, the function f = μ−1
1 ◦ μ2 : V2 → V1 defines an isomorphism

between a subgraph of G1 and G2. Thus, ISO has also a yes answer.

It should be noticed that the input graphs for DPM may contain cycles. This
occurs when the selected pieces of the application have loops. Now, if we restrict
these pieces to inner-loop bodies, the CDFGs will be acyclic. However, our proof
remains valid even in this case since, according to Garey and Johnson [1979],
ISO is also NP-complete when G1 is acyclic and G2 is a directed tree. Another
observation refers to the situation where G1 is directed forest and G2 is a
directed tree, in which case, ISO can be solved in polynomial time. However,
CDFGs typically have vertices with more than one incoming arc (modeling a
hardware block with more than one operand) and more than one outcoming arc
(modeling a common subexpression, that is, when the result of an operation is
used by two or more different blocks). Thus, this polynomially solvable instance
is not likely to occur in practical situations.

3. MOREANO’S HEURISTIC FOR DPM

Since DPM is NP-hard, it is natural to devise suboptimal algorithms that can
solve it fast, preferably in polynomial time. In Moreano et al. [2002], the authors
proposed a heuristic for DPM. Computational tests conducted by the authors
on a few instances indicated that the algorithm outperforms other heuristics
presented in the literature. Moreano’s heuristic (MH) is briefly described in this
section. In Section 6, the efficiency of MH is assessed both using other upper
bounds generated by the heuristic presented in the next section and using the
strong lower bounds computed via the IP model discussed in Section 5.

For an integer k > 1, define k-DPM as the DPM problem whose input is
made of k loop data paths. Thus, the original DPM problem would be denoted
by n-DPM, but the former notation is kept for simplicity. MH is based on an
algorithm for 2-DPM, here denoted by 2DPMalg, that is presented below.

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

6 • C. C. de Souza et al.

Fig. 2. Example of a 2-DPM instance.

Let G1 = (V1, E1) and G2 = (V1, E1) be the input graphs and π1 and π2

their respective labeling functions. A pair of arcs {(u, v), (w, z)} in E1 × E2 is
said to form a feasible mapping if π1(u) = π2(w) and π1(v) = π2(z). The first
step of 2DPMalg constructs the compatibility graph H = (W, F) of G1 and G2.
The graph H is undirected. The vertices in W are in one-to-one correspondence
with the pairs of arcs in E1 × E2, which form feasible mappings. Given two
vertices a and b in W represented by the corresponding feasible mappings, say
a = {(u, v), (w, z)} and b = {(u′, v′), (w′, z ′)}, the arc (a, b) is in F except if one
of the following conditions hold: (i) u = u′ and w 	= w′ or (ii) v = v′ and z 	= z ′

or (iii) u 	= u′ and w = w′ or (iv) v 	= v′ and z = z ′. If the arc (a, b) is in F ,
the feasible mappings that they represent are compatible, explaining why H is
called the compatibility graph. Now, as explained in Moreano et al. [2002], an
optimal solution for 2-DPM can be computed by solving the maximum clique
problem on H. The solution of DPM is easily derived from an optimal clique of
H; since the feasible mappings associated to the vertices of this graph provide
the proper matchings of the vertices of G1 and G2. However, it is well-known
that the clique problem is NP-complete. Thus, the approach used in MH is to
apply a good heuristic available for cliques to solve 2-DPM. Later in Section 6,
we discuss how this is done in practice.

Before we continue, let us give an example of the ideas discussed in the
preceding paragraph. To this end, consider the graphs G1 and G2 in Figure 2
representing an instance of 2-DPM. According to the notation used in this fig-
ure, each vertex u in a graph Gi is identified with a label Tij , which denotes
that u is the j -th vertex of Gi and πi(u) = T . For instance, A12 is the sec-
ond vertex of G1 which have type A. This notation is used in other figures
representing DPM instances and solutions throughout. Figure 3 depicts the
compatibility graph H of G1 and G2. Consider, for example, the feasible map-
pings (A11, B11), (A21, B21) (vertex w1 in H) and (B11, C11), (B21, C21) (vertex w5

in H). For those mappings, no vertex from G1 maps onto two distinct vertices
in G2 and vice versa. As a result, these two mapping are compatible and an arc
(w1, w5) is required in H. On the other hand, no arc exists in H between vertices
w2 and w3. The reason is that the mappings represented by these vertices are
incompatible, since otherwise vertex A11 in G1 would map onto both A22 and A23

in G2.

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 7

Fig. 3. Compatibility graph and an optimal solution for the 2-DPM instance of Figure 2.

A maximum clique of the compatibility graph H in Figure 2 is given by
vertices w1, w4, and w5. An optimal solution G for 2-DPM can be easily built
from this clique. The resulting graph G is shown in Figure 3 and is obtained
as follows. First, we consider the vertices of the clique. For instance, for vertex
w1 represents the feasible mapping {(A11, B11), (A21, B21)}, we add to G two
vertices u1 and u2 corresponding, respectively, to the mapped vertices {A11, A21}
and {B11, B21}. Moreover, we also include in G the arc (u1, u2) to represent the
feasible mapping associated to w1. Analogous operations are now executed for
vertices w4 and w5. The former vertex is responsible for the addition of vertices
u4 and u5 and of arc (u4, u5) in G while the latter gives rise to the addition of
arc (u2, u4). Finally, we add to G the vertex u3 corresponding to the nonmapped
vertex A22 from G2 and the arcs (u1, u4), (u4, u3), and (u3, u2) corresponding,
respectively, to arcs (A11, C11) from G1 and arcs (C21, A22) and (A22, B21) from
G2.

Back to MH, we now show how it uses algorithm 2DPMalg as a building block
for obtaining suboptimal solutions for DPM. MH starts by applying 2DPMalg to
graphs G1 and G2 with labeling functions π1 and π2, respectively. The output
is a graph G and a labeling function π . At each iteration i, i ∈ {3, . . . , n}, MH
applies 2DPMalg to graphs G and Gi and their functions π and πi. After all these
pairwise matchings have been completed, the graph G is returned.

4. BIPARTITE MATCHING HEURISTIC FOR DPM

The most commonly used method for DPM is based on the problem of finding
a maximum weight matching in a bipartite graph [Geurts et al. 1997; Shirazi
et al. 1998; Huang and Malik 2001]. Because of its popularity among practi-
cioners, we decided to include this heuristic in our computational tests. Thus, in
this section we briefly describe the bipartite matching heuristic (BMH). Later,
in Section 6, we compare the results obtained by BMH with those of MH and
with the lower bounds generated with our IP model.

As for MH, BMH is based on an algorithm for 2-DPM. This algorithm is
applied iteratively in order to merge n data paths and is described below.

Given two input graphs G1 = (V1, E1) and G2 = (V2, E2) and their respective
labeling functions π1 and π2, a bipartite undirected graph B = (V1 ∪ V2, EB)
is built. For each pair (u1, u2) ∈ V1 × V2, the edge (u1, u2) is in EB if, and only
if, π1(u1) = π2(u2), that is, if u1 and u2 can be mapped to the same vertex u of
the resulting graph G. The weight assigned to this edge represents the gain

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

8 • C. C. de Souza et al.

Fig. 4. Bipartite graph and suboptimal solution for the 2-DPM instance of Figure 2.

obtained with this mapping according to some predefined cost function. As an
example, in Huang and Malik [2001], the cost of (u1, u2) corresponds to the
maximum number of pair of arcs (∗, u1) ∈ E1 and (∗, u2) ∈ E2 that can be
mapped to the same arc (∗, u) in G. Notice that this cost is an overestimation
since, in an optimal solution, not necessarily all predecessor vertices of u1 in G1

are mapped to predecessors of u2 in G2. Other cost functions are proposed in
the literature [cf. Geurts et al. 1997; Shirazi et al. 1998]. However, to compute
these functions further details on the circuit architecture are required. Since no
such data is available in the input of DPM, in our computational experiments,
BMH was implemented with the cost function described above.

Now, since each vertex of G1 must be mapped to, at most, one vertex of G2

and vice versa, the maximum weight matching of B provides the vertex map-
pings that maximize the cost function. The merged graph G is built from these
mappings. Initially, for each edge (u1, u2) of the matching, a vertex is added to
G, corresponding to the mapped vertices {u1, u2}. Then, for each u ∈ V1 ∪ V2,
which is not saturated by the matching, a vertex is added to G, corresponding
to the nonmapped vertex u. Finally, for each arc of G1, a corresponding arc is
inserted in G, and for each arc of G2, which can not be mapped to an existing
arc of G, a new arc is added to G.

Figure 4 illustrates this algorithm and shows the bipartite graph B obtained
from the CDFGs G1 and G1 of Figure 2. A maximum weight matching and the
resulting graph G are also depicted in Figure 4.

With respect to execution times, BMH is usually considered efficient, since
a polynomial-time algorithm for the problem of finding a maximum weight
matching in a bipartite graph is well-known (the Hungarian Method, described
in Papadimitriou and Steiglitz [1998]). However, since the merged graph is built
using only estimates about the arc mappings, the solution produced may be far
from optimal.

We close this section by mentioning a few other related works in which heuris-
tics have been proposed for the problem, although with possibly different opti-
mization goals.

Another group of methods for the data path merging problem relies on search
mechanisms that explore the solution space looking for an optimal solution. In

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 9

Werf et al. [1992] a merging technique is proposed, based on iterative improve-
ment and simulated annealing local search algorithms, and aims at reducing
the interconnection cost. Both algorithms start with an initial random assign-
ment, and continuously step through a randomly chosen neighborhood solution
set, according to an acceptance criterion. Given a solution of the problem, a two-
exchange movement is obtained when the assignment of two operations from
the same CDFG are exchanged. The neighborhood of the current solution is
then, defined as the set of solutions that can be reached by performing a single
two-exchange movement. The solution provided by the iterative improvement
algorithm is the first local minimum found, so it may be far from optimal. The
simulated annealing method accepts limited deteriorating transitions, trying
to escape from local minima and, as a consequence, has longer execution times
than classical local search algorithms. The actual complexity of the resulting
algorithm depends on how some parameters are fixed.

A different heuristic for the data path merging problem is presented in Brisk
et al. [2004], with the goal of minimizing the data path area. Initially, the algo-
rithm enumerates all paths of each input data-flow graph, and then overlaps
these paths iteratively, based on the longest common subsequence of each pair
of paths from different graphs. Since the number of paths in a data-flow graph
can be exponential with respect to the number of its vertices, this algorithm
has a exponential execution time.

In Mathur and Saluja [2001], the authors propose transformations on the
data-flow graphs based on information content and required precision analy-
sis in order to reduce the width of the data path operators. They also present
an iterative algorithm for partitioning the data path into clusters, so that the
operators of a cluster can be merged. At each iteration, the algorithm recom-
putes the required precision and the information content of the signals and
improves the partitioning. Experimental results reveal that area reduction can
be achieved when such transformations are done. However, the approach is re-
stricted to graphs in which each cluster represents a sum of terms derived from
input signals.

5. INTEGER LINEAR PROGRAMMING EXACT SOLUTION

A natural question that arises when one solves a hard problem heuristically is
how far the solutions are from the true optimum. For 2-DPM, algorithm 2DPMalg
from Section 3 can be turned into an exact method, provided that an exact
algorithm is used to find maximum cliques. However, this approach only works
when merging two data paths. A naive extension of the method to encompass
the general case requires the solution of hard combinatorial problems on large-
sized instances which cannot be handled in practice. As an alternative, in this
section we derive an IP model for DPM. The aim is to compute that model to
optimality via IP techniques whenever the computational resources available
permit. When this is not the case, we would like, at least, to generate good lower
bounds that allow us to assess the quality of the solutions produced by MH.

Let us denote by αi the ith type of hardware block and assume that T has
m elements, i.e., T = {α1, . . . , αm}. Moreover, for every i ∈ {1, . . . , n} and every

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

10 • C. C. de Souza et al.

t ∈ {1, . . . , m}, let us define bit as the number of vertices in Vi associated with
a hardware block of type αt and let q(t) = max{bit : 1 ≤ i ≤ n}. The solutions of
DPM are then graphs with k vertices, where k = ∑m

t=1 q(t). In the remainder of
the text, we denote by K and N the sets {1, . . . , k} and {1, . . . , n}, respectively.
Besides, we assume that for every hardware block of type αt in T there exists
i ∈ N and u ∈ Vi such that πi(u) = αt .

When V is given by {v1, v2, . . . , vk}, we can assume without loss of generality
that π (v1) = · · · = π (vq(1)) = α1, π (vq(1)+1) = · · · = π (vq(1)+q(2)) = α2 and so
on. In other words, V is such that the first q(1) vertices are assigned to label
α1, the next q(2) vertices are assigned to label α2 and so on. This assumption
considerably reduces the symmetry of the IP model increasing its computability.
Below we use the notation Jt to denote the subset of indices in K for which
π (vi) = αt (e.g., J1 = {1, . . . , q(1)} and J2 = {q(1) + 1, . . . , q(1) + q(2)}).

We are now ready to define the binary variables of our model. For every triple
(i, u, j) with i ∈ N , u ∈ Vi and j ∈ J (πi(u)), let xuij be one if, and only if, the
vertex u of Vi is mapped onto the vertex vj of V . Moreover, for any pair (j , j ′) of
distinct elements in K , let yjj ′ be one if, and only if, there exists i ∈ N and an
arc in Ei such that one of its end-vertices is mapped onto vertex vj of V , while
the other end-vertex is mapped onto vj ′ . The IP model is then the following.

min z = ∑
∀ j

∑
∀ j ′ 	= j yjj ′ (1)

xuij + xu′ij ′ − yjj ′ ≤ 1 ∀i ∈ N , ∀(u, u′) ∈ Ei, ∀ j ∈ J (πi(u)),

∀ j ′ ∈ J (πi(u′)), j 	= j ′ (2)
∑

u∈Vi | j∈J (πi (u)) xuij ≤ 1 ∀i ∈ N , ∀ j ∈ K (3)
∑

j∈J (πi (u)) xuij = 1 ∀i ∈ N , ∀u ∈ Vi (4)

yjj ′ ∈ {0, 1} ∀ j , j ′ ∈ K , j 	= j ′ (5)

xuij ∈ {0, 1} ∀i ∈ N , ∀u ∈ Vi, ∀ j ∈ J (πi(u)) (6)

Equation (1) expresses the fact that an optimal solution to DPM is a graph
with as few arcs as possible. Constraints Eq. (2) force the existence of arcs
in the output graph. Constraints Eq. (3) avoid multiple vertices in one input
graph to be mapped to a single vertex of the output graph. Finally, Eq. (4)
guarantees that any vertex in any input graph is mapped to exactly one vertex
of V .

Notice that Eq. (5) can be replaced by inequalities of the form 0 ≤ yjj ′ ≤ 1 for
all j 	= j ′ with (j , j ′) ∈ K ×K . This is so because the objective function together
with Eq. (2) force the y variables to assume values in the limits of the interval
[0, 1] and, therefore, to be integer-valued. This remark is important for compu-
tational purposes. The most successful algorithms implemented in commercial
solvers for IP are based on branch-and-bound (B&B) algorithms. The size of the
solution space increases exponentially with the number of integer variables in
the model. Thus, relaxing the integrality constraints on the y variables in our
model, we reduce the search space and increase the chances of success of the
algorithm.

The solution of hard combinatorial problems through IP algorithms relies
largely on the quality of the dual bounds produced by the linear relaxation of

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 11

Fig. 5. Example of a CBS of a graph.

the model at hand. To improve the dual bounds, the relaxation can be amended
with additional constraints that are valid for integer solutions of the relaxation,
but not for all the continuous ones. This addition of valid inequalities tightens
the relaxation for its feasibility set strictly decreases. The new constraints, typ-
ically chosen from a particular class of valid inequalities, can be either included
a priori in the model, which is then solved by a standard B&B algorithm, or gen-
erated on-the-fly during the enumeration procedure whenever they are violated
by the solution of the current relaxation. The latter method gives rise to B&C
algorithms for IP. Quite often the use of B&C is justified by the number of poten-
tial inequalities that can be added to the model which, even for limited classes
of valid inequalities, is exponentially large. On the other hand, when inequal-
ities are generated on-the-fly, algorithms that search for violated inequalities
are needed. These algorithms solve the socalled separation problem for classes
of valid inequalities and are named separation routines. For a thorough pre-
sentation of the Theory of Valid Inequalities and IP, in general, we refer to the
book by Nemhauser and Wolsey [1988]. In the sequel, we present two classes
of valid inequalities that we use to tighten the formulation given in Eqs. (1–6).

5.1 The Complete Bipartite Subgraph (CBS) Inequalities

The idea is to strengthen Eq. (2) using Eq. (3). This is done through special
subgraphs of the input graphs. Given a directed graph D = (W, A), we call a
subgraph H = (W1, W2, F) of D a CBS if, for every pair of vertices {w1, w2} in
W1 × W2, (w1, w2) is in F . Notice that, since H is a subgraph of D, we must
have that F ⊆ A. In other words, this means that H has all the directed arcs
going from W1 to W2 as illustrated in Fig. 5. In this drawing, vertices in set W1

(W2) are represented by black (grey) circles, while the arcs in F are indicated
by the thick arrows.

Now, consider an input graph Gi, i ∈ N , of a DPM instance and two distinct
labels αt1

, αt2
∈ T. Let Ht1,t2

i = (V t1

i , V t2

i , Et1,t2

i) be a CBS of Gi such that all

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

12 • C. C. de Souza et al.

vertices in V t1

i (V t2

i) have label αt1
(αt2

). Suppose that Ht1,t2

i is maximal with
respect to vertex inclusion. Assume that vj and vj ′ are two vertices in V , the
vertex set of the resulting graph G, with labels αt1

and αt2
, respectively. The CBS

inequality associated to Ht1,t2

i , vj and vj ′ is
∑

u∈V
t1
i

xuij +
∑

v∈V
t2
i

xvij ′ − yjj ′ ≤ 1. (7)

THEOREM 5.1. Equation (7) is valid for all integer solutions of the system
Eq. (2 − −6).

PROOF. Because of (3), the first summation in the left-hand side (LHS) of
Eq. (7) cannot exceed one. A similar result holds for the second summation.
Thus, if an integer solution exists violating Eq. (7), both summations in the LHS
have to be one. But then, there would be a pair of vertices {u, u′} in V t1

i × V t2

i
such that u is mapped onto vertex vj and u′ onto vertex vj ′ . However, as Ht1,t2

i
is a CBS of Gi, (vj , vj ′) must be an arc of E, the arc set of the output graph G,
i.e., yjj ′ is one.

Clearly, if (u, u′) is not a maximal CBS of Gi, then Eq. (2) is dominated by
some inequality in Eq. (7) and, therefore, superfluous. Our belief is that the
number of CBS inequalities is exponentially large which, in principle, would
not recommend to add them all to the initial IP model. However, the DPM
instances we tested reveal that, in practical situations, this amount is actually
not too large and the CBS inequalities can all be generated via a backtracking
algorithm. This allows us to test B&B algorithms on models with all these
inequalities present.

5.2 The Partition (PART) Inequalities

The next inequalities generalize Eq. (2). Consider the ith input graph Gi =
(Vi, Ei), i ∈ {1, . . . , n}. Let u and u′ be two vertices in Vi with labels α and α′,
respectively, with α 	= α′ and (u, u′) ∈ Ei. Again assume that G = (V , E) is the
output graph and that vj is a vertex of V with label α. Finally, suppose that A
and B form a partition of the set J (πi(u′)) (see definition in Section 5). The PART
inequality corresponding to u, u′, vj , A and B is

xuij −
∑

j ′∈A

yjj ′ −
∑

j ′∈B

xu′ij ′ ≤ 0 (8)

THEOREM 5.2. Equation (8) is valid for all integer solutions of the system
Eq. (2)–(6).

PROOF. If u′ is mapped onto a vertex vj ′ of the resulting graph G and j ′ is in
B, Eq. (8) reduces to xuij −

∑
j ′∈A yjj ′ ≤ 1, which is obviously true, since xuij ≤ 1

and yjj ′ ≥ 0 for all j ′ ∈ A. On the other hand, if u′ is mapped onto a vertex
vj ′ of G with j ′ in A, the last summation in Eq. (8) is null and the inequality
becomes xuij −

∑
j ′∈A yjj ′ ≤ 0. If vertex u is not mapped onto vertex vj , the latter

inequality is trivially satisfied. If not, then necessarily there must be an arc
in G joining vertex vj to some vertex vj ′ of G with j ′ in A. This implies that

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 13

Fig. 6. Separation routine for PART inequalities.

the second summation in Eq.(8) is at least one and, therefore, the inequality
holds.

Notice that using Eq. (4) we can rewrite Eq. (8) as xuij − ∑
j ′∈A yjj ′ +∑

j ′∈A xu′ij ′ ≤ 1 which, for A = { j ′}, is nothing but Eq. (2). Moreover, since the
size of J (πi(u′)), in the worst case, is linear in the total number of vertices of
all input graphs, there can be exponentially many PART inequalities. However,
the separation problem for these inequalities can be solved in polynomial time.
This is the ideal situation for, according to the celebrated Grötschel–Lovász–
Schrijver theorem [Gröptschel et al. 1981], the dual bound of the relaxation
of Eq. (2)–(4) and all inequalities in Eq. (8) is computable in polynomial time
using the latter inequalities as cutting-planes. Figure 6 shows a pseudocode for
the separation routine of Eq. (8), which is discussed below.

Given an input graph Gi, i ∈ N , consider two vertices u and u′ such that
(u, u′) is in Gi and a vertex vj of G whose label is identical to that of u. Now, let
(x�, y�) be an optimal solution of a linear relaxation during the B&C algorithm.
The goal is to find the partition of the set J (πi(u′)) that maximizes the LHS
of Eq. (8). It can be easily verified that, with respect to the point (x�, y�) and
the input parameters i, u, u′ and j , the choice made in line 4 ensures that
the LHS of Eq. (8) is maximized. Thus, if the value of LHS computed for the
partition returned in line 7 is non positive, no constraint of the form Eq. (8)
is violated, otherwise, (A, B) is the partition that produces the most violated
PART inequality for (x�, y�). This routine is executed for all possible sets of input
parameters. The number of such sets can be easily shown to be polynomial in
the size of the input. Moreover, since the complexity of the routine is O(J (πi(u′)))
which, in turn, is O(

∑
i∈N |Vi|), the identification of all violated PART inequalities

can be done in polynomial time.

6. COMPUTATIONAL EXPERIMENTS

We now report on our computational tests with a set of benchmark instances
generated from real applications from the MediaBench suite [Lee et al. 1997].
All programs were implemented in C++ and executed on a DEC machine
equipped with an ALPHA processor of 675 MHz, 4 GB of RAM, and running
under a native Unix operating system. The linear programming solver used
was CPLEX 7.0 and separation routines were coded as callback functions from
the solver’s callable library.

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

14 • C. C. de Souza et al.

The program implementing heuristic MH resorts to the algorithm of Battiti
and Protasi [2001] to find solutions to the clique problem. The author’s code,
which was used in our implementation, can be downloaded from the web and
allows the setting of some parameters. Among them, the most relevant to us is
the maximum computation time. Our tests reveal that running the code with
this parameter set to 1s produce the same results as if we had fixed it to 10 or
15 s. Unless otherwise specified, all results exhibited here were obtained for a
maximum of computation time of 1s. This means that, the MH heuristic as a
whole had just a couple of seconds to seek a good solution.

The B&B and B&C codes that compute the IP models also had their compu-
tation times limited. In this case, the upper bound was set to 3600 s. B&B refers
to the basic algorithm implemented in CPLEX having the system Eqs. (1–6) as
input. The results of B&B are identified by the “P” extension in the instance
names. The B&C algorithms are based on a naive implementation. The only
inequalities we generated on-the-fly are the PART inequalities. The separation
routine from Figure 6 is run until it is unable to encounter an inequality that is
violated by the solution of the current relaxation. Thus, new PART constraints
are generated exhaustively, i.e., no attempt is made to prevent the well-known
stalling effects observed in cutting-plane algorithms. A simple rounding heuris-
tic is also used to look for good primal bounds. The heuristic is executed at every
node of the enumeration tree. The two versions of B&C differ only in the input
model, which may or may not include the set of CBS inequalities. As mentioned
earlier, when used, the CBS inequalities are all generated a priori by a sim-
ple backtracking algorithm. The first (second) version B&C algorithm uses the
system Eqs. (1–6) (amended with CBS inequalities) as input and its results are
identified by the “HC” (“HCS”) extension in the instance names. It should be
noticed that, both in B&B and in B&C algorithms, the generation of standard
valid inequalities provided by the solver is allowed. In fact, Gomory cuts were
added by CPLEX in all cases, but had almost no impact on the dual bounds.

Tables I and II summarize the characteristics of the instances in our data
set. Columns “k” and “�” refer, respectively, to the number of vertices and labels
of the output graph G. Columns “Gi”, i ∈ {1, . . . , 4} display the features of each
input graph of the instance. For each input graph, the columns “ki,” “ei,” and
“�i” denote the number of vertices, arcs, and different labels, respectively.

Table III exhibits the results we obtained. The first column contains the
instance name followed by the extension specifying the algorithm to which
the data in the row correspond. The second column reports the CPU time in
seconds. We do not report on the specific time spent on generating cuts since it
is negligible compared to that of the enumeration procedure. Third and fourth
columns contain, respectively, the dual and primal bounds when the algorithm
stopped. Columns “MH” and “BMH” display the values of the solutions obtained
by Moreano’s heuristic the bipartite matching heuristic, respectively. Column
“g1” gives the percentage gap between the value in column “MH” and that
of column “DB” rounded up. Similarly, column “g2” gives the percentage gap
between the values in columns “BMH” and “MH.” Finally, the last two columns
show, respectively, the total numbers of nodes explored in the enumeration tree
and of PART inequalities added to the model. For each instance, the largest dual

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 15

Table I. Characteristics of the Instances

Instance Name k �
∑

ki
∑

ei

adpcm 108 20 175 241

epic decode 24 6 59 56

epic encode 39 8 76 83

g721 57 6 76 84

gsm decode 92 8 195 209

gsm encode 48 8 126 143

jpeg decode 104 5 162 179

jpeg encode 47 7 105 119

mpeg2 decode 34 6 82 85

mpeg2 encode 32 7 99 114

pegwit 41 7 94 104

Table II. Characteristics of the Instances (Cont.)

G1 G2 G3 G4

Instance Name k1 e1 �1 k2 e2 �2 k3 e3 �3 k4 e4 �4

adpcm 97 138 20 78 103 18 – – – – – –

epic decode 16 17 3 16 15 4 15 13 4 12 11 5

epic encode 36 43 7 16 17 3 13 13 5 11 10 4

g721 57 66 6 19 18 4 – – – – – –

gsm decode 91 102 8 65 69 8 20 20 5 19 18 4

gsm encode 46 57 7 41 48 7 20 21 5 19 17 6

jpeg decode 101 111 5 61 68 5 – – – – – –

jpeg encode 46 55 7 31 32 5 28 32 6 – – –

mpeg2 decode 32 31 4 24 29 6 15 15 4 11 10 4

mpeg2 encode 31 39 6 30 37 6 20 22 5 18 16 5

pegwit 40 46 7 27 28 6 27 30 5 – – –

bound and the smallest gap is indicated in bold. Ties are broken by the smallest
CPU time.

By inspecting Table III, one can see that MH produces very good solutions.
It optimally solved 4 out of the 11 instances. We took into account here that
further testing with the IP codes proved that 60 is, indeed, the optimal value
of instance pegwit. When a gap also, existed between MH’s solution and the
best dual bound, it always remained below 10%. Additional runs with larger
instances showed that the gaps tend to increase, although they never exceeded
30%. However, this is more likely because of the steep decrease in performance
of the IP codes than to MH. Instance epic decode was the only case where an
optimal solution was found that did not coincide with that generated by MH.
Nevertheless, the gap observed in this problem can be considered quite small:
3.4%.

Moreover, from column “g2,” we conclude that MH is much more efficient
than BMH since it produced better results in all instances in our dataset. This
is in accordance with what was observed in Moreano et al. [2002] on a smaller
benchmark. To calculate these solutions, MH spent no more than 15 s on each
problem and mpeg2 encode was the only instance in which the clique procedure
was allowed to run for more than 10 s. On the other hand, BMH proved to be
much faster than MH since the computation time always remained below 1.5 s.

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

16 • C. C. de Souza et al.

Table III. Computational Results

Instance.extension Time DB PB MH BMH g1 g2 #Nodes #Cuts

adpcm.P 3604 165.5 170 168 221 1.2 31.5 9027 0

adpcm.HC 37 168.0 168 0.0 1 813

adpcm.HCS 78 168.0 168 0.0 1 848

epic decode.P 5 33.0 33 33 48 0.0 45.5 143 0

epic decode.HC 0 33.0 33 0.0 1 90

epic decode.HCS 0 33.0 33 0.0 1 74

epic encode.P 2221 59.0 59 61 71 3.4 16.4 299908 0

epic encode.HC 3603 57.0 60 7.0 1055 4108

epic encode.HCS 3082 59.0 59 3.4 1197 4016

g721 .P 460 70.0 70 70 84 0.0 20.0 50702 0

g721 .HC 880 70.0 70 0.0 371 1673

g721 .HCS 112 70.0 70 0.0 116 1259

gsm decode.P 3616 105.8 – 120 187 13.2 55.8 1601 0

gsm decode.HC 3614 112.1 – 6.2 0 3655

gsm decode.HCS 3607 110.3 – 8.1 0 2002

gsm encode.P 3604 67.1 80 72 108 5.9 50.0 23346 0

gsm encode.HC 3606 68.2 73 4.4 97 6126

gsm encode.HCS 3604 68.1 79 4.4 23 6094

jpeg decode.P 3606 117.7 163 137 171 16.1 24.8 10651 0

jpeg decode.HC 3620 126.2 – 7.9 1 4569

jpeg decode.HCS 3623 125.1 – 8.7 1 3669

jpeg encode.P 3608 61.0 83 71 97 16.4 36.6 63302 0

jpeg encode.HC 3604 62.9 – 12.7 1 5419

jpeg encode.HCS 3604 64.1 – 9.2 1 5620

mpeg2 decode.P 3613 47.0 51 51 70 6.3 37.3 220173 0

mpeg2 decode.HC 3603 46.0 51 8.5 310 4657

mpeg2 decode.HCS 3605 47.1 52 6.3 455 4555

mpeg2 encode.P 3608 46.5 60 53 80 12.8 50.9 86029 0

mpeg2 encode.HC 3603 47.6 55 10.4 68 7420

mpeg2 encode.HCS 3603 48.7 55 8.2 115 7778

pegwit.P 3607 58.2 60 60 82 1.7 36.7 81959 0

pegwit.HC 3604 55.7 62 7.2 289 6920

pegwit.HCS 3604 57.8 61 3.5 202 5843

Despite its larger computational times, MH remains a fast algorithm and its
use is justified by large gains in the quality of the solutions.

Comparing the gaps computed by the alternative IP codes, we see that the
two B&C codes outperform the pure B&B code. Only in two instances the pure
B&B code beat both code-generation codes. The strength of inequalities PART
and CBS can be assessed by checking the number of nodes explored during the
enumeration. This number is drastically reduced when cuts are added, as it can
be observed, for instance, for problems adpcm and epic decode, where the use
of cuts allowed the computation of the optimum at the root node, while B&B
explored thousands or hundreds of nodes. Instance g721 was also solved to op-
timality by the B&C codes with much fewer nodes than B&B, however, when
the CBS inequalities were not added a priori, this gain did not translate into an
equivalent reduction in computation time. In the remaining cases, where opti-
mality could not be proved, we again observed that B&C codes computed better

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 17

dual bounds whereas the number of nodes visited were orders of magnitude
smaller than that of B&B.

7. CONCLUSIONS AND FUTURE RESEARCH

In this paper we presented an IP formulation for DPM and introduced valid in-
equalities to tighten this model. Based on this study, we implemented B&C and
B&B algorithms to assess the performance of two heuristics for the problem.
Moreano’s heuristic (MH) was confirmed to be among the best available sub-
optimal algorithms available for DPM, beating the popular bipartite matching
heuristic (BMH) in all tested instances. Although MH required a larger compu-
tational time than BMH, it still used just a few seconds of CPU. The extra time
needed relative to BMH was largely compensated by the gain in the quality of
the solutions. Besides, the lower bounds produced with the IP model showed
that the cost of the solutions achieved by MH are very close to the optimal
values.

The cut-generation codes also proved to be a valuable tool to solve some
instances to optimality. However, better and less naive implementations are
possible that may make them more attractive. These improvements are likely
to be achieved, at least in part, by adding tuning mechanisms that allow for a
better trade off between cut generation and branching. For instance, in prob-
lems gsm decode, jpeg decode, and jpeg encode (see Table III), the B&C codes
seemed to get stuck in cut generation, since they spent the whole computation
time and were still at the root node. Other evidences of the need of such tun-
ing mechanisms are given by instances pegwit and g721 were the pure B&B
algorithm, which was faster than at least one B&C code.

Of course, a possible direction of research would be to perform further poly-
hedral investigations, since they could give rise to new strong valid inequalities
for the IP model possibly resulting in better B&C codes. Another interesting
investigation would be to find what actually makes a DPM instance into a hard
one. To this end, we tried to evaluate which of the parameters displayed in
Tables I and II seemed to affect most the computation time of the IP codes.
However, our studies were inconclusive. Below we illustrate the difficulty of
doing such analysis.

Consider the last two instances in Table I, namely: mpeg2 encode and pegwit.
By inspecting the data in this table, one can see that output graph in both
cases has seven labels. In addition, the total number of vertices and arcs in the
input graphs are also very similar. However, the best duality gap displayed in
Table III is approximately five times larger for mpeg2 encode. This observation
apparently suggests that the number of labels is not determinant to evaluate
the hardness of an instance. On the other hand, these two instances have a
different number of input graphs. It is then legitimate to argue if the latter
parameter is not the one that is more related to the instance difficulty. Consider
the instances jpeg encode and pegwit, whose statistics in Table I are all very
close and have exactly the same number of input graphs. However, again, the
best duality gaps shown in Table III for these instances are related by a factor
of approximately 5.

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

18 • C. C. de Souza et al.

Thus, we conclude that the intrinsic structures of the input graphs are more
likely to affect the difficulty of an instance than the statistics that we considered
here.

ACKNOWLEDGMENTS

This work was supported by the Brazilian agencies FAPESP (grants 02/03584-
9, 1997/10982-0, 00/15083-9), CAPES (grants Bex04444/02-2, 0073/01-6) and
CNPq (grants 302588/02-7, 664107/97-4, 552117/02-1, 301731/03-9, 170710/99-
8).

REFERENCES

BATTITI, R. AND PROTASI, M. 2001. Reactive local search for the maximum clique problem. Algorith-
mica 29, 4 (April), 610–637. C++ code available at http://rtm.science.unitn.it/intertools/

clique/.

BONDALAPATI, K. AND PRASANNA, V. 2002. Reconfigurable computing systems. Proceedings of the
IEEE 90, 7 (July), 1201–1217.

BRISK, P., KAPLAN, A., AND SARRAFZADEH, M. 2004. Area-efficient instruction set synthesis for re-

configurable system-on-chip designs. In Proceedings of the Design Automation Conference (DAC).
395–400.

CALLAHAN, T., HAUSER, J., AND WAWRZYNEK, J. 2000. The Garp architecture and C compiler. IEEE
Computer 33, 4 (April), 62–69.

COMPTON, K. AND HAUCK, S. 2002. Reconfigurable computing: A survey of systems and software.

ACM Computing Surveys 34, 2 (June), 171–210.

DEHON, A. AND WAWRZYNEK, J. 1999. Reconfigurable computing: What, why, and implications for

design automation. In Proceedings of the Design Automation Conference (DAC). 610–615.

GAREY, M. AND JOHNSON, D. S. 1979. Computers and Intractability—A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA.

GEURTS, W., CATTHOOR, F., VERNALDE, S., AND DE MAN, H. 1997. Accelerator Data-path Synthesis
for High-Throughput Signal Processing Applications. Kluwer Academic Publishers. Boston, MA.

GRÖTSCHEL, M., LOVÁSZ, L., AND SCHRIJVER, A. 1981. The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica 1, 169–197.

HUANG, Z. AND MALIK, S. 2001. Managing dynamic reconfiguration overhead in systems-on-a-chip

design using reconfigurable data paths and optimized interconnection networks. In Proceedings
of the Design, Automation, and Test in Europe Conference (DATE). 735–740.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. Mediabench: a tool for evaluating and

synthesizing multimedia and communications systems. In Proceedings of the 30th Annual In-
ternational Symposium on Microarchitecture (Micro ’97). IEEE, Research Triangle Park, NC.

330–337. Benchmarks available at http://cares.icsl.ucla.edu/MediaBench/.

MATHUR, A. AND SALUJA, S. 2001. Improved merging of data path operators using information

content and required precision analysis. In Proceedings of the Design Automation Conference
(DAC). 462–467.

MOREANO, N., ARAUJO, G., HUANG, Z., AND MALIK, S. 2002. Datapath merging and interconnection

sharing for reconfigurable architectures. In Proceedings of the 15th International Symposium on
System Synthesis. 38–43.

MOREANO, N., ARAUJO, G., AND DE SOUZA, C. C. 2003. CDFG merging for reconfigurable architec-

tures. Tech. Rep. IC-03-18, Institute of Computing, University of Campinas SP, Brazil.

NEMHAUSER, G. L. AND WOLSEY, L. 1988. Integer and Combinatorial Optimization. Wiley, New

York.

PAPADIMITRIOU, C. H. AND STEIGLITZ, K. 1998. Combinatorial Optimization: Algorithms and Com-
plexity. Mineola, NY: Dover Publications.

SCHAUMONT, P., VERBAUWHEDE, I., KEUTZER, K., AND SARRAFZADEH, M. 2001. A quick safari through

the reconfiguration jungle. In Proceedings of the Design Automation Conference (DAC). 172–

177.

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

The Datapath Merging Problem in Reconfigurable Systems • 19

SCHMIT, H. ET AL. 2002. PipeRench: A virtualized programmable data path in 0.18 micron

technology. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC). 63–

66.

SHIRAZI, N., LUK, W., AND CHEUNG, P. 1998. Automating production of run-time reconfigurable

designs. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM). 147–156.

SINGH, H., LEE, M., LU, G., KURDAHI, F., BAGHERZADEH, N., AND FILHO, E. 2000. MorphoSys: An

integrated reconfigurable system for data-parallel and computation-intensive applications. IEEE
Transactions on Computers 49, 5 (May), 465–481.

WERF, A. ET AL. 1992. Area optimization of multi-functional processing units. In Proceedings of
the 1992 International Conference on Computer-Aided Design (ICCAD). 292–299.

WOLF, W. 2001. Computers as Components—Principles of Embedded Computing System Design.

Morgan Kaufmann, San Mateo, CA.

Received January, 2005; revised January, 2006; accepted Feburay, 2006

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.11, 2006.

