Memory and Cache Coherence




Shared Memory Multiprocessors

Symmetric Multiprocessors (SMPs)

« Symmetric access to all of main memory fom any processor

Dominate the server market
 Building blocks for larger systems; arnving to desktop
Attractive as throughput servers and for parallel programs
* Fine-grain resource sharing
» Uniform access via loads/stores
« Automatic data movement and coherent replication in caches
* Useful for operating system too
Normal uniprocessor mechanisms to access data (reads and writes)

 Key 1s extension of memory hiearchy to support mulkiple processors



Natural Extensions of Memory System

e & ©°
Switch

(Interleaved
First-level

(Interleaved)
Main memory

(a) Shared cache

Interconnection network

$ ® & ¢ $
Bus
Mem I/O devices
(b) Bus-based shared memory
Mem $ ¢ ¢ ¢ Mem ¥

Mem

(c) Dancehall

Mem

Interconnection network

(d) Distributed-memory



Caches and Cache Coherence

Caches play key role 1n all cases
* Reduce average data access time

* Reduce bandwidth demands placed on shaed interconnect

But private processor caches create a problem
* Copies of a variable can be pesent in multiple caches

* A write by one processor maynot become visible to others

- They’ll keep accessing stale value in their caches
* Cache coherence problem

 Need to take actions to ensure visibility



Focus: Bus-based, Centralized Memory

Shared cache

» Low-latency sharing and prefetching acioss processors

* Sharing of working sets

 No coherence problem (and hence no false sharng either)

 But high bandwidth needs and negative inteference (e.g. conflicts)

- Hit and miss latency increased due to intervening switch and cache size
« Mid 80s: to connect couple of pocessors on a board (Encore, Sequent)

* Today: for multiprocessor on a chip (for small-scale systems ornodes)

Dancehall

 No longer popular: everything 1s uniformly far away

Distributed memory

» Most popular way to build scalable systems, discussed laer



A Coherent Memory System: Intuition

Reading a location should return latest value written (by any process)

Easy 1n uniprocessors
* Except for I/O: coherence between I/O devices and processors

 But infrequent so software solutions work

- uncacheable memory, uncacheable operations, flush pages, pass I/0 data
through caches

Would like same to hold when processes run on different processors

« E.g. as if the processes were interleaved on a uniprocessor

But coherence problem much more critical in multiprocessors
* Pervasive
* Performance-cntical

* Must be treated as a basic hardware design issue



Example Cache Coherence Problem

I/O devices
s (2)

Memory

* Processors see different values for u after event 3

* With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value when

— Processes accessing main memory may see very stale value

» Unacceptable to programs, and frequent!



Problems with the Intuition

Recall: Value returned by read should be last value written
But “last” is not well-defined

Even 1n seq. case, last defined in terms of program order, not time
* Order of operations in the machine language presented to procesor

* “Subsequent” defined in analogous way, and well defined

In parallel case, program order defined within a process, but need to
make sense of orders across processes

Must define a meaningful semantics



Some Basic Definitions

Extend from definitions 1n uniprocessors to those in multiprocessors

Memory operation: a single read (load), write (store) or read-modify-
write access to a memory location

+ Assumed to execute atomically

Issue: a memory operation i1ssues when it leaves processor’s internal
environment and is presented to memory system (cache, buffer ...)

Perform: operation appears to have taken place, as far as processor
can tell from other memory operations it issues

« A write performs w.r.t. the processor when a subsequent ead by the
processor returns the value of that write or a later write

A read perform w.r.t the processor when subsequent writes 1ssued by the
processor cannot affect the value returned by the read

(P

In multiprocessors, stay same but replace “the” by “a” processor
 Also, complete: perform with respect to all processors

- Still need to make sense of orderin operations from different processegs



Sharpening the Intuition

Imagine a single shared memory and no caches
* Every read and write to a location accesses the same physical location
 Operation completes when it does so

Memory imposes a serial or total order on operations to the location
* Operations to the location from a given ppcessor are in program order

* The order of operations to the location from diffeent processors is some
interleaving that preserves the individual program orders

“Last” now means most recent in a hypothetical serial order that
maintains these properties

For the serial order to be consistent, all processors must see writes to
the location 1n the same order (if they bother to 1ook, 1.e. to read)

Note that the total order 1s never really constructed in real systems

* Don’t even want memory, or any hardware, to see all operations

But program should behave as if some serial order 1s enforced
* Order 1in which things appear tohappen, not actually happen 10



Formal Definition of Coherence

Results of a program: values returned by its read operations

A memory system 1s coherent if the results of any execution of a progam are
such that each location, it 1s possible to construct a hypothetical serihorder
of all operations to the location that is consistent wth the results of the
execution and in which:

1. operations issued by any particular process occur in the order issued by
that process, and

2. the value returned by a read is the value written by the last write to that
location in the serial order

Two necessary features:
» Write propagation: value written must become visible to othes

» Write serialization: writes to location seen in same order by all
—1f I see w1 after w2, you should not see w2 before wl

- no need for analogous read serialization since reads not visible to others
11



Cache Coherence Using a Bus

Built on top of two fundamentals of uniprocessor systems

* Bus transactions

» State transition diagram in cache
Uniprocessor bus transaction:

* Three phases: arbitration, command/address, data tansfer

« All devices observe addresses, one is esponsible
Uniprocessor cache states:

* Effectively, every block is a finite state machine

» Write-through, write no-allocate has two states: valid, invalid

* Writeback caches have one more state: modified (dirty™)

Multiprocessors extend both these somewhat to implement coherenge



Snooping-based Coherence

Basic ldea

Transactions on bus are visible to all processors

Processors or their representatives can snoop (monitor) bus and take
action on relevant events (e.g. change state)

Implementing a Protocol

Cache controller now receives inputs from both sides:

* Requests from processor, bus requests/responses flom snooper

In either case, takes zero or more actions

 Updates state, responds with data, generates new bus transactions

Protocol 1s distributed algorithm: cooperating state machines

* Set of states, state transition diagram, actions

Granularity of coherence 1s typically cache block

» Like that of allocation m cache and transfer to/from cache 3



Coherence with Write-through Caches

G Bus snoop °

|
- Cache-memory
Mem f I/O devices transaction

 Key extensions to uniprocessor:snooping, invalidating/updating caches
— no new states or bus transactions in this case
— invalidation- versus update-based protocols

« Write propagation: even in invalidate case, laterreads will see new value

- invalidate causes miss on later access, and memory up-to-date via write-
through "



Write-through State Transition Diagram

PrRd/— PrWr/BusWr

PrRd/BusRd BusWr/—

PrWr/BusW ——» Processor-initiated transactions

—® Bus-snooper-initiated transactions

* Two states per block in each cache, as in uniprocessor

— state of a block can be seen as p-vector
- Hardware state bits associated with only blocks that are in the cache

— other blocks can be seen as being in invalid (not-present) state in that cache
« Write will invalidate all other caches (no local change of state)

— can have multiple simultaneous readers of block,but write invalidates thelsm



Is it Coherent?

Construct total order that satisfies program order, write serialization?

Assume atomic bus transactions and memory operations for now
- all phases of one bus transaction complete beforenext one starts

* processor waits for memory operation © complete before 1ssuing next

All writes go to bus + atomicity
* Writes serialized by orer in which they appear on bus Gus order)

* Per above assumptions, invalidations applied to caches in bus order

How to insert reads in this order?

 Important since processors see writes through reads, so determines
whether write serialization is satisfied

 But read hits may happen independently and do not appear on bus or
enter directly in bus oder

16



Problem with Write-Through

High bandwidth requirements
« Every write from every processor goes to shared bus and memory

* Consider 200MHz, 1CPI processor, and 15% instrs. are 8-byte stores
 Each processor generates 30M stores or 240MB data per second

* 1GB/s bus can suppoit only about 4 processors without saturating

* Write-through especially unpopularfor SMPs

Write-back caches absorb most writes as cache hits
* Write hits don’t go on bus
* But now how do we ensure write propagation and serialization?
« Need more sophisticated protocols: lage design space

17



Design Space for Snooping Protocols

No need to change processor, main memory, cache ...

 Extend cache controller andexploit bus (provides serialization)
Focus on protocols for write-back caches
Dirty state now also indicates exclusive ownership

« Exclusive: only cache with a valid copy (main memory may be too)

* Owner: responsible for supplying bbck upon a request for it

Design space
 Invalidation versus Update-based protocols

« Set of states

18



Invalidation-based Protocols

Exclusive means can modify without notifying anyone else

* 1.e. without bus transaction
» Must first get block in exclusive state before writing into it

« Even if already in valid state, need transa¢ion, so called a write miss

Store to non-dirty data generates a read-exclusive bus transaction

* Tells others about impending write, obtains exclusive ownership
— makes the write visible, i.e. write is performed
— may be actually observed (by a read miss) only later
— write hit made visible (performed) when block updated in writer’s cache

* Only one RdX can succeed at a time for a block: seralized by bus

Read and Read-exclusive bus transactions drive coherence actions

* Writeback transactions also, but not caused by memoy operation and
quite incidental to coherence potocol

— note: replaced block that is not in modified state can be dropped
19



Update-based Protocols

A write operation updates values in other caches

« New, update bus transaction

Advantages

* Other processors don’t miss on next access: reduced latency

— In invalidation protocols, they would miss and cause more transactions

* Single bus transaction to update severalcaches can save bandwidth

— Also, only the word written is transferred, not whole block

Disadvantages

« Multiple writes by same processor cause multiple update tansactions

— In invalidation, first write gets exclusive ownership, others local

Detailed tradeoffs more complex

20



Invalidate versus Update

Basic question of program behavior
* Is a block written by one processor ead by others befor it is rewritten?
Invalidation:

* Yes => readers will take a miss

 No => multiple writes without additional traffic
— and clears out copies that won’t be used again

Update:

* Yes => readers will not miss if they had a copy previously
— single bus transaction to update all copies

* No => multiple useless updates, even to dead copies
Need to look at program behavior and hardware complexity

Invalidation protocols much more popular (more later)

« Some systems provide both, oreven hybnd

21



Basic MSI Writeback Inval Protocol

States

* Invalid (I)

 Shared (S): one or more

* Dirty or Modified (M): one only
Processor Events:

* PrRd (read)

* PrWr (write)

Bus Transactions
* BusRd: asks for copy with no intent to modify
* BusRdX: asks for copy with intent to modify
* BusWR: updates memory

Actions

« Update state, perform bus transaction, flush value onto bus

22



State Transition Diagram

PrWr/BusRdX

/ BusRdX/Flush

PrRd/BusRd
BusRd/—

23



MESI (4-state) Invalidation Protocol

Problem with MSI protocol

* Reading and modifying daa is 2 bus Xactions, even if no one shanng

- e.g. even 1n sequential program
- BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

Add exclusive state: write locally without Xaction, but not modified
« Main memory is up to date, so cache not necessarily ower
* States
- invalid
— exclusive or exclusive-clean (only this cache has copy, but not modified)
— shared (two or more caches may have copies)

— modified (dirty)
* I -> E on PrRd if no one else has copy

- needs “shared” signal on bus: wired-or line asserted in response to BusRd
24



MESI State Transition Diagram

BusRdX/Flush
BusRd/Flush

Prwr/—

BusRdX/Flush
PrWr/BusRdX

PrRd/—
BusRd/Flush

d/

PrR
BusRd(S)

* BusRd(S) means shared line asserted on BusRd transaction
* Flush’: if cache-to-cache sharing, only one cache flushes data

« MOESI protocol: Owned state: exclusive but memory not valid

25



Lower-level Protocol Choices

Who supplies data on miss when not in M state: memory or cache
Original, lllinois MESI: cache, since assumed faster than memory

* Cache-to-cache sharing
Not true in modern systems

* Intervening in another cache moe expensive than getting from memowy
Cache-to-cache sharing also adds complexity

* How does memory know it should supply data (must wait for caches)

* Selection algorithm if multiple caches have valid data
But valuable for cache-coherent machines with distributed memory

« May be cheaper to obtain from nearby cachethan distant memory

* Especially when constructed out of SMP nodes (Stanford DASH)

26



Design of a snooping cache for the base

machine

Each processor has a single-level write-back cache
An invalidation protocol 1s used

Processor has only one memory request outstanding
System bus 1s atomic

Bus arbitration and logic is not shown

27



Design of a snooping cache

' Addr

Tags and
> state for
SNOOP

Cache Data RAM

Tags and
state
for P

|

—ngller

Write-back buffer

Addr Cmd

A A 4

Bus

v

Data buffer

Addy

Cmd

F 3



Directory Based Protocols

For some interconnection networks, updating or invalidating on a
snoop basis 1s impractical

Coherence commands need to be sent to only caches that might be
affected by an update

Directory Based Protocols store info on where copies of blocks lies

Directories can be centralized or distributed

29



Directory Based Protocols

Full-map Directories

A home node (main directory) directory contains N pointers,

N=#Processors of the system

x: data
Cache CO

x: 1 0

1

0

data

Memory

directory

Cache C1

nterconnection

network

x: data

Cache C2

Cache C3m




Directory Based Protocols

Limited Directories

Size of the presence vectoris limited to M (M<N)

Only M processors can simultaneously share the same cache block

x: 1 0

data directory

Memory

nterconnection

x: data
Cache CO Cache C1

network

Cache C2

Cache C3M




Directory Based Protocols

Chained directories
Directories are distributed along the system

A directory pointers to another cache that sharesthe cache block

x: C2 data directory

Memory

. . nterconnection
Chain's tail node

network

x:CT data x:C0 data

Cache CO Cache C1 Cache C2 Cache C3M




Directory Based Protocols

Invalidate Strategies in DBP: Centralized Directory Invalidate

X: data
Cache CO

0 data

directory

Cache C1

Cache C2

6) Inv-Ack
e

Cache C3

5 Inv-Ack

33




Directory Based Protocols

Invalidate Strategies in DBP: Stanford Distributed Directory

A Read from a new cache (a cache that there's not in the chain yet)

3) Read-miss (invalid)
-Reply
—— P | Cache C3

Cache CO Cache C1 Cache C2




Directory Based Protocols

Invalidate Strategies in DBP: Stanford Distributed Directory
Result of the Read

Observe that a chain has changed

Memory

- middle €———— head

Cache CO Cache C1 Cache C2 Cache C3




Directory Based Protocols

Invalidate Strategies in DBP: Stanford Distributed Directory

A Write from a new cache (a cache that there's not in the chain yet)

5% (invalid)
Cache C3

Cache CO QWrite—Miss Forward

Cache C1 Cache C2

5) Write-Miss-Repl

36



Directory Based Protocols

Invalidate Strategies in DBP: Stanford Distributed Directory
Result of the Write

Observe that a chain has changed

Memory

It's the only one

who can access
head / the cache block
(exclusive) in an exclusive
Cache C3

State



