High Performance Architectures

EPIC
Part 2

EPIC: a paradigm shift

* Superscalar RISC solution
- Based on sequential execution semantics

- Compiler’s role is limited by the instruction set
architecture

- Superscalar hardware identifies and exploits parallelism

* EPIC solution — (the evolution of VLIW)
- Based on parallel execution semantics
- EPIC ISA enhancements support static parallelization

- Compiler takes greater responsibility for exploiting
parallelism

- Compiler / hardware collaboration often resembles
superscalar

EPIC: a paradigm shift

* Advantages of pursuing EPIC architectures

- Make wide issue & deep latency less expensive in
hardware

- Allow processor parallelism to scale with additional
VLSI density
* Architect the processor to do well with in-order execution
- Enhance the ISA to allow static parallelization
- Use compiler technology to parallelize program

- However, a purely static VLIW is not appropriate for
general-purpose use

The fusion of VLIW and
superscalar techniques

* Superscalars need improved support for static parallelization
- Static scheduling
- Limited support for predicated execution

* VLIWs need improved support for dynamic parallelization
- Caches introduce dynamically changing memory latency

- Compatibility: issue width and latency may change with new
hardware

- Application requirements - e.g. object oriented programming
with dynamic binding
* EPIC processors exhibit features derived from both

- Interlock & out-of-order execution hardware are compatible
with EPIC (but not required!)

- EPIC processors can use dynamic translation to parallelize

in software
4

Many EPIC features are taken from
VLIWSs

[Minisupercomputer products stimulated VLIW research (FPS,
Multiflow, Cydrome)
O Minisupercomputers were specialized, costly, and short-lived
U Traditional VLIWs not suited to general purpose computing
OVLIW resurgence in single chip DSP & media processors

[Minisupercomputers exaggerated forward-looking challenges:
ULong latency
UWide issue
U Large number of architected registers
0 Compile-time scheduling to exploit exotic amounts of
parallelism

1 EPIC exploits many VLIW techniques

Shortcomings of early VLIWSs

Expensive multi-chip implementations
No data cache
Poor "scalar" performance

No strategy for object code compatibility

EPIC design challenges

Develop architectures applicable to general-purpose computing

- Find substantial parallelism in "difficult to parallelize” scalar
programs

- Provide compatibility across hardware generations
- Support emerging applications (e.g. multimedia)

Compiler must find or create sufficient ILP

Combine the best attributes of VLIW & superscalar RISC
(incorporated best concepts from all available sources)

Scale architectures for modern single-chip implementation

EPIC Processors, Intel's |1A-64 ISA
and ltanium

* Joint R&D project by Hewlett-Packard and Intel (announced in
June 1994)

* This resulted in explicitly parallel instruction computing
(EPIC) design style:

- specifying ILP explicit in the machine code, that is, the

ﬁ)/aLrI?AI}ellsm IS encoded directly into the instructions similarly to

- a fully predicated instruction set;

- an inherently scalable instruction set (i.e., the ability to scale
to a lot of FUs);

- many reqisters;
- speculative execution of load instructions

|A-64 Architecture

* Unique architecture features & enhancements

- Explicit parallelism and templates
- Predication, speculation, memory support, and others
- Floating-point and multimedia architecture

* |A-64 resources available to applications

- Large, application visible register set
- Rotating registers, register stack, register stack engine

* |1A-32 & PA-RISC compatibility models

)
97
=t

s_'p
97
I—\Ir

o
93

QA

)
97
Y
I\

l\.

|A-64's Large Register File

. Floating-Point Branch Predicate
Integer Registers Registers Registers Registers
63 0 81 0 63 0 bit 0
e Syl
E 0 GiRO 0.0 S0 | PR H
Giftl DR
BR7 it
| | |
[| GRS —
- GiFt82 | PR1G
| | I
| | 1
_ ' PRES
NaT |:| 32 Static |:| 32 Static 16 Static |:|
l 96 Stacked, Rotating |:| 96 Rotating 48 Rotating |:|

10

Intel's |A-64 ISA

IAf‘-64 instructions are 41-bit (previously stated 40 bit) long and consist
0

* op-code,

* predicate field (6 bits),

* two source register addresses (7 bits each),

* destination register address (7 bits), and

* special fields (includes integer and floating-point arithmetic).

The 6-bit predicate field in each |A-64 instruction refers to a set of 64
predicate regqisters.

6 types of instructions

* A: Integer ALU ==> |-unit or M-unit
* I: Non-ALU integer ==> l-unit

* M: Memory ==> M-unit

* B: Branch ==> B-unit

* F: Floating-point ==> F-unit

* L: Long Immediate ==> I-unit

|A-64 instructions are packed by compiler into bundles.

11

|A-64 Bundles

A bundle is a 128-bit long instruction word (LIW) containing three 41-bit |IA-64
instructions along with a so-called 5-bit template that contains instruction
grouping information

|A-64 does not insert no-op instructions to fill slots in the bundles

The template explicitly indicates (ADAG):
- first 4 bits: types of instructions

- last bit (stop bit): whether the bundle can be executed in parallel with the
next bundle

- (previous literature): whether the instructions in the bundle can be executed
in parallel or if one or more must be executed serially (no more in ADAG
description)

Bundled instructions don't have to be in their original program order, and they
can even represent entirely different paths of a branch

Also, the compiler can mix dependent and independent instructions together in a
bundle, because the template keeps track of which is which 12

|A-64 : Explicitly Parallel Architecture

>

i

128 bits (bundle)
Instruction 2 Instruction 1 Instruction 0 Template
41 bits 41 bits 41 bits 5 bits
rd < N\
Memory (M) Memory (M) Integer (1) (Mmi)
|A-64 template specifies
- The type of operation for each
Instruction
- MFI, MMI, MIl, MLI, MIB, MMF, MFB,
MMB, MBB, BBB
- Intra-bundle relationship M=Nemory
- M/ MlorMI/I F=Floating-point
: : =l
- Inter-bundle relationship L=l ons Immediate
Most common combinations covered by templates B=Branch

- Headroom for additional templates

Simplifies hardware requirements
Scales compatibly to future generations

13

|A-64 Scalability

* A single bundle containing three instructions
corresponds to a set of three FUs.

* If an I1A-64 processor had n sets of three FUs each then
using the template information it would be possible to
chain the bundles to create instruction word of n
bundles in length.

* This is the way to provide scalability of |A-64 to any
number of FUs.

14

Predication in |A-64 ISA

Branch prediction: paying a heavy penalty in lost cycles if mispredicted.

|A-64 compilers uses predication to remove the penalties caused by
mispredicted branches and by the need to fetch from noncontiguous target
addresses by jumping over blocks of code beyond branches.

When the compiler finds a branch statement it marks all the instructions that
represent each path of the branch with a unique identifier called a predicate.

|A-64 defines a 6-bit field (predicate register address) in each instruction to
store this predicate. ==> 64 unique predicates available at one time.

Instructions that share a particular branch path will share the same predicate.

15

if

then

else

(2)

lf-then-else statement

EPIC Architecture

Traditional Architecture

instl
inst2

pl, p2 <- cmp(a==b)
jump if p2

inst3
inst4

Jjump

inst5
insté6

inst? v
inst8

if

then

else

(b)

(p1)
(p1)

(p2)
(p2)

instl
inst2

Pl, p2 <- cmp(a==b)

inst3
inst4

inst5
inst6

inst7
inst8

16

Predication in |A-64 ISA

At run time, the CPU scans the templates, picks out the independent
instructions, and issues them in parallel to the FUs.

Predicated branch: the processor executes the code for every possible
branch outcome.

In spite of the fact that the processor has probably executed some
instructions from both possible paths, none of the (possible) results is
stored yet.

To do this, the processor checks predicate register of each of these
instructions.

- If the predicate register contains a 1,
===> the instruction is on the TRUE path (i.e., valid path),
so the processor retires the instruction and stores the result.

- If the register contains a 0,

- ===> the instruction is invalid, so the processor discards the result.

17

Speculative loading

Load data from memory well before the program needs it, and
thus to effectively minimize the impact of memory latency.

Speculative loading is a combination of compile-time and run-
time optimizations. ==> compiler-controlled speculation

The compiler is looking for any instructions that will need data
from memory and, whenever possible, hoists a load at an
earlier point in the instruction stream, ahead of the instruction
that will actually use the data.

Today's superscalar processors:

- load can be hoisted up to the first branch instruction which
represents a barrier

Speculative loading combined with predication gives the
compiler more flexibility to reorder instructions and to shift

loads above branches.

18

Speculative loading - “control
speculation”

Traditional Architecture EPIC Architecture
. 1d.s
instl A instl
inst2 inst2
an
R
Barrier [Jump_equ T jmp_equ
T load check.s

use use

(a) (b)

19

Speculative loading

speculative load instruction 1d.s
speculative check instruction chk.s

* The compiler:

- inserts the matching check immediately before the particular instruction that
will use the data,

- rearranges the surrounding instructions so that the processor can issue them
in parallel.

* At run-time:

- the processor encounters the 1d. s instruction first and tries to retrieve the
data from the memory.

- 1d. s performs memory fetch and exception detection (e.g., checks the
validity of the address).

- If an exception is detected, 1d. s does not deliver the exception.
- Instead, 1d. s only marks the target register (by setting a token bit)

20

Speculative loading “data

speculation”

Mechanism can also be used to move a

load above a store
even if is is not known whether the load

and the store reference overlapping
memory locations.

Ld.a advanced load

Chk.a check
use data

21

Speculative loading/checking

* Exception delivery is the responsibility of the matching chk. s
instruction.

- When encountered, chk. s calls the operating system routine if
the target register is marked (i.e, if the corresponding token bit is
set), and does nothing otherwise.

* Whether the chk. s instruction will be encountered may depend on
the outcome of the branch instruction.

==> Thus, it may happen that an exception detected by 1d. s is
never delivered.

* Speculative loading with 1d. s/chk . s machine level instructions
resembles the TRY/CATCH statements in some high-level
programming languages (e.g., Java).

22

Software Pipelining via Rotating
Registers

* Software pipelining - improves performance by overlapping execution
of different software loops - execute more loops in the same amount of

time

Sequential Loop Execution Software Pipelining Loop Execution

0 I
E II
| I

" Traditional architectures need complex software loop unrolling for pipelining
« Results in code expansion --> Increases cache misses --> Reduces
performance
" |A-64 utilizes rotating registers to achieve software pipelining
« Avoids code expansion --> Reduces cache misses --> Higher performar12<3:e

Time

|A-64 Register Stack

(Mulder/ Hack slide)
Traditional Register Stacks |A-64 Register Stack

Procedures Register Procedures Register

—p

-

D

" Eliminate the need for save / restore by " |A-64 able to reserve
reserving fixed blocks in register variable block sizes

" However, fixed blocks waste resources " No wasted resources

24

|A-64 support for Procedure Calls

Subset of general registers are organized as a logically infinite set of stack
frames that are allocated from a finite pool of physical registers

Stacked registers are GR32 up to a user-configurable maximum of GR127

a called procedure specifies the size of its new stack frame using alloc
instruction

output registers of caller are overlapped with input registers of called
procedure

Register Stack Engine:
- management of register stack by hardware

- moves contents of physical registers between general register file and
memory

- provides programming model that looks like unlimited register stack
25

Full Binary |A-32 Instruction
Compatibility

Jump to
e |A-64
IA-32 Branch to |A-64"
Instruction |A-32 [gsigticiion)
Set SEl
Intercepts,
Exceptions,

Interrupts

[oW --‘"

DYy SIS
'_)' A | r -a
RCSOUIGCES)

 IA-32 instructions supported through shared hardware resources

- Performance similar to volume 1A-32 processors
26

Full Binary Compatibility for PA-RISC

* Transparency:

- Dynamic object code translator in HP-UX automatically converts PA-
RISC code to native 1A-64 code

- Translated code is preserved for later reuse

* Correctness:
- Has passed the same tests as the PA-8500

* Performance:

- Close PA-RISC to IA-64 instruction mapping

- Translation on average takes 1-2% of the time
Native instruction execution takes 98-99%

- Optimization done for wide instructions, predication, speculation, large
register sets, etc.

- PA-RISC optimizations carry over to |1A-64

27

Delivery of Streaming Media

* Audio and video functions regularly perform the
same operation on arrays of data values

- |A-64 manages its resources to execute these functions efficiently
* Able to manage general register’s as 8x8, 4x16, or 2x32 bit elements
* Multimedia operands/results reside in general registers

* |A-64 accelerates compression / decompression

algorithms
- Parallel ALU, Multiply, Shifts
- Pack/Unpack; converts between different element sizes.

* Fully compatible with
- |A-32 MMX0 technology,

- Streaming SIMD Extensions and
- PA-RISC MAX2 28

|A-64 3D Graphics Capabilities

" Many geometric calculations (transforms and
lighting) use 32-bit floating-point numbers

" 1A-64 configures registers for maximum 32-bit
floating-point performance

- Floating-point registers treated as 2x32 bit single precision registers
- Able to execute fast divide

- Achieves up to 2X performance boost in 32-bit data floating-point
operations

" Full support for Pentium® Ill processor
Streaming SIMD Extensions (SSE)

29

|A-64 for Scientific Analysis

* Variety of software optimizations supported

- Load double pair : doubles bandwidth between L1 and registers
- Full predication and speculation support

* NaT Value to propagate deferred exceptions

* Alternate IEEE flag sets allow preserving architectural flags
- Software pipelining for large loop calculations

* High precision & range internal format : 82 bits

- Mixed operations supported: single, double, extended, and 82-bit
- Interfaces easily with memory formats

* Simple promotion/demotion on loads/stores
- lterative calculations converge faster

- Ability to handle numbers much larger than RISC competition without
overflow

|A-64 Floating-Point Architecture muider Hack slide)

Muliiole read ooris (82 bit floating point numbers)

|
XB+C

|
A
|

Wlultiole write poris

" 128 registers

« Allows parallel execution of multiple floating-point operations
" Simultaneous Multiply - Accumulate (FMAC)

- 3-input, 1-output operation:a*b+c=d

- Shorter latency than independent multiply and add

« Greater internal precision and single rounding error

31

Memory Support for High Performance
Technical Computing

* Scientific analysis, 3D graphics and other
technical workloads tend to be predictable &
memory bound

* |A-64 data pre-fetching of operations allows for
fast access of critical information

- Reduces memory latency impact

* |A-64 able to specify cache allocation

- Cache hints from load / store operations allow data to be placed at
specific cache level

- Efficient use of caches, efficient use of bandwidth
32

|A Server/Workstation Roadmap

McKinley

Performance

Pariirn@ll] Laon i Preje,

Pentium® Il Xeon™
I OCESSO;

>
'98 99 00 01 02 03
25 18u A3
IA-64 starts with Merced ProCesSSOr o o abig

purposes only and are subject
to change.

ltanium

64-bit processor ==> not in the Pentium, PentiumPro, Pentium lI/lll-line
Targeted at servers with moderate to large numbers of processors

full compatibility with Intel’s 1A-32 ISA

EPIC (explicitly parallel instruction computing) is applied.

6-wide (3 EPIC instructions) pipeline

10 stage pipeline

4 int, 4 multimedia, 2 load/store, 3 branch, 2 extended floating-point, 2
single-prec. Floating-point units

Multi-level branch prediction besides predication

16 KB 4-way set-associative d- and I-caches

96 KB 6-way set-associative L2 cache

4 MB L3 cache (on package)

800 MHz, 0.18 micro process (at beginning of 2001)
shipments end of 1999 or mid-2000 or ?7?

34

Conceptual View of Itanium

4a
T

L A
W o N
it

b Fetch i# Issue | 4| Register |{Controll’ | Parallel rescurces || Memory ﬁ.
: | i Elmrul": subsystem
3 | j harding p % ‘* | 4 Integer, s -:.li-:
ﬁ_ . 4 @ oL 1 ﬂc} "I‘. -4 MMI UHH.E ‘
&l -y r_jrl] B] . |
el | A= [G i28 GH, [& | |®
| | @ & MACS
i | | Instruction H=l | @ 128 FA, | gl & :-- E+E|i Three levals -ﬂ'
k- ﬂa:hg -:-- E ragIETEIF : i fr A = re |
Y . e | & L o | [| 2 loadfstore unils of cache |f,
A branch 1] £ Raidbird | & — (L1, L2, L3} || #
g | | predictors [y | @ B | stack e i L ¥ b
Top =1 | % (1| | engine o H- 3 branch units -
¥ Sy -] R]
] .:-"".'5 MR 1 'd | 32-enlry ALAT ,ﬁu'
A i} ; et
w ,.1.. 4 R *I
£l "ﬂ : [Speculation deferral managament &
-u:* e = "'."_*I i 3 ILL1 = [:r.l I:'-iﬁ T L e -...I_'}'I.- . PR o - ;*I35

Itanium Processor Core Pipeline

-5

4 Execution core

Front end ' - 4 ginglescycle ALUs, 2 I-:-alzl-“stanE
Prefelchietch of & |n5truct||:|-nsﬁ;:lmﬂh Advanced load contral -
- Hierarchy of branch predictors . Pradicate delivery-and branch
Demunring busfter MaT/exceplions/retifement
e T
Instruction dalivery Oparand dalhvary
Dispersal of § instructions onto Regqister file read and bypass
g ssue ports Heqgister scoreboard
Register remapping ' Predicated dependancles

Register save angine

ROT: instruction rotation
pipelined access of the large register file:
WDL.: word line decode:
REG: register read
DET: exception detection (~retire stage) 36

[Tamium PROCESSONR

| 96-Khyle
| L2
| cache

L1 mstruclmn cache

ITLE

-

[A-32
docode

R
£

-

i

| and |
conkral ‘

-

and
fetch/pretetch engine
Branch s 5
rediction Decoupling |]
i buffer Lo — i Ahindies
T it)
¥
Ble|a _*ruﬂi M
T Yy
He-:_:;us.ter E-tElLﬁ':. engm—‘-’mmapplnq
@ Branch and 128 integer
= predicate i registorns
=
Jik]
[}
I:II:I' £ -
g Imeqar H Cual-
% Eil‘{-lr_‘lﬂh a:il-:! I port
3B Mk MM ! L1
E | Lnits | data
g | : cache
o =]
L8
[
a |
9 |
2] |
i |
_‘ & C——— -

regusters

128 floating-point ‘

~

ALAT

¥

Y

Buz contraller

Floating-
point
LNits

SIMD
FhAAC

A-Miyta
L3
cache

37

ltanium Die Plot

.:ﬁnl. H -4
;.?-.,.'-* b

T

I 1A A {:ﬁh@l f :ﬂihz | "

il d +|ntager umﬂh ﬂ'anﬂé -
t[Eﬁ-E -I.-Jli 5

| Decada | =

Care processor die

4 x 1Mbyte L3 cache

38

ltanium vs. Willamette (P4)
* |[tanium announced with 800 MHz
* P4 announced with 1.2 GHz

11 P4 may be faster in running IA-32 code than
ltanium running |1A-64 code

* ltanium probably won‘t compete with
contemporary |1A-32 processors

* but Intel will complete the ltanium design
anyway

* Intel hopes for the ltanium successor McKinley
which will be out onlv one vear |ater

