High Performance Architectures

EEiss Seaes) el T gisal

E &8 &E &8 R BE iR &E
oD | e | e | e mase] epive

‘

‘

e T T G

)taflow
Part 3

Dataflow Processors

Recall from Basic Processor Pipelining:
Hazards limit performance
- Structural hazards
- Data hazards due to
* true dependences or
* name (false) dependences: anti and output dependences
- Control hazards
Name dependences can be removed by:
- compiler (register) renaming
- renaming hardware — advanced superscalars
- single-assignment rule — dataflow computers

Data hazards due to true dependences and control hazards can be avoided if
succeeding instructions in the pipeline stem from different contexts
- dataflow computers, multithreaded processors

Dataflow Model of Computation

* Enabling rule:

An instruction is enabled (i.e. executable) if all operands are
available.

- Von Neumann model: an instruction is enabled if it is pointed to
by PC.

* The computational rule or firing rule, specifies when an enabled
Instruction is actually executed.

* Basic instruction firing rule:

An instruction is fired (i.e. executed) when it becomes
enabled.

* The effect of firing an instruction is the consumption of its
iInput data (operands) and generation of output data
(results) 3
Where are the structural hazards?

Dataflow languages

Main characteristic: The single-assignment rule

A variable may appear on the left side of an assighment only once
within the area of the program in which it is active.

Examples: VAL, Id, LUCID

A dataflow program is compiled into a dataflow graph which is a directed
graph consisting of named nodes, which represent instructions, and
arcs, which represent data dependences among instructions

- The dataflow graph is similar to a dependence graph used in
intermediate representations of compilers.

During the execution of the program, data propagate along the arcs in
data packets, called tokens

This flow of tokens enables some of the nodes (instructions) and fires
them

Dataflow Architectures - Overview
* Pure dataflow computers:

- static,

- dynamic,

- and the explicit token store architecture.
* Hybrid dataflow computers:

- Augmenting the dataflow computation model with
control-flow mechanisms, such as
* RISC approach,
* complex machine operations,
* multi-threading,
* large-grain computation,
* efc.

Pure Dataflow

A dataflow computer executes a program by receiving, processing and sending
out fokens, each containing some data and a tag.

Dependences between instructions are translated into tag matching and tag
transformation.

Processing starts when a set of matched tokens arrives at the execution unit.

The instruction which has to be fetched from the instruction store (according to
the tag information) contains information about

- what to do with data
- and how to transform the tags

The matching unit and the execution unit are connected by an asynchronous
pipeline, with queues added between the stages

Some form of associative memory is required to support token matching
- a real memory with associative access,
- a simulated memory based on hashing,
- or a direct matched memory

Static Dataflow

* A dataflow graph is represented as a collection
of activity templates,
each containing:
- the opcode of the represented instruction,
- operand slots for holding operand values,

- and destination address fields, referring to the
operand slots in sub-sequent activity templates that
need to receive the result value.

* Each token consists only of a value and a
destination address.

Dataflow graph and Activity
template

n,- * ‘/<
X 2
y 3
n;
Goerrermesrmmssssssssnanens X
D y
n/- sqrt P——
@® datatoken
. Z > Z
O acknowledge signal = :

———> data arc

----------------- > acknowledgement arc

Acknowledgement signals

Notice, that different tokens destined for the same destination cannot be
distinguished.

Static dataflow approach allows at most one token on any one arc.

Extending the basic firing rule as follows:

An enabled node is fired if there is no token on any of its output
arcs.

Implementation of the restriction by acknowledge signals (additional
tokens), traveling along additional arcs from consuming to producing
nodes.

Using acknowledgement signals, the firing rule can be changed to its
original form:

A node is fired at the moment when it becomes enabled.

Again: structural hazards are ignored assuming unlimited resources! °

MIT Static Dataflow Machine

Communication

Noetwork

Processing Element H

—

O peration
Unit(s)

tolfrom the
Communication
Noetwork

—>k

local
communication

<«

—

[nstruction

/ Queue \

Update Feteh

Uit
M

(_

Activity
Store

Deficiencies of Static Dataflow

* Consecutive iterations of a loop can only be
pipelined.
* Due to acknowledgment tokens, the token traffic
IS doubled.
* Lack of support for programming constructs that
are essential to modern programming language
- no procedure calls,
- NO recursion.

* Advantage: simple model

11

Dynamic Dataflow

Each loop iteration or subprogram invocation should be able to execute
in parallel as a separate instance of a reentrant subgraph.

The replication is only conceptual.
Each token has a tag:

- address of the instruction for which the particular data value is
destined

- and context information

Each arc can be viewed as a bag that may contain an arbitrary number
of tokens with different tags.

The enabling and firing rule is now:

A node is enabled and fired as soon as tokens with identical
tags are present on all input arcs.

Structural hazards ignored! .

MERGE and SWITCH nodes

execution . execution
—> —>

execution execution SWITCH
— —>

(a) (b)

Branch Implementations

Speculative branch
G evaluation

f T F
CHOOSE

14

Basic Loop Implementation

L: initiation, new loop context

L1y m D: increments loop iteration number
new x v D': reset loop iteration number to 1
L. restore original context

15

Function application

nemg

. .
.
Q

*
.. “
q a :
. n
begin
q 3 BEGI
n L]
A i
r7 " -‘0:
I f apPLY %
n
end

END

R T,

A: create new context
BEGIN: replicate tokens for each fork

END: return results, unstack return
address

A-': replicate output for successors

16

MIT Tagged-Token Dataflow

Processing Element

Architecture

PE

PE

Communication|

Network

[-Structu

Storage

e

Wait-Match Unit

» rU p| Token |_ &
Queue Waiting Token Store
to/from the
- local v
ﬁ%trcvrgtjknlcatlonT communication
Instruction
¢ sU Fetch
Unit
A v_1
ALU
Form & Program g Constan
Token [¢ Form Store & Store
Tag

[-Structu

Storage

e

Manchester Dataflow Machine

' vV [3

Host Switch Switch| [Structure
Storage

Processing Element PE Switch Structure
Storage

v |

Instruction Matching
Store Unit

l

Processing Unit

o Token
ALU ALU Queue
L *

Switch
» output

Advantages and Deficiencies of
Dynamic Dataflow

Major advantage: better performance (compared with static) because it
allows multiple tokens on each arc thereby unfolding more parallelism.

Problems:

- efficient implementation of the matching unit that collects tokens with
matching tags.

* Associative memory would be ideal.

* Unfortunately, it is not cost-effective since the amount of memory
needed to store tokens waiting for a match tends to be very large.

* All existing machines use some form of hashing techniques.
- bad single thread performance (when not enough workload is present)

- dyadic instructions lead to pipeline bubbles when first operand tokens
arrive

- no instruction locality — no use of registers 19

Explicit Token Store (ETS)
Approach

* Target: efficient implementation of token matching.

* Basic idea: allocate a separate frame in a frame
memory for each active loop iteration or
subprogram invocation.

* A frame consists of slots: each s/ot holds an
operand that is used in the corresponding activity.

* Access to slots is direct (i.e. through offsets
relative to the frame pointer)
— NO associative search is needed. .

Explicit Token Store

Instruction Memory

offset
in the _
activation destinations
op-code frame left right
3 Frame Memory
i presence
- 2 1 +2 L S valug,
“ v
sqrt | +2 A4
+ 3 i +1 +5
~ S :-‘ +3 42 FP + 2>
s~~~~ “/‘ / 2 34

21

Monsoon, an Explicit Token Store
Machin

Processing Element

Instruction

e

PE

PE

Multistage
Packet
Switching
Network

N

Memory
A4
. Effective
Instruction Address
Fetch .
Generation
v
| Presence
Bit
o Operation
to/from the § ® v
Communicatiop & o E
Network € @] rame
2 = Operation
21| 3
n -] v
Ap__ A Form
Token

Frame Memory

V

[-Structure

Storage

[-Structure

Storage

22

WaveCache: A Dataflow Processor

pe cluster

E < - D$.
CAY NN =
D% _|L1 D$

. - mam H
HH csmfannn HT,
Fri hams Liss NN ey BT T
=
anen wumafmane 1T T snarfronn mn
anm wunaflaans o B HEH B H
- - H H H
vl v == Frr

L, B L
Sy T T T

* WaveScalar is an ISA

of a dataflow processor
named WaveCache

The WaveCache is a
grid of approximately
2K processing
elements (PEs)
arranged into clusters
of 16 B

WaveCache: A Dataflow Processor

in

A - —

WA WA WA
I Sy R
Add#1)| | Add |
N i :
Sub #10 |Ld<?,1,7>)
—r [T 1 3]
<0 [1=0 |
B —r=
) ! Y
* 1
T
Add |
pa .
 St<1,2,0>
L r 4

3 Loop Body

A WaveScalar executable contains
an encoding of the program dataflow
graph

The instructions explicitly send data
values to the instructions that need
them instead of broadcasting them
via the register file

The potential consumers are known
at compile time, but depending on
control flow, only a subset of them
should recewe the values at run-

time
24

WaveCache: A Dataflow Processor

* Traditional imperative languages
provide the programmer with a
Id =717
model of memory known as total

\ load-store ordering
ld<1,2. 7=
* WaveScalar brings load-store
A/\ ordering to dataflow computing

st<1,3.7= ld<2.4,5> nop<2,6,7> using wave-ordered memory

ld=4.5 7=
/ * Wave-ordered memory annotates
each memory operation with its

‘ st<?, 7,7> ‘ location in its wave and its ordering
relationships (defined by the control
flow graph) with other memory
operations in the same wave

25

