
Branch Prediction



Introduction

Pipelined design:
Prevalent in today’s processor implementations

Overlaps the execution of consecutive instructions
Results in more efficient utilization of hardware
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Introduction (cont.)

However:
Pipelined structure causes delay of change,
when branch instructions reconfigures the pipeline operation

Remaining 
Stages……

Branch resolved here

May fetch/execute incorrect 
instructions into pipeline

Wrong instructions in pipeline need to be flushed (thrown away)



Introduction (cont.)

Ways to deal with branch delay

(1) Stall until branch resolved
(2) Or, expose branch delay as part of the architecture

(read: be sloppy and let the compiler do the work ☺ )

Let it be:

We can also attempt to predict the outcome of branches:

• Dynamic prediction:
processor does branch prediction on-the-fly

• Static prediction:
compiler predicts the behavior of branch operations in the 
program; can possibly do some optimizations for better 
performance

Simple Policy:
Always proceed as if branches are taken or not-taken
E.g. predict taken for all backward branches (loops), etc.



Branch Prediction: Dynamic and Static

Static Branch Prediction
Compiler statically predicts the properties of  
branches in the program

Dynamic Branch Prediction
Processors predict the outcome of branches 
dynamically, during program runtime



Branch Prediction
Dynamic Branch Prediction

Predict: BranchInstruction → Boolean

The processor computes a Predict function dynamically, 
during runtime:

A true/false value indicates predicted taken/not-taken 
outcome of the branch

Provides an estimate for the processor fetch stages: what 
to do next upon a branch?

[local predictor]

Allows more efficient pipeline operation
Exact branch resolving may be deep in pipeline, branch prediction can 
make more of the speculative fetch behavior be useful work



Branch Prediction
Dynamic Branch Prediction

Local Predictors: BranchInstruction → Boolean

Can be grouped by what predictions are based on:

Path Predictors: PastBranchHistory → Boolean

Two-level Predictors:   BranchInstruction × PastBranchHistory → Boolean



Branch Prediction
Dynamic Branch Prediction

Pattern History Tables (PHT)

Dominant approach for dynamic 
branch prediction

Some combinant of path 
history or current 
branch instruction



Branch Prediction
Dynamic Branch Prediction

General Taxonomy

Current Branch/Past 
branch history

Hash function PHT Lookup

Combinations of:
(1) Current Branch 

Instruction Address
(2) A number of past 

taken/not-taken 
history bits

Some well known 
hashes:

(1) Concatenation
(2) XOR (the 

“gshare”
predictor)



Branch Prediction
Dynamic Branch Prediction

Today’s State-of-the-art processors

(1) Higher clock frequencies through deeper pipelines
(2) Multiple issue:

Increases the performance hit for every lost cycle

Such designs calls for even MORE
accurate branch predictors

However, the issues are not so simple……



Large prediction resources:
More hardware budget going to PHTs

Single predictors are not enough!!

Branch Prediction
Dynamic Branch Prediction

Deep pipelines and multiple issue require better 
branch prediction:

Combined Tournament predictors
(multiple prediction schemes working against each other)



More hardware budget going to PHTs (larger area)
→ Longer latencies for them to work

Branch Prediction
Dynamic Branch Prediction

Branch Predictors get more accurate, but predicts SLOWER
Eventually, they start needing multiple cycles
Meaning: correct prediction may still incur a branch penalty 
(though smaller than mis-prediction)

Recent study reveals: Such trends performing slower overall
Sacrificing speed for precision does not pay off here……

Remaining 
Stages……

Branch resolved here

Branch Prediction obtained in this stage

4 cycle prediction latency Example:

May still have 3-cycle 
penalty

Refer to: “Reconsidering Complex Branch Predictors” Daniel A. Jiménez. HPCA-9 (2003)



Branch Prediction
Dynamic Branch Prediction

A Relatively Recent Approach:
Neural Branch Prediction

Neural Methods for Dynamic Branch Prediction.
Daniel A. Jiménez and Calvin Lin.
ACM Transactions on Computer Systems, Vol. 20, No. 4, November 2002

Fast Path-Based Neural Branch Prediction.
Daniel A. Jiménez. MICRO-36 (2003)



Branch Prediction
Static Branch Prediction

Two main issues:
(1) How do we obtain the static branch prediction 

information?
(2) Where can we apply such information?

(read: what compiler transformations can we do?)

The compiler at work:

Branch prediction analysis done by the compiler at 
static compile time

※ Note that dynamically translating JIT compilers are exceptions, since 
logically they form a part of the [virtual] machine, and is actually 
dynamic by nature.



Branch Prediction
Static Branch Prediction

Given a Control Flow Graph (CFG) of 
a program:

The directed graph edges represent 
control flow transfer among basic 
blocks

Static Branch Prediction attempts to estimate at 
compile time,
probabilistic information of each branch



Branch Analysis: obtaining the information

Static Branch Prediction

• Profile based
The use of profiling to obtain empirical program behavior 
statistics, including branch probability information
(Not really analysis “by” the compiler)

• Heuristics based
Through profile runs, we can derive patterns of program behavior
(e.g. loop branches are usually taken, etc.)
Such patterns can be formulated into compiler heuristics

• Machine learning
Instead of manually forming heuristics,
we can generate static branch predictors using training data 
obtained by profile runs, through the use of Machine Learning
This can provide a basis for analysis tests way better than
human engineered heuristics

Known approaches:



Static Branch Prediction
Profile based approach

Available data from profile runs (related to control flow):

Branch probability

Block frequency

Path/Trace statistics
How control flow behaves over the entire program

How much time the program spends in each basic 
block

How often the branch is taken/not-taken

Can obtain quite accurate information
But requires an additional “profile run” during program development



Static Branch Prediction
Heuristics based prediction

Profiling can be cumbersome to use

How can we predict branches without going 
through a whole profile?

Branch Prediction for Free. Thomas Ball, James R. Larus. PLDI 1993

Paper on this topic:

Observe from given profile data, general 
heuristics for statically predicting branches



Static Branch Prediction
Prediction by Machine Learning

Next step after heuristics based prediction

We have the profile data, instead trying to 
engineer heuristics by human observation, leave 
it to machine learning

Much more scalable to not easily observed rules, 
more detailed attributes of prediction, etc.

Corpus-Based Static Branch Prediction
Brad Calder, Dirk Grunwald, Donald Lindsay, James Martin, Michael Mozer, Ben Zorn
ACM SIGPLAN Notices, Volume 30, Issue 6 (June 1995)

Papers on this topic:

Evidence-Based Static Branch Prediction Using Machine Learning
Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, Ben Zorn 
ACM Transactions on Programming Languages and Systems (TOPLAS) Volume 19, Issue 1 (Jan. 1997)



Transformations: using the information

Static Branch Prediction

Particularly important in processors with less dynamic features (e.g. 
Itanium, some embedded RISCs, VLIW, DSP, etc.)

• Transformations with Speculative effects:
Global instruction scheduling

• Structural region forming
Superblock/Hyperblock formation
Region-based compilation

• Code layout
Basic block reordering
Software trace cache

• Branch hinting
Some instruction sets have branch hinting
capability usable by the compiler (e.g. Itanium)

• etc.
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