
ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

ARM SOC Architecture (II)ARM SOC Architecture (II)

Speaker: Lung-Hao Chang 張龍豪
Advisor: Porf. Andy Wu 吳安宇

March 12, 2003

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 203/12/2003

OutlineOutline
Ø ARM Processor Core
Ø Memory Hierarchy
Ø Software Development
Ø Summary

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 303/12/2003

ARM Processor CoreARM Processor Core

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 403/12/2003

33--Stage Pipeline ARM OrganizationStage Pipeline ARM Organization
Ø Register Bank
q 2 read ports, 1 write ports,

access any register
q 1 additional read port, 1

additional write port for r15 (PC)
Ø Barrel Shifter
q Shift or rotate the operand by

any number of bits
Ø ALU
Ø Address register and incrementer
Ø Data Registers
q Hold data passing to and from

memory
Ø Instruction Decoder and Control

multiply

data out register

instruction

decode

&

control

incrementer

register
bank

address register

barrel
shifter

A[31:0]

D[31:0]

data in register

ALU

control

P
C

PC

A
L
U

b
u
s

A

b
u
s

B

b
u
s

register

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 503/12/2003

33--Stage Pipeline (1/2)Stage Pipeline (1/2)

Ø Fetch
q The instruction is fetched from memory and placed in the instruction pipeline

Ø Decode
q The instruction is decoded and the datapath control signals prepared for the

next cycle
Ø Execute

q The register bank is read, an operand shifted, the ALU result generated and
written back into destination register

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 603/12/2003

33--Stage Pipeline (2/2)Stage Pipeline (2/2)
Ø At any time slice, 3 different instructions may occupy each

of these stages, so the hardware in each stage has to be
capable of independent operations

Ø When the processor is executing data processing
instructions , the latency = 3 cycles and the throughput = 1
instruction/cycle

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 703/12/2003

MultiMulti--cycle Instructioncycle Instruction

Ø Memory access (fetch, data transfer) in every cycle
Ø Datapath used in every cycle (execute, address calculation, data transfer)
Ø Decode logic generates the control signals for the data path use in next

cycle (decode, address calculation)

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 803/12/2003

Data Processing InstructionData Processing Instruction

Ø All operations take place in a single clock cycle

address register

increment

registers
Rd

Rn

PC

Rm

as ins.

as instruction

mult

data out data in i. pipe

(a) register - register operations

address register

increment

registers
Rd

Rn

PC

as ins.

as instruction

mult

data out data in i. pipe

[7:0]

(b) register - immediate operations

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 903/12/2003

Data Transfer InstructionsData Transfer Instructions

Ø Computes a memory address similar to a data processing instruction
Ø Load instruction follow a similar pattern except that the data from memory

only gets as far as the ‘data in’ register on the 2nd cycle and a 3rd cycle
is needed to transfer the data from there to the destination register

address register

increment

registers
Rn

PC

lsl #0

= A / A + B / A - B

mult

data out data in i. pipe

[11:0]

(a) 1st cycle - compute address

address register

increment

registers
Rn

Rd

shifter

= A + B / A - B

mult

PC

byte? data in i. pipe

(b) 2nd cycle - store data & auto-index

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1003/12/2003

Branch InstructionsBranch Instructions

Ø The third cycle, which is required to complete the pipeline refilling, is also
used to mark the small correction to the value stored in the link register
in order that is points directly at the instruction which follows the branch

address register

increment

registers
PC

lsl #2

= A + B

mult

data out data in i. pipe

[23:0]

(a) 1st cycle - compute branch target

address register

increment

registers
R14

PC

shifter

= A

mult

data out data in i. pipe

(b) 2nd cycle - save return address

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1103/12/2003

Branch Pipeline ExampleBranch Pipeline Example

Ø Breaking the pipeline
Ø Note that the core is executing in the ARM state

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1203/12/2003

55--Stage Pipeline ARM OrganizationStage Pipeline ARM Organization
Ø Tprog = Ninst * CPI / fclk
qTprog: the time that execute a given program
qNinst: the number of ARM instructions executed in the program

=> compiler dependent
qCPI: average number of clock cycles per instructions =>

hazard causes pipeline stalls
q fclk, frequency

Ø Separate instruction and data memories => 5 stage pipeline
Ø Used in ARM9TDMI

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1303/12/2003

55--Stage Pipeline Organization (1/2)Stage Pipeline Organization (1/2)
Ø Fetch
q The instruction is fetched form

memory and placed in the instruction
pipeline

Ø Decode
q The instruction is decoded and

register operands read from the
register files. There are 3 operand
read ports in the register file so most
ARM instructions can source all their
operands in one cycle

Ø Execute
q An operand is shifted and the ALU

result generated. If the instruction is
a load or store, the memory address
is computed in the ALU

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1403/12/2003

55--Stage Pipeline Organization (2/2)Stage Pipeline Organization (2/2)
Ø Buffer/Data
q Data memory is accessed if required.

Otherwise the ALU result is simply
buffered for one cycle

Ø Write back
q The result generated by the

instruction are written back to the
register file, including any data
loaded form memory

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1503/12/2003

Pipeline HazardsPipeline Hazards
Ø There are situations, called hazards, that prevent the next

instruction in the instruction stream from being executing
during its designated clock cycle. Hazards reduce the
performance from the ideal speedup gained by pipelining.

Ø There are three classes of hazards:
qStructural Hazards: They arise from resource conflicts when

the hardware cannot support all possible combinations of
instructions in simultaneous overlapped execution.

qData Hazards: They arise when an instruction depends on
the result of a previous instruction in a way that is exposed by
the overlapping of instructions in the pipeline.

qControl Hazards: They arise from the pipelining of branches
and other instructions that change the PC

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1603/12/2003

Structural HazardsStructural Hazards
Ø When a machine is pipelined, the overlapped execution of

instructions requires pipelining of functional units and
duplication of resources to allow all possible combinations
of instructions in the pipeline.

Ø If some combination of instructions cannot be
accommodated because of a resource conflict, the
machine is said to have a structural hazard.

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1703/12/2003

ExampleExample
Ø A machine has shared a single-memory pipeline for data

and instructions. As a result, when an instruction contains
a data-memory reference (load), it will conflict with the
instruction reference for a later instruction (instr 3):

WBMEMEXIDIFInstr 3
WBMEMEXIDIFInstr 2

WBMEMEXIDIFInstr 1
WBMEMEXIDIFload

87654321instr
Clock cycle number

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1803/12/2003

Solution (1/2)Solution (1/2)
Ø To resolve this, we stall the pipeline for one clock cycle

when a data-memory access occurs. The effect of the
stall is actually to occupy the resources for that instruction
slot. The following table shows how the stalls are actually
implemented.

WB

9

MEMEXIDIFstallInstr 3
WBMEMEXIDIFInstr 2

WBMEMEXIDIFInstr 1
WBMEMEXIDIFload

87654321instr
Clock cycle number

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 1903/12/2003

Solution (2/2)Solution (2/2)
Ø Another solution is to use separate instruction and data

memories.
Ø ARM is use Harvard architecture, so we do not have this

hazard

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2003/12/2003

Data HazardsData Hazards
Ø Data hazards occur when the pipeline changes the order of

read/write accesses to operands so that the order differs
from the order seen by sequentially executing instructions
on the unpipelined machine.

R10,R1,R11
R8,R1,R9

R6,R1,R7

R4,R5,R1

R1,R2,R3

WBMEMEXIDxorIFXOR

9

WBMEMEXIDorIFOR

WBMEMEXIDandIFAND

WBMEMEXIDsubIFSUB

WBMEMEXIDIFADD

87654321

Clock cycle number

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2103/12/2003

ForwardingForwarding
Ø The problem with data hazards, introduced by this

sequence of instructions can be solved with a simple
hardware technique called forwarding.

R6,R1,R7

R4,R5,R1
R1,R2,R3

WBMEMEXIDandIFAND

WBMEMEXIDsubIFSUB
WBMEMEXIDIFADD

7654321
Clock cycle number

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2203/12/2003

Forwarding architectureForwarding architecture
Ø Forwarding works as follows:
q The ALU result from the

EX/MEM register is always fed
back to the ALU input latches.

q If the forwarding hardware
detects that the previous ALU
operation has written the
register corresponding to the
source for the current ALU
operation, control logic selects
the forwarded result as the ALU
input rather than the value read
from the register file.

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

forwarding paths

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2303/12/2003

Forward DataForward Data

Ø The first forwarding is for value of R1 from EXadd to EXsub.
The second forwarding is also for value of R1 from MEMadd to EXand.
This code now can be executed without stalls.

Ø Forwarding can be generalized to include passing the result directly
to the functional unit that requires it: a result is forwarded from the
output of one unit to the input of another, rather than just from the
result of a unit to the input of the same unit.

R6,R1,R7
R4,R5,R1
R1,R2,R3

WBMEMEXandIDIFAND
WBMEMEXsubIDIFSUB

WBMEMaddEXaddIDIFADD
7654321

Clock cycle number

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2403/12/2003

Without ForwardWithout Forward

WB

9

MEM
WB

8

R6,R1,R7
R4,R5,R1
R1,R2,R3

EXIDandIFstallstallAND
MEMEXIDsubstallstallIFSUB

WBMEMEXIDIFADD
7654321

Clock cycle number

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2503/12/2003

Data forwardingData forwarding
Ø Data dependency arises when an instruction needs to use

the result of one of its predecessors before the result has
returned to the register file => pipeline hazards

Ø Forwarding paths allow results to be passed between
stages as soon as they are available

Ø 5-stage pipeline requires each of the three source operands
to be forwarded from any of the intermediate result registers

Ø Still one load stall
LDR rN, […]
ADD r2,r1,rN ;use rN immediately
qOne stall
qCompiler rescheduling

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2603/12/2003

Stalls are requiredStalls are required

WBMEMEXEIDIFR8,R1,R9OR

8

R6,R1,R7
R4,R1,R5
R1,@(R2)

WBMEMEXandIDIFAND
WBMEMEXsubIDIFSUB

WBMEMEXIDIFLDR
7654321

Ø The load instruction has a delay or latency that cannot be eliminated by
forwarding alone.

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2703/12/2003

The Pipeline with one StallThe Pipeline with one Stall

WB

9

MEMEXIDIFstallR8,R1,R9OR
WB

8

R6,R1,R7
R4,R1,R5
R1,@(R2)

MEMEXIDstallIFAND
WBMEMEXsubstallIDIFSUB

WBMEMEXIDIFLDR
7654321

Ø The only necessary forwarding is done for R1 from MEM to EXsub.

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2803/12/2003

LDR InterlockLDR Interlock

Ø In this example, it takes 7 clock cycles to execute 6 instructions, CPI of
1.2

Ø The LDR instruction immediately followed by a data operation using the
same register cause an interlock

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 2903/12/2003

Optimal PipeliningOptimal Pipelining

Ø In this example, it takes 6 clock cycles to execute 6 instructions, CPI of
1

Ø The LDR instruction does not cause the pipeline to interlock

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3003/12/2003

LDM Interlock (1/2)LDM Interlock (1/2)

Ø In this example, it takes 8 clock cycles to execute 5 instructions, CPI of
1.6

Ø During the LDM there are parallel memory and writeback cycles

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3103/12/2003

LDM Interlock (2/2)LDM Interlock (2/2)

Ø In this example, it takes 9 clock cycles to execute 5 instructions, CPI of
1.8

Ø The SUB incurs a further cycle of interlock due to it using the highest
specified register in the LDM instruction

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3203/12/2003

ARM7TDMI Processor CoreARM7TDMI Processor Core
Ø Current low-end ARM core for applications like digital

mobile phones
Ø TDMI
qT: Thumb, 16-bit compressed instruction set
qD: on-chip Debug support, enabling the processor to halt in

response to a debug request
qM: enhanced Multiplier, yield a full 64-bit result, high

performance
q I: EmbeddedICE hardware

Ø Von Neumann architecture
Ø 3-stage pipeline, CPI ~ 1.9

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3303/12/2003

ARM7TDMI Block DiagramARM7TDMI Block Diagram

JTAG TAP
controller

Embedded

processor
core

TCK TMSTRST TDI TDO

D[31:0]

A[31:0]

opc, r/w,
mreq, trans,
mas[1:0]

other
signals

scan chain 0

scan chain 2

scan chain 1

extern0
extern1 ICE

bus
splitter

Din[31:0]

Dout[31:0]

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3403/12/2003

ARM7TDMI Core DiagramARM7TDMI Core Diagram

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3503/12/2003

ARM7TDMI Interface Signals (1/4)ARM7TDMI Interface Signals (1/4)

mreq
seq
lock

Dout[31:0]

D[31:0]

r/w
mas[1:0]

mode[4:0]
trans

abort

opc
cpi

cpa
cpb

memory
interface

MMU
interface

coprocessor
interface

mclk
wait
eclk

isync

bigend

enin

irq
¼q

reset

enout

abe

Vdd
Vss

clock
control

configuration

interrupts

initialization

bus
control

power

ale
ape
dbe

dbgrq
breakpt
dbgack

debug

exec
extern1
extern0
dbgen

bl[3:0]

TRST
TCK
TMS
TDI

JTAG
controls

TDO

Tbit statetbe

rangeout0
rangeout1

dbgrqi
commrx
commtx

enouti

highz
busdis

ecapclk

busen

Din[31:0]

A[31:0]

ARM7TDMI

core

tapsm[3:0]
ir[3:0]
tdoen
tck1
tck2
screg[3:0]

TAP
information

drivebs
ecapclkbs
icapclkbs
highz
pclkbs
rstclkbs
sdinbs
sdoutbs
shclkbs
shclk2bs

boundary
scan
extension

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3603/12/2003

ARM7TDMI Interface Signals (2/4)ARM7TDMI Interface Signals (2/4)
Ø Clock control
q All state change within the processor are controlled by mclk, the

memory clock
q Internal clock = mclk AND \wait
q eclk clock output reflects the clock used by the core

Ø Memory interface
q 32-bit address A[31:0], bidirectional data bus D[31:0], separate data

out Dout[31:0], data in Din[31:0]
q \mreq indicates that the memory address will be wuquntial to that

used in the previous cycle
mreq s eq Cy cl e Us e

0 0 N Non-sequential memory access
0 1 S Sequential memory access
1 0 I Internal cycle – bus and memory inactive
1 1 C Coprocessor register transfer – memory inactive

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3703/12/2003

ARM7TDMI Interface Signals (3/4)ARM7TDMI Interface Signals (3/4)
q Lock indicates that the processor should keep the bus to ensure the

atomicity of the read and write phase of a SWAP instruction
q \r/w, read or write
qmas[1:0], encode memory access size – byte, half – word or word
q bl[3:0], externally controlled enables on latches on each of the 4

bytes on the data input bus
Ø MMU interface
q \trans (translation control), 0: user mode, 1: privileged mode
q \mode[4:0], bottom 5 bits of the CPSR (inverted)
q Abort, disallow access

Ø State
q T bit, whether the processor is currently executing ARM or Thumb

instructions
Ø Configuration
q Bigend, big-endian or little-endian

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3803/12/2003

ARM7TDMI Interface Signals (4/4)ARM7TDMI Interface Signals (4/4)
Ø Interrupt
q \fiq, fast interrupt request, higher priority
q \irq, normal interrupt request
q isync, allow the interrupt synchronizer to be passed

Ø Initialization
q \reset, starts the processor from a known state, executing from

address 0000000016

Ø ARM7TDMI characteristics

Process 0.35 um Transistors 74,209 MIPS 60
Metal layers 3 Core area 2.1 mm

2
Power 87 mW

Vdd 3.3 V Clock 0 to 66 MHz MIPS/W 690

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 3903/12/2003

Memory AccessMemory Access
Ø The ARM7 is a Von Neumann, load/store

architecture, i.e.,
q Only 32 bit data bus for both inst. And

data.
q Only the load/store inst. (and SWP)

access memory.
Ø Memory is addressed as a 32 bit address

space
Ø Data type can be 8 bit bytes, 16 bit half-

words or 32 bit words, and may be seen as a
byte line folded into 4-byte words

Ø Words must be aligned to 4 byte boundaries,
and half-words to 2 byte boundaries.

Ø Always ensure that memory controller
supports all three access sizes

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4003/12/2003

ARM Memory InterfaceARM Memory Interface
Ø Sequential (S cycle)
q (nMREQ, SEQ) = (0, 1)
q The ARM core requests a transfer to or from an address which is either the

same, or one word or one-half-word greater than the preceding address.
Ø Non-sequential (N cycle)

q (nMREQ, SEQ) = (0, 0)
q The ARM core requests a transfer to or from an address which is unrelated

to the address used in the preceding address.
Ø Internal (I cycle)

q (nMREQ, SEQ) = (1, 0)
q The ARM core does not require a transfer, as it performing an internal

function, and no useful prefetching can be performed at the same time
Ø Coprocessor register transfer (C cycle)

q (nMREQ, SEQ) = (1, 1)
q The ARM core wished to use the data bus to communicate with a

coprocessor, but does no require any action by the memory system.

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4103/12/2003

Cached ARM7TDMI Cached ARM7TDMI MacrocellsMacrocells

Ø ARM710T
q 8K unified write through cache
q Full memory management unit

supporting virtual memory and
memory protection

q Write buffer

Ø ARM720T
q As ARM 710T but with WinCE

support
Ø ARM 740T
q 8K unified write through cache
q Memory protection unit
q Write buffer

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4203/12/2003

ARM8ARM8
Ø Higher performance than ARM7
q By increasing the clock rate
q By reducing the CPI
vHigher memory bandwidth, 64-bit wide memory
vSeparate memories for instruction and data accesses

memory
(double-

bandwidth)

prefetch
unit

integer
unit

coprocessor(s)

write data

read data

addresses

 instructionsPC

CPdataCPinst.

Ø Core Organization
q The prefetch unit is responsible for

fetching instructions from memory and
buffering them (exploiting the double
bandwidth memory)

q It is also responsible for branch prediction
and use static prediction based on the
branch prediction (backward: predicted
‘taken’; forward: predicted ‘not taken’)

Ø ARM8 ARM9TDMI
ARM10TDMI

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4303/12/2003

Pipeline OrganizationPipeline Organization
Ø 5-stage, prefetch unit occupies the 1st stage, integer unit

occupies the remainder

(1) Instruction prefetch

(2) Instruction decode and register read

(3) Execute (shift and ALU)

(4) Data memory access

(5) Write back results

Prefetch Unit

Integer Unit

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4403/12/2003

Integer Unit OrganizationInteger Unit Organization
inst. decode

register write

+4

write
pipeline

multiplier

register read

mux

ALU/shifter

rot/sgn ex

PC+8instructions
coprocessor
instructions

coproc
data

forwarding
paths

write
data

address
read
data

decode

execute

memory

write

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4503/12/2003

ARM8 ARM8 MacrocellMacrocell

8 Kbyte cache
(double-

bandwidth)

prefetch
unit

ARM8 integer
unit

CP15

write data

read data

virtual address

 instructionsPC

CPdataCPinst.

write buffer MMU

address buffer
physical address

data outdata in address

copy-back tag

JTAG

copy-back data

Ø ARM810
q 8Kbyte unified instruction

and data cache
q Copy-back
q Double-bandwidth
qMMU
q Coprocessor
qWrite buffer

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4603/12/2003

ARM9TDMIARM9TDMI
Ø Harvard architecture
q Increases available memory bandwidth
vInstruction memory interface
vData memory interface

qSimultaneous accesses to instruction and data memory can
be achieved

Ø 5-stage pipeline
Ø Changes implemented to
q Improve CPI to ~1.5
q Improve maximum clock frequency

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4703/12/2003

ARM9TDMI OrganizationARM9TDMI Organization
I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4803/12/2003

ARM9TDMI Pipeline Operations (1/2)ARM9TDMI Pipeline Operations (1/2)

instruction
fetch

instruction
fetch

Thumb
decompress

ARM
decode

reg
read

reg
writeshift/ALU

reg
writeshift/ALU

r. read

decode

data memory
access

Fetch Decode Execute

Memory WriteFetch Decode Execute

ARM9TDMI:

ARM7TDMI:

Not sufficient slack time to translate Thumb instructions into ARM instructions and
then decode, instead the hardware decode both ARM and Thumb instructions
directly

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 4903/12/2003

ARM9TDMI Pipeline Operations (2/2)ARM9TDMI Pipeline Operations (2/2)
Ø Coprocessor support
qCoprocessors: floating-point, digital signal processing,

special-purpose hardware accelerator
Ø On-chip debugger
qAdditional features compared to ARM7TDMI
vHardware single stepping
vBreakpoint can be set on exceptions

Ø ARM9TDMI characteristics

Process 0.25 um Transistors 110,000 MIPS 220
Metal layers 3 Core area 2.1 mm

2
Power 150 mW

Vdd 2.5 V Clock 0 to 200 MHz MIPS/W 1500

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5003/12/2003

ARM9TDMI ARM9TDMI MacrocellsMacrocells (1/2)(1/2)
Ø ARM920T
q 2 × 16K caches
q Full memory

management unit
supporting virtual
addressing and
memory protection

qWrite buffer

AMBA
address

AMBA
data

vir
tu

al
 IA

write
buffer

data
MMU

physical IA

vi
rtu

al
 D

A

instructions

physical
address tag

ph
ys

ic
al

 D
A

copy-back DA

data

ARM9TDMI

EmbeddedICE
& JTAG

CP15

external
coprocessor

interfaceinstruction
cache

instruction
MMU

data
cache

AMBA interface

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5103/12/2003

ARM9TDMI ARM9TDMI MacrocellsMacrocells (2/2)(2/2)
Ø ARM 940T
q 2 × 4K caches
qMemory protection

Unit
qWrite buffer

AMBA
address

AMBA
data

in
st

ru
ct

io
ns

da
ta

da
ta

 a
dd

re
ss

I a
dd

re
ss

Protection Unit
data

cache

write
bufferAMBA interface

instruction
cache

external
coprocessor

interface

ARM9TDMI

EmbeddedICE
& JTAG

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5203/12/2003

ARM9EARM9E--S Family OverviewS Family Overview
Ø ARM9E-S is based on an ARM9TDMI with the following extensions:
q Single cycle 32*6 multiplier implementation
q EmbeddedICE logic RT
q Improved ARM/Thumb interworking
q New 32*16 and 16*16 multiply instructions
q New count leading zero instruction
q New saturated math instructions

Ø ARM946E-S
q ARM9E-S core
q Instruction and data caches, selectable sizes
q Instruction and data RAMs, selectable sizes
q Protection unit
q AHB bus interface

Architecture v5TE

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5303/12/2003

ARM10TDMI (1/2)ARM10TDMI (1/2)
Ø Current high-end ARM processor core
Ø Performance on the same IC process

ARM10TDMI ARM9TDMI ARM7TDMI
×2×2

Ø 300MHz, 0.25µm CMOS
Ø Increase clock rate

branch
prediction

reg
write

r. read
decode

data memory
access

Memory WriteFetch Decode Execute

decode

Issue

multiplier
par tials add

instruction
fetch

data
write

shift/ALU

addr.
calc.

multiply

ARM10TDMI

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5403/12/2003

ARM10TDMI (2/2)ARM10TDMI (2/2)
Ø Reduce CPI
qBranch prediction
qNon-blocking load and store execution
q64-bit data memory → transfer 2 registers in each cycle

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5503/12/2003

ARM1020T OverviewARM1020T Overview
Ø Architecture v5T
q ARM1020E will be v5TE

Ø CPI ~ 1.3
Ø 6-stage pipeline
Ø Static branch prediction
Ø 32KB instruction and 32KB data caches
q ‘hit under miss’ support

Ø 64 bits per cycle LDM/STM operations
Ø EmbeddedICE Logic RT-II
Ø Support for new VFPv1 architecture
Ø ARM10200 test chip
q ARM1020T
q VFP10
q SDRAM memory interface
q PLL

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5603/12/2003

Memory HierarchyMemory Hierarchy

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5703/12/2003

Memory Size and SpeedMemory Size and Speed

On-chip cache memory

registers

2nd-level off chip cache

Main memory

Hard disk
Access

timecapacity

Slow

Fast

Large

Small

Cost

Cheap

Expensive

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5803/12/2003

Caches (1/2)Caches (1/2)
Ø A cache memory is a small, very fast memory that retains

copies of recently used memory values.
Ø It usually implemented on the same chip as the processor.
Ø Caches work because programs normally display the

property of locality, which means that at any particular time
they tend to execute the same instruction many times on the
same areas of data.

Ø An access to an item which is in the cache is called a hit,
and an access to an item which is not in the cache is a miss.

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 5903/12/2003

Caches (2/2)Caches (2/2)
Ø A processor can have one of the following two organizations:
qA unified cache
vThis is a single cache for both instructions and data

qSeparate instruction and data caches
vThis organization is sometimes called a modified Harvard

architectures

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6003/12/2003

Unified instruction and data cacheUnified instruction and data cache

address

instructions
cache memory

copies of

instructions

data

00..0016

FF..FF16

instructions

copies of
data

registers

processor

instructionsaddress

and data

and data

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6103/12/2003

Separate data and instruction cachesSeparate data and instruction caches

address

data
cache

00..0016

FF..FF16

copies of
data

registers

processor

dataaddress

address

instructionsaddress

cache

copies of
instructions

instructions

memory

instructions

data

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6203/12/2003

The directThe direct--mapped cachemapped cache
Ø The index address bits are used

to access the cache entry
Ø The top address bit are then

compared with the stored tag
Ø If they are equal, the item is in

the cache
Ø The lowest address bit can be

used to access the desired item
with in the line.

data RAMtag RAM

compare mux

datahit

tagaddress: index

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6303/12/2003

ExampleExample

data RAMtag RAM

compare mux

datahit

tagaddress: index

Ø The 8Kbytes of data in 16-
byte lines. There would
therefore be 512 lines

Ø A 32-bit address:
q 4 bits to address bytes

within the line
q 9 bits to select the line
q 19-bit tag

19 9 4

line

512

lines

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6403/12/2003

The setThe set--associative cacheassociative cache

Ø A 2-way set-associative cache
Ø This form of cache is effectively

two direct-mapped caches
operating in parallel.

data RAMtag RAM

compare mux

tag

data RAMtag RAM

compare mux

datahit

address
:

index

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6503/12/2003

ExampleExample

data RAMtag RAM

compare mux

tag

data RAMtag RAM

compare mux

datahit

address
:

index

Ø The 8Kbytes of data in 16-
byte lines. There would
therefore be 256 lines in
each half of the cache

Ø A 32-bit address:
q 4 bits to address bytes

within the line
q 8 bits to select the line
q 20-bit tag

20 8 4

line

256

lines

256

lines

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6603/12/2003

Fully associative cacheFully associative cache
Ø A CAM (Content Addressed

Memory) cell is a RAM cell with
an inbuilt comparator, so a CAM
based tag store can perform a
parallel search to locate an
address in any location

Ø The address bit are compared
with the stored tag

Ø If they are equal, the item is in
the cache

Ø The lowest address bit can be
used to access the desired item
with in the line.

data RAMtag CAM

mux

datahit

address

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6703/12/2003

ExampleExample

data RAMtag CAM

mux

datahit

address
Ø The 8Kbytes of data in 16-

byte lines. There would
therefore be 512 lines

Ø A 32-bit address:
q 4 bits to address bytes

within the line
q 28-bit tag

28 4

line

256

lines

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6803/12/2003

Write StrategiesWrite Strategies
Ø Write-through
qAll write operations are passed to main memory

Ø Write-through with buffered write
qAll write operations are still passed to main memory and the

cache updated as appropriate, but instead of slowing the
processor down to main memory speed the write address and
data are stored in a write buffer which can accept the write
information at high speed.

Ø Copy-back (write-back)
qNo kept coherent with main memory

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 6903/12/2003

Software DevelopmentSoftware Development

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7003/12/2003

ARM ToolsARM Tools

Ø ARM software development – ADS
Ø ARM system development – ICE and trace
Ø ARM-based SoC development – modeling, tools, design flow

assemblerC compiler

C source asm source

.aof

C libraries

linker

.axf

ARMsd

debug

ARMulator development

system model

board

object
libraries

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7103/12/2003

ARM Development Suite (ADS),ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (1/3)ARM Software Development Toolkit (SDT) (1/3)
Ø Develop and debug C/C++ or assembly language program
Ø armcc ARM C compiler

armcpp ARM C++ compiler
tcc Thumb C compiler
tcpp Thumb C++ compiler
armasm ARM and Thumb assembler
armlink ARM linker
armsd ARM and Thumb symbolic debugger

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7203/12/2003

ARM Development Suite (ADS),ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (2/3)ARM Software Development Toolkit (SDT) (2/3)
Ø .aof ARM object format file

.aif ARM image format file
Ø The .aif file can be built to include the debug tables
qARM symbolic debugger, ARMsd

Ø ARMsd can load, run and debug programs either on
hardware such as the ARM development board or using the
software emulation of the ARM (ARMulator)

Ø AXD (ARM eXtended Debugger)
qARM debugger for Windows and Unix with graphics user

interface
qDebug C, C++, and assembly language source

CodeWarrior IDE
qProject management tool for windows

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7303/12/2003

ARM Development Suite (ADS),ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (3/3)ARM Software Development Toolkit (SDT) (3/3)
Ø Utilities

armprof ARM profiler
Flash downloader download binary images to Flash memory on

a development board
Ø Supporting software
qARMulator ARM core simulator
vProvide instruction accurate simulation of ARM processors and

enable ARM and Thumb executable programs to be run on non-
native hardware
vIntegrated with the ARM debugger

qAngle ARM debug monitor
vRun on target development hardware and enable you to develop

and debug applications on ARM-based hardware

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7403/12/2003

ARM C CompilerARM C Compiler
Ø Compiler is compliant with the ANSI standard for C
Ø Supported by the appropriate library of functions
Ø Use ARM Procedure Call Standard, APCS for all external

functions
qFor procedure entry and exit

Ø May produce assembly source output
qCan be inspected, hand optimized and then assembled

sequentially
Ø Can also produce Thumb codes

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7503/12/2003

LinkerLinker
Ø Take one or more object files and combine them
Ø Resolve symbolic references between the object files and

extract the object modules from libraries
Ø Normally the linker includes debug tables in the output file

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7603/12/2003

ARM Symbolic DebuggerARM Symbolic Debugger
Ø A front-end interface to debug program running either under

emulator (on the ARMulator) or remotely on a ARM
development board (via a serial line or through JTAG test
interface)

Ø ARMsd allows an executable program to be loaded into the
ARMulator or a development board and run. It allows the
setting of
qBreakpoints, addresses in the code
qWatchpoints, memory address if accessed as data address
vCause exception to halt so that the processor state can be

examined

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7703/12/2003

ARM Emulator (1/2)ARM Emulator (1/2)
Ø ARMulator is a suite of programs that models the behavior

of various ARM processor cores in software on a host
system

Ø It operates at various levels of accuracy
q Instruction accuracy
qCycle accuracy
qTiming accuracy
vInstruction count or number of cycles can be measured for a

program
vPerformance analysis

Ø Timing accuracy model is used for cache, memory
management unit analysis, and so on

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7803/12/2003

ARM Emulator (2/2)ARM Emulator (2/2)
Ø ARMulator supports a C library to allow complete C

programs to run on the simulated system
Ø To run software on ARMulator, through ARM symbolic

debugger or ARM GUI debuggers, AXD
Ø It includes
qProcessor core models which can emulate any ARM core
qA memory interface which allows the characteristics of the

target memory system to be modeled
qA coprocessor interface that supports custom coprocessor

models
qAn OS interface that allows individual system calls to be

handled

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 7903/12/2003

ARM Development BoardARM Development Board
Ø A circuit board including an ARM core (e.g. ARM7TDMI),

memory component, I/O and electrically programmable
devices

Ø It can support both hardware and software development
before the final application-specific hardware is available

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 8003/12/2003

Summary (1/2)Summary (1/2)
Ø ARM7TDMI
qVon Neumann architecture
q3-stage pipeline
qCPI ~ 1.9

Ø ARM9TDMI, ARM9E-S
qHarvard architecture
q5-stage pipeline
qCPI ~ 1.5

Ø ARM10TDMI
qHarvard architecture
q6-stage pipeline
qCPI ~ 1.3

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 8103/12/2003

Summary (2/2)Summary (2/2)
Ø Cache
qDirect-mapped cache
qSet-associative cache
qFully associative cache

Ø Software Development
qCodeWarrior
qAXD

ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

SoC Design Laboratory PP. 8203/12/2003

ReferencesReferences
[1] ARM System-on-Chip Architecture by S.Furber, Addison

Wesley Longman: ISBN 0-201-67519-6.
[2] www.arm.com

http://www.arm.com

