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Abstract. In this paper we investigate the datapath merging problem
(DPM) in reconfigurable systems. DPM is inNP-hard and it is described
here in terms of a graph optimization problem. We present an Integer
Programming (IP) formulation of DPM and introduce some valid in-
equalities for the convex hull of integer solutions. These inequalities form
the basis of a branch-and-cut algorithm that we implemented. This al-
gorithm was used to compute lower bounds for a set of DPM instances,
allowing us to assess the performance of the heuristic proposed by More-
ano et al. [1] which is among the best ones available for the problem.
Our computational experiments confirmed the efficiency of Moreano’s
heuristic. Moreover, the branch-and-cut algorithm also was proved to be
a valuable tool to solve small-sized DPM instances to optimality.

1 Introduction

It is well known that embedded systems must meet strict constraints of high-
throughput, low power consumption and low cost, specially when designed for
signal processing and multimedia applications [2]. These requirements lead to
the design of application specific components, ranging from specialized functional
units and coprocessors to entire application specific processors. Such components
are designed to exploit the peculiarities of the application domain in order to
achieve the necessary performance and to meet the design constraints.

With the advent of reconfigurable systems, the availability of large/cheap ar-
rays of programmable logic has created a new set of architectural alternatives for
the design of complex digital systems [3,4]. Reconfigurable logic brings together
the flexibility of software and the performance of hardware [5,6]. As a result, it
became possible to design application specific components, like specialized dat-
apaths, that can be reconfigured to perform a different computation, according
to the specific part of the application that is running. At run-time, as each por-
tion of the application starts to execute, the system reconfigures the datapath
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so as to perform the corresponding computation. Recent work in reconfigurable
computing research has shown that a significant performance speedup can be
achieved through architectures that map the most time-consuming application
kernel modules or inner-loops to a reconfigurable datapath [7,8,9].

The reconfigurable datapath should have as few and simple hardware blocks
(functional units and registers) and interconnections (multiplexors and wires)
as possible, in order to reduce its cost, area, and power consumption. Thus
hardware blocks and interconnections should be reused across the application
as much as possible. Resource sharing has also crucial impact in reducing the
system reconfiguration overhead, both in time and space.

To design such a reconfigurable datapath, one must represent each selected
piece of the application as a control/data-flow graph (CDFG) and merge them
together, synthesizing a single reconfigurable datapath. The control/data-flow
graph merging process enables the reuse of hardware blocks and interconnec-
tions by identifying similarities among the CDFGs, and produces a single data-
path that can be dynamically reconfigured to work for each CDFG. Ideally, the
resulting datapath should have the minimum area cost. Ultimately, this corre-
sponds to minimize the amount of hardware blocks and interconnections in the
reconfigurable datapath. The datapath merging problem (DPM) seeks such an
optimal merging and is known to be in NP-hard [10].

To minimize the area cost one has to minimize the total area required by both
hardware blocks and interconnections in the reconfigurable datapath. However,
since the area occupied by hardware blocks is typically much larger than that
occupied by the interconnections, the engineers are only interested in solutions
that use as few hardware blocks as possible. Clearly, the minimum quantity of
blocks required for each type of hardware block is given by the maximum number
of such block that is needed among all CDFGs passed at the input. The minimum
amount of hardware blocks in the reconfigurable datapath can be computed
as the sum of these individual minima. As a consequence, DPM reduces to
the problem of finding the minimum number of interconnections necessary to
implement the reconfigurable datapath.

Fig. 1 illustrates the concept of control/data-flow graph merging and the
problem we are tackling. For simplicity, the multiplexors, who select the inputs
for certain functional blocks, are not represented. The graphs G′ and G repre-
sent two mappings of the CDFGs G1 and G2. In both these mappings, vertices
a1 and a5 from G1 are mapped onto vertices b1 and b3 from G2, respectively,
while vertex a4 of G1 has no counterpart in G2. The difference between the two
mappings is that, in G′ vertex b2 of G2 is mapped onto vertex a2 of G1, while
it is mapped onto a3 in G. The mappings G′ and G are both feasible since they
only match hardware blocks that are logically equivalent. Though their recon-
figurable datapaths have the same amount of hardware blocks, in G′ no arcs are
overlapped while in G the arcs (a3, a5) and (b2, b3) coincide (see the highlighted
arc in Fig. 1). In practical terms, this means that one less multiplexor is needed
and, therefore, G is a better solution for DPM than G′.
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Fig. 1. Example of a DPM instance.

In this paper we present an Integer Programming (IP) formulation for DPM
and introduce some valid inequalities for the convex hull of integer solutions.
These inequalities form the basis of a branch-and-cut (B&C) algorithm that
we implemented. The contributions of our work are twofold. First the B&C
algorithm was able to compute lower bounds for a set of DPM instances, allowing
us to assess the performance of the heuristic proposed by Moreano et al. [1], one
of the best suboptimal algorithms available for DPM. Secondly, the B&C also
proved to be a valuable tool to solve small-sized DPM instances to optimality.

The paper is organized as follows. The next section gives a formal descrip-
tion of DPM in terms of Graph Theory. Section 3 briefly discusses Moreano’s
heuristic. Section 4 presents an IP formulation for DPM, together with some
classes of valid inequalities that can be used to tighten the original model. In
Sect. 5 we report our computational experiments with the B&C algorithm and
analyze the performance of Moreano’s heuristic. Finally, in Sect. 6 we draw some
conclusions and point out to future investigations.

2 A Graph Model for DPM

In this section we formulate DPM as a graph optimization problem. The input
is assumed to be composed of n datapaths corresponding to application loops
of a computer program. The goal is to find a merging of those datapaths into a
reconfigurable one that is able to work as each individual loop datapath alone and
has as least hardware blocks (functional units and registers) and interconnections
as possible. That is, the reconfigurable datapath must be capable of performing
the computation of each loop, multiplexed in time.

The i-th datapath is modeled as a directed graph Gi = (Vi, Ei), where the
vertices in Vi represent the hardware blocks in the datapath, and the arcs in Ei

are associated to the interconnections between the hardware blocks. The types of
hardware blocks (e.g. adders, multipliers, registers, etc) are modeled through a
labeling function πi : Vi → T, where T is the set of labels representing hardware
block types. For each vertex u ∈ Vi, πi(u) is the type of the hardware block
associated to u. A reconfigurable datapath representing a solution of DPM can
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also be modeled as a directed graph G = (V, E) together with a labeling function
π : V → T. In the final graph G, given i ∈ {1, . . . , n}, there exists a mapping µi

which associates every vertex of Vi to a distinct vertex in V . This mapping is
such that, if v ∈ Vi, u ∈ V and µi(v) = u, then πi(v) = π(u). Moreover, whenever
the arc (v, v′) is in Ei, the arc (µi(v), µi(v′)) must be in E. If G is an optimal
solution for DPM it satisfies two conditions: (a) for all T ∈ T, the number of
vertices of G with label T is equal to the maximum number of vertices with that
label encountered across all datapaths Gi; and (b) |E| is minimum. Condition
(a) forces the usage of as few hardware blocks as possible in the reconfigurable
datapath. As cited before, this is a requirement of the practitioners.

3 Moreano’s Heuristic for DPM

Since DPM is NP-hard, it is natural to devise suboptimal algorithms that can
solve it fast, preferably in polynomial time. In Moreano et al. [1], the authors
proposed a heuristic for DPM and give comparative results showing that it out-
performs other heuristics presented in the literature. Moreano’s heuristic (MH)
is briefly described in this section. In Sect. 5, rather than assess the efficiency of
MH using upper bounds generated with other methods, we compare its solutions
with strong lower bounds computed via the IP model discussed in Sect. 4.

For an integer k > 1, define k-DPM as the DPM problem whose input is
made of k loop datapaths. Thus, the original DPM problem would be denoted
by n-DPM but the former notation is kept for simplicity. MH is based on an
algorithm for 2-DPM, here denoted by 2DPMalg, that is presented below.

Let G1 = (V1, E1) and G2 = (V1, E1) be the input graphs and π1 and π2 their
respective labeling functions. A pair of arcs {(u, v), (w, z)} in E1 × E2 is said to
form a feasible mapping if π1(u) = π2(w) and π1(v) = π2(z). The first step of
2DPMalg constructs the compatibility graph H = (W, F ) of G1 and G2.The graph
H is undirected. The vertices in W are in one-to-one correspondence with the
pairs of arcs in E1×E2 which form feasible mappings. Given two vertices a and b
in W represented by the corresponding feasible mappings, say a = {(u, v), (w, z)}
and b = {(u′, v′), (w′, z′)}, the edge (a, b) is in F except if one of the following
conditions hold: (i) u = u′ and w �= w′ or (ii) v = v′ and z �= z′ or (iii) u �= u′ and
w = w′ or (iv) v �= v′ and z = z′. If the edge (a, b) is in F , the feasible mappings
that they represent are compatible, explaining why H is called the compatibility
graph. Now, as explained in [1], an optimal solution for 2-DPM can be computed
by solving the maximum clique problem on H. The solution of DPM is easily
derived from an optimal clique of H since the feasible mappings associated to
the vertices of this graph provide the proper matchings of the vertices of G1 and
G2. However, it is well-known that the clique problem is NP-hard. Thus, the
approach used in MH is to apply a good heuristic available for cliques to solve
2-DPM. Later in Sect. 5, we discuss how this is done in practice.

Before we continue, let us give an example of the ideas discussed in the
preceding paragraph. To this end, consider the graphs G1 and G2 in Fig. 2 rep-
resenting an instance of 2-DPM. According to the notation used in this figure,
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A11 B11 A21 B21

C21 A23A22C11A12
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Fig. 2. Example of a 2-DPM instance.

each vertex u in a graph Gi is identified with a label Tij , which denotes that u is
the j-th vertex of Gi and πi(u) = T . For instance, A12 is the second vertex of G1
which have type A. This notation is used to other figures representing DPM in-
stances and solutions throughout. Figure 3 depicts the compatibility graph H of
G1 and G2. Consider, for example, the feasible mappings (A11, B11), (A21, B21)
(vertex w1 in H) and (B11, C11), (B21, C21) (vertex w5 in H). For those map-
pings, no vertex from G1 maps onto two distinct vertices in G2 and vice-versa.
As a result, these two mapping are compatible, and an edge (w1, w5) is required
in H. On the other hand, no edge exists in H between vertices w2 and w3. The
reason is that the mappings represented by these vertices are incompatible, since
otherwise vertex A11 in G1 would map onto both A22 and A23 in G2.

A maximum clique of the compatibility graph H in Fig. 2 is given by vertices
w1, w4 and w5. An optimal solution G for 2-DPM can be easily built from this
clique. The resulting graph G is shown in Fig. 3 and is obtained as follows. First,
we consider the vertices of the clique. For instance, for vertex w1 represents the
feasible mapping {(A11, B11), (A21, B21)}, we add to G two vertices u1 and u2
corresponding respectively to the mapped vertices {A11, A21} and {B11, B21}.
Moreover, we also include in G the arc (u1, u2) to represent the feasible mapping
associated to w1. Analogous operations are now executed for vertices w4 and w5.
The former vertex is responsible for the addition of vertices u4 and u5 and of arc
(u4, u5) in G while the latter gives rise to the addition of arc (u2, u4). Finally,
we add to G the vertex u3 corresponding to the non-mapped vertex A22 from

A11B11
A22B21

A12C11
A23C21

A11C11
A23C21

A11B11
A21B21

B11C11
B21C21

A11
A21

B11
B21

C11
C21 A23

A12

w1

w2

w3

w4 w5

A22

u1

u3
u4

G

u5

u2

H

Fig. 3. Compatibility graph and an optimal solution for the 2-DPM instance of Fig. 2.
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G2, and the arcs (u1, u4), (u4, u3) and (u3, u2) corresponding respectively to arcs
(A11, C11) from G1 and arcs (C21, A22) and (A22, B21) from G2.

Back to MH, we now show how it uses algorithm 2DPMalg as a building-block
for getting suboptimal solutions for DPM. MH starts by applying 2DPMalg to
graphs G1 and G2 with labeling functions π1 and π2, respectively. The output
is a graph G and a labeling function π. At each iteration i, i ∈ {3, . . . , n}, MH
applies 2DPMalg to graphs G and Gi and their functions π and πi. After all these
pairwise matchings have been completed, the graph G is returned.

4 Integer Linear Programming Exact Solution

A natural question that arises when one solves a hard problem heuristically
is how far the solutions are from the true optimum. For 2-DPM, algorithm
2DPMalg from Sect. 3 can be turned into an exact method, provided that an exact
algorithm is used to find maximum cliques. However, this approach only works
when merging two datapaths. A naive extension of the method to encompass the
general case requires the solution of hard combinatorial problems on large-sized
instances which cannot be handled in practice. As an alternative, in this section
we derive an IP model for DPM. The aim is to compute that model to optimality
via IP techniques whenever the computational resources available permit. When
this is not the case, we would like at least to generate good lower bounds that
allow us to assess the quality of the solutions produced by MH.

Let us denote by αi the i-th type of hardware block and assume that T has
m elements, i.e., T = {α1, . . . , αm}. Moreover, for every i ∈ {1, . . . , n} and
every t ∈ {1, . . . , m}, let us define bit as the number of vertices in Vi associated
with a hardware block of type αt and let q(t) = max{bit : 1 ≤ i ≤ n}. Then,
the solutions of DPM are graphs with k vertices, where k =

∑m
t=1 q(t). In the

remainder of the text, we denote by K and N the sets {1, . . . , k} and {1, . . . , n},
respectively. Besides, we assume that for every hardware block of type αt in T

there exists i ∈ N and u ∈ Vi such that πi(u) = αt.
When V is given by {v1, v2, . . . , vk}, we can assume without loss of generality

that π(v1) = . . . = π(vq(1)) = α1, π(vq(1)+1) = . . . = π(vq(1)+q(2)) = α2 and so
on. In other words, V is such that the first q(1) vertices are assigned to label
α1, the next q(2) vertices are assigned to label α2 and so on. This assumption
reduces considerably the symmetry of the IP model increasing its computability.
Below we use the notation Jt to denote the subset of indices in K for which
π(vi) = αt (e.g., J1 = {1, . . . , q(1)} and J2 = {q(1) + 1, . . . , q(1) + q(2)}).

We are now ready to define the binary variables of our model. For every triple
(i, u, j) with i ∈ N , u ∈ Vi and j ∈ J(πi(u)), let xuij be one if and only if the
vertex u of Vi is mapped onto the vertex vj of V . Moreover, for any pair (j, j′)
of distinct elements in K, let yjj′ be one if and only if there exists i ∈ N and an
arc in Ei such that one of its end-vertices is mapped onto vertex vj of V while
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the other end-vertex is mapped onto vj′ . The IP model is then the following.

min z =
∑

∀j

∑
∀j′ �=j yjj′ (1)

xuij + xu′ij′ − yjj′ ≤ 1 ∀i ∈ N, ∀(u, u′) ∈ Ei, ∀j ∈ J(πi(u)),

∀j′ ∈ J(πi(u′)), j �= j′ (2)
∑

u∈Vi|j∈J(πi(u)) xuij ≤ 1 ∀i ∈ N, ∀j ∈ K (3)
∑

j∈J(πi(u)) xuij = 1 ∀i ∈ N, ∀u ∈ Vi (4)

yjj′ ∈ {0, 1} ∀j, j′ ∈ K, j �= j′ (5)

xuij ∈ {0, 1} ∀i ∈ N, ∀u ∈ Vi, ∀j ∈ J(πi(u)) (6)

Equation (1) expresses the fact that an optimal solution to DPM is a graph
with as few arcs as possible. Constraints (2) force the existence of arcs in the
output graph. Constraints (3) avoid multiple vertices in one input graph to be
mapped to a single vertex of the output graph. Finally, (4) guarantees that any
vertex in any input graph is mapped to exactly one vertex of V .

Notice that (5) can be replaced by inequalities of the form 0 ≤ yjj′ ≤ 1 for
all j �= j′ with (j, j′) ∈ K ×K. This is so because the objective function together
with (2) force the y variables to assume values in the limits of the interval [0, 1]
and, therefore, to be integer-valued. This remark is important for computational
purposes. The most successful algorithms implemented in commercial solvers for
IP are based on branch-and-bound (B&B) algorithms. The size of the solution
space increases exponentially with the number of integer variables in the model.
Thus, relaxing the integrality constraints on the y variables in our model, we
reduce the search space and increase the chances of success of the algorithm.

The solution of hard combinatorial problems through IP algorithms relies
largely on the quality of the dual bounds produced by the linear relaxation of
the model at hand. To improve the dual bounds, the relaxation can be amended
with additional constraints that are valid for integer solutions of the relaxation
but not for all the continuous ones. This addition of valid inequalities tightens
the relaxation for its feasibility set strictly decreases. The new constraints, typ-
ically chosen from a particular class of valid inequalities, can be either included
a priori in the model, which is then solved by a standard B&B algorithm, or
generated on the fly during the enumeration procedure whenever they are vio-
lated by the solution of the current relaxation. The latter method gives rise to
B&C algorithms for IP. Quite often the use of B&C is justified by the num-
ber of potential inequalities that can be added to the model which, even for
limited classes of valid inequalities, is exponentially large. On the other hand,
when inequalities are generated on the fly, algorithms that search for violated
inequalities are needed. These algorithms solve the so-called separation problem
for classes of valid inequalities and are named separation routines. For a thor-
ough presentation of the Theory of Valid Inequalities and IP in general, we refer
to the book by Nemhauser and Wolsey [11]. In the sequel we present two classes
of valid inequalities that we use to tighten the formulation given in (1)-(6).
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4.1 The Complete Bipartite Subgraph (CBS) Inequalities

The idea is to strengthen (2) using (3). This is done through special subgraphs of
the input graphs. Given a directed graph D, we call a subgraph H = (W1, W2, F )
a CBS of D if, for every pair of vertices {w1, w2} in W1 × W2, (w1, w2) is in F .
Now, consider an input graph Gi, i ∈ N , of a DPM instance and two distinct
labels αt1 , αt2 ∈ T. Let Ht1,t2

i = (V t1
i , V t2

i , Et1,t2
i ) be a CBS of Gi such that all

vertices in V t1
i (V t2

i ) have label αt1 (αt2). Suppose that Ht1,t2
i is maximal with

respect to vertex inclusion. Assume that vj and vj′ are two vertices in V , the
vertex set of the resulting graph G, with labels αt1 and αt2 , respectively. The
CBS inequality associated to Ht1,t2

i , vj and vj′ is
∑

u∈V
t1

i

xuij +
∑

v∈V
t2

i

xvij′ − yjj′ ≤ 1. (7)

Theorem 1. (7) is valid for all integer solutions of the system (2)-(6).

Proof. Due to (3), the first summation in the left-hand side (LHS) of (7) cannot
exceed one. A similar result holds for the second summation. Thus, if an integer
solution exists violating (7), both summations in the LHS have to be one. But
then, there would be a pair of vertices {u, u′} in V t1

i ×V t2
i such that u is mapped

onto vertex vj and u′ onto vertex vj′ . However, as Ht1,t2
i is a CBS of Gi, (vj , vj′)

must be an arc of E, the arc set of the output graph G, i.e., yjj′ is one. ��
Clearly, if (u, u′) is not a maximal CBS of Gi, then (2) is dominated by some

inequality in (7) and, therefore, superfluous. Our belief is that the number of
CBS inequalities is exponentially large which, in principle, would not recommend
to add them all to the initial IP model. However, the DPM instances we tested
reveal that, in practical situations, this amount is actually not too large and the
CBS inequalities can all be generated via a backtracking algorithm. This allows
us to test B&B algorithms on models with all these inequalities present.

4.2 The Partition (PART) Inequalities

The next inequalities generalize (2). Consider the i-th input graph Gi = (Vi, Ei),
i ∈ {1, . . . , n}. Let u and u′ be two vertices in Vi with labels α and α′, respec-
tively, with α �= α′ and (u, u′) ∈ Ei. Again assume that G = (V, E) is the output
graph and that vj is a vertex of V with label α. Finally, suppose that A and
B form a partition of the set J(πi(u′)) (see definition in Sect. 4). The PART
inequality corresponding to u, u′, vj , A and B is

xuij −
∑

j′∈A

yjj′ −
∑

j′∈B

xu′ij′ ≤ 0 (8)

Theorem 2. (8) is valid for all integer solutions of the system (2)-(6).
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Proof. If u′ is mapped onto a vertex vj′ of the resulting graph G and j′ is in
B, (8) reduces to xuij − ∑

j′∈A yjj′ ≤ 1 which is obviously true since xuij ≤ 1
and yjj′ ≥ 0 for all j′ ∈ A. On the other hand, if u′ is mapped onto a vertex vj′

of G with j′ in A, the last summation in (8) is null and the inequality becomes
xuij − ∑

j′∈A yjj′ ≤ 0. If vertex u is not mapped onto vertex vj , the latter
inequality is trivially satisfied. If not, then necessarily there must be an arc in
G joining vertex vj to some vertex vj′ of G with j′ in A. This implies that the
second summation in (8) is at least one and, therefore, the inequality holds. ��

Notice that using (4) we can rewrite (8) as xuij−
∑

j′∈A yjj′+
∑

j′∈A xu′ij′ ≤ 1
which, for A = {j′}, is nothing but (2). Moreover, since the size of J(πi(u′)), in
the worst case, is linear in the total number of vertices of all input graphs, there
can be exponentially many PART inequalities. However, the separation problem
for these inequalities can be solved in polynomial time. This is the ideal situation
for, according to the celebrated Grötschel-Lovász-Schrijver theorem [12], the dual
bound of the relaxation of (2)-(4) and all inequalities in (8) is computable in
polynomial time using the latter inequalities as cutting-planes. A pseudo-code
for the separation routine of (8) is shown in Fig. 4 and is now explained.

Given an input graph Gi, i ∈ N , consider two vertices u and u′ such that
(u, u′) is in Gi and a vertex vj of G whose label is identical to that of u. Now, let
(x�, y�) be an optimal solution of a linear relaxation during the B&C algorithm.
The goal is to find the partition of the set J(πi(u′)) that maximizes the LHS of
(8). It can be easily verified that, with respect to the point (x�, y�) and the input
parameters i, u, u′ and j, the choice made in line 4 ensures that the LHS of (8) is
maximized. Thus, if the value of LHS computed for the partition returned in line
7 is non positive, no constraint of the form (8) is violated, otherwise, (A, B) is
the partition that produces the most violated PART inequality for (x�, y�). This
routine is executed for all possible sets of input parameters. The number of such
sets can be easily shown to be polynomial in the size of the input. Moreover, since
the complexity of the routine is O(J(πi(u′))) which, in turn, is O(

∑
i∈N |Vi|), the

identification of all violated PART inequalities can be done in polynomial time.

procedure part-separation-routine(x�, y�, i, u, u′, j);
1 A← ∅;
2 B ← ∅;
3 for all j′ ∈ J(πi(u′)) do{
4 if (y�

jj′ ≤ x�
u′ij′) then A← A ∪ {j′};

5 else B ← B ∪ {j′};
6 }
7 return (A, B);
end part-separation-routine.

Fig. 4. Separation routine for PART inequalities.



554 C.C. de Souza et al.

5 Computational Experiments

We now report on our computational tests with a set of benchmark instances
generated from real applications from the MediaBench suite [13]. All programs
were implemented in C++ and executed on a DEC machine equipped with an
ALPHA processor of 675 MHz, 4 GB of RAM and running under a native Unix
operating system. The linear programming solver used was CPLEX 7.0 and sepa-
ration routines were coded as callback functions from the solver’s callable library.

The program implementing heuristic MH resorts to the algorithm of Battiti
and Protasi [14] to find solutions to the clique problem. The author’s code,
that was used in our implementation, can be downloaded from [15] and allows
the setting of some parameters. Among them, the most relevant to us is the
maximum computation time. Our tests reveal that running the code with this
parameter set to one second produce the same results as if we had fixed it to 10
or 15 seconds. Unless otherwise specified, all results exhibited here were obtained
for a maximum of computation time of one second. This means that, the MH
heuristic as a whole had just a couple of seconds to seek a good solution.

The B&B and B&C codes that compute the IP models also had their com-
putation times limited. In this case, the upper bound was set to 3600 seconds.
B&B refers to the basic algorithm implemented in CPLEX having the system
(1)-(6) as input. The results of B&B are identified by the “P” extension in the
instance names. The B&C algorithms are based on a naive implementation. The
only inequalities we generated on the fly are the PART inequalities. The separa-
tion routine from Fig. 4 is ran until it is unable to encounter an inequality that
is violated by the solution of the current relaxation. So, new PART constraints
are generated exhaustively, i.e., no attempt is done to prevent the well-known
stalling effects observed in cutting plane algorithms. A simple rounding heuris-
tic is also used to look for good primal bounds. The heuristic is executed at
every node of the enumeration tree. The two versions of B&C differ only in
the input model which may or may not include the set of CBS inequalities. As
mentioned earlier, when used, the CBS inequalities are all generated a priori by a
simple backtracking algorithm. The first (second) version B&C algorithm uses
the system (1)-(6) (amended with CBS inequalities) as input and its results are
identified by the “HC” (“HCS”) extension in the instance names. It should be
noticed that, both in B&B and in B&C algorithms, the generation of standard
valid inequalities provided by the solver is allowed. If fact, Gomory cuts were
added by CPLEX in all cases but had almost no impact on the dual bounds.

Table 1 summarizes the characteristics of the instances in our data set.
Columns “k” and “�” refer respectively to the number of vertices and labels
of the output graph G. Columns “Gi”, i ∈ {1, . . . , 4} display the features of
each input graph of the instance. For each input graph, the columns “ki”, “ei”
and “�i” denote the number of vertices, arcs and different labels respectively.

Table 2 exhibits the results we obtained. The first column contains the in-
stance name followed by the extension specifying the algorithm to which the
data in the row correspond. The second column reports the CPU time in seconds.
We do not report on the specific time spent on generating cuts since it is negli-
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Table 1. Characteristics of the instances.

Instance name k � G1 G2 G3 G4
∑

ki

∑
ei

k1 e1 �1 k2 e2 �2 k3 e3 �3 k4 e4 �4
adpcm 108 20 97 138 20 78 103 18 – – – – – – 175 241
epic decode 24 6 16 17 3 16 15 4 15 13 4 12 11 5 59 56
epic encode 39 8 36 43 7 16 17 3 13 13 5 11 10 4 76 83
g721 57 6 57 66 6 19 18 4 – – – – – – 76 84
gsm decode 92 8 91 102 8 65 69 8 20 20 5 19 18 4 195 209
gsm encode 48 8 46 57 7 41 48 7 20 21 5 19 17 6 126 143
jpeg decode 104 5 101 111 5 61 68 5 – – – – – – 162 179
jpeg encode 47 7 46 55 7 31 32 5 28 32 6 – – – 105 119
mpeg2 decode 34 6 32 31 4 24 29 6 15 15 4 11 10 4 82 85
mpeg2 encode 32 7 31 39 6 30 37 6 20 22 5 18 16 5 99 114
pegwit 41 7 40 46 7 27 28 6 27 30 5 – – – 94 104

gible compared to that of the enumeration procedure. Third and fourth columns
contain respectively the dual and primal bounds when the algorithm stopped.
Column “MH” displays the value of the solution obtained by Moreano’s heuris-
tic. To calculate these solutions, MH spent no more than 15 seconds in each
problem and mpeg2 encode was the only instance in which the clique procedure
was allowed to run for more than 10 seconds. Column “gap” gives the percent-
age gap between the value in column “MH” and that of column “DB” rounded
up. Finally, the last two columns show respectively the total numbers of nodes
explored in the enumeration tree and of PART inequalities added to the model.
For each instance, the largest dual bound and the smallest gap is indicated in
bold. Ties are broken by the smallest CPU time.

By inspecting Tab. 2, one can see that MH produces very good solutions. It
solved 4 out of the 11 instances optimally. We took into account here that further
testing with the IP codes proved that 60 is indeed the optimal value of instance
pegwit. When a gap existed between MH’s solution and the best dual bound,
it always remained below 10%. Additional runs with larger instances showed
that the gaps tend to increase, though they never exceeded 30%. However, this
is more likely due to the steep decrease in performance of the IP codes than
to MH. Instance epic decode was the only case where an optimal solution was
found that did not coincided with that generated by MH. Nevertheless, the gap
observed in this problem can be considered quite small: 3.39%.

Comparing the gaps computed by the alternative IP codes, we see that the
two B&C codes outperform the pure B&B code. Only in two instances the
pure B&B code beat both code generation codes. The strength of inequalities
PART and CBS can be assessed by checking the number of nodes explored during
the enumeration. This number is drastically reduced when cuts are added as
it can be observed, for instance, for problems adpcm and epic decode where
the use of cuts allowed the computation of the optimum at the root node while
B&B explored thousands or hundreds of nodes. Instance g721 was also solved
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Table 2. Computational results.

Instance.extension time DB PB MH gap #nodes #cuts
adpcm.P 3604 165.50 170 168 1.20 9027 0
adpcm.HC 37 168.00 168 168 0.00 1 813
adpcm.HCS 78 168.00 168 168 0.00 1 848
epic decode.P 5 33.00 33 33 0.00 143 0
epic decode.HC 0 33.00 33 33 0.00 1 90
epic decode.HCS 0 33.00 33 33 0.00 1 74
epic encode.P 2221 59.00 59 61 3.39 299908 0
epic encode.HC 3603 57.00 60 61 7.02 1055 4108
epic encode.HCS 3082 59.00 59 61 3.39 1197 4016
g721 .P 460 70.00 70 70 0.00 50702 0
g721 .HC 880 70.00 70 70 0.00 371 1673
g721 .HCS 112 70.00 70 70 0.00 116 1259
gsm decode.P 3616 105.75 – 120 13.21 1601 0
gsm decode.HC 3614 112.09 – 120 6.19 0 3655
gsm decode.HCS 3607 110.25 – 120 8.11 0 2002
gsm encode.P 3604 67.12 80 72 5.88 23346 0
gsm encode.HC 3606 68.24 73 72 4.35 97 6126
gsm encode.HCS 3604 68.16 79 72 4.35 23 6094
jpeg decode.P 3606 117.70 163 137 16.10 10651 0
jpeg decode.HC 3620 126.20 – 137 7.87 1 4569
jpeg decode.HCS 3623 125.10 – 137 8.73 1 3669
jpeg encode.P 3608 61.00 83 71 16.39 63302 0
jpeg encode.HC 3604 62.92 – 71 12.70 1 5419
jpeg encode.HCS 3604 64.10 – 71 9.23 1 5620
mpeg2 decode.P 3613 47.03 51 51 6.25 220173 0
mpeg2 decode.HC 3603 46.09 51 51 8.51 310 4657
mpeg2 decode.HCS 3605 47.06 52 51 6.25 455 4555
mpeg2 encode.P 3608 46.50 60 53 12.77 86029 0
mpeg2 encode.HC 3603 47.59 55 53 10.42 68 7420
mpeg2 encode.HCS 3603 48.67 55 53 8.16 115 7778
pegwit.P 3607 58.22 60 60 1.69 81959 0
pegwit.HC 3604 55.69 62 60 7.14 289 6920
pegwit.HCS 3604 57.77 61 60 3.45 202 5843

to optimality by the B&C codes with much fewer nodes than B&B, however,
when the CBS inequalities were not added a priori, this gain did not translate
into an equivalent reduction in computation time. In the remaining cases, where
optimality could not be proved, again we observed that B&C codes computed
better dual bounds whereas the number of nodes visited were orders of magnitude
smaller than that of B&B.
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6 Conclusions and Future Research

In this paper we presented an IP formulation for DPM and introduced valid
inequalities to tighten this model. Based on this study, we implemented B&C
and B&B algorithms to assess the performance of Moreano’s heuristic (MH) for
DPM, which is reported as being one of the best available for the problem. Our
computational results showed that MH is indeed very effective since it obtains
high-quality solutions in a matter of just a few seconds of computation.

The cut generation codes also proved to be a valuable tool to solve some
instances to optimality. However, better and less naive implementations are pos-
sible that may turn them more attractive. These improvements are likely to
be achieved, at least in part, by adding tuning mechanisms that allow for a
better trade off between cut generation and branching. For instance, in prob-
lems gsm decode, jpeg decode and jpeg encode (see Tab. 2), the B&C codes
seemed to get stuck in cut generation since they spent the whole computation
time and were still at the root node. Other evidences of the need of such tun-
ing mechanisms are given by instances pegwit and g721 were the pure B&B
algorithm was faster than at least one of the B&C codes.

Of course, a possible direction of research would be to perform further poly-
hedral investigations since they could give rise to new strong valid inequalities
for the IP model possibly resulting into better B&C codes. Another interest-
ing investigation would be to find what actually makes a DPM instance into a
hard one. To this end, we tried to evaluate which of the parameters displayed in
Tab. 1 seemed to affect most the computation time of the IP codes. However,
our studies were inconclusive. Probably, the structures of the input graphs play
a more important role than the statistics that we considered here.
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