

Advanced Computer Architecture

Contents

- Dynamic Networks (Cont.)
- Static Networks (Revisited)
- Performance Analysis

Multistage Interconnection Networks

ISC → Inter-stage Connection Patterns

Multi-stage network

MIN (cont.)

An 8X8 Banyan network

Computer Science and Engineering

Min Implementation

Control (X)

$$X = f(S,D)$$

Example

Consider this

Example (Cont.)

- Let control variable be X1, X2, X3
- Find the values of X1, X2, X3 to connect:
 - \blacksquare S1 \rightarrow D6
 - $S7 \rightarrow D5$
 - S4 \rightarrow D1

The 3 connections

Boolean **Functions**

- $X = X_1, X_2, X_3$
- $S = S_2, S_2, S_3$
- $D = d_1, d_2, d_3$

• Find X = f(S,D)

Crossbar Switch

Analysis and performance metrics dynamic networks

Networks	Delay	Cost	Blockin	Degree of FT
Bus	O(N)	O(1)	Yes	0
Multiple-bus	O(mN)	O(m)	Yes	(m-1)
MIN	O(logN)	O(NlogN)	Yes	0
Crossbar	O(1)	O(N ²)	No	0

Static Network Analysis (Revisited)

- Graph Representation
- Parameters
 - Cost
 - Degree
 - Diameter
 - Fault tolerance

Graph Review

- G = (V,E) -- V: nodes, E: edges
- Directed vs. Undirected
- Weighted Graphs
- Path, path length, shortest path
- Cycles, cyclic vs. acyclic
- Connectivity: connected, weakly connected, strongly connected, fully connected

Linear Array

N nodes, N-1 edges
Node Degree:

Diameter:

Cost:

Fault Tolerance:

Ring

N nodes, N edges

Node Degree:

Diameter:

Cost:

Fault Tolerance:

Chordal Ring

N nodes, N edges

Node Degree:

Diameter:

Cost:

Fault Tolerance:

Barrel Shifter

- Number of nodes N = 2ⁿ
- Start with a ring
- Add extra edges from each node to those nodes having power of 2 distance
- i & j are connected if |j-i| = 2^r, r = 0, 1, 2, ..., n-1

Mesh and Torus

N = n*n

Node Degree:

Internal \rightarrow 4 Other \rightarrow 3, 2

Diameter: 2(n-1)

Node Degree:

4

Diameter: 2* floor(n/2)

Computer Science and Engineering

Hypercubes

- $N = 2^d$
- d dimensions (d = log N)
- A cube with d dimensions is made out of 2 cubes of dimension d-1
- Symmetric
- Degree, Diameter, Cost, Fault tolerance
- Node labeling number of bits

Hypercubes

Hypercubes

$$d = 4$$

Hypercube of dimension d

$$N = 2^d$$

$$d = log n$$

Node degree = d

Number of bits to label a node = d

Diameter = d

Number of edges = n*d/2

Hamming distance!

