Parallel Computer Architecture

What is Parallel Architecture?

« A parallel computeris a collection of processing
elements that cooperate to solve large problems
fast

« Some broad issues:
— Resource Allocation:
» how large a collection?
» how powerful are the elements?
» how much memory?
— Data access, Communication and Synchronization
» how do the elements cooperate and communicate?
» how are data transmitted between processors?
» What are the abstractions and primitives for cooperation?
— Performance and Scalability
» how does it all translate into performance?
» how does it scale?

Why Study Parallel Architecture?

Role of a computer architect:

To design and engineer the various levels of a computer system
to maximize performance and programmability within limits of
technology and cost.

Parallelism:
e Provides alternative to fasterclock for performance
» Applies at all levels of system design
e [s a fascinating perspective from which to view architecture

e Is increasingly central in information processing

Why Study it Today?

« History: diverse and innovative organizational
structures, often tied to novel programming
models

« Rapidly maturing under strong technological
constraints
— The “Killer micro” is ubiquitous
— Laptops and supercomputers are fundamentally similar!
— Technological trends cause diverse approaches to converge

« Technological trends make parallel computing
inevitable

« Need to understand fundamental principles and
design tradeoffs, not just taxonomies
— Naming, Ordering, Replication, Communication performance

Is Parallel Computing Inevitable?

Application demands: Our insatiable need for
computing cycles

Technology Trends
Architecture Trends
Economics

Current trends:
— Today’s microprocessors have multiprocessor support

— Servers and workstations becoming MP: Sun, SGI, DEC,
COMPAQ.!...

— Tomorrow’s microprocessors are multiprocessors

CS258 S99

Application Trends

« Application demand for performance fuels
advances in hardware, which enables new appl’'ns,
which...

— Cycle drives exponential increase in microprocessor performance
— Drives parallel architecture harder
» most demanding applications

New Applications
More Performance

« Range of performance demands

— Need range of system performance with progressively increasing
cost

Speedup

« Speedup (p processors) = Performance (p processors)

Performance (1 processor)

- For a fixed problem size (input data set),
performance = 1/time

« Speedup fixed problem (p processors) =

Time (1 processor)

Time (p processors)

Commercial Computing

« Relies on parallelism for high end
— Computational power determines scale of business that can be
handled
- Databases, online-transaction processing,
decision support, data mining, data warehousing

« TPC benchmarks (TPC-C order entry, TPC-D
decision support)
— Explicit scaling criteria provided
— Size of enterprise scales with size of system
— Problem size not fixed as p increases.

— Throughput is performance measure (transactions per minute
or tpm)

TPC-C Results for March 1996

25,000
A Tandem Himalaya
O DEC Alpha
O SGI PowerChallenge
20,000 ~| , HPPA
= |BM PowerPC
0 Other
@ 15,000
2
2
S 10,000 =
e
|_
'
5,000 |—e
’ O
fo o0
[]
E O
0 | | | | [|
0 20 40 60 80 100 120

Number of processors

« Parallelism is pervasive
« Small to moderate scale parallelism very important

« Difficult to obtain snapshot to compare across
vendor platforms

Engineering Computing Demand

- Large parallel machines a mainstay in many
iIndustries
— Petroleum (reservoir analysis)

— Automotive (crash simulation, drag analysis, combustion
efficiency),

— Aeronautics (airflow analysis, engine efficiency, structural
mechanics, electromagnetism),

— Computer-aided design
— Pharmaceuticals (molecular modeling)
— Visualization
» in all of the above
» entertainment (films like Toy Story)
» architecture (walk-throughs and rendering)
— Financial modeling (yield and derivative analysis)
— etc.

Summary of Application Trends

Transition to parallel computing has occurred for
scientific and engineering computing
In rapid progress in commercial computing

— Database and transactions as well as financial
— Usually smaller-scale, but large-scale systems also used

Desktop also uses multithreaded programs,
which are a lot like parallel programs

Demand for improving throughput on sequential
workloads
— Greatest use of small-scale multiprocessors

Solid application demand exists and will
Increase

Architectural Trends

« Architecture translates technology’s gifts into
performance and capability

« Resolves the tradeoff between parallelism and
locality

— Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip
connect

— Tradeoffs may change with scale and technology advances

« Understanding microprocessor architectural
trends
=> Helps build intuition about design issues or parallel machines

=> Shows fundamental role of parallelism even in “sequential”
computers

Phases in “VLSI” Generation

Transistors

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

Bit-level parallelism Instruction-level

Thread-level (?)

T T TTTTT T T TTTT]

T

T TTTTT]

5 i80386

O 0 R3000
00 R2000

I TTTTII

I

T T TTITI

1970 1975 1980 1985 1990 1995

2000

2005

Architectural Trends

« Greatest trend in VLSI generation is increase in
parallelism
— Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit
» slows after 32 bit

» adoption of 64-bit now under way, 128-bit far (not
performance issue)

» great inflection point when 32-bit micro and cache fit on a
chip
— Mid 80s to mid 90s: instruction level parallelism

» pipelining and simple instruction sets, + compiler
advances (RISC)

» on-chip caches and functional units => superscalar
execution

» greater sophistication: out of order execution, speculation,
prediction

« to deal with control transfer and latency problems
— Next step: thread level parallelism

Fraction of total cycles (%)

How far will ILP go?

30

25

20

15

10

0 | I

0 1 2 3 4 5 6+ 0 5 10

Number of instructions issued Instructions issued per cycle

« Infinite resources and fetch bandwidth, perfect branch
prediction and renaming

— real caches and non-zero miss latencies
CS258 S99

15

