
1

ECE – 684
Branch
Prediction

Branch Prediction

http://www.extremetech.com/article2/0,1558,1155321,00.asp
PC Processor Microarchitecture, additional references

2

ECE – 684
Branch
Prediction

There really are three different kinds of branches:

Forward conditional branches - based on a run-time condition, the PC (Program
Counter) is changed to point to an address forward in the instruction stream.

Backward conditional branches - the PC is changed to point backward in the
instruction stream. The branch is based on some condition, such as branching
backwards to the beginning of a program loop when a test at the end of the loop states
the loop should be executed again.

Unconditional branches - this includes jumps, procedure calls and returns that have
no specific condition. For example, an unconditional jump instruction might be coded in
assembly language as simply "jmp", and the instruction stream must immediately be
directed to the target location pointed to by the jump instruction, whereas a conditional
jump that might be coded as "jmpne" would redirect the instruction stream only if the
result of a comparison of two values in a previous "compare" instructions shows the
values to not be equal. (The segmented addressing scheme used by the x86
architecture adds extra complexity, since jumps can be either "near" (within a segment)
or "far" (outside the segment). Each type has different effects on branch prediction
algorithms.)

A Closer Look At Branch Prediction

3

ECE – 684
Branch
Prediction

Forward branches dominate backward branches by about 4 to 1 (whether
conditional or not). About 60% of the forward conditional branches are taken, while
approximately 85% of the backward conditional branches are taken (because of the
prevalence of program loops).
Just knowing this data about average code behavior, we could optimize our architecture
for the common cases. A "Static Predictor" can just look at the offset (distance forward
or backward from current PC) for conditional branches as soon as the instruction is
decoded.
Backward branches will be predicted to be taken, since that is the most common
case. The accuracy of the static predictor will depend on the type of code being
executed, as well as the coding style used by the programmer.
These statistics were derived from the SPEC suite of benchmarks, and many PC
software workloads will favor slightly different static behavior.

Using Branch Statistics for Static Prediction

4

ECE – 684
Branch
Prediction

Static Profile-Based Compiler Branch Misprediction Rates for
SPEC92

Floating PointInteger

More Loops

Average 9%
Average 15%

(i.e 91% Prediction Accuracy)
(i.e 85% Prediction Accuracy)

5

ECE – 684
Branch
Prediction

• Dynamic branch prediction schemes are different from static mechanisms because they
utilize hardware-based mechanisms that use the run-time behavior of branches to make
more accurate predictions than possible using static prediction.

• Usually information about outcomes of previous occurrences of branches (branching
history) is used to dynamically predict the outcome of the current branch. Some of the
proposed dynamic branch prediction mechanisms include:

– One-level or Bimodal: Uses a Branch History Table (BHT), a table of usually
two-bit saturating counters which is indexed by a portion of the branch
address (low bits of address). (First proposed mid 1980s)

– Two-Level Adaptive Branch Prediction. (First proposed early 1990s),
– MCFarling’s Two-Level Prediction with index sharing (gshare, 1993).
– Hybrid or Tournament Predictors: Uses a combinations of two or more

(usually two) branch prediction mechanisms (1993).
• To reduce the stall cycles resulting from correctly predicted taken branches to zero

cycles, a Branch Target Buffer (BTB) that includes the addresses of conditional
branches that were taken along with their targets is added to the fetch stage.

Dynamic Conditional Branch Prediction

6

ECE – 684
Branch
Prediction

How to further reduce the impact of branches on pipeline processor performance

Dynamic Branch Prediction:
Hardware-based schemes that utilize run-time
behavior of branches to make dynamic predictions:

Information about outcomes of previous occurrences
of branches are used to dynamically predict the
outcome of the current branch.
Why? Better branch prediction accuracy and
thus fewer branch stalls

Branch Target Buffer (BTB):
A hardware mechanism that aims at reducing the
stall cycles resulting from correctly predicted taken
branches to zero cycles.

7

ECE – 684
Branch
Prediction

To refine our branch prediction, we could create a buffer that is indexed by the low-order
address bits of recent branch instructions. In this BHB (sometimes called a "Branch History
Table (BHT)"), for each branch instruction, we'd store a bit that indicates whether the branch
was recently taken. A simple way to implement a dynamic branch predictor would be to check
the BHB for every branch instruction. If the BHB's prediction bit indicates the branch should
be taken, then the pipeline can go ahead and start fetching instructions from the new address
(once it computes the target address).

By the time the branch instruction works its way down the pipeline and actually causes a
branch, then the correct instructions are already in the pipeline. If the BHB was wrong, a
"misprediction" occurred, and we'll have to flush out the incorrectly fetched instructions and
invert the BHB prediction bit.

Dynamic Branch Prediction with a Branch History Buffer (BHB)

8

ECE – 684
Branch
Prediction

Dynamic Branch Prediction with a Branch History Buffer (BHB)

9

ECE – 684
Branch
Prediction

It turns out that a single bit in the BHB will be wrong twice for a loop--once on the
first pass of the loop and once at the end of the loop. We can get better prediction
accuracy by using more bits to create a "saturating counter" that is incremented on
a taken branch and decremented on an untaken branch. It turns out that a 2-bit
predictor does about as well as you could get with more bits, achieving anywhere
from 82% to 99% prediction accuracy with a table of 4096 entries.
This size of table is at the point of diminishing returns for 2 bit entries, so there isn't
much point in storing more. Since we're only indexing by the lower address bits,
notice that 2 different branch addresses might have the same low-order bits and
could point to the same place in our table--one reason not to let the table get too
small.

Refining Our BHB by Storing More Bits

10

ECE – 684
Branch
Prediction

There is a further refinement we can make to our BHB by correlating the behavior of
other branches. Often called a "Global History Counter", this "two-level predictor"
allows the behavior of other branches to also update the predictor bits for a particular
branch instruction and achieve slightly better overall prediction accuracy. One
implementation is called the "GShare algorithm".
This approach uses a "Global Branch History Register" (a register that stores the
global result of recent branches) that gets "hashed" with bits from the address of the
branch being predicted. The resulting value is used as an index into the BHB where
the prediction entry at that location is used to dynamically predict the branch direction.
Yes, this is complicated stuff, but it's being used in several modern processors.

Two-Level Predictors and the GShare Algorithm

11

ECE – 684
Branch
Prediction

Two-Level Predictors and the GShare Algorithm

Combined branch prediction*
Scott McFarling proposed combined branch prediction in his 1993 paper 2. Combined branch prediction
is about as accurate as local prediction, and almost as fast as global prediction.
Combined branch prediction uses three predictors in parallel: bimodal, gshare, and a bimodal-like
predictor to pick which of bimodal or gshare to use on a branch-by-branch basis. The choice predictor
is yet another 2-bit up/down saturating counter, in this case the MSB choosing the prediction to use.
In this case the counter is updated whenever the bimodal and gshare predictions disagree, to favor
whichever predictor was actually right.
On the SPEC'89 benchmarks, such a predictor is about as good as the local predictor.
Another way of combining branch predictors is to have e.g. 3 different branch predictors, and merge
their results by a majority vote.
Predictors like gshare use multiple table entries to track the behavior of any particular branch.
This multiplication of entries makes it much more likely that two branches will map to the same
table entry (a situation called aliasing), which in turn makes it much more likely that prediction
accuracy will suffer for those branches. Once you have multiple predictors, it is beneficial to arrange
that each predictor will have different aliasing patterns, so that it is more likely that at least one
predictor will have no aliasing. Combined predictors with different indexing functions for the different
predictors are called gskew predictors, and are analogous to skewed associative caches used
for data and instruction caching.

* From : http://en.wikipedia.org/wiki/Branch_prediction

12

ECE – 684
Branch
Prediction

In addition to a large BHB, most predictors also include a buffer that stores the actual target
address of taken branches (along with optional prediction bits). This table allows the CPU to
look to see if an instruction is a branch and start fetching at the target address early on in
the pipeline processing. By storing the instruction address and the target address, even
before the processor decodes the instruction, it can know that it is a branch. The figure
below shows an implementation of a BTB.
A large BTB can completely remove most branch penalties (for correctly-predicted
branches) if the CPU looks far enough ahead to make sure the target instructions are pre-
fetched. Using a Return Address Buffer to predict the return from a subroutine One
technique for dealing with the unconditional branch at the end of a subroutine is to create a
buffer of the most recent return addresses.
There are usually some subroutines that get called quite often in a program, and a return
address buffer can make sure that the correct instructions are in the pipeline after the return
instruction.

Using a Branch Target Buffer (BTB) to Further Reduce the
Branch Penalty

13

ECE – 684
Branch
Prediction

Branch Target Buffer (BTB)

• Effective branch prediction requires the target of the branch at an early
pipeline stage. (resolve the branch early in the pipeline)

• One can use additional adders to calculate the target, as soon as the branch
instruction is decoded. This would mean that one has to wait until the ID
stage before the target of the branch can be fetched, taken branches would
be fetched with a one-cycle penalty (this was done in the enhanced MIPS
pipeline Fig A.24).

• To avoid this problem one can use a Branch Target Buffer (BTB). A typical
BTB is an associative memory where the addresses of taken branch
instructions are stored together with their target addresses.

• Some designs store n prediction bits as well, implementing a combined
BTB and Branch history Table (BHT).

• Instructions are fetched from the target stored in the BTB in case the branch
is predicted-taken and found in BTB. After the branch has been resolved the
BTB is updated. If a branch is encountered for the first time a new entry is
created once it is resolved as taken.

• Branch Target Instruction Cache (BTIC): A variation of BTB which caches
also the code of the branch target instruction in addition to its address. This
eliminates the need to fetch the target instruction from the instruction cache
or from memory.

14

ECE – 684
Branch
Prediction

BTB

15

ECE – 684
Branch
Prediction

BTB Flow

Fetch

Decode

Execute

Prediction Output

16

ECE – 684
Branch
Prediction

BTB Penalties

Branch Penalty CyclesBranch Penalty Cycles
Using A BranchUsing A Branch--Target Buffer (BTB)Target Buffer (BTB)

Assuming one more stall cycle to update BTB
Penalty = 1 + 1 = 2 cycles

Base Pipeline Taken Branch Penalty = 1 cycle (i.e. branches resolved in ID)

No Not Taken Not Taken 0

17

ECE – 684
Branch
Prediction

Dynamic Branch Prediction

• Simplest method: (One-Level)
– A branch prediction buffer or Branch History Table (BHT) indexed by low

address bits of the branch instruction.
– Each buffer location (or BHT entry) contains one bit indicating whether the

branch was recently taken or not
• e.g 0 = not taken , 1 =taken

– Always mispredicts in first and last loop iterations.

• To improve prediction accuracy, two-bit prediction is used:
– A prediction must miss twice before it is changed.

• Thus, a branch involved in a loop will be mispredicted only once when
encountered the next time as opposed to twice when one bit is used.

– Two-bit prediction is a specific case of n-bit saturating counter incremented
when the branch is taken and decremented when the branch is not taken.

– Two-bit prediction counters are usually always used based on observations
that the performance of two-bit BHT prediction is comparable to that of n-bit
predictors.

The counter (predictor) used is updated after the branch is resolved

Smith
Algorithm

Why 2-bit
Prediction?

...

BHT Entry: One Bit
0 = NT = Not Taken
1 = T = Taken

N Low Bits
of Branch
Address

18

ECE – 684
Branch
Prediction

OneOne--Level (Bimodal) Branch PredictorsLevel (Bimodal) Branch Predictors

• One-level or bimodal branch prediction uses only one level of branch
history.

• These mechanisms usually employ a table which is indexed by lower N
bits of the branch address.

• Each table entry (or predictor) consists of n history bits, which form an n-
bit automaton or saturating counters.

• Smith proposed such a scheme, known as the Smith Algorithm, that uses
a table of two-bit saturating counters. (1985)

• One rarely finds the use of more than 3 history bits in the literature.
• Two variations of this mechanism:

– Pattern History Table: Consists of directly mapped entries.
– Branch History Table (BHT): Stores the branch address as a tag.

It is associative and enables one to identify the branch
instruction during IF by comparing the address of an instruction
with the stored branch addresses in the table (similar to BTB).

19

ECE – 684
Branch
Prediction

N Low Bits of

Table has 2N entries
(also called predictors) . 0 0

0 1
1 0
1 1

High bit determines
branch prediction
0 = NT = Not Taken
1 = T = Taken

Example:

For N =12
Table has 2N = 212 entries

= 4096 = 4k entries

Number of bits needed = 2 x 4k = 8k bits

Sometimes referred to as
Decode History Table (DHT)
or
Branch History Table (BHT)

What if different branches map to the same predictor (counter)?
This is called branch address aliasing and leads to interference with current branch prediction by
other branches and may lower branch prediction accuracy for programs with aliasing.

Not Taken
(NT)

Taken
(T)

2-bit saturating counters (predictors)

Update counter after branch is resolved:
-Increment counter used if branch is taken
- Decrement counter used if branch is not
taken

OneOne--Level (Bimodal) Branch PredictorsLevel (Bimodal) Branch Predictors

20

ECE – 684
Branch
Prediction

High bit determines
branch prediction
0 = NT= Not Taken
1 = T = Taken

0 0
0 1
1 0
1 1

Not Taken
(NT)

Taken
(T)

2-bit saturating counters (predictors)N Low Bits of

Branch History Table (BHT)Branch History Table (BHT)

21

ECE – 684
Branch
Prediction

11 10

01 00

Taken
(T)

Not Taken
(NT)

Basic Dynamic TwoBasic Dynamic Two--Bit Branch Prediction:Bit Branch Prediction:

TwoTwo--bit Predictor State bit Predictor State
Transition DiagramTransition Diagram

Or Two-bit saturating counter predictor state transition diagram (Smith Algorithm):

0 0
0 1
1 0
1 1

Not Taken
(NT)

Taken
(T)

* From: New Algorithm Improves
Branch Prediction Vol. 9, No. 4,
March 27, 1995 © 1995
MicroDesign Resources

22

ECE – 684
Branch
PredictionPrediction Accuracy of Prediction Accuracy of

A 4096A 4096--Entry Basic OneEntry Basic One--
Level Dynamic TwoLevel Dynamic Two--Bit Bit
Branch PredictorBranch Predictor

Integer average 11%
FP average 4%

Integer

Misprediction Rate:

(Lower misprediction rate
due to more loops)

FP

N=12
2N = 4096

Has, more branches
involved in
IF-Then-Else
constructs the FP

23

ECE – 684
Branch
Prediction

MCFarling'sMCFarling's gsharegshare PredictorPredictor

• McFarling noted (1993) that using global history information might be less
efficient than simply using the address of the branch instruction, especially
for small predictors.

• He suggests using both global history (BHR) and branch address by
hashing them together. He proposed using the XOR of global branch
history register (BHR) and branch address since he expects that this value
has more information than either one of its components. The result is that
this mechanism outperforms GAp scheme by a small margin.

• The hardware cost for k history bits is k + 2 x 2k bits, neglecting costs for
logic.

gshare = global history with index sharing

gshare is one one the most widely implemented two level dynamic branch
prediction schemes

24

ECE – 684
Branch
Prediction

gsharegshare PredictorPredictor

Branch and pattern history are kept globally. History and branch address
are XORed and the result is used to index the pattern history table.

First Level:

Second Level:

XOR

(BHR)

2-bit saturating counters (predictors) Index the second level

gshare = global history with index sharing

Here:
m = N = k

(bitwise XOR)

One Pattern History Table (PHT) with 2k entries (predictors)

(PHT)

25

ECE – 684
Branch
Prediction

gsharegshare PerformancePerformance

gshare

(Gap)
(One Level)

GAp One Level

GAp = Global, Adaptive, per address branch predictor

26

ECE – 684
Branch
Prediction

Hybrid PredictorsHybrid Predictors
(Also known as (Also known as tournamenttournament or or combinedcombined predictors)predictors)

• Hybrid predictors are simply combinations of two or more branch
prediction mechanisms.

• This approach takes into account that different mechanisms may perform
best for different branch scenarios.

• McFarling presented (1993) a number of different combinations of two
branch prediction mechanisms.

• He proposed to use an additional 2-bit counter selector array which serves
to select the appropriate predictor for each branch.

• One predictor is chosen for the higher two counts, the second one for the
lower two counts.

• If the first predictor is wrong and the second one is right the counter is
decremented, if the first one is right and the second one is wrong, the
counter is incremented. No changes are carried out if both predictors are
correct or wrong.

27

ECE – 684
Branch
Prediction

Intel Pentium 1Intel Pentium 1

• It uses a single-level 2-bit Smith algorithm BHT associated with a
four way associative BTB which contains the branch history
information.

• The Pentium does not fetch non-predicted targets and does not
employ a return address stack (RAS) for subroutine return
addresses.

• It does not allow multiple branches to be in flight at the same time.
• Due to the short Pentium pipeline the misprediction penalty is only

three or four cycles, depending on what pipeline the branch takes.

28

ECE – 684
Branch
Prediction

Intel P6,II,IIIIntel P6,II,III

• Like Pentium, the P6 uses a BTB that retains both branch history
information and the predicted target of the branch. However the
BTB of P6 has 512 entries reducing BTB misses. Since the

• The average misprediction penalty is 15 cycles. Misses in the
BTB cause a significant 7 cycle penalty if the branch is backward.

• To improve prediction accuracy a two-level branch history
algorithm is used.

• Although the P6 has a fairly satisfactory accuracy of about 90%,
the enormous misprediction penalty should lead to reduced
performance. Assuming a branch every 5 instructions and 10%
mispredicted branches with 15 cycles per misprediction the overall
penalty resulting from mispredicted branches is 0.3 cycles per
instruction. This number may be slightly lower since BTB misses
take only seven cycles.

29

ECE – 684
Branch
Prediction

AMD K6AMD K6

• Uses a two-level adaptive branch history algorithm implemented in a BHT
(gshare) with 8192 entries (16 times the size of the P6).

• However, the size of the BHT prevents AMD from using a BTB or even
storing branch target address information in the instruction cache. Instead,
the branch target addresses are calculated on-the-fly using ALUs during the
decode stage. The adders calculate all possible target addresses before
the instruction are fully decoded and the processor chooses which
addresses are valid.

• A small branch target cache (BTC) is implemented to avoid a one cycle
fetch penalty when a branch is predicted taken.

• The BTC supplies the first 16 bytes of instructions directly to the instruction
buffer.

• Like the Cyrix 6x86 the K6 employs a return address stack (RAS) for
subroutines.

• The K6 is able to support up to 7 outstanding branches.
• With a prediction accuracy of more than 95% the K6 outperformed all other

microprocessors when introduced in 1997 (except the Alpha).

30

ECE – 684
Branch
Prediction

Motorola PowerPC 750

• A dynamic branch prediction algorithm is combined with static
branch prediction which enables or disables the dynamic prediction
mode and predicts the outcome of branches when the dynamic mode
is disabled.

• Uses a single-level Smith algorithm 512-entry BHT and a 64-entry
Branch Target Instruction Cache (BTIC), which contains the most
recently used branch target instructions, typically in pairs. When an
instruction fetch does not hit in the BTIC the branch target address is
calculated by adders.

• The return address for subroutine calls is also calculated and stored
in user-controlled special purpose registers.

• The PowerPC 750 supports up to two branches, although
instructions from the second predicted instruction stream can only be
fetched but not dispatched.

31

ECE – 684
Branch
Prediction

The SUN The SUN UltraSparcUltraSparc

• Uses a dynamic single-level BHT Smith algorithm.
• It employs a static prediction which is used to initialize the state

machine (saturated up and down counters).
• However, the UltraSparc maintains a large number of branch

history entries (up to 2048 or every other line of the I-cache).
• To predict branch target addresses a branch following mechanism

is implemented in the instruction cache. The branch following
mechanism also allows several levels of speculative execution.

• The overall claimed performance of UltraSparc is 94% for FP
applications and 88% for integer applications.

