# **Parallel Computer Architecture**

#### What is Parallel Architecture?

 A parallel computer is a collection of processing elements that cooperate to solve large problems fast

#### Some broad issues:

- Resource Allocation:
  - » how large a collection?
  - » how powerful are the elements?
  - » how much memory?
- Data access, Communication and Synchronization
  - » how do the elements cooperate and communicate?
  - » how are data transmitted between processors?
  - » what are the abstractions and primitives for cooperation?
- Performance and Scalability
  - » how does it all translate into performance?
  - » how does it scale?

## Why Study Parallel Architecture?

#### Role of a computer architect:

To design and engineer the various levels of a computer system to maximize *performance* and *programmability* within limits of *technology* and *cost*.

#### Parallelism:

- Provides alternative to fasterclock for performance
- Applies at all levels of system design
- Is a fascinating perspective from which to view architecture
- Is increasingly central in information processing

## Why Study it Today?

- History: diverse and innovative organizational structures, often tied to novel programming models
- Rapidly maturing under strong technological constraints
  - The "killer micro" is ubiquitous
  - Laptops and supercomputers are fundamentally similar!
  - Technological trends cause diverse approaches to converge
- Technological trends make parallel computing inevitable
- Need to understand fundamental principles and design tradeoffs, not just taxonomies
  - Naming, Ordering, Replication, Communication performance

4

## Is Parallel Computing Inevitable?

- Application demands: Our insatiable need for computing cycles
- Technology Trends
- Architecture Trends
- Economics
- Current trends:
  - Today's microprocessors have multiprocessor support
  - Servers and workstations becoming MP: Sun, SGI, DEC, COMPAQ!...
  - Tomorrow's microprocessors are multiprocessors

### **Application Trends**

- Application demand for performance fuels advances in hardware, which enables new appl'ns, which...
  - Cycle drives exponential increase in microprocessor performance
  - Drives parallel architecture harder
    - » most demanding applications



New Applications

More Performance

- Range of performance demands
  - Need range of system performance with progressively increasing cost

### Speedup

- Speedup (p processors) = Performance (p processors)

  Performance (1 processor)
- For a fixed problem size (input data set), performance = 1/time
- Speedup fixed problem (p processors) =

Time (1 processor)

Time (p processors)

### **Commercial Computing**

- Relies on parallelism for high end
  - Computational power determines scale of business that can be handled
- Databases, online-transaction processing, decision support, data mining, data warehousing
- TPC benchmarks (TPC-C order entry, TPC-D decision support)
  - Explicit scaling criteria provided
  - Size of enterprise scales with size of system
  - Problem size not fixed as p increases.
  - Throughput is performance measure (transactions per minute or tpm)

#### **TPC-C Results for March 1996**



- Parallelism is pervasive
- Small to moderate scale parallelism very important
- Difficult to obtain snapshot to compare across vendor platforms

## **Engineering Computing Demand**

- Large parallel machines a mainstay in many industries
  - Petroleum (reservoir analysis)
  - Automotive (crash simulation, drag analysis, combustion efficiency),
  - Aeronautics (airflow analysis, engine efficiency, structural mechanics, electromagnetism),
  - Computer-aided design
  - Pharmaceuticals (molecular modeling)
  - Visualization
    - » in all of the above
    - » entertainment (films like Toy Story)
    - » architecture (walk-throughs and rendering)
  - Financial modeling (yield and derivative analysis)
  - etc.

### **Summary of Application Trends**

- Transition to parallel computing has occurred for scientific and engineering computing
- In rapid progress in commercial computing
  - Database and transactions as well as financial
  - Usually smaller-scale, but large-scale systems also used
- Desktop also uses multithreaded programs, which are a lot like parallel programs
- Demand for improving throughput on sequential workloads
  - Greatest use of small-scale multiprocessors
- Solid application demand exists and will increase

11

#### **Architectural Trends**

- Architecture translates technology's gifts into performance and capability
- Resolves the tradeoff between parallelism and locality
  - Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip connect
  - Tradeoffs may change with scale and technology advances
- Understanding microprocessor architectural trends
  - => Helps build intuition about design issues or parallel machines
  - => Shows fundamental role of parallelism even in "sequential" computers

07/18/07

#### Phases in "VLSI" Generation



#### **Architectural Trends**

- Greatest trend in VLSI generation is increase in parallelism
  - Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit
    - » slows after 32 bit
    - » adoption of 64-bit now under way, 128-bit far (not performance issue)
    - » great inflection point when 32-bit micro and cache fit on a chip
  - Mid 80s to mid 90s: instruction level parallelism
    - » pipelining and simple instruction sets, + compiler advances (RISC)
    - » on-chip caches and functional units => superscalar execution
    - » greater sophistication: out of order execution, speculation, prediction
      - to deal with control transfer and latency problems
  - Next step: thread level parallelism

## How far will ILP go?



- Infinite resources and fetch bandwidth, perfect branch prediction and renaming
  - real caches and non-zero miss latencies

07/18/07 CS258 S99 15