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There really are three different kinds of branches: 

Forward conditional branches - based on a run-time condition, the PC (Program 
Counter) is changed to point to an address forward in the instruction stream. 

Backward conditional branches - the PC is changed to point backward in the 
instruction stream. The branch is based on some condition, such as branching 
backwards to the beginning of a program loop when a test at the end of the loop states 
the loop should be executed again. 

Unconditional branches - this includes jumps, procedure calls and returns that have 
no specific condition. For example, an unconditional jump instruction might be coded in 
assembly language as simply "jmp", and the instruction stream must immediately be 
directed to the target location pointed to by the jump instruction, whereas a conditional 
jump that might be coded as "jmpne" would redirect the instruction stream only if the 
result of a comparison of two values in a previous "compare" instructions shows the 
values to not be equal. (The segmented addressing scheme used by the x86 
architecture adds extra complexity, since jumps can be either "near" (within a segment) 
or "far" (outside the segment). Each type has different effects on branch prediction 
algorithms.) 

A Closer Look At Branch Prediction
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Forward branches dominate backward branches by about 4 to 1 (whether 
conditional or not). About 60% of the forward conditional branches are taken, while 
approximately 85% of the backward conditional branches are taken (because of the 
prevalence of program loops). 
Just knowing this data about average code behavior, we could optimize our architecture 
for the common cases. A "Static Predictor" can just look at the offset (distance forward 
or backward from current PC) for conditional branches as soon as the instruction is 
decoded. 
Backward branches will be predicted to be taken, since that is the most common 
case. The accuracy of the static predictor will depend on the type of code being 
executed, as well as the coding style used by the programmer. 
These statistics were derived from the SPEC suite of benchmarks, and many PC 
software workloads will favor slightly different static behavior. 

Using Branch Statistics for Static Prediction
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Static Profile-Based Compiler Branch Misprediction Rates for 
SPEC92

Floating PointInteger

More Loops

Average 9%
Average 15%

(i.e 91% Prediction Accuracy)
(i.e 85% Prediction Accuracy)
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• Dynamic branch prediction schemes are different from static mechanisms because they 
utilize hardware-based mechanisms that use the run-time behavior of branches to make 
more accurate predictions than possible using static prediction.

• Usually information about outcomes of previous occurrences of branches (branching 
history)  is used to dynamically predict the outcome of the current branch.   Some of the 
proposed dynamic branch prediction  mechanisms include:

– One-level or Bimodal: Uses a Branch History Table (BHT),   a table of usually 
two-bit saturating counters which is indexed by a portion of the branch 
address (low bits of address). (First proposed mid 1980s)

– Two-Level Adaptive Branch Prediction. (First proposed early 1990s),
– MCFarling’s Two-Level Prediction with index sharing (gshare, 1993).
– Hybrid or Tournament Predictors: Uses a combinations of two or more  

(usually two) branch prediction mechanisms (1993).
• To reduce the stall cycles resulting from correctly predicted taken branches to zero 

cycles,  a Branch Target Buffer (BTB) that includes the addresses of conditional 
branches that were taken along with their targets is added to the fetch stage. 

Dynamic Conditional Branch Prediction
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How to further reduce the impact of branches on pipeline processor performance

Dynamic Branch Prediction:
Hardware-based schemes that utilize run-time 
behavior of branches to make dynamic predictions: 

Information about outcomes of previous occurrences 
of branches are used to dynamically predict the 
outcome of the current branch. 
Why?  Better branch prediction accuracy and 
thus fewer branch stalls

Branch Target Buffer (BTB):
A hardware mechanism that aims at reducing the 
stall cycles resulting from correctly predicted taken 
branches to zero cycles.
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To refine our branch prediction, we could create a buffer that is indexed by the low-order 
address bits of recent branch instructions. In this BHB (sometimes called a "Branch History 
Table (BHT)"), for each branch instruction, we'd store a bit that indicates whether the branch 
was recently taken. A simple way to implement a dynamic branch predictor would be to check 
the BHB for every branch instruction. If the BHB's prediction bit indicates the branch should 
be taken, then the pipeline can go ahead and start fetching instructions from the new address 
(once it computes the target address). 

By the time the branch instruction works its way down the pipeline and actually causes a 
branch, then the correct instructions are already in the pipeline. If the BHB was wrong, a 
"misprediction" occurred, and we'll have to flush out the incorrectly fetched instructions and 
invert the BHB prediction bit. 

Dynamic Branch Prediction with a Branch History Buffer (BHB)
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Dynamic Branch Prediction with a Branch History Buffer (BHB)
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It turns out that a single bit in the BHB will be wrong twice for a loop--once on the 
first pass of the loop and once at the end of the loop. We can get better prediction 
accuracy by using more bits to create a "saturating counter" that is incremented on 
a taken branch and decremented on an untaken branch. It turns out that a 2-bit 
predictor does about as well as you could get with more bits, achieving anywhere 
from 82% to 99% prediction accuracy with a table of 4096 entries. 
This size of table is at the point of diminishing returns for 2 bit entries, so there isn't 
much point in storing more. Since we're only indexing by the lower address bits, 
notice that 2 different branch addresses might have the same low-order bits and 
could point to the same place in our table--one reason not to let the table get too 
small. 

Refining Our BHB by Storing More Bits
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There is a further refinement we can make to our BHB by correlating the behavior of 
other branches. Often called a "Global History Counter", this "two-level predictor" 
allows the behavior of other branches to also update the predictor bits for a particular 
branch instruction and achieve slightly better overall prediction accuracy. One 
implementation is called the "GShare algorithm". 
This approach uses a "Global Branch History Register" (a register that stores the 
global result of recent branches) that gets "hashed" with bits from the address of the 
branch being predicted. The resulting value is used as an index into the BHB where 
the prediction entry at that location is used to dynamically predict the branch direction. 
Yes, this is complicated stuff, but it's being used in several modern processors. 

Two-Level Predictors and the GShare Algorithm
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Two-Level Predictors and the GShare Algorithm

Combined branch prediction*
Scott McFarling proposed combined branch prediction in his 1993 paper 2. Combined branch prediction
is about as accurate as local prediction, and almost as fast as global prediction.
Combined branch prediction uses three predictors in parallel: bimodal, gshare, and a bimodal-like 
predictor to pick which of bimodal or gshare to use on a branch-by-branch basis. The choice predictor 
is yet another 2-bit up/down saturating counter, in this case the MSB choosing the prediction to use. 
In this case the counter is updated whenever the bimodal and gshare predictions disagree, to favor 
whichever predictor was actually right.
On the SPEC'89 benchmarks, such a predictor is about as good as the local predictor.
Another way of combining branch predictors is to have e.g. 3 different branch predictors, and merge 
their results by a majority vote.
Predictors like gshare use multiple table entries to track the behavior of any particular branch. 
This multiplication of entries makes it much more likely that two branches will map to the same 
table entry (a situation called aliasing), which in turn makes it much more likely that prediction 
accuracy will suffer for those branches. Once you have multiple predictors, it is beneficial to arrange 
that each predictor will have different aliasing patterns, so that it is more likely that at least one 
predictor will have no aliasing. Combined predictors with different indexing functions for the different 
predictors are called gskew predictors, and are analogous to skewed associative caches used 
for data and instruction caching.

* From : http://en.wikipedia.org/wiki/Branch_prediction



12

ECE – 684
Branch
Prediction

In addition to a large BHB, most predictors also include a buffer that stores the actual target 
address of taken branches (along with optional prediction bits). This table allows the CPU to 
look to see if an instruction is a branch and start fetching at the target address early on in 
the pipeline processing. By storing the instruction address and the target address, even 
before the processor decodes the instruction, it can know that it is a branch. The figure 
below shows an implementation of a BTB. 
A large BTB can completely remove most branch penalties (for correctly-predicted 
branches) if the CPU looks far enough ahead to make sure the target instructions are pre-
fetched. Using a Return Address Buffer to predict the return from a subroutine One 
technique for dealing with the unconditional branch at the end of a subroutine is to create a 
buffer of the most recent return addresses. 
There are usually some subroutines that get called quite often in a program, and a return 
address buffer can make sure that the correct instructions are in the pipeline after the return 
instruction. 

Using a Branch Target Buffer (BTB) to Further Reduce the 
Branch Penalty
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Branch Target Buffer (BTB)

• Effective branch prediction requires the target of the branch at an early 
pipeline stage. (resolve the branch early in the pipeline)

• One can use additional adders to calculate the target, as soon as the branch 
instruction is decoded. This would mean that one has to wait until the ID 
stage before the target of the branch can be fetched, taken branches would 
be fetched with a one-cycle penalty (this was done in the enhanced MIPS 
pipeline Fig A.24).

• To avoid this problem one can use a Branch Target Buffer (BTB). A typical 
BTB is an associative memory where the addresses of taken branch 
instructions are stored together with their target addresses. 

• Some designs store  n  prediction bits as well, implementing a combined 
BTB and Branch history Table (BHT). 

• Instructions are fetched from the target stored in the BTB in case the branch 
is predicted-taken and found in BTB.  After the branch has been resolved the 
BTB is updated. If a branch is encountered for the first time a new entry is 
created once it is resolved as taken. 

• Branch Target Instruction Cache (BTIC):  A variation of BTB which caches 
also the code of the branch target instruction in addition to its address.  This 
eliminates the need to fetch the target instruction from the instruction cache 
or from memory. 



14

ECE – 684
Branch
Prediction

BTB
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BTB Flow

Fetch

Decode

Execute

Prediction Output
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BTB Penalties

Branch Penalty CyclesBranch Penalty Cycles
Using A BranchUsing A Branch--Target Buffer (BTB)Target Buffer (BTB)

Assuming one more stall cycle to update BTB
Penalty = 1 + 1 = 2 cycles

Base Pipeline Taken Branch Penalty = 1 cycle  (i.e. branches resolved in ID)

No                                             Not Taken      Not  Taken                 0
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Dynamic Branch Prediction

• Simplest method:  (One-Level)
– A branch prediction buffer or Branch History Table (BHT) indexed by low 

address bits of the branch instruction.
– Each buffer location (or BHT entry) contains one bit indicating whether the 

branch was recently taken or not 
• e.g   0 = not taken , 1 =taken

– Always mispredicts in first and last loop iterations.

• To improve prediction accuracy, two-bit prediction is used:
– A prediction must miss twice before it is changed.

• Thus, a branch involved in a loop will be mispredicted only once when 
encountered the next time as opposed to twice when one bit is used.

– Two-bit prediction is a specific case of n-bit saturating counter incremented 
when the branch is taken and decremented when the branch is not taken.

– Two-bit prediction counters are usually always used based on observations 
that the performance of two-bit BHT prediction is comparable to that of n-bit 
predictors.

The counter (predictor) used is updated after the branch is resolved 

Smith
Algorithm

Why 2-bit
Prediction?

...

BHT Entry: One Bit
0 = NT = Not Taken
1 = T = Taken

N Low Bits
of Branch 
Address
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OneOne--Level (Bimodal) Branch PredictorsLevel (Bimodal) Branch Predictors

• One-level or bimodal branch prediction uses only one level of branch
history.

• These mechanisms usually employ a table which is indexed by lower N 
bits of the branch address. 

• Each table entry (or predictor) consists of  n  history bits, which form an n-
bit automaton or saturating counters.

• Smith proposed such a scheme, known as the Smith Algorithm, that uses 
a table of two-bit saturating counters. (1985)

• One rarely finds the use of more than 3 history bits in the literature.
• Two variations of this mechanism:

– Pattern History Table: Consists of directly mapped entries. 
– Branch History Table (BHT):  Stores the branch address as a tag.

It is associative and enables one to identify the branch 
instruction during IF by comparing the address of an instruction
with the stored branch addresses in the table (similar to BTB).
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N  Low Bits of 

Table has 2N entries 
(also called predictors) . 0     0

0     1
1     0
1     1

High bit determines 
branch prediction
0  =  NT = Not Taken
1 =  T = Taken

Example:

For  N =12
Table  has     2N =  212 entries

=  4096 =  4k entries

Number of bits needed =  2 x 4k = 8k bits

Sometimes referred to as
Decode History Table (DHT)
or
Branch History Table (BHT)

What if different branches map to the same predictor (counter)?
This is called branch address aliasing and leads to interference with current branch prediction by 
other branches  and may lower branch prediction accuracy for programs with aliasing. 

Not Taken
(NT)

Taken
(T)

2-bit saturating counters (predictors)

Update counter after branch is resolved:
-Increment counter used if branch is taken
- Decrement counter used if branch is not 
taken

OneOne--Level (Bimodal) Branch PredictorsLevel (Bimodal) Branch Predictors
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High bit determines 
branch prediction
0  =  NT= Not Taken
1 =  T = Taken

0     0
0     1
1     0
1     1

Not Taken
(NT)

Taken
(T)

2-bit saturating counters (predictors)N  Low Bits of 

Branch History Table (BHT)Branch History Table (BHT)
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11 10

01 00

Taken
(T)

Not Taken
(NT)

Basic Dynamic TwoBasic Dynamic Two--Bit Branch Prediction:Bit Branch Prediction:

TwoTwo--bit Predictor State bit Predictor State 
Transition DiagramTransition Diagram

Or Two-bit saturating counter predictor state transition diagram (Smith Algorithm):

0     0
0     1
1     0
1     1

Not Taken
(NT)

Taken
(T)

* From: New Algorithm Improves 
Branch Prediction Vol. 9, No. 4, 
March 27, 1995 © 1995 
MicroDesign Resources
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A 4096A 4096--Entry Basic OneEntry Basic One--
Level Dynamic TwoLevel Dynamic Two--Bit Bit 
Branch PredictorBranch Predictor

Integer average  11%
FP average  4%

Integer

Misprediction Rate:

(Lower misprediction rate 
due to more loops)

FP

N=12
2N = 4096

Has, more branches
involved in 
IF-Then-Else
constructs the FP
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MCFarling'sMCFarling's gsharegshare PredictorPredictor

• McFarling noted (1993) that using global history information might be less 
efficient than simply using the address of the branch instruction, especially 
for small predictors. 

• He suggests using both global history (BHR) and branch address by 
hashing them together. He proposed using the XOR of global branch 
history register (BHR) and branch address since he expects that this value 
has more information than either one of its components. The result is that 
this mechanism outperforms GAp scheme by a small margin.

• The hardware cost for k history bits is  k + 2 x 2k bits, neglecting costs for 
logic.

gshare = global history with index sharing

gshare is one one the most widely implemented two level dynamic branch
prediction schemes
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gsharegshare PredictorPredictor

Branch and pattern history are kept globally. History and branch address 
are XORed and the result is used to index the pattern history table.

First Level:

Second Level:

XOR

(BHR)

2-bit saturating counters (predictors) Index the second level

gshare = global history with index sharing

Here:
m = N = k

(bitwise XOR)

One Pattern History Table (PHT) with 2k entries (predictors)

(PHT)
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gsharegshare PerformancePerformance

gshare

(Gap)
(One Level)

GAp One Level

GAp = Global, Adaptive, per address branch predictor
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Hybrid PredictorsHybrid Predictors
(Also known as (Also known as tournamenttournament or or combinedcombined predictors)predictors)

• Hybrid predictors are simply combinations of two or more  branch
prediction mechanisms. 

• This approach takes into account that different mechanisms may perform 
best for different branch scenarios. 

• McFarling presented (1993) a number of different combinations of two 
branch prediction mechanisms. 

• He proposed to use an additional 2-bit counter selector array which serves 
to select the appropriate predictor for each branch.

• One predictor is chosen for the higher two counts, the second one for the 
lower two counts.  

• If the first predictor is wrong and the second one is right the counter is 
decremented, if the first one is right and the second one is wrong, the 
counter is incremented.  No changes are carried out if both predictors are 
correct or wrong.
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Intel Pentium 1Intel Pentium 1

• It uses a single-level 2-bit Smith algorithm BHT associated with  a 
four way associative BTB which contains the branch history 
information.

• The Pentium does not fetch non-predicted targets and does not 
employ a return address stack (RAS) for subroutine return 
addresses.

• It does not allow multiple branches to be in flight at the same time. 
• Due to the short Pentium pipeline the misprediction penalty is only 

three or four cycles, depending on what pipeline the branch takes.
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Intel P6,II,IIIIntel P6,II,III

• Like Pentium, the P6 uses a BTB that retains both branch history
information and the predicted target of the branch. However the 
BTB of P6 has 512 entries reducing BTB misses. Since the

• The average misprediction penalty is 15 cycles.  Misses in the 
BTB cause a significant 7 cycle penalty if the branch is backward. 

• To improve prediction accuracy a two-level branch history 
algorithm is used. 

• Although the P6 has a fairly satisfactory accuracy of about 90%,
the enormous misprediction penalty should lead to reduced 
performance.  Assuming a branch every 5 instructions and 10% 
mispredicted branches with 15 cycles per misprediction the overall 
penalty resulting from mispredicted branches is 0.3 cycles per 
instruction. This number may be slightly lower since BTB misses 
take only seven cycles.



29

ECE – 684
Branch
Prediction

AMD K6AMD K6

• Uses a two-level adaptive branch history algorithm implemented in a BHT 
(gshare) with 8192 entries (16 times the size of the P6).  

• However, the size of the BHT prevents AMD from using a BTB or even 
storing branch target address information in the instruction cache. Instead, 
the branch target addresses are calculated on-the-fly using ALUs during the 
decode stage.  The adders calculate all possible target addresses before 
the instruction are fully decoded and the processor chooses which 
addresses are valid. 

• A small branch target cache (BTC)  is implemented to avoid a one cycle 
fetch penalty when a branch is predicted taken.

• The BTC supplies the first 16 bytes of instructions directly to the instruction 
buffer. 

• Like the Cyrix 6x86 the K6 employs a return address  stack (RAS) for 
subroutines. 

• The K6 is able to support up to 7 outstanding branches. 
• With a prediction accuracy of more than 95% the K6 outperformed all other 

microprocessors when introduced in 1997 (except the Alpha). 
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Motorola PowerPC 750

• A dynamic branch prediction algorithm is combined with static 
branch prediction which enables or disables the dynamic prediction 
mode and predicts the outcome of branches when the dynamic mode 
is disabled.

• Uses a single-level Smith algorithm 512-entry BHT and a 64-entry 
Branch Target Instruction Cache (BTIC), which contains the most 
recently used branch target instructions, typically in pairs. When an 
instruction fetch does not hit in the BTIC the branch target address is 
calculated by adders. 

• The return address for subroutine calls is also calculated and stored 
in user-controlled special purpose registers.

• The PowerPC 750 supports up to two branches, although 
instructions from the second predicted instruction stream can only be 
fetched but not dispatched.
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The SUN The SUN UltraSparcUltraSparc

• Uses a dynamic single-level BHT Smith algorithm. 
• It employs a static prediction which is used to initialize the state 

machine (saturated up and down counters).
• However, the UltraSparc maintains a large number of branch 

history entries (up to 2048 or every other line of the I-cache). 
• To predict branch target addresses a branch following mechanism 

is implemented in the instruction cache. The branch following 
mechanism also allows several levels of speculative execution.

• The overall claimed performance of UltraSparc is  94% for FP 
applications and 88% for integer applications.


