
Open Access – Preliminary

Advanced RISC Machines

ARM

ARM740T
Datasheet

ENGLAND
Advanced RISC Machines Limited
90 Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@arm.com

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@arm.com

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@arm.com

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

World Wide Web address: http://www.arm.com

Document Number: ARM DDI 0008E

Issued: February 1998

Copyright Advanced  RISC Machines Ltd (ARM) 1997, 1998

All rights reserved



Open Access – Preliminary

ii  ARM740T Datasheet
ARM DDI 0008E

Proprietary Notice
ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or 
reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and 
its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not 
limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage 
arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the 
product.

Key
Document Number
This document has a number which identifies it uniquely. The number is displayed on the front page and at the foot of each 
subsequent page.

Document Status
The document’s status is displayed in a banner at the bottom of each page. This describes the document’s confidentiality and its 
information status.

Confidentiality status is one of:

ARM Confidential Distributable to ARM staff and NDA signatories only
Named Partner Confidential     Distributable to the above and to the staff of named partner companies only
Partner Confidential           Distributable within ARM and to staff of all partner companies
Open Access                     No restriction on distribution

Information status is one of:

Advance                        Information on a potential product
Preliminary                    Current information on a product under development
Final                          Complete information on a developed product

Change Log
Issue Date By Change

A Jan 1997 HLC Created
B March 1997 BJH Formatted and Edited
C August 1997 paw Editing
D Dec 1997 paw Editing
E Feb 1998 paw Change to Open Access, signal table changes in Chapter 2.

ARM XXX 0000 X - 00

(On review drafts only) Two-digit draft number
Release code in the range A-Z
Unique four-digit number 
Document type



1 Introduction 1-1
1.1 Overview 1-2
1.2 Block Diagram 1-3
1.3 Instruction Set Overview 1-4

2 Signal Descri ption 2-1
2.1 AMBA Interface Signals 2-2
2.2 Coprocessor Interface Signals 2-4
2.3 JTAG Signals 2-6
2.4 Debugger Signals 2-8
2.5 Miscellaneous Signals 2-9

3 Programmer’s Model 3-1
3.1 Processor Operating States 3-2
3.2 Data Types 3-2
3.3 Operating Modes 3-3
3.4 Memory Formats 3-4
3.5 Registers 3-5
3.6 Program Status Registers 3-9
3.7 Exceptions 3-11
3.8 Reset 3-15

4 Confi guration 4-1
4.1 Overview 4-2
4.2 Internal Coprocessor Instructions 4-3
4.3 Registers 4-4

Contents
Open Access – Preliminary

Contents-1ARM740T Datasheet
ARM DDI 0008E



5 Cache 5-1
5.1 Overview 5-2
5.2 Control Registers 5-4
5.3 Operating Modes 5-5
5.4 Cache Operation 5-7

6 Write Buffer 6-1
6.1 Overview of the Write Buffer 6-2
6.2 Write Buffer Operation 6-3

7 Protection Unit 7-1
7.1 Overview 7-2
7.2 Protection Unit Registers 7-3
7.3 Protection Unit Operation 7-7
7.4 Support for Overlapping Regions 7-9
7.5 External Aborts 7-11
7.6 Interaction of the Protection Unit, Cache and Write Buffer7-12

8 Debug Interface 8-1
8.1 Overview 8-2
8.2 Debug Systems 8-3
8.3 Entering Debug State 8-4
8.4 Scan Chains and JTAG Interface 8-5
8.5 Reset 8-8
8.6 Public Instructions 8-9
8.7 Test Data Registers 8-12
8.8 ARM7TDM Core Clocks 8-19
8.9 Determining the Core and System State 8-20
8.10 The PC During Debug 8-23
8.11 Priorities and Exceptions 8-26
8.12 Scan Interface Timing 8-27
8.13 Debug Timing 8-30

9 EmbeddedICE Macrocell 9-1
9.1 Overview 9-2
9.2 Watchpoint Registers 9-4
9.3 Programming Breakpoints 9-8
9.4 Programming Watchpoints 9-10
9.5 Debug Control Register 9-11
9.6 Debug Status Register 9-12
9.7 Coupling Breakpoints and Watchpoints 9-14
9.8 Debug Communications Channel 9-16

10 Bus Clockin g 10-1
10.1 Introduction 10-2
10.2 Fastbus Extension 10-3
10.3 Standard Mode 10-4
Open Access – Preliminary

Contents-2 ARM740T Datasheet
ARM DDI 0008E



11 AMBA Interface 11-1
11.1 ASB Bus Interface Signals 11-2
11.2 Cycle Types 11-3
11.3 Addressing Signals 11-6
11.4 Memory Request Signals 11-6
11.5 Data Signal Timing 11-6
11.6 Slave Response Signals 11-7
11.7 Maximum Sequential Length 11-9
11.8 Read-Lock-Write 11-9
11.9 Big-Endian / Little-Endian Operation 11-10
11.10 Multi-Master Operation 11-13

12 AMBA Test 12-1
12.1 Slave Operation (Test Mode) 12-2
12.2 ARM740T Test Mode 12-3
12.3 ARM7TDM Core Test Mode 12-3
12.4 RAM Test Mode 12-4
12.5 TAG Test Mode 12-5
12.6 Test Register Mapping 12-6
Open Access – Preliminary

Contents-3ARM740T Datasheet
ARM DDI 0008E



Open Access – Preliminary

Contents-4 ARM740T Datasheet
ARM DDI 0008E



This chapter provides an introduction to the ARM740T.

1.1 Overview 1-2
1.2 Block Diagram 1-3
1.3 Instruction Set Overview 1-4
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Introduction

1.1 Overview

The ARM740T is a general-purpose 32-bit microprocessor with:

• 8KB cache or 4KB variants
• write buffer
• Protection Unit 

combined in a single macrocell. 

The ARM740T is software-compatible with the ARM processor family and can be used 
with AMBA peripheral blocks, and has been optimised for use in embedded 
applications. The CPU within ARM740T is the ARM7.

ARM740T is a fully static part and has been designed to minimise power requirements. 
This makes it ideal for portable applications where both these features are essential.

The on-chip mixed data and instruction cache, and the write buffer, substantially raise 
the average execution speed and reduce the average amount of memory bandwidth 
required by the processor. This allows the external memory to support additional 
processors or Direct Memory Access (DMA) channels with minimal performance loss.

RISC architecture

The ARM740T architecture is based on Reduced Instruction Set Computer (RISC) 
principles, and the instruction set and related decode mechanism are greatly simplified 
compared with microprogrammed Complex Instruction Set Computers (CISC).
Open Access – Preliminary
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Introduction

1.2 Block Diagram

 Figure 1-1: ARM740T block diagram
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Introduction

1.3 Instruction Set Overview

The instruction set comprises ten basic instruction types:

• Two make use of the on-chip arithmetic logic unit, barrel shifter and multiplier 
to perform high-speed operations on the data in a bank of 31 registers, each 
32 bits wide.

• Three classes of instruction control the data transfer between memory and the 
registers:
- one optimised for flexibility of addressing
- one for rapid context switching
- one for swapping data

• Two control the flow and privilege level of execution.
• Three control external coprocessors which allow the functionality of the 

instruction set to be extended off-chip in an open and uniform way.

The ARM instruction set is a good target for compilers of many different high-level 
languages. Where required for critical code segments, assembly code programming is 
also straightforward, unlike some RISC processors which depend on sophisticated 
compiler technology to manage complicated instruction interdependencies.
Open Access – Preliminary
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Introduction

1.3.1 ARM instruction set

This section gives an overview of the ARM instructions available. For full details of 
these instructions, please refer to the ARM Architecture Reference Manual 
(ARM DDI 0100).

Format summary

The ARM instruction set formats are shown below.

 Figure 1-2: ARM instruction set formats

Note Some instruction codes are not defined but do not cause the Undefined instruction trap 
to be taken; for example, a Multiply instruction with bit 6 changed to 1. These 
instructions should not be used, as their action may change in future ARM 
implementations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data processing /
PSRTransfer Cond 0 0 I Opcode S Rn Rd Operand 2

Multiply Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Multiply Long
Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm

Single Data Swap Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

Branch and Exchange Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Halfword Data Transfer:
register offset Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm

Halfword Data Transfer:
immediate offset Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset

Single Data Transfer Cond 0 1 I P U B W L Rn Rd Offset

Undefined
Cond 0 1 1 1

Block Data Transfer Cond 1 0 0 P U S W L Rn Register List

Branch Cond 1 0 1 L Offset

Coprocessor Data Transfer
Cond 1 1 0 P U N W L Rn CRd CP# Offset

Coprocessor Data 
Operation Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm

Coprocessor Register 
Transfer

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm

Software Interrupt
Cond 1 1 1 1 Ignored by processor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Introduction

ARM instruction summary

The following table summarizes the ARM instruction set.

Mnemonic Instruction Action

ADC Add with carry Rd := Rn + Op2 + Carry

ADD Add Rd := Rn + Op2

AND AND Rd := Rn AND Op2

B Branch R15 := address

BIC Bit Clear Rd := Rn AND NOT Op2

BL Branch with Link R14 := R15, R15 := address

BX Branch and Exchange R15 := Rn,
T bit := Rn[0]

CDP Coprocessor Data Processing (Coprocessor-specific)

CMN Compare Negative CPSR flags := Rn + Op2

CMP Compare CPSR flags := Rn - Op2

EOR Exclusive OR Rd := (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd := (address)

MCR Move CPU register to coprocessor 
register

cRn := rRn {<op>cRm}

MLA Multiply Accumulate Rd := (Rm * Rs) + Rn

MOV Move register or constant Rd : = Op2

MRC Move from coprocessor register to CPU 
register

Rn := cRn {<op>cRm}

MRS Move PSR status/flags to register Rn := PSR

MSR Move register to PSR status/flags PSR := Rm

MUL Multiply Rd := Rm * Rs

MVN Move negative register Rd := 0xFFFFFFFF EOR Op2

ORR OR Rd := Rn OR Op2

RSB Reverse Subtract Rd := Op2 - Rn

RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry

 Table 1-1: ARM instruction summary
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Introduction
SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry

STC Store coprocessor register to memory address := CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address> := Rd

SUB Subtract Rd := Rn - Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd := [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags := Rn EOR Op2

TST Test bits CPSR flags := Rn AND Op2

Mnemonic Instruction Action

 Table 1-1: ARM instruction summary (Continued)
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Introduction

1.3.2 THUMB Instruction Set

This section gives an overview of the THUMB instructions available. For full details of 
these instructions, please refer to the ARM Architecture Reference Manual 
(ARM DDI 0100).

Format summary

The THUMB instruction set formats are shown below.

 Figure 1-3: THUMB instruction set formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move shifted register 1
0 0 0 Op Offset5 Rs Rd

Add/subtract 2 0 0 0 1 1 I Op Rn/offset3 Rs Rd

Move/compare/add/subtract immediate 3
0 0 1 Op Rd Offset8

ALU operations 4 0 1 0 0 0 0 Op Rs Rd

Hi register operations/branch exchange 5 0 1 0 0 0 1 Op H1 H2 Rs/Hs Rd/Hd

PC-relative load 6
0 1 0 0 1 Rd Word8

Load/store with register offset 7 0 1 0 1 L B 0 Ro Rb Rd

Load/store sign-extended byte/halfword 8 0 1 0 1 H S 1 Ro Rb Rd

Load/store with immediate offset 9
0 1 1 B L Offset5 Rb Rd

Load/store halfword 10 1 0 0 0 L Offset5 Rb Rd

SP-relative load/store 11 1 0 0 1 L Rd Word8

Load address 12
1 0 1 0 SP Rd Word8

Add offset to stack pointer 13 1 0 1 1 0 0 0 0 S SWord7

Push/pop registers 14 1 0 1 1 L 1 0 R Rlist

Multiple load/store 15
1 1 0 0 L Rb Rlist

Conditional branch 16 1 1 0 1 Cond Soffset8

Software Interrupt 17 1 1 0 1 1 1 1 1 Value8

Unconditional branch 18
1 1 1 0 0 Offset11

Long branch with link 19 1 1 1 1 H Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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THUMB instruction summary

The following table summarizes the THUMB instruction set.

Mnemonic Instruction
Lo register
operand

Hi register
operand

Condition
codes set

ADC Add with Carry ✔ ✔

ADD Add ✔ ✔ ✔(1)

AND AND ✔ ✔

ASR Arithmetic Shift Right ✔ ✔

B Unconditional branch ✔

Bxx Conditional branch ✔

BIC Bit Clear ✔ ✔

BL Branch and Link

BX Branch and Exchange ✔ ✔

CMN Compare Negative ✔ ✔

CMP Compare ✔ ✔ ✔

EOR EOR ✔ ✔

LDMIA Load multiple ✔

LDR Load word ✔

LDRB Load byte ✔

LDRH Load halfword ✔

LSL Logical Shift Left ✔ ✔

LDSB Load sign-extended byte ✔

LDSH Load sign-extended halfword ✔

LSR Logical Shift Right ✔ ✔

MOV Move register ✔ ✔ ✔(2)

MUL Multiply ✔ ✔

MVN Move Negative register ✔ ✔

NEG Negate ✔ ✔

ORR OR ✔ ✔

POP Pop registers ✔

PUSH Push registers ✔

 Table 1-2: THUMB instruction summary
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Introduction
1 The condition codes are unaffected by the format 5, 12 and 13 versions of this 
instruction.

2 The condition codes are unaffected by the format 5 version of this instruction.

ROR Rotate Right ✔ ✔

SBC Subtract with Carry ✔ ✔

STMIA Store Multiple ✔

STR Store word ✔

STRB Store byte ✔

STRH Store halfword ✔

SWI Software Interrupt

SUB Subtract ✔ ✔

TST Test bits ✔ ✔

Mnemonic Instruction
Lo register
operand

Hi register
operand

Condition
codes set

 Table 1-2: THUMB instruction summary (Continued)
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Signal Description

2.1 AMBA Interface Signals

Name Type Drive Source/
Destination

Description

AGNT In – Arbiter Access Grant
This signal from the bus arbiter indicates that the bus master 
is currently the highest priority master requesting the bus. If 
AGNT is asserted at the end of a transfer (BWAIT  LOW), the 
master will be granted the bus. AGNT changes during the 
LOW phase of BCLK , and remains valid through the HIGH 
phase.

AREQ Out D4 Access Request
This signal indicates that the master requires the bus. This 
signal changes during the HIGH phase of BCLK . This signal 
is intended for use where the ARM740T is not the lowest 
priority or default bus master.

BA[31:0] Out D6 Current bus 
master

Bus Address
This is the system address bus.

BCLK In – Bus Clock
This clock times all bus transfers.

BD[31:0] InOut D6 Bus master Bus Data
This is the bidirectional system data bus. The data bus is 
driven by the current bus master during write transfers, and 
by the appropriate bus slave during read cycles.

BERROR InOut D4 System decoder 
and current bus 
master

Bus Error
This signal indicates a transfer error by the selected bus 
slave. When BERROR is HIGH, a transfer error has 
occurred. When BERROR is LOW, the transfer is 
successful. 
This signal is also used in combination with the BLAST  
signal to indicate a bus retract operation.

BLAST InOut D4 System decoder 
and current bus 
master

Bus Last
This signal is driven by the selected bus slave to indicate if 
the current transfer should be the last of a burst sequence. 
When BLAST  is HIGH, the next bus transfer must allow for 
sufficient time for address decoding. When BLAST  is LOW, 
the next transfer may continue a burst sequence. 
This signal is also used in combination with the BERROR 
signal to indicate a bus retract operation.

BLOK Out D4 Arbiter Bus Lock
When HIGH, this signal indicates that the following transfer 
is to be indivisible and no other bus master should be given 
access to the bus.

BnRES In – Reset state 
machine

Bus Reset
This signal indicates the reset status of the bus.

 Table 2-1: AMBA interface signal descriptions
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Signal Description
BPROT[1:0] Out D4 Current bus 
master

Bus Protections
These signals provide additional information about the 
transfer being performed. All write cycles are indicated as 
being Supervisor accesses. These signals have the same 
timing as the BA  signals.

BSIZE[1:0] Out D4 Current bus 
master

Bus Size
These signals indicate the size of the transfer, which may be 
byte, halfword or word. These signals have the same timing 
as the address bus.

BTRAN[1:0] Out D8 Bus master Bus Transaction Type
These signals indicate the type of the next transaction, 
which may be address-only, nonsequential or sequential.
These signals are driven when AGNT is asserted, and are 
valid during the HIGH phase of BCLK  before the transfer to 
which they refer.

BWAIT InOut D4 System decoder 
and current bus 
master

Bus Wait
This signal is driven by the selected slave to indicate if the 
current transfer may complete. If BWAIT  is HIGH, a further 
bus cycle is required. If BWAIT  is LOW, the transfer may 
complete in the current bus cycle.

BWRITE Out D4 Current bus 
master

Bus Write
When HIGH, this signal indicates a write cycle and when 
LOW, a read cycle.This signal has the same timing as the 
address bus.

DSEL In – System decoder Slave Select
This signal puts the ARM core into a test mode so that 
vectors can be written in and out of the core.

Name Type Drive Source/
Destination

Description

 Table 2-1: AMBA interface signal descriptions (Continued)
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Signal Description

2.2 Coprocessor Interface Signals

Name Type Drive Description

CPCLK Out D4 Coprocessor Clock
This clock controls the operation of the 
coprocessor interface.

CPDATA[31:0] InOut D4 Coprocessor Data Bus
Using this bus, data is transferred to and from the 
co-processor. Data is valid on the falling edge of 
CPCLK .

CPDBE In – Coprocessor Data Bus Enable
When HIGH, this signal indicates that the 
coprocessor intends to drive the coprocessor 
data bus CPDATA . If the coprocessor interface is 
not to be used then this signal should be tied 
LOW.

CPnWAIT Out D4 Coprocessor Not Wait
The coprocessor clock CPCLK  is qualified by 
CPnWAIT  to allow the ARM740T to control the 
transfer of data on the coprocessor interface.

CPTESTREAD In – Coprocessor Test Read
This signal is used for test of a Piccolo 
coprocessor (if attached) and should only be 
used with the ARM740T held in reset. When 
HIGH, it enables DB to be driven on to CPDATA , 
and should normally be held LOW. It must never 
be asserted at the same time as CPTESTWRITE.

CPTESTWRITE In – Coprocessor Test Write
This signal is used for test of a Piccolo 
coprocessor (if attached) and should only be 
used with the ARM740T held in reset. When 
HIGH, it enables DB to be driven on to CPDATA , 
and should normally be held LOW. It must never 
be asserted at the same time as CPTESTREAD.

EXTCPA In – External Coprocessor Absent
A coprocessor that is capable of performing the 
operation that ARM740T is requesting (by 
asserting nCPI) should take EXTCPA LOW 
immediately. If EXTCPA is HIGH at the end of the 
LOW phase of the cycle in which nCPI went 
LOW, ARM740T aborts the coprocessor 
instruction and takes the undefined instruction 
trap. If EXTCPA is LOW and remains LOW, 
ARM740T busy-waits until EXTCPB is LOW and 
then completes the coprocessor instruction.

 Table 2-2: Coprocessor interface signal descriptions
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Signal Description
EXTCPB In – External Coprocessor Busy
A coprocessor which is capable of performing the 
operation which ARM740T is requesting (by 
asserting nCPI), but cannot commit to starting it 
immediately, should indicate this by driving 
EXTCPB HIGH. When the coprocessor is ready 
to start it should take EXTCPB LOW. ARM740T 
samples ExtCPB  at the end of the LOW phase of 
each cycle in which nCPI is LOW.

nCPI Out D4 Not Coprocessor Instruction
When LOW, this signal indicates that the 
ARM740T is executing a coprocessor instruction.

nOPC Out D8 Not OPcode Fetch
When LOW, this signal indicates that the 
processor is fetching an instruction from memory. 
When HIGH, data (if present) is being transferred. 
This signal is used by the coprocessor to track 
the ARM pipeline.

Name Type Drive Description

 Table 2-2: Coprocessor interface signal descriptions (Continued)
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Signal Description

2.3 JTAG Signals

 

Name Type Drive Description

IR[3:0] Out D4 TAP Instruction Register
These signals reflect the current instruction loaded 
into the TAP controller instruction register. These 
signals change on the falling edge of TCK when the 
TAP state machine is in the UPDATE-IR state. 
These signals may be used to add additional scan 
chains using the ARM740T TAP controller.

RSTCLKBS Out D4 Reset Boundary Scan Clock
This signal denotes that either the TAP controller 
state machine is in the RESET state or that nTRST 
has been asserted. This may be used to reset 
boundary scan cells outside the ARM740T.

SCREG[3:0] Out D4 Scan Chain Register
These signals reflect the ID number of the scan 
chain currently selected by the TAP controller. 
These signals change on the falling edge of TCK 
when the TAP state machine is in the UPDATE-DR 
state.

SDINBS Out D4 Boundary Scan Serial Data In
This signal is the serial data to be applied to an 
external scan chain.

SDOUTBS In – Boundary Scan Serial Data Out
This signal is the serial data from an external scan 
chain. It allows a single TDO port to be used. If an 
external scan chain is not connected, this input 
should be tied LOW.

TAPSM[3:0] Out D4 TAP Controller State
These signals represent the current state of the 
TAP controller state machine. These signals 
change on the rising edge of TCK and may be used 
to add additional scan chains using the ARM740T 
TAP controller.

TCK In – Test Clock
This is part of the IEEE 1149.1 JTAG standard.

TCK1 Out D4 Test Clock 1
This clock represents the HIGH phase of TCK. 
TCK1 is HIGH when TCK is HIGH. This signal may 
be used to allow more scan chains to be added 
using the ARM740T TAP controller.

 Table 2-3: JTAG signal descriptions
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Signal Description
TCK2 Out D4 Test Clock 2
This clock represents the LOW phase of TCK. 
TCK2 is HIGH when TCK is LOW. This signal may 
be used to allow more scan chains to be added 
using the ARM740T TAP controller. TCK2 is the 
non-overlapping compliment of TCK1.

TDI In – Test Data In
This is part of the IEEE 1149.1 JTAG standard.

TDO Out D3 Test Data Out
This is part of the IEEE 1149.1 JTAG standard.

TMS In – Test Mode Select
This is part of the IEEE 1149.1 JTAG standard.

nTDOEN Out D4 Not Test Data Out Output Enable
When LOW, this signal denotes that serial data is 
being driven out on the TDO.

nTRST In – Not Test Reset
When LOW, resets the JTAG interface.

Name Type Drive Description

 Table 2-3: JTAG signal descriptions (Continued)
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2.4 Debugger Signals

Name Type Drive Description

BREAKPOINT In – Breakpoint
This signal allows external hardware to halt 
execution of the processor for debug purposes. 
When HIGH causes the current memory access to 
be breakpointed. If the memory access is an 
instruction fetch, the core enters debug state if the 
instruction reaches the execute stage of the core 
pipeline. If the memory access is for data, the core 
enters debug state after the current instruction 
completes execution. This allows extension of the 
internal breakpoints provided by the EmbeddedICE 
module.

COMMRX Out D4 Communication Receive Empty
When HIGH, this signal denotes that the comms 
channel receive buffer is empty.

COMMTX Out D4 Communication Transmit Empty
When HIGH, this signal denotes that the comms 
channel transmit buffer is empty.

DBGACK Out D4 Debug Acknowledge
When HIGH, indicates that the ARM is in debug 
state.

DBGEN In – Debug Enable
This signal allows the debug features of ARM740T 
to be disabled. This signal should be LOW if debug 
is not required.

DBGRQ In – Debug Requests
This signal causes the core to enter debug state 
after executing the current instruction. This allows 
external hardware to force the core into debug 
state, in addition to the debugging features 
provided by the EmbeddedICE module.

EXTERN[1:0] In – External Condition
These signals allow breakpoints and/or 
watchpoints to be dependent on an external 
condition.

RANGEOUT[1:0] Out D4 Rangeout
These signals indicate that the relevant 
EmbeddedICE watchpoint register has matched 
the conditions currently present on the address, 
data and control buses. These signals are 
independent of the state of the watchpoint enable 
control bits.

 Table 2-4: Debugger signal descriptions
Open Access – Preliminary

2-8 ARM740T Datasheet
ARM DDI 0008E



Signal Description

2.5 Miscellaneous Signals

Name Type Drive Description

BIGEND Out D4 Big-endian Format
When this signal is HIGH, the processor treats 
bytes in memory as being in big-endian format. 
When it is LOW, memory is treated as little-endian.

FASTBUS In – Bus Clocking Mode Select Signal
When LOW, the ARM740T operates from a single 
clock, BCLK , when HIGH selects fastbus mode 
operating from two clocks, BCLK  and FCLK .

FCLK In – Fast Clock
This is used during the RAM and TAG tests, to 
enable efficient testing. In standard bus mode, is 
used to clock the core.

nUSER Out D8 Not User Mode
When LOW, this signal indicates that the processor 
is in user mode. It is used by a coprocessor to 
qualify instructions.

nFIQ In – ARM Fast Interrupt Request
Typically there is only a single nFIQ signal in a 
system, although this may be disabled by the 
interrupt controller.

nIRQ In – ARM Interrupt Request
The interrupt controller mixes several interrupt 
sources and produces ARM nIRQ.

SnA In – Synchronous / not Asynchronous
In standard ARM bus mode this signal determines 
the bus interface mode and should be wired HIGH 
or LOW depending on the desired relationship 
between FCLK  and BCLK  in the application. See 
10.3 Standard Mode  on page 10-4. This pin is 
ignored when operating with the fastbus extension.

TBIT Out D4 THUMB Mode
This signal when HIGH, indicates that the 
processor is executing the THUMB instruction set. 
When LOW, the processor is executing the ARM 
instruction set.

 Table 2-5: Miscellaneous signal descriptions
Open Access – Preliminary
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This chapter describes the operating states of the ARM740T.
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3.1 Processor Operating States

From the programmer’s point of view, the ARM740T can be in one of two states:

Note Transition between these two states does not affect the processor mode or the 
contents of the registers.

3.1.1 Switching state

Entering THUMB state 

Entry into THUMB state happens:

1 On Execution of a BX instruction with the state bit (bit 0) set in the operand 
register.

2 On return from an exception (IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the 
exception was entered with the processor in THUMB state.

Entering ARM state

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand 
register.

• On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, 
SWI etc.). In this case, the PC is placed in the exception mode’s link register, 
and execution starts at the exception’s vector address.

3.2 Data Types
ARM740T supports the following data types:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB 
instructions. In this state, the PC uses bit 1 to select between 
alternate halfwords.

byte (8-bit)

halfword (16-bit). Halfwords must be aligned to 2-byte boundaries.

word (32-bit). Words must be aligned to 4-byte boundaries.
Open Access – Preliminary
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3.3 Operating Modes

ARM740T supports seven modes of operation:

Mode changes may be made under software control, or may be brought about by 
external interrupts or exception processing. 

Most application programs execute in User mode. The non-user modes—known as 
privileged modes—are entered in order to service interrupts or exceptions, or to access 
protected resources.

User (usr) The normal ARM program execution state

FIQ (fiq) Designed to support a data transfer or channel process

IRQ (irq) Used for general-purpose interrupt handling

Supervisor (svc) Protected mode for the operating system

Abort mode (abt) Entered after a data or instruction prefetch abort

System (sys) A privileged user mode for the operating system

Undefined (und) Entered when an undefined instruction is executed
Open Access – Preliminary
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3.4 Memory Formats

The bigend bit in the Control Register sets whether the ARM740T treats words in 
memory as being stored in big-endian or little-endian format. See Chapter 4, 
Configuration  for more information on the Control Register. 

ARM740T views memory as a linear collection of bytes numbered upwards from zero. 
Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second and so on. ARM740T 
can treat words in memory as being stored either in big-endian or little-endian format.

3.4.1 Big-endian format
In big-endian format:

• the most significant byte of a word is stored at the lowest numbered byte
• the least significant byte at the highest numbered byte

Byte 0 of the memory system is therefore connected to data lines 31 through 24. 

3.4.2 Little-endian format
In little-endian format the lowest numbered byte in a word is considered the word’s least 
significant byte, and the highest numbered byte the most significant. 

Byte 0 of the memory system is therefore connected to data lines 7 through 0. 

Higher Address 31 24 23  16 15  8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

 Figure 3-1: Big-endian address of bytes within words

Higher Address 31 24 23  16 15  8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

 Figure 3-2: Little-endian addresses of bytes with words
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3-4 ARM740T Datasheet
ARM DDI 0008E



Programmer’s Model

3.5 Registers

ARM740T has a total of 37 registers:

• 31 general-purpose 32-bit registers
• six status registers

These cannot all be seen at once. The processor state and operating mode dictate 
which registers are available to the programmer.

3.5.1 The ARM state register set
In ARM state, 16 general registers and one or two status registers are visible at any one 
time. In privileged (non-User) modes, mode-specific banked registers are switched in. 
Figure 3-3: Register organization in ARM state  shows which registers are available 
in each mode: the banked registers are marked with a shaded triangle.

 Figure 3-3: Register organization in ARM state
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The ARM state register set contains 16 directly accessible registers: R0 to R15. All of 
these except R15 are general-purpose, and may be used to hold either data or address 
values. In addition to these, there is a 17th register used to store status information.

Pre-defined registers

FIQ mode

FIQ mode has seven banked registers mapped to R8 – 14 (R8_fiq – R14_fiq). In ARM 
state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor, 
Abort and Undefined mode each have two banked registers mapped to R13 and R14, 
allowing each of these modes to have a private stack pointer and link registers.

Register 14 is used as the subroutine link register. This receives a copy 
of R15 when a Branch and Link (BL) instruction is executed. 
At all other times it may be treated as a general-purpose 
register. The corresponding banked registers R14_svc, 
R14_irq, R14_fiq, R14_abt and R14_und are similarly used 
to hold the return values of R15 when interrupts and 
exceptions arise, or when Branch and Link instructions are 
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of 
R15 are zero and bits [31:2] contain the PC. In THUMB 
state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the Current Program Status Register (CPSR). This 
contains condition code flags and the current mode bits.
Open Access – Preliminary
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3.5.2 The THUMB state register set

The THUMB state register set is a subset of the ARM state set. The programmer has 
direct access to eight general registers, [R0:R7]:

• a Program Counter (PC)
• a stack pointer register (SP)
• a link register (LR), and the CPSR. 

There are banked Stack Pointers, Link Registers and Saved Process Status Registers 
(SPSRs) for each privileged mode. This is shown in Figure 3-4: Register 
organization in THUMB state .

 Figure 3-4: Register organization in THUMB state

3.5.3 The relationship between ARM and THUMB state registers 
The THUMB state registers relate to the ARM state registers in the following way: 

• THUMB state [R0:R7] and ARM state [R0:R7] are identical
• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are 

identical 
• THUMB state SP maps onto ARM state R13 
• THUMB state LR maps onto ARM state R14 
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• The THUMB state Program Counter maps onto the ARM state Program 

Counter (R15)

This relationship is shown in Figure 3-5: Mapping of THUMB state registers onto 
ARM state registers .

 Figure 3-5: Mapping of THUMB state registers onto ARM state registers

3.5.4 Accessing Hi registers in THUMB state
In THUMB state, registers [R8:R15] (the Hi registers) are not part of the standard 
register set. However, the assembly language programmer has limited access to them, 
and can use them for fast temporary storage.

A value may be transferred from a register in the range [R0:R7] (a Lo register) to a Hi 
register, and from a Hi register to a Lo register, using special variants of the MOV 
instruction. Hi register values can also be compared against or added to Lo register 
values with the CMP and ADD instructions. See the information on high registers in the 
ARM Architecture Reference Manual (ARM DDI 0100) for details.
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3.6 Program Status Registers 

The ARM740T contains a Current Program Status Register (CPSR), plus five Saved 
Program Status Registers (SPSRs) for use by exception handlers. These registers:

• hold information about the most recently performed ALU operation
• control the enabling and disabling of interrupts
• set the processor operating mode

The arrangement of bits is shown in Figure 3-6: Program status register format .

 Figure 3-6: Program status register format

3.6.1 Condition code flags
The N, Z, C and V bits are the condition code flags. These may be changed as a result 
of arithmetic and logical operations, and may be tested to determine whether an 
instruction should be executed.

In ARM state, all instructions may be executed conditionally, in THUMB state, only the 
Branch instruction is capable of conditional execution: See the ARM Architecture 
Reference Manual (ARM DDI 0100) for details.

3.6.2 Control bits 
The bottom 8 bits of a PSR (incorporating T, I, F and M[4:0]) are known collectively as 
the control bits. These will change when an exception arises. If the processor is 
operating in a privileged mode, they can also be manipulated by software.
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Overflow
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Negative / Less Than

Mode bits

FIQ disable
IRQ disable

. .

condition code flags control bits
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. .

24

T
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.
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.

T bit Reflects the operating state. When this bit is set, the 
processor is executing in THUMB state, otherwise it is 
executing in ARM state. This is reflected on the TBIT 
external signal. The software must never change the state of 
the TBIT in the CPSR. If this happens, the processor enters 
an unpredictable state.

I and F bits The interrupt disable bits. When set, these disable the IRQ 
and FIQ interrupts respectively.
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Reserved bits 

The remaining bits in the PSRs are reserved. When changing a PSR’s flag or control 
bits, you must ensure that these unused bits are not altered. Also, your program should 
not rely on their containing specific values, since in future processors they may read as 
one or zero.

M[4:0] bits The mode bits. These determine the processor’s operating 
mode, as shown in Table 3-1: PSR mode bit values  on 
page 3-10. Not all combinations of the mode bits define a 
valid processor mode; you must use only those explicitly 
described. 

Note : If any illegal value is programmed into the mode bits, 
M[4:0], the processor enters an unrecoverable state. If this 
occurs, reset should be applied.

M[4:0] Mode Visible THUMB state registers Visible ARM state registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq..R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc..R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt..R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und..R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

 Table 3-1: PSR mode bit values
Open Access – Preliminary
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3.7 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily, 
for example to service an interrupt from a peripheral. 

Before an exception can be handled, the current processor state must be preserved so 
that the original program can resume when the handler routine has finished.

Several exceptions may arise at the same time. If this happens, they are dealt with in a 
fixed order - see 3.7.10 Exception priorities  on page 3-14.

3.7.1 Action on entering an exception 
When handling an exception, the ARM740T: 

1 Preserves the address of the next instruction in the appropriate Link Register. 
- If the exception has been entered from ARM state, the address of the next 

instruction is copied into the Link Register (that is, current PC + 4 or PC + 
8 depending on the exception. See Table 3-2: Exception entry/exit  on 
page 3-12 for details). 

- If the exception has been entered from THUMB state, the value written into 
the Link Register is the current PC offset by a value such that the program 
resumes from the correct place on return from the exception. This means 
that the exception handler need not determine which state the exception 
was entered from. 

For example, in the case of SWI, the instruction:
MOVS PC, R14_svc 

always returns to the next instruction regardless of whether the SWI was 
executed in ARM or THUMB state.

2 Copies the CPSR into the appropriate SPSR.
3 Forces the CPSR mode bits to a value which depends on the exception.
4 Forces the PC to fetch the next instruction from the relevant exception vector.

ARM740T may also set the interrupt disable flags to prevent otherwise unmanageable 
nestings of exceptions.

Note If the processor is in THUMB state when an exception occurs, it automatically switches 
into ARM state when the PC is loaded with the exception vector address.

3.7.2 Action on leaving an exception 
On completion, the exception handler:

1 Moves the Link Register, minus an offset where appropriate, to the PC. The 
offset varies depending on the type of exception.

2 Copies the SPSR back to the CPSR.
3 Clears the interrupt disable flags, if they were set on entry.

Note An explicit switch back to THUMB state is never needed, since restoring the CPSR 
from the SPSR automatically sets the T bit to the value it held immediately prior to the 
exception.
Open Access – Preliminary

3-11ARM740T Datasheet
ARM DDI 0008E



Programmer’s Model

3.7.3 Exception entry/exit summary

Table 3-2: Exception entry/exit  summarizes the PC value preserved in the relevant 
R14 on exception entry, and the recommended instruction for exiting the exception 
handler.

Notes

1 PC is the address of the BL/SWI/Undefined Instruction fetch which had the 
prefetch abort.

2 PC is the address of the instruction which did not get executed since the FIQ 
or IRQ took priority.

3 PC is the address of the Load or Store instruction which generated the data 
abort.

4 The value saved in R14_svc upon reset is unpredictable.

3.7.4 FIQ 
The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or 
channel process, and in ARM state has sufficient private registers to remove the need 
for register saving (thus minimising the overhead of context switching).

FIQ is externally generated by taking the nFIQ input LOW. nFIQ and nIRQ are 
considered asynchronous, and a cycle delay for synchronization is incurred before the 
interrupt can affect the processor flow.

Irrespective of whether the exception was entered from ARM or THUMB state, a FIQ 
handler should leave the interrupt by executing:

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR’s F flag (but note that this is not possible from 
User mode). If the F flag is clear, ARM740T checks for a LOW level on the output of the 
FIQ synchronizer at the end of each instruction.

3.7.5 IRQ
The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on 
the nIRQ input. IRQ has a lower priority than FIQ and is masked out when a FIQ 
sequence is entered. It may be disabled at any time by setting the I bit in the CPSR, 
though this can only be done from a privileged (non-User) mode.

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA - - 4

 Table 3-2: Exception entry/exit
Open Access – Preliminary
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Irrespective of whether the exception was entered from ARM or THUMB state, an IRQ 
handler should return from the interrupt by executing:

SUBS PC,R14_irq,#4

3.7.6 Abort
An abort indicates that the current memory access cannot be completed. It can be 
signalled either by the Protection unit, or by the external BERROR input. ARM740T 
checks for the abort exception during memory access cycles.

There are two types of abort:

Prefetch abort

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the 
exception is not taken until the instruction reaches the head of the pipeline. If the 
instruction is not executed—for example because a branch occurs while it is in the 
pipeline—the abort does not take place.

Data abort

If a data abort occurs, the action taken depends on the instruction type:

1 Single data transfer instructions (LDR, STR) writeback-modified base 
registers: the Abort handler must be aware of this.

2 The swap instruction (SWP) is aborted as though it had not been executed.
3 Block data transfer instructions complete (LDM, STM). If writeback is set, the 

base is updated. If the instruction would have overwritten the base with data 
(ie. it has the base in the transfer list), the overwriting is prevented. All register 
overwriting is prevented after an abort is indicated, which means in particular 
that R15 (always the last register to be transferred) is preserved in an aborted 
LDM instruction.

Returning from an abort

After fixing the reason for the abort, the handler should execute the following 
irrespective of the state (ARM or THUMB), to restore both the PC and the CPSR, and 
retry the aborted instruction:

SUBS PC,R14_abt,#4 for a prefetch abort, or
SUBS PC,R14_abt,#8 for a data abort

Note Restrictions on the use of the external abort signal. are given in 7.5 External Aborts  
on page 7-11.

3.7.7 Software interrupt 
The software interrupt instruction (SWI) is used for entering Supervisor mode, usually 
to request a particular supervisor function. A SWI handler should return by executing 
the following irrespective of the state (ARM or THUMB):

MOV PC, R14_svc 

This restores the PC and CPSR, and returns to the instruction following the SWI.

Prefetch abort occurs during an instruction prefetch.

Data abort occurs during a data access.
Open Access – Preliminary
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3.7.8 Undefined instruction 

When ARM740T comes across an instruction which it cannot handle, it takes the 
undefined instruction trap. This mechanism may be used to extend either the THUMB 
or ARM instruction set by software emulation. 

After emulating the failed instruction, the trap handler should execute the following 
irrespective of the state (ARM or THUMB), to restore the CPSR and return to the 
instruction following the undefined instruction:

MOVS PC,R14_und 

3.7.9 Exception vectors 
The following table shows the exception vector addresses. 

3.7.10 Exception priorities
When multiple exceptions arise at the same time, a fixed priority system determines the 
order in which they are handled: 

1 Reset (Highest priority)
2 Data abort 
3 FIQ 
4 IRQ 
5 Prefetch abort 
6 Undefined Instruction, Software Interrupt. (Lowest priority)

Not all exceptions can occur at once

Undefined Instruction and Software Interrupt are mutually exclusive, as they each 
correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (that is, the 
CPSR’s F flag is clear), ARM740T enters the data abort handler and then immediately 
proceeds to the FIQ vector. A normal return from FIQ makes the data abort handler 
resume execution. 

Placing data abort at a higher priority than FIQ is necessary to ensure that the transfer 
error does not escape detection. The time for this exception entry should be added to 
worst-case FIQ latency calculations.

Address  Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor 

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ 

0x0000001C FIQ FIQ

 Table 3-3: Exception vector addresses
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3.8 Reset

When the BnRES  signal goes LOW, ARM740T:

1 Abandons the executing instruction.
2 Flushes the Cache.
3 Disables the Write Buffer, Cache and Memory Management Unit.
4 Resets the Process Identifier.
5 Continues to fetch instructions from incrementing word addresses.

When BnRES  goes HIGH again, ARM740T: 

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC 
and CPSR into them. The value of the saved PC and SPSR is not defined.

2 Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, 
and clears the CPSR’s T bit.

3 Forces the PC to fetch the next instruction from address 0x00.
4 Resumes execution in ARM state.
Open Access – Preliminary
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4.1 Overview

The operation and configuration of ARM740T is controlled via coprocessor 15 (CP15). 
Coprocessor instructions manipulate a number of on-chip registers which control the 
configuration of the following:

• Cache
• write buffer
• Protection Unit 
• a number of other configuration options.

4.1.1 Compatibility
To ensure backwards compatibility of future CPUs, all reserved or unused bits in 
registers and coprocessor instructions should be programmed to ‘0’. 

Invalid registers must not be read/written. 

Note The gray areas in the register diagrams are reserved and should be programmed 0 for 
future compatibility.
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4.2 Internal Coprocessor Instructions

The on-chip configuration registers may be read using MRC instructions and written 
using MCR instructions. These operations are only allowed in non-user modes and the 
undefined instruction trap is taken if accesses are attempted in user mode.

Note The CP15 register map may change in later ARM processors. We strongly recommend 
you structure software such that any code accessing coprocessor 15 is contained in a 
single module. It can then be updated easily.

 Figure 4-1: Format of internal coprocessor instructions MRC and MCR

where:

The CRn field is normally used to determine which configuration register is being 
accessed.

1 1 1 0 n 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd CRm

Cond ARM condition codes

Crn CP15 Source/Destination Register

Crm CP15 Operand Register

Rd ARM Register

n 1 = MRC register read
0 = MCR register write
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4.3 Registers

The configuration registers are accessed by CPRT instructions to CP15 with the 
processor in privileged mode.

Only some CRn registers are valid:

• an access to an invalid register causes neither the access nor an undefined 
instruction trap, and therefore should never be carried out

• an access to any of the registers [8:15] causes the undefined instruction trap 
to be taken

4.3.1 Register 0: ID
Register 0 is a read-only identity register that returns the ARM code for this core. This 
code is 0x4180740x. 

 Figure 4-2: ID Code register

8KB cache variant

For the 8KB cache variant the id code is 0x41807400.

4KB cache variant

For the 4KB cache variant the ID code is 0x41817400.

Register Register Reads Register Writes

0 ID Register Reserved

1 Control Control

2 Cacheable Cacheable

3 Write Buffer Control Write Buffer Control

4 Reserved Reserved

5 Protection Protection

6 Memory Area Definition Memory Area Definition

7 Reserved Flush unlocked Cache banks

8-15 Reserved Reserved

 Table 4-1: System control registers

0341516232431

41 Revision80 740
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4.3.2 Register 1: Control

Register 1 contains the control bits. All bits in this register are forced LOW by reset.

 

 Figure 4-3: Control register

4.3.3 Register 2: Cacheable
Register 2 holds the current values of the Cacheable bit. See 7.2 Protection Unit 
Registers  on page 7-3 for a description of the operation of the Protection Unit.

 Figure 4-4: Cacheable register

0123456782931

F B W C MSBank Lock

28 27 26 25 2430

M Bit 0 Protection Unit Enable/disable

0 on-chip Protection Unit turned off

1 on-chip Protection Unit turned on.

C Bit 2 Cache enable/disable

0 Cache turned off

1 Cache turned on

W Bit 3 Write buffer enable/disable

0 Write buffer turned off

1 Write buffer turned on

B Bit 7 Big/little-endian

0 little-endian operation

1 big-endian operation

S Bit 24 Split Instruction Data Mode
This bit controls the operating mode of the ARM740T 
Cache. Refer to 5.3.3 Split instruction data operation  on 
page 5-5.

Lock Bits [26:25] Lock Cache Lockdown control register
This bit controls the ARM740T Cache. Refer to 5.3.2 
Partially locked operation  on page 5-5.

F Bit 27 Load Mode
This bit controls the ARM740T Cache. Refer to 5.3.2 
Partially locked operation  on page 5-5.

Bank Bits [29:28] Cache Bank select register
These bits controls the ARM740T Cache. Refer to 5.3.2 
Partially locked operation  on page 5-5.

Cacheable
1 0234567

31 8 7 6 5 4 3 2 1 0
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4.3.4 Register 3: Bufferable

Register 3 holds the current values of the Bufferable bit. See 7.2 Protection Unit 
Registers  on page 7-3 for a description of the operation of the Protection Unit.

 Figure 4-5: Bufferable register

4.3.5 Register 4: Reserved
This register is reserved.

4.3.6 Register 5: Protection
Register 5 contains the access permissions for the eight areas of memory. The access 
permission bits are defined in 7.2.4 Protection register  on page 7-4.

 Figure 4-6: Protection register

4.3.7 Register 6: Memory Area Definition
Register 6 is actually eight physical registers which are referenced by the CRm field of 
a CPRT instruction. Each register defines a memory region. A fuller description of 
these registers is given in 7.2.5 Area registers  on page 7-5.

 Figure 4-7: Size register

When programming the Memory Area Register the appropriate region is selected using 
the CRm parameter in the MCR or MRC instruction. 

4.3.8 Register 7: IDC Flush
Register 7 is a write-only register. The data written to this register is discarded and all 
unlocked banks of the cache are flushed.

4.3.9 Registers [8:15]: Reserved
Accessing any of these registers causes the undefined instruction trap to be taken.

Bufferable
1 0234567

31 8 7 6 5 4 3 2 1 0

1 0234567

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

31 1 023429 28 27 26 25 2430 567891011121314151623 22 21 20 19 18 17

Region Base Address Size E
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This chapter describes the cache.

5.1 Overview 5-2
5.2 Control Registers 5-4
5.3 Operating Modes 5-5
5.4 Cache Operation 5-7
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5.1 Overview

The ARM740T can incorporate either an 8KB or 4KB general purpose cache. Both 
variants are functionally equivalent.

The cache:

• is physically addressed
• is 4-way set associative
• is write through
• has four words and a a valid flag per line
• uses a random replacement algorithm
• is filled by line

 Figure 5-1: Cache architecture

Operating modes

Various operating modes are provided, to allow the cache to be tailored to the 
application:

• mixed instruction data
• partially locked
• split instruction data

Cache operation

The cache is enabled or disabled and configured via the ARM740T control register. 

The operation of the cache is further controlled by the cacheable function of the 
protection unit. The protection unit must always be enabled if the cache is enabled or 
the behavior is undefined. The two functions may be enabled simultaneously, with a 
single write to the control register.

Replacement algorithm

The replacement algorithm of the cache is random. The various operating modes all 
use random allocation, though the replacement algorithm is constrained. 

In all cases, the options only affect cache replacements. The complete cache is always 
searched for an address, and if the address is found, the data is used or updated. This 
ensures that the cache is guaranteed to be self-consistent, and coherent with external 
memory.

TAG RAMARM Core

Replacement controller

Data Bus

Address Bus
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5.1.1 The 8KB variant

The 8KB variant has 128 lines per bank (set). The Tag field is 21 bits and the line index 
is 7 bits as shown below:

 Figure 5-2: 8KB variant

5.1.2 The 4KB variant
The 4KB variant has 64 lines per bank (set). The Tag field is 22 bits and the line index 
is 6 bits as shown below:

 Figure 5-3: 4KB variant

5.1.3 Read-Lock-Write
The IDC treats the Read-Locked-Write instruction as a special case. 

Externally the two phases are flagged as indivisible by asserting the BLOK  signal.

5.1.4 Reset
The IDC is automatically disabled and flushed on BnRES . Once enabled, cacheable 
read accesses place lines in the cache.

01234101131

Tag ByteLine Word

0123491031

Tag ByteLine Word

The read phase always forces a read of external memory, regardless of 
whether the data is contained in the cache.

The write phase is treated as a normal write operation (and if the data is 
already in the cache, the cache will be updated).
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5.2 Control Registers

The cache is controlled by the following bits in the control register. 

See 4.3.2 Register 1: Control  on page 4-5 for a full description of the configuration 
register.

bank[1:0] These bits select the bank to be loaded when the F bit is set.

Note:  The cache banks are always locked starting from bank 0, 
so the order of loading should be 0, 1, 2. While bank 3 can be 
loaded, there is no mechanism for locking all four banks of 
cache.

C Cache enable bit. The cache is filled when a cacheable 
(instruction or data) fetch is performed. The cache is loaded by 
a line fetch of four words.

F This bit forces all linefetches to occur to the bank selected by 
bank[1:0]. When this bit is set, all instruction fetches are forced 
to be 'Uncacheable'—data fetches are still subject to the 
cacheable mapping in the protection unit.

lock[1:0] These bits are used to set the number of banks locked, and 
when in Split Instruction Data mode, is it also used to program 
the split. The effect of lock[1:0] when used to lock banks of the 
cache is shown in Table 5-1: Cache banks locked by 
lock[1:0] .

lock[1:0] Bank 3 Bank 2 Bank 1 Bank 0 Description

00 Cache Cache Cache Cache No Banks Locked

01 Cache Cache Cache Locked 1 Bank Locked

10 Cache Cache Locked Locked 2 Banks Locked

11 Cache Locked Locked Locked 3 Banks Locked

 Table 5-1: Cache banks locked by lock[1:0]

S This is the split instruction/data bit. When this bit is set, the 
Cache is configured according to the value of the lock[1:0] bits. 
It is illegal to have F and S set simultaneously. The effects of the 
lock[1:0] bits when in split instruction/data mode is shown in 
Table 5-2: Bank allocation in Split Instruction / Data mode  
on page 5-5.
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5.3 Operating Modes

The following operating modes are provided, to allow the cache to be tailored to the 
application:

• mixed instruction data
• partially locked
• split instruction data

5.3.1 Mixed instruction data operation
This is the standard mode of operation of the cache. In this mode, the cache functions 
as a standard mixed instruction and data cache. Lines fetched into the cache are 
randomly placed into one of the cache banks.

5.3.2 Partially locked operation
The ARM740T cache allows critical code and data to be locked into the cache to ensure 
predictable high performance.

Locking code or data into the cache

To lock code or data into the cache:

1 Select the bank to be loaded using the bank[1:0] register, and set the F bit to 
1. Cache banks are always locked starting from bank 0, hence should be 
loaded and locked in the order 0, 1, 2.

2 Perform a cache flush operation. This is necessary to ensure that the required 
instructions and data are loaded into the selected cache bank. If this is not 
performed, they may be elsewhere in the cache, and therefore are not loaded 
into the selected bank.

3 Load the instructions or data to be locked into the cache either using LDM or 
LDR instructions, one per line. While in load mode, all instruction fetches are 
uncacheable.

4 Set the F bit to zero.
5 Set the number of banks to be locked into the lock[1:0] register.

Once the lock register is set, the replacement algorithm is prevented from replacing in 
the locked banks. This has the effect of reducing the associatively of the cache to the 
number of banks remaining as cache.

5.3.3 Split instruction data operation
As a further option, the ARM740T cache can be operated in split instruction data mode. 
This forces instructions and data to be cached in separate banks of the cache. This can 
be used to improve performance where a small code set is processing a large data set. 
The split nature of the cache prevents the data from replacing the cached instructions. 
The banks of the cache are used as shown in Table 5-2: Bank allocation in Split 
Instruction / Data mode  on page 5-5.

lock[1:0] Bank 3 Bank 2 Bank 1 Bank 0 Description

00 - - - - Reserved

01 Data Data Data Instr . 1 Bank Instruction, 2 Banks Data

10 Data Data Instr . Instr . 2 Banks Instruction, 2 Banks Data

11 Data Instr . Instr . Instr . 3 Banks Instruction, 1 Bank Data

 Table 5-2: Bank allocation in Split Instruction / Data mode
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It is not necessary to flush the cache before enabling split instruction / data mode. The 
complete cache is searched, regardless of the split selected.

1 Set the S bit.
2 Select the required split using the lock[1:0] register.

If required, this mechanism can be used to ‘snapshot’ contents of the instruction banks, 
and lock them into the cache. The required sequence of operations is as follows:

1 Set the S bit to 1, and select the required split using the lock[1:0] register.
2 Flush the cache to ensure that the code is loaded into the instruction banks.
3 Execute the required code fragment.
4 Set the S bit to 0, leaving the same value in the lock[1:0] register.

In all cases, when operating in split instruction / data mode, the associativity of each 
section of the cache is equal to the number of banks allocated to it.

Notes It is illegal to simultaneously have the S bit and the F bit set.
It is illegal to have the S bit set, with a value of 00 in the lock[1:0] register.
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5.4 Cache Operation

The cache is always searched regardless of whether it is enabled. If an address hits, 
then the data will be read or written. So when the cache is disabled it should also be 
flushed.

5.4.1 Cacheable bit
The protection unit uses the appropriate cacheable bit in the cacheable register to 
determine whether data being read may be placed in the IDC and used for subsequent 
read operations.

Typically, main memory is marked as cacheable to improve system performance, and 
I/O space as non-cacheable to stop the data being stored in ARM740T's cache. 

For example, if the processor is polling a hardware flag in I/O space, it is important that 
the processor is forced to read data from the external peripheral, and not a copy of the 
initial data held in the cache. See Chapter 7, Protection Unit  for more details.

5.4.2 Software IDC flush
All unlocked banks of the Cache may be marked as invalid by writing to the ARM740T 
IDC Flush Register (Register 7), see 4.3.8 Register 7: IDC Flush  on page 4-6. The 
cache is flushed immediately the register is written, but note that the two instruction 
fetches following may come from the cache before the register is written.

Cacheable reads A linefetch of four words is performed when a ‘cache-miss’ 
occurs in a cacheable area of memory. This is placed in the 
cache according to the current mode of operation.

Uncacheable reads An external memory access is performed and the cache is 
not written.

Writes All writes updates the data in the cache if present, and are 
written through to the main memory.
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This chapter describes the Write Buffer.

6.1 Overview of the Write Buffer 6-2
6.2 Write Buffer Operation 6-3

Write Buffer6
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6.1 Overview of the Write Buffer

The ARM740T write buffer is provided to improve system performance. It can buffer 
up to eight words of data, and four independent addresses. 

The write buffer may be enabled or disabled via the W bit (bit 3) in the ARM740T 
Control Register, and the buffer is disabled and flushed on reset. 

For a write to use the write buffer, both the W bit in the Control Register, and the 
appropriate B bit in the Bufferable Register must be set.

It is not possible to abort buffered writes externally.

6.1.1 Bufferable bit
The operation of the write buffer is further controlled by the bufferable function of the 
protection unit. If the write buffer is enabled the protection unit must also be enabled. 
The two functions may however be enabled simultaneously, with a single write to the 
Control Register. 

This bit controls whether a write operation may or may not use the write buffer. Typically, 
main memory is bufferable and I/O space unbufferable. The bufferable bit can be 
configured for each area of memory, see 7.2.3 Bufferable register  on page 7-4.

6.1.2 Bufferable write
If the write buffer is enabled and the processor performs a write to a bufferable area, 
the data is placed in the write buffer at BCLK  speeds and the CPU continues execution. 
The write buffer then performs the external write in parallel. 

If, however, the write buffer is full (either because there are already eight words of data 
in the buffer, or because there is no slot for the new address), the processor is stalled 
until there is sufficient space in the buffer. 

• A single write requires one address slot and one data slot in the write buffer
• a sequential write of n words requires one address slot and n data slots. 

The total of eight data slots in the buffer may be used as required. For example, there 
could be three non-sequential writes and one sequential write of five words in the buffer, 
and the processor could continue as normal: a fifth write or a sixth word in the forth 
write would stall the processor until the first write had completed.

6.1.3 Unbufferable writes
If the write buffer is disabled or the CPU performs a write to an unbufferable area, the 
processor is stalled until the write buffer empties and the write completes externally, 
which may require synchronisation and several external clock cycles. 

6.1.4 Read-lock-write
The write phase of a read-lock-write sequence is treated as an unbuffered write, even 
if it is marked as buffered. 
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6.2 Write Buffer Operation

When the CPU performs a write operation, the Bufferable bit for that address is 
inspected and the state of the B bit determines the subsequent action. If the write buffer 
is disabled via the ARM740T Control Register, buffered writes are treated in the same 
way as unbuffered writes. 

6.2.1 To enable the write buffer
To enable the write buffer:

1 Ensure the Protection Unit is enabled by setting bit 0 in the Control Register.
2 Enable the write buffer by setting bit 3 in the Control Register. 

The Protection Unit and write buffer may be enabled simultaneously with a single write 
to the Control Register.

6.2.2 To disable the write buffer
To disable the write buffer, clear bit 3 in the Control Register.

Note Any writes already in the write buffer complete normally.
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This chapter describes the Protection Unit.

7.1 Overview 7-2
7.2 Protection Unit Registers 7-3
7.3 Protection Unit Operation 7-7
7.4 Support for Overlapping Regions 7-9
7.5 External Aborts 7-11
7.6 Interaction of the Protection Unit, Cache and Write Buffer 7-12
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7.1 Overview

The Protection Unit performs two primary functions by containing a description of the 
properties of areas of memory in the memory map:

• controlling the cache and write buffer
• controlling memory access permissions

7.1.1 Controlling individual memory areas
The protection unit provides individual control for eight areas of memory (numbered 0 
to 7). For each area the following registers can be programmed:

• Cachable
• Bufferable
• Basic Protection
• Size
• Base Address

This allows the memory architecture of the system to be described in an easily 
programmable but flexible manner.
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7.2 Protection Unit Registers

The ARM740T provides several registers which control the operation of the Protection 
Unit. The format of these registers is shown in Table 7-1: System control registers .

For a complete description of the Control Coprocessor see Chapter 4, Configuration .

7.2.1 Control register
The Configuration register contains the protection enable bit M, which is shown in 
Figure 7-1: Control register . On reset, this bit is set to zero, disabling the protection 
mechanisms. This allows full access to all of memory, and all accesses are then 
uncacheable and unbufferable.

 Figure 7-1: Control register

Note Other bits in the configuration register are also used for other functions. For a full 
description of the configuration register see 4.3.2 Register 1: Control  on page 4-5.

7.2.2 Cacheable register
The Cacheable register sets the cacheable bit for each of the eight areas of memory. 

 Figure 7-2: Cacheable register

The cacheable bit determines if a linefetch should be performed for an access to a 
given area of memory. The cache is always searched regardless of the state of this bit, 
and if the required address is found the copy of the data in the cache will be used. 

Register Register Reads Register Writes

0 ID Register Reserved

1 Configuration Configuration

2 Cacheable Cacheable

3 Bufferable Bufferable

4 Reserved Reserved

5 Protection Protection

6 Memory Area Definition Memory Area Definition

7 Reserved Flush unlocked Cache banks

8–15 Reserved Reserved

 Table 7-1: System control registers

M

31 1 0

Register 1

31 1 0

Register 2

2345678

Cacheable
1 0234567
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On reset all areas are marked as uncacheable.

Typically, main memory is marked as cacheable to provide maximum performance and 
peripherals are marked as uncacheable.

7.2.3 Bufferable register 
The Bufferable register sets the bufferable bit for each of the eight areas of memory. 

 Figure 7-3: Bufferable register

The bufferable bit indicates that data at this address is written through the write buffer 
(if the write buffer is enabled). On reset, all areas are marked as unbufferable.

Note The meaning of the cacheable and bufferable bits may change in later ARM 
processors. It is strongly recommended that you structure software so that code which 
manipulates the protection unit is contained in a single module. It can then be updated 
easily when you port it to a different ARM processor.

7.2.4 Protection register
The Protection register controls the access permissions for the eight areas of memory.

 Figure 7-4: Protection register

For each area of memory, the access permissions are controlled by the value in the 
Protection register. These control access as shown in Table 7-2: Access 
permissions :

Register 3
Bufferable

1 0234567

31 8 7 6 5 4 3 2 1 0

Register 5 1 0234567

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Supervisor User

00 No Access No Access

01 Read / Write No Access

10 Read / Write Read Only

11 Read / Write Read / Write

 Table 7-2: Access permissions
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7.2.5 Area registers

The Area registers control the parameters of the areas of memory controlled by the 
Protection Unit. These registers differ from the other CP15 registers in how the areas 
of memory are addressed. Rather than using separate bit-fields for each region of 
memory, one register is used for each area indexed by the coprocessor operand 
parameter in the instruction. 

The number of the area of memory to be accessed should be placed in the CP15 
operand field of the instruction. See Figure 7-5: Format of internal coprocessor 
instructions MRC and MCR  on page 7-5.

 Figure 7-5: Format of internal coprocessor instructions MRC and MCR

where:

Each Area register contains 3 fields to describe the location of the area of memory.

• The Base address of the Area
• The Size of the Area
• The enable bit, E

 Figure 7-6: Size register

The enable bit E determines if a given area is active. If this bit is set to zero, the area is 
disabled.

The value in size[4:0] determines the size of a given area of memory, as shown in 
Table 7-3: Area sizes :

1 1 1 0 n 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd CRm

Cond is an ARM condition code

CRn is the CP15 Source/Destination Register (equal to 6 for the 
Area register)

CRm is the CP15 Operand Register, set to the area to be 
accessed

Rd is an ARM Register

n 1 = MRC register read
0 = MCR register write

31 1 023429 28 27 26 25 2430 567891011121314151623 22 21 20 19 18 17

Base[31:12] Size[4:0] E

Size[4:0] Area Size[4:0] Area

0b01011 4KB 0b10110 8MB

0b01100 8KB 0b10111 16MB

 Table 7-3: Area sizes
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Base address

The base address of each area must be aligned with respect to the size of that area.

For example, if a region size is set to 16KB, then 0x8000 is a legal address for the 
region to start at, and 0x5000 is not legal. 

The finest resolution for setting the location of a section is 4KB, as determined by the 
smallest region size setting. The behavior of the protection unit is undefined if this 
requirement is not met. 

Accessing the area register

This register is accessed using MCR and MRC instructions as follows:

• To write the descriptor for an area of memory:
MCR p15, 0, Rd, c6, CRm, 0

where:

• To read back the descriptor:
MRC p15, 0, Rd, c6, CRm, 0

where:

0b01101 16KB 0b11000 32MB

0b01110 32KB 0b11001 64MB

0b01111 64KB 0b11010 128MB

0b10000 128KB 0b11011 256MB

0b10001 256KB 0b11100 512MB

0b10010 512KB 0b11101 1GB

0b10011 1MB 0b11110 2GB

0b10100 2MB 0b11111 4GB

0b10101 4MB

CRm is the area of memory to be defined

Rd is the ARM register containing the value to be 
written into the area register.

CRm is the area of memory to be read

Rd is the ARM register where the descriptor is 
placed

Size[4:0] Area Size[4:0] Area

 Table 7-3: Area sizes (Continued)
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7.3 Protection Unit Operation

The Protection Unit works by comparing the address generated by the ARM against the 
parameters of the eight areas of memory. This can cause one of three results:

This is illustrated diagrammatically in Figure 7-7: Protection Unit operation . 

 Figure 7-7: Protection Unit operation

7.3.1 Memory area properties
Each area of memory is defined in terms of the following properties:

• size
• base address
• access permissions
• bufferable bit
• cacheable bit

The Base address of the area of memory must be a multiple of the size of the area. 

When an address matches multiple areas of memory, the properties of the highest 
priority area of memory are used. The priority ordering of the areas is fixed such that:

No area hits The access is aborted

One area hit The properties of this area are applied to the access

Multiple areas hit The properties of the highest priority area is applied to the 
access.
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The bufferable and cacheable bits for the selected area of memory are used to 
determine if the cache and write buffer should be used (if enabled).

7.3.2 Access permissions
The access permission bits are checked against the access type. This decoding is 
detailed in Table 7-2: Access permissions  on page 7-4. 

• If the access is permitted, it continues.
• If the access is prohibited, the ARM is aborted and the access does not occur 

on the external bus.

7.3.3 Protection failures and external accesses
If the protection unit detects an access violation, it does so before the external memory 
access takes place, and it therefore inhibits the access. External aborts do not 
necessarily inhibit the external access, as described in 7.5 External Aborts  on page 
7-11.

An internally aborting access may cause the address on the external address bus to 
change, even though the external bus cycle has been cancelled. No memory access is 
performed to this address.

7.3.4 Reset
The Protection Unit is disabled on BnRES . Before it is enabled, all the Protection Unit 
registers must be programmed. If this is not observed, unpredictable behaviour will 
result.

Property Effect if Set

Bufferable If the Access is a write, the write buffer will be used.

Cacheable If the Access is a read, a cache linefill will be performed if the required 
word is not in the cache.

 Table 7-4: Cacheable and bufferable properties
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7.4 Support for Overlapping Regions

Overlapping regions can be used to allow greater flexibility over how logical memory 
regions are mapped into physical memory devices.

For example, consider the case where the system has 4KB of supervisor code and 
28KB of user code, both of which must be mapped into a 32KB RAM. 

If overlapping memory is not supported, four regions would have to be used to achieve 
this:

• one 4KB region for the supervisor code
• one 32KB region
• one 16KB region
• one 4KB region for the user code

This is as shown below in Figure 7-8: Use of overlapping memory regions .

Overlapping supervisor and code regions

If the supervisor and user code regions can be overlapped, this can be achieved using 
only two regions:

• one 4KB region for the supervisor code
• one 32KB region for the user code, as shown in Figure 7-8: Use of 

overlapping memory regions

 Figure 7-8: Use of overlapping memory regions

In this example, the supervisor code could be placed in Region 2, and the user code in 
Region 1. This ensures that the supervisor mapping takes precedence over the less 
strict user mapping.

3

2

1

2
4

1

Supervisor Only

Full Access

a) Four Regions
Required

b) Two Regions
Required
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7.4.1 Undefined address space

The mechanism for overlapping segments can be used to allow the default protection 
for otherwise unmapped memory to be programmed. If the memory regions do not 
completely fill the 4GB address space of the ARM7TDMI, there are ‘holes’ in the 
address map. By configuring Region 0 (the lowest priority Region) to be 4GB in size, 
you can program what happens if an access is made to a hole.

For example, the attributes could be set to full access or no access. Alternatively, you 
may chose to ignore the holes, and any access to an area of memory not described by 
the protection unit results in an abort. 
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7.5 External Aborts

In addition to the aborts generated by the protection unit, ARM740T has an external 
abort input BERROR that may be used to flag an error on an external memory access. 
However, not all accesses can be aborted in this way, so this input must be used with 
great care. 

7.5.1 Restrictions
The following accesses may be aborted and restarted safely.

• reads
• unbuffered writes
• read-lock-write sequence

If any of these are aborted, the external access ceases on the next cycle. In the case 
of a read-lock-write sequence in which the read aborts, the write does not happen.

7.5.2 Cacheable reads (linefetches)
A linefetch may be safely aborted on any word in the transfer. 

• If an abort occurs during the linefetch, the cache is purged, so it does not 
contain invalid data. 

• If the abort happens on a word that has been requested by the ARM740T, it is 
aborted, otherwise the cache line is purged but program flow is not interrupted.

The line is therefore purged under all circumstances.

7.5.3 Buffered writes
Buffered writes cannot be externally aborted. Therefore, the system should be 
configured so that it does not buffer writes to areas of memory that are capable of 
flagging an external abort.

Note Areas of memory that can generate an external abort on a location that has previously 
been read successfully must not be marked as cacheable or unbufferable. If all writes 
to an area of memory abort, it is recommended that you mark it as read only in the 
Protection Unit, otherwise mark it as uncacheable and unbufferable.
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7.6 Interaction of the Protection Unit, Cache and Write Buffer

The Protection Unit, cache and write buffer may be enabled and disabled 
independently. However, in order for the write buffer or the cache to be enabled the 
Protection Unit must also be enabled. There are no hardware interlocks on these 
restrictions, so invalid combinations cause undefined results.

The following procedures must be observed:

To enable the Protection Unit:

1 Program the Cacheable, Bufferable, Protection and Area registers as required.
2 Enable the Protection Unit by setting bit 0 in the Control register.

To disable the Protection Unit:

1 Disable the write buffer by clearing bit 3 in the Control register.
2 Disable the cache by clearing bit 2 in the Control register.
3 Disable the Protection Unit by clearing bit 0 in the Control register.

Disabling of all three functions may be done simultaneously with a single write to the 
control register.

Protection unit Cache Write buffer

off off off

on off off

on on off

on off on

on on on

 Table 7-5: Valid protection unit, cache and write buffer combinations
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8.1 Overview

In this chapter ARM7TDM refers to the ARM7TDM core excluding the EmbeddedICE 
Macrocell. The ARM7TDM debug interface is based on IEEE Std. 1149.1 - 1990, 
Standard Test Access Port and Boundary-Scan Architecture. Please refer to this 
standard for an explanation of the terms used in this chapter and for a description of 
the TAP controller states.

8.1.1 Debug extensions
ARM7TDM contains hardware extensions for advanced debugging features. These are 
intended to ease the user’s development of application software, operating systems, 
and the hardware itself.

The debug extensions allow the core to be stopped either on a given instruction fetch 
(breakpoint) or data access (watchpoint), or asynchronously by a debug-request. 
When this happens, ARM7TDM is said to be in debug state. At this point, the core’s 
internal state and the system’s external state may be examined. Once examination is 
complete, the core and system state may be restored and program execution resumed.

Debug state

ARM7TDM is forced into debug state either by a request on one of the external debug 
interface signals, or by an internal functional unit known as EmbeddedICE. Once in 
debug state, the core isolates itself from the memory system. The core can then be 
examined while all other system activity continues as normal.

Internal state

ARM7TDM’s internal state is examined via a JTAG-style serial interface, which allows 
instructions to be serially inserted into the core’s pipeline without using the external 
data bus. Thus, when in debug state, a store-multiple (STM) could be inserted into the 
instruction pipeline and this would dump the contents of ARM7TDM’s registers. This 
data can be serially shifted out without affecting the rest of the system. 

8.1.2 Pullup resistors
The IEEE 1149.1 standard effectively requires that TDI and TMS should have internal 
pullup resistors. In order to minimise static current draw, these resistors are not fitted 
to ARM7TDM. Accordingly, the four inputs to the test interface (the above four signals 
plus TCK) must all be driven to good logic levels to achieve normal circuit operation.

8.1.3 Instruction register
The instruction register is four bits in length. 

There is no parity bit. The fixed value loaded into the instruction register during the 
CAPTURE-IR controller state is 0001.
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8.2 Debug Systems

The ARM7TDM forms one component of a debug system that interfaces from the 
high-level debugging performed by the user to the low-level interface supported by 
ARM7TDM. Such a system typically has three parts:

 Figure 8-1: Typical debug system

The anatomy of ARM7TDM is shown in Figure 8-2: ARM740T scan chain 
arrangement  on page 8-6. The major blocks are:

The Debug Host and the Protocol Converter are system dependent. The rest of this 
chapter describes the ARM7TDM’s hardware debug extensions.

The Debug Host This is a computer, for example a PC, running a 
software debugger such as ARMSD. The debug 
host allows the user to issue high level commands 
such as “set breakpoint at location XX”, or “examine 
the contents of memory from 0x0 to 0x100”.

The Protocol Converter The Debug Host is connected to the ARM7TDM 
development system via an interface (an RS232, for 
example). The messages broadcast over this 
connection must be converted to the interface 
signals of the ARM7TDM, and this function is 
performed by the protocol converter.

ARM7TDM ARM7TDM, with hardware extensions to ease 
debugging, is the lowest level of the system. The 
debug extensions allow the user to stall the core 
from program execution, examine its internal state 
and the state of the memory system, and then 
resume program execution.

ARM7TDM This is the CPU core, with hardware support for debug.

EmbeddedICE This is a set of registers and comparators used to 
generate debug exceptions (eg. breakpoints). This unit 
is described in Chapter 9, EmbeddedICE Macrocell .

TAP controller This controls the action of the scan chains via a JTAG 
serial interface.

Host computer running ARMSD

Protocol
Converter

Development System
Containing ARM7TDMI

Debug
Host

Debug
Target
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8.3 Entering Debug State

ARM7TDM is forced into debug state after a breakpoint, watchpoint or debug request 
has occurred. Conditions under which a breakpoint or watchpoint occur can be 
programmed using EmbeddedICE. Alternatively, external logic can monitor the address 
and data bus, and flag breakpoints and watchpoints via the BREAKPT pin. 

8.3.1 Entering debug state on breakpoint
After an instruction has been breakpointed, the core does not enter debug state 
immediately. Instructions are marked as being breakpointed as they enter ARM7TDM's 
instruction pipeline. Thus ARM7TDM only enters debug state when (and if) the 
instruction reaches the pipeline’s execute stage. 

There are two reasons why a breakpointed instruction may not cause ARM7TDM to 
enter debug state:

• a branch precedes the breakpointed instruction. When the branch is executed, 
the instruction pipeline is flushed and the breakpoint is cancelled. 

• an exception has occurred. Again, the instruction pipeline is flushed and the 
breakpoint is cancelled. However, the normal way to exit from an exception is 
to branch back to the instruction that would have executed next. This involves 
refilling the pipeline, and so the breakpoint can be re-flagged.

When a breakpointed conditional instruction reaches the execute stage of the pipeline, 
the breakpoint is always taken and ARM7TDM enters debug state, regardless of 
whether the condition was met.

Breakpointed instructions are not executed. Instead, ARM7TDM enters debug state. 
Thus, when the internal state is examined, the state before the breakpointed instruction 
is seen. Once examination is complete, the breakpoint should be removed and program 
execution restarted from the previously breakpointed instruction.

8.3.2 Entering debug state on watchpoint
Watchpoints occur on data accesses. A watchpoint is always taken, but the core may 
not enter debug state immediately. In all cases, the current instruction does complete. 
If this is a multi-word load or store (LDM or STM), many cycles may elapse before the 
watchpoint is taken.

Watchpoints can be thought of as being similar to data aborts. The difference is that if 
a data abort occurs, although the instruction completes, all subsequent changes to 
ARM7TDM’s state are prevented. This allows the cause of the abort to be cured by the 
abort handler, and the instruction re-executed. In the case of a watchpoint, the 
instruction completes and all changes to the core’s state occur (load data is written into 
the destination registers, and base writeback occurs). Thus, the instruction does not 
need to be restarted.

Watchpoints are always taken. If an exception is pending when a watchpoint occurs, 
the core enters debug state in the mode of that exception.

8.3.3 Entering debug state on debug-request
ARM7TDM may also be forced into debug state on debug request. This can be done 
either through EmbeddedICE programming (see Chapter 9, EmbeddedICE 
Macrocell ) or by the assertion of the DBGRQ pin. This pin is an asynchronous input 
and is thus synchronised by logic inside ARM7TDM before it takes effect. Following 
synchronisation, the core normally enters debug state at the end of the current 
instruction. However, if the current instruction is a busy-waiting access to a 
coprocessor, the instruction terminates and ARM7TDM enters debug state 
immediately (this is similar to the action of nIRQ and nFIQ).
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8.4 Scan Chains and JTAG Interface

There are several JTAG style scan chains inside ARM7TDM and chain inside the 
ARM740T. These allow testing, debugging, and EmbeddedICE programming.

In addition, support is provided for an optional scan chain. This is intended to be used 
for an external boundary scan chain around the pads of a packaged device. The control 
signals provided for this scan chain are described later.

The scan chains are controlled from a JTAG-style Test Access Port (TAP) controller. For 
further details of the JTAG specification, please refer to IEEE Standard 1149.1 - 1990 
“Standard Test Access Port and Boundary-Scan Architecture”.

Note The scan cells are not fully JTAG-compliant. The following sections describe the 
limitations on their use.

8.4.1 Scan limitations
The scan paths are shown in Figure 8-2: ARM740T scan chain arrangement  on 
page 8-6.

Scan Chain 0 allows access to the entire periphery of the ARM7TDM core, 
including the data bus. The scan chain functions allow 
inter-device testing (EXTEST) and serial testing of the core 
(INTEST). The order of the scan chain (from SDIN to 
SDOUTMS) is: 

• data bus bits 0 through 3
• the control signals (see Table 8-3: Scan Chain 0 

Bit Positions  on page 8-28)
• the address bus bits 31 through 0

Scan Chain 1 is a subset of the signals that are accessible through scan 
chain 0. Access to the core’s data bus D[31:0] , and the 
BREAKPT  signal is available serially. There are 33 bits in 
this scan chain; the order is (from serial data in to out):

• data bus bits 0 through 31
• BREAKPT

Scan Chain 2 allows access to the EmbeddedICE registers. See Chapter 
9, EmbeddedICE Macrocell  for details.

Scan Chain 6 allows access to the TAG entries in the cache.

Scan Chain 15 allows access to the System Control Coprocessor registers.
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 Figure 8-2: ARM740T scan chain arrangement

8.4.2 The JTAG state machine
The process of serial test and debug is best explained in conjunction with the JTAG 
state machine. Figure 8-3: Test access port (TAP) controller state transitions  
shows the state transitions that occur in the TAP controller. The state numbers are also 
shown on the diagram.
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 Figure 8-3: Test access port (TAP) controller state transitions
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8.5 Reset

The boundary-scan interface includes a state-machine controller (the TAP controller). 
In order to force the TAP controller into the correct state after power-up of the device, 
a reset pulse must be applied to the nTRST signal.

If the boundary scan interface is to be used, nTRST must be driven LOW, and then 
HIGH again. If the boundary scan interface is not to be used, the nTRST input may be 
tied permanently LOW. 

Note A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1 System mode is selected (the boundary scan chain cells do not intercept any 
of the signals passing between the external system and the core). 

2 The IDCODE instruction is selected. If the TAP controller is put into the 
Shift-DR state and TCK is pulsed, the contents of the ID register is clocked out 
of TDO.
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8.6 Public Instructions

The public instructions are listed below. In the descriptions that follow, TDI and TMS are 
sampled on the rising edge of TCK and all output transitions on TDO occur as a result 
of the falling edge of TCK.

EXTEST 0000 places the selected scan chain in test mode. This instruction 
connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with EXTEST, all the scan 
cells are placed in their test mode of operation.

CAPTURE-DR Inputs from the system logic and outputs from 
the output scan cells to the system are captured 
by the scan cells. 

SHIFT-DR The previously captured test data is shifted out 
of the scan chain via TDO, while new test data is 
shifted in via the TDI input. This data is applied 
immediately to the system logic and system 
pins. 

SCAN_N 0010 connects the Scan Path Select Register between TDI and TDO. 
On reset, scan chain 3 is selected by default. The scan path 
select register is 4 bits long in this implementation, although no 
finite length is specified.

CAPTURE-DR The fixed value 1000 is loaded into the register.

SHIFT-DR The ID number of the desired scan path is 
shifted into the scan path select register

UPDATE-DR The scan register of the selected scan chain is 
connected between TDI and TDO, and remains 
connected until a subsequent SCAN_N 
instruction is issued.

INTEST 1100 places the selected scan chain test mode. This instruction 
connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with this instruction, all the 
scan cells are placed in their test mode of operation.

Single-step operation is possible using the INTEST instruction.

CAPTURE-DR The value of the data applied from the core logic 
to the output scan cells, and the value of the data 
applied from the system logic to the input scan 
cells is captured.

SHIFT-DR The previously captured test data is shifted out 
of the scan chain via the TDO pin, while new test 
data is shifted in via the TDI pin.
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8-9ARM740T Datasheet
ARM DDI 0008E



Debug Interface
IDCODE 1110 connects the device identification register (or ID register) between 
TDI and TDO. The ID register is a 32-bit register that allows the 
manufacturer, part number and version of a component to be 
determined through the TAP. See 8.7.2 ARM7TDM device 
identification (ID) code register  on page 8-12 for the details of 
the ID register format.

When the instruction register is loaded with this instruction, all the 
scan cells are placed in their normal (system) mode of operation.

CAPTURE-DR The device identification code is captured by the 
ID register.

SHIFT-DR The previously captured device identification 
code is shifted out of the ID register via the TDO 
pin, while data is shifted in via the TDI pin into 
the ID register.

UPDATE-DR The ID register is unaffected.

BYPASS 1111 connects a 1 bit shift register (the bypass register) between TDI 
and TDO.

When this instruction is loaded into the instruction register, all the 
scan cells are placed in their normal (system) mode of operation. 
This instruction has no effect on the system pins. 

Note: All unused instruction codes default to the BYPASS 
instruction

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register via 
TDI and out via TDO after a delay of one TCK 
cycle. The first bit shifted out is a zero. 

UPDATE-DR The bypass register is not affected.

CLAMP 0101 connects a 1 bit shift register (the bypass register) between TDI 
and TDO.

When this instruction is loaded into the instruction register, the 
state of all the output signals is defined by the values previously 
loaded into the currently loaded scan chain. 

Note: This instruction should only be used when scan chain 0 is 
the currently selected scan chain.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register via 
TDI and out via TDO after a delay of one TCK 
cycle. The first bit shifted out is a zero.

UPDATE-DR The bypass register is not affected.
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HIGHZ 0111 connects a 1 bit shift register (the bypass register) between TDI 
and TDO.

When this instruction is loaded into the instruction register, the 
Address bus, A[31:0] , the data bus, D[31:0] , plus nRW, nOPC, 
LOCK , MAS[1:0] and nTRANS  are all driven to the high 
impedance state and the external HIGHZ signal is driven HIGH. 
This is as if the signal TBE had been driven LOW.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register via 
TDI and out via TDO after a delay of one TCK 
cycle. Note that the first bit shifted out will be a 
zero.

UPDATE-DR The bypass register is not affected.

CLAMPZ 1001 connects a 1 bit shift register (the bypass register) between TDI 
and TDO.

When this instruction is loaded into the instruction register, all the 
3-state outputs (as described above) are placed in their inactive 
state, but the data supplied to the outputs is derived from the scan 
cells. The purpose of this instruction is to ensure that, during 
production test, each output can be disabled when its data value 
is either a logic 0 or a logic 1.

CAPTURE-DR A logic 0 is captured by the bypass register. 

SHIFT-DR Test data is shifted into the bypass register via 
TDI and out via TDO after a delay of one TCK 
cycle. Note that the first bit shifted out will be a 
zero. 

UPDATE-DR The bypass register is not affected.

RESTART 0100 restarts the processor on exit from debug state. It connects the 
bypass register between TDI and TDO and the TAP controller 
behaves as if the BYPASS instruction had been loaded. The 
processor resynchronizes back to the memory system once the 
RUN-TEST/IDLE state is entered.

SAMPLE/
PRELOAD

0011 Note: This instruction is included for production test only, and 
should never be used.
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8.7 Test Data Registers

The following registers may be connected between TDI and TDO: 

• Bypass Register
• ID Code Register
• Instruction Register
• Scan Chain Select Register
• Scan chain 0, 1, 2, 3, 6, or 15

These are described in detail in the following sections.

8.7.1 Bypass register
This register bypasses the device during scan testing by providing a path between TDI 
and TDO. The bypass register is 1 bit in length.

Operating mode

When the BYPASS instruction is the current instruction in the instruction register, serial 
data is transferred from TDI to TDO in the SHIFT-DR state with a delay of one TCK 
cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR 
state.

8.7.2 ARM7TDM device identification (ID) code register 
This register reads the 32-bit device identification code. No programmable 
supplementary identification code is provided. The register is 32 bits in length.

The format of the ID register is as follows:

 Figure 8-4: ID code register

Please contact your supplier for the correct Device Identification Code.

Operating mode

When the IDCODE instruction is current, the ID register is selected as the serial path 
between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel inputs 
during the CAPTURE-DR state.

Manufacturer IdentityPart NumberVersion

31 28 27 12 11 1 0

1
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8.7.3 Instruction register

This register changes the current TAP instruction. The register is 4 bits in length

Operating mode

When in the SHIFT-IR state, the instruction register is selected as the serial path 
between TDI and TDO.

During the CAPTURE-IR state, the value 0001 binary is loaded into this register. This 
is shifted out during SHIFT-IR (lsb, least significant bit, first), while a new instruction is 
shifted in (lsb first). 

During the UPDATE-IR state, the value in the instruction register becomes the current 
instruction.

On reset, IDCODE becomes the current instruction.

8.7.4 Scan chain select register
This register changes the current active scan chain. The register is 4 bits in length.

Operating mode

After SCAN_N has been selected as the current instruction, when in the SHIFT-DR 
state, the Scan Chain Select Register is selected as the serial path between TDI and 
TDO.

During the CAPTURE-DR state, the value 1000 binary is loaded into this register. 
This is shifted out during SHIFT-DR (lsb first), while a new value is shifted in (lsb first). 

During the UPDATE-DR state, the value in the register selects a scan chain to become 
the currently active scan chain. All further instructions, such as INTEST, then apply to 
that scan chain.

The currently selected scan chain only changes when a SCAN_N instruction is 
executed, or a reset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[3:0] 
outputs. The TAP controller may be used to drive external scan chains in addition to 
those within the ARM7TDM macrocell. The external scan chain must be assigned a 
number and control signals for it can be derived from SCREG[3:0] , IR[3:0] , 
TAPSM[3:0] , TCK1 and TCK2.

The list of scan chain numbers allocated by ARM is shown in Table 8-1: Scan chain 
number allocation . An external scan chain may take any other number. The serial 
data stream to be applied to the external scan chain is made present on SDINBS and 
the serial data back from the scan chain must be presented to the TAP controller on the 
SDOUTBS input. The scan chain present between SDINBS and SDOUTBS is 
connected between TDI and TDO whenever scan chain 3 is selected, or when any of 
the unassigned scan chain numbers is selected. If there is more than one external scan 
chain, a multiplexer must be built externally to apply the desired scan chain output to 
SDOUTBS. The multiplexer can be controlled by decoding SCREG[3:0] .

Scan Chain Number Function Length

0 Macrocell scan test 105

1 Debug 33

2 EmbeddedICE programming 38

3 External boundary scan NA

 Table 8-1: Scan chain number allocation
Open Access – Preliminary

8-13ARM740T Datasheet
ARM DDI 0008E



Debug Interface
8.7.5 Overview of scan chains
These allow serial access to the core logic, and to EmbeddedICE for programming 
purposes. They are described in detail in the following sections. 

Each scan chain cell is fairly simple, and consists of a serial register and a multiplexer. 
The scan cells perform two basic functions:

 Figure 8-5: Input scan cell

4 Reserved NA

6 TAG 88 (8KB variant)

6 TAG 92 (4KB variant)

8 Reserved NA

15 CP15 33

Scan Chain Number Function Length

 Table 8-1: Scan chain number allocation (Continued)

capture For input cells, the capture stage involves copying the value 
of the system input to the core into the serial register.

For output cells, capture involves placing the value of a 
core’s output into the serial register. 

shift For input cells, during shift, this value is output serially. The 
value applied to the core from an input cell is either the 
system input or the contents of the serial register, and this is 
controlled by the multiplexer.

For output cells, during shift, this value is serially output as 
before. The value applied to the system from an output cell 
is either the core output, or the contents of the serial register.

Shift
Register

Latch

System Data in

SHIFT Clock

Data to Core

Serial Data In

Serial Data Out

CAPTURE
Clock
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All the control signals for the scan cells are generated internally by the TAP controller. 
The action of the TAP controller is determined by the current instruction, and the state 
of the TAP state machine. This is described in the following section.

Operating modes

The scan chains have three basic modes of operation. These are selected by the 
various TAP controller instructions:

Note The scan cells are not fully JTAG-compliant in that they do not have an Update stage. 
Therefore, while data is being moved around the scan chain, the contents of the scan 
cell is not isolated from the output. Thus the output from the scan cell to the core or to 
the external system could change on every scan clock.
This does not affect ARM7TDM because its internal state does not change until it is 
clocked. However, the rest of the system needs to be aware that every output could 
change asynchronously as data is moved around the scan chain. External logic must 
ensure that this does not harm the rest of the system.

8.7.6 Scan chain 0
Scan chain 0 is intended primarily for inter-device testing (EXTEST), and testing the 
core (INTEST). Scan chain 0 is selected via the SCAN_N instruction, and is 105 bits 
long.

Serial testing the core

INTEST allows serial testing of the core. The TAP Controller must be placed in INTEST 
mode after scan chain 0 has been selected. 

• During CAPTURE-DR, the current outputs from the core’s logic are captured 
in the output cells. 

• During SHIFT-DR, this captured data is shifted out while a new serial test 
pattern is scanned in, thus applying known stimuli to the inputs.

• During RUN-TEST/IDLE, the core is clocked. Normally, the TAP controller 
should only spend one cycle in RUN-TEST/IDLE. 

The whole operation may then be repeated. 

See 8.8 ARM7TDM Core Clocks  on page 8-19 for details of the core’s clocks during 
test and debug.

Inter-device testing

EXTEST allows inter-device testing, which is useful for verifying the connections 
between devices on a circuit board. The TAP Controller must be placed in EXTEST 
mode after scan chain 0 has been selected. 

• During CAPTURE-DR, the current inputs to the core's logic from the system 
are captured in the input cells. 

• During SHIFT-DR, this captured data is shifted out while a new serial test 
pattern is scanned in, thus applying known values on the core’s outputs. 

SYSTEM mode The scan cells are idle. System data is applied to inputs, and 
core outputs are applied to the system. 

INTEST mode The core is internally tested. The data serially scanned in is 
applied to the core, and the resulting outputs are captured in 
the output cells and scanned out.

EXTEST mode Data is scanned onto the core's outputs and applied to the 
external system. System input data is captured in the input 
cells and then shifted out.
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• During UPDATE-DR, the value shifted into the data bus D[31:0]  scan cells 

appears on the outputs. For all other outputs, the value appears as the data is 
shifted round. 

Note During RUN-TEST/IDLE, the core is not clocked. 

The operation may then be repeated. 

The ordering of signals on scan chain 0 is outlined in Table 8-3: Scan Chain 0 Bit 
Positions  on page 8-28.

8.7.7 Scan chain 1
The primary use for scan chain 1 is for debugging, although it can be used for EXTEST 
on the data bus. Scan chain 1 is selected via the SCAN_N TAP Controller instruction. 
Debugging is similar to INTEST, and the procedure described above for scan chain 0 
should be followed.

Scan chain length and purpose

This scan chain is 33 bits long—32 bits for the data value, plus the scan cell on the 
BREAKPT  core input. This 33rd bit serves four purposes:

1 Under normal INTEST test conditions, it allows a known value to be scanned 
into the BREAKPT  input. 

2 During EXTEST test conditions, the value applied to the BREAKPT  input from 
the system can be captured. 

3 While debugging, the value placed in the 33rd bit determines whether 
ARM7TDM synchronises back to system speed before executing the 
instruction. See 8.10.5 System-speed access  on page 8-24 for further details.

4 After ARM7TDM has entered debug state, the first time this bit is captured and 
scanned out, its value tells the debugger whether the core entered debug state 
due to a breakpoint (bit 33 LOW), or a watchpoint (bit 33 HIGH).

8.7.8 Scan chain 2
This scan chain allows EmbeddedICE's registers to be accessed. The scan chain is 38 
bits in length.

The order of the scan chain, from TDI to TDO is:

• read/write
• register address bits 4 to 0
• data value bits 31 to 0

See Figure 9-2: EmbeddedICE block diagram  on page 9-5 for more information.

To access this serial register, scan chain 2 must first be selected via the SCAN_N TAP 
controller instruction. The TAP controller must then be place in INTEST mode.

• No action is taken during CAPTURE-DR. 
• During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 

specify the address of the EmbeddedICE register to be accessed. 
• During UPDATE-DR, this register is either read or written depending on the 

value of bit 37 (0 = read). Refer to Chapter 9, EmbeddedICE Macrocell  for 
further details.
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8.7.9 Scan chain 3

This scan chain allows ARM7TDM to control an external boundary scan chain. Scan 
chain 3 is provided so that an optional external boundary scan chain may be controlled 
via ARM7TDM. Typically, this would be used for a scan chain around the pad ring of a 
packaged device. Its length is user-defined.

The following control signals are provided. These are generated only when scan chain 
3 has been selected. These outputs are inactive at all other times.

External scan chains

In addition to the above control outputs, the following are provided for use when an 
external scan chain is in use:

8.7.10 Scan Chain 6

8KB variant

This scan chain is 88 bits long and across the Tag entries of the four banks. In 
operation, addresses may be scanned into the chain and the corresponding Tag entries 
scanned out. The cache is never written to by the scan chain, it is read only.

Although the scan chain is 88 bits long, only the seven bits of the line address are 
significant for addressing the cache. These bits are A[10:4] and are the last seven bits 
scanned into the chain. That is, A[4] is the very last bit scanned in and A[10] is the 
seventh last bit scanned in.

For the line address presented in this way, the corresponding 21 bits of the tag entries 
and their associated valid flags can be captured and scanned out. The first bit scanned 
out is Bank 3. Valid flags are followed by the Bank 3 Tag address (msb, most significant 
bit first) as shown in Table 8-5: Tag scan chain  on page 8-31.

DRIVEBS This would be used to switch the scan cells from system 
mode to test mode. This signal is asserted whenever either 
the INTEST, EXTEST, CLAMP or CLAMPZ instruction is 
selected.

PCLKBS This is an update clock, generated in the UPDATE-DR state. 
Typically the value scanned into a chain would be transferred 
to the cell output on the rising edge of this signal.

ICAPCLKBS
ECAPCLKBS

These are capture clocks used to sample data into the scan 
cells during INTEST and EXTEST respectively. These clocks 
are generated in the CAPTURE-DR state.

SHCLKBS
SHCLK2BS

These are non-overlapping clocks generated in the SHIFTDR 
state used to clock the master and slave element of the scan 
cells respectively. When the state machine is not in the 
SHIFT-DR state, both these clocks are LOW.

nHIGHZ This signal may be used to drive the outputs of the scan cells 
to the high impedance state. This signal is driven LOW when 
the HIGHZ instruction is loaded into the instruction register, 
and HIGH at all other times.

SDINBS output should be connected to the serial data input.

SDOUTBS input should be connected to the serial data output. 
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4KB variant

This scan chain is 92 bits long and across the Tag entries of the four banks. In 
operation, addresses may be scanned into the chain and the corresponding Tag entries 
scanned out. The cache is never written to by the scan chain, it is read only.

Although the scan chain is 92 bits long, only the six bits of the line address are 
significant for addressing the cache. These bits are A[9:4] and are the last six bits 
scanned into the chain. That is, A[4] is the very last bit scanned in and A[9] is the sixth 
last bit scanned in.

For the line addresses presented in this way, the corresponding 22 bits of the tag 
entries and their associated valid flags can be captured and scanned out. The first bit 
scanned out is the Bank 3 valid flag follow by the Bank 3 Tag address (msb first) as 
shown in Table 8-5: Tag scan chain  on page 8-31.

8.7.11 Scan Chain 15
This scan chain is 33 bits long and sits on the CData bus at the interface of CP15.

The first bit scanned in is the Instruction flag followed by the most significant bit if the 
CData bus. If the Instruction flag is HIGH the scanned data value is considered to be a 
COP instruction, otherwise it is treated as data.

This scan chain can be used to present instructions and data to CP15.
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8.8 ARM7TDM Core Clocks

ARM7TDM has two clocks:

• the memory clock, MCLK , generated by the ARM740T
• an internally TCK-generated clock, DCLK

During normal operation, the core is clocked by MCLK , and internal logic holds DCLK  
LOW. 

There are two cases in which the clocks switch:

• during debugging
• during testing

8.8.1 Clock switch during debug
When ARM7TDM is in the debug state, the core is clocked by DCLK  under the control 
of the TAP state machine, and MCLK  may free run. The selected clock is output on the 
signal ECLK  for use by the external system. 

Note When the CPU core is being debugged and is running from DCLK , nWAIT  has no 
effect.

When ARM7TDM enters debug state, it must switch from MCLK  to DCLK . This is 
handled automatically by logic in the ARM7TDM. On entry to debug state, ARM7TDM 
asserts DBGACK  in the HIGH phase of MCLK . The switch between the two clocks 
occurs on the next falling edge of MCLK . This is shown in Figure 8-6: Clock 
Switching on entry to debug state .

 Figure 8-6: Clock Switching on entry to debug state

ARM7TDM is forced to use DCLK  as the primary clock until debugging is complete. On 
exit from debug, the core must be allowed to synchronise back to MCLK . This must be 
done in the following sequence:

1 The final instruction of the debug sequence must be shifted into the data bus 
scan chain and clocked in by asserting DCLK . 

2 At this point, BYPASS must be clocked into the TAP instruction register.
3 ARM7TDM now automatically resynchronizes back to MCLK  and starts 

fetching instructions from memory at MCLK  speed. 
Please refer also to 8.9.4 Exit from debug state  on page 8-22.

MCLK

DBGACK

DCLK

ECLK

Multiplexer Switching
point
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8.9 Determining the Core and System State

When ARM7TDM is in debug state, the core and system’s state may be examined. This 
is done by forcing load and store multiples into the instruction pipeline.

ARM or THUMB state

Before the core and system state can be examined, the debugger must first determine 
whether the processor was in THUMB or ARM state when it entered debug. This is 
achieved by examining bit 4 of EmbeddedICE’s Debug Status Register. If this is HIGH, 
the core was in THUMB state when it entered debug.

8.9.1 Determining the core’s state
If the processor has entered debug state from THUMB state, the simplest course of 
action is for the debugger to force the core back into ARM state. Once this is done, the 
debugger can always execute the same sequence of instructions to determine the 
processor's state.

While in debug state, only the following instructions may legally be scanned into the 
instruction pipeline for execution:

• all data-processing instructions, except TEQP
• all load, store, load multiple and store multiple instructions
• MSR and MRS

Moving to ARM state

To force the processor into ARM state, the following sequence of THUMB instructions 
should be executed on the core:

STR R0, [R0] ; Save R0 before use

MOV R0, PC ; Copy PC into R0

STR R0, [R0] ; Now save the PC in R0

BX PC ; Jump into ARM state

MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

As all THUMB instructions are only 16 bits long, the simplest course of action when 
shifting them into Scan Chain 1 is to repeat the instruction twice. 

For example, the encoding for BX R0 is 0x4700. Therefore, if 0x47004700 is shifted into 
scan chain 1, the debugger does not have to keep track of which half of the bus the 
processor expects to read the data from.

From this point on, the processor’s state can be determined by the sequences of ARM 
instructions described below.

In ARM state

Once the processor is in ARM state, the first instruction executed would typically be:
STM R0, {R0-R15}

This makes the contents of the registers visible on the data bus. These values can then 
be sampled and shifted out.

Note The above use of R0 as the base register for STM is for illustration only: any register 
could be used.
Open Access – Preliminary

8-20 ARM740T Datasheet
ARM DDI 0008E



Debug Interface

Accessing banked registers

After determining the values in the current bank of registers, it may be desirable to 
access the banked registers. This can only be done by changing mode. Normally, a 
mode change may only occur if the core is already in a privileged mode. However, while 
in debug state, a mode change from any mode into any other mode may occur. 

Note The debugger must restore the original mode before exiting debug state.

For example, assume that the debugger had been asked to return the state of the 
USER and FIQ mode registers, and debug state was entered in supervisor mode. 

The instruction sequence could be:

STM R0, {R0-R15} ; Save current registers
MRS R0, CPSR
STR R0, R0 ; Save CPSR to determine current mode
BIC R0, 0x1F ; Clear mode bits
ORR R0, 0x10 ; Select user mode
MSR CPSR, R0 ; Enter USER mode
STM R0, {R13,R14} ; Save register not previously visible
ORR R0, 0x01 ; Select FIQ mode
MSR CPSR, R0 ; Enter FIQ mode
STM R0, {R8-R14} ; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed is much slower 
than system speed because between each core clock, 33 scan clocks occur in order to 
shift in an instruction, or shift out data. Executing instructions more slowly than usual is 
fine for accessing the core’s state because ARM7TDM is fully static. However, this 
same method cannot be used for determining the state of the rest of the system.

8.9.2 Determining system state
In order to meet the dynamic timing requirements of the memory system, any attempt 
to access system state must occur synchronously with it. Thus, ARM7TDM must be 
forced to synchronise back to system speed. This is controlled by the 33rd bit of scan 
chain 1.

Any instruction may be placed in scan chain 1 with bit 33 (the BREAKPT bit) LOW. This 
instruction is then executed at debug speed. To execute an instruction at system speed, 
the instruction prior to it must be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has been scanned into the data bus and clocked into 
the pipeline, the BYPASS instruction must be loaded into the TAP controller. This 
makes the ARM7TDM automatically synchronize back to MCLK  (the system clock), 
executes the instruction at system speed, and then re-enters debug state and switches 
itself back to the internally generated DCLK . When the instruction has completed, 
DBGACK  is HIGH and the core will have switched back to DCLK . At this point, INTEST 
can be selected in the TAP controller, and debugging can resume.

In order to determine that a system speed instruction has completed the debugger 
must look at both DBGACK  and nMREQ. In order to access memory, ARM7TDM 
drives nMREQ LOW after it has synchronised back to system speed. This transition is 
used by the memory controller to arbitrate whether ARM7TDM can have the bus in the 
next cycle. If the bus is not available, ARM7TDM may have its clock stalled indefinitely. 

Therefore, the only way to tell that the memory access has completed, is to examine 
the state of both nMREQ and DBGACK . When both are HIGH, the access has 
completed. Usually, the debugger would be using EmbeddedICE to control debugging, 
and by reading EmbeddedICE’s status register, the state of nMREQ and DBGACK  can 
be determined. Refer to Chapter 9, EmbeddedICE Macrocell  for more details.

By the use of system speed load multiples and debug speed store multiples, the state 
of the system’s memory can be fed back to the debug host.
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Restrictions

There are restrictions on which instructions may have the 33rd bit set. The only valid 
instructions where this bit can be set are:

• loads
• stores
• load multiple
• store multiple

See also 8.9.4 Exit from debug state . 

When ARM7TDM returns to debug state after a system speed access, bit 33 of scan 
chain 1 is set HIGH. This gives the debugger information about why the core entered 
debug state the first time this scan chain is read.

8.9.3 Determining system control coprocessor state
In order to access the System Control Processor registers, debug state must be 
entered by a breakpoint, watchpoint or debug request. This ensures that the 
ARM7TDM core stops execution of code which may be dependent on the System 
Control Coprocessor.

Scan Chain 15 can then be selected via the SCAN_N instruction.

Instructions may then be scanned down the scan chain as if being executed from the 
ARM7TDM core. As the ARM7TDM is idle while Scan Chain 15 is being accessed, it is 
necessary to provide the register data via the scan chain. The instruction prior to the 
data must have the instruction/data flag cleared.

The data operation requires an additional clock from the TAP controller. This may be 
achieved by remaining in the RUN-TEST-IDLE state for an additional TCK cycle.

8.9.4 Exit from debug state
Leaving debug state involves:

1 restoring ARM7TDM’s internal state.
2 branching to the next instruction to be executed.
3 synchronizing back to MCLK . 

After restoring internal state, a branch instruction must be loaded into the pipeline. See 
8.10 The PC During Debug  on page 8-23 for details on calculating the branch.

Bit 33 of scan chain 1 is used to force ARM7TDM to resynchronize back to MCLK . The 
penultimate instruction of the debug sequence is scanned in with bit 33 set HIGH. The 
final instruction of the debug sequence is the branch, and this is scanned in with bit 33 
LOW. 

The core is then clocked to load the branch into the pipeline. Now, the RESTART 
instruction is selected in the TAP controller. When the state machine enters the RUN-
TEST/IDLE state, the scan chain reverts back to system mode and clock 
resynchronization to MCLK  occurs within ARM7TDM. ARM7TDM then resumes 
normal operation, fetching instructions from memory. This delay, until the state machine 
is in the RUN-TEST/IDLE state, allows conditions to be set up in other devices in a 
multiprocessor system without taking immediate effect. Then, when the RUN-TEST/
IDLE state is entered, all the processors resume operation simultaneously.
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8.10 The PC During Debug

So that ARM7TDM may be forced to branch back to the place at which program flow 
was interrupted by debug, the debugger must keep track of what happens to the PC. 

There are five cases: 

• breakpoints
• watchpoints
• watchpoint when another exception occurs
• debug request
• system speed access

8.10.1 Breakpoints
Entry to the debug state from a breakpoint advances the PC by 4 addresses, or 
16 bytes. Each instruction executed in debug state advances the PC by 1 address, or 
4 bytes. The normal way to exit from debug state after a breakpoint is to remove the 
breakpoint, and branch back to the previously breakpointed address.

For example, if ARM7TDM entered debug state from a breakpoint set on a given 
address and two debug-speed instructions were executed, a branch of -7 addresses 
must occur (4 for debug entry, +2 for the instructions, +1 for the final branch). 

The following sequence shows the data scanned into scan chain 1. This is msb first, 
and so the first digit is the value placed in the BREAKPT  bit, followed by the instruction 
data:

0 E0802000; ADD R2, R0, R0

1 E1826001; ORR R6, R2, R1

0 EAFFFFF9; B -7 (2’s complement)

Once in debug state, a minimum of two instructions must be executed before the 
branch, although these may both be NOPs, for example:

MOV R0, R0

For small branches, the final branch could be replaced by a subtract with the PC as the 
destination:

SUB PC, PC, #28

8.10.2 Watchpoints
Returning to program execution after entering debug state from a watchpoint is done in 
the same way as the procedure described above. Debug entry adds 4 addresses to the 
PC, and every instruction adds 1 address. The difference is that because the instruction 
that caused the watchpoint has executed, the program returns to the next instruction.

8.10.3 Watchpoint with another exception
If a watchpointed access simultaneously causes a data abort, ARM7TDM enters debug 
state in abort mode. Entry into debug is held off until the core has changed into abort 
mode, and fetched the instruction from the abort vector.

A similar sequence is followed when an interrupt, or any other exception, occurs during 
a watchpointed memory access. ARM7TDM enters debug state in the exception’s 
mode, and so the debugger must check to see whether this happened. The debugger 
can deduce whether an exception occurred by looking at the current and previous 
mode (in the CPSR and SPSR), and the value of the PC. If an exception did take place, 
the user should be given the choice of whether to service the exception before 
debugging.
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Exiting from debug state

Exiting debug state if an exception occurred is slightly different from the other cases. 

Here, entry to debug state causes the PC to be incremented by 3 addresses rather than 
4, and this must be taken into account in the return branch calculation. 

For example, suppose that an abort occurred on a watchpointed access and 10 
instructions had been executed to determine this. The following sequence could be 
used to return to program execution:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFF0; B -16

This forces a branch back to the abort vector, causing the instruction at that location to 
be refetched and executed. 

Note After the abort service routine, the instruction which caused the abort and watchpoint 
is re-executed. This generates the watchpoint and ARM7TDM enters debug state 
again.

8.10.4 Debug request
Entry into debug state via a debug request is similar to a breakpoint. However, unlike a 
breakpoint, the last instruction will have completed execution and so must not be 
refetched on exit from debug state. Therefore, entry to debug state adds 3 addresses 
to the PC, and every instruction executed in debug state adds 1.

For example, suppose that the user has invoked a debug request, and decides to return 
to program execution straight away. The following sequence could be used:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFFA; B -6

This restores the PC, and restarts the program from the next instruction.

8.10.5 System-speed access
If a system-speed access is performed during debug state, the value of the PC is 
increased by 3 addresses. As system-speed instructions access the memory system, 
it is possible for aborts to take place. If an abort occurs during a system-speed memory 
access, ARM7TDM enters abort mode before returning to debug state.

This is similar to an aborted watchpoint except that the problem is much harder to fix, 
because the abort was not caused by an instruction in the main program, and the PC 
does not point to the instruction which caused the abort. An abort handler usually looks 
at the PC to determine the instruction which caused the abort, and hence the abort 
address. In this case, the value of the PC is invalid, but the debugger should know what 
location was being accessed. Thus the debugger can be written to help the abort 
handler fix the memory system. 
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8.10.6 Summary of return address calculations

The calculation of the branch return address can be summarized as follows:

• For normal breakpoint and watchpoint, the branch is:
- (4 + N + 3S)

• For entry through debug request (DBGRQ), or watchpoint with exception, the 
branch is:
- (3 + N + 3S)

where:

N is the number of debug speed instructions executed 
(including the final branch)

S is the number of system speed instructions executed.
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8.11 Priorities and Exceptions

Because the normal program flow is broken when a breakpoint or a debug request 
occurs, debug can be thought of as being another type of exception. Some of the 
interaction with other exceptions has been described in earlier sections. This section 
summarizes these priorities.

8.11.1 Breakpoint with prefetch abort
When a breakpointed instruction fetch causes a prefetch abort, the abort is taken and 
the breakpoint is disregarded. Normally, prefetch aborts occur when, for example, an 
access is made to a virtual address which does not physically exist, and the returned 
data is therefore invalid. 

In such a case, the operating system’s normal action is to swap in the page of memory 
and return to the previously invalid address. Here, when the instruction is fetched, and 
providing the breakpoint is activated (it may be data-dependent), ARM7TDM enters 
debug state.

In this case, the prefetch abort takes higher priority than the breakpoint.

8.11.2 Interrupts
When ARM7TDM enters debug state, interrupts are automatically disabled. If interrupts 
are disabled during debug, ARM7TDM is never forced into an interrupt mode. Interrupts 
only have this effect on watchpointed accesses. They are ignored at all times on 
breakpoints.

If an interrupt was pending during the instruction prior to entering debug state, 
ARM7TDM enters debug state in the mode of the interrupt. Thus, on entry to debug 
state, the debugger cannot assume that ARM7TDM is in the expected mode of the 
user’s program. It must check the PC, the CPSR and the SPSR to fully determine the 
reason for the exception.

Thus, debug takes higher priority than the interrupt, although ARM7TDM remembers 
that an interrupt has occurred.

8.11.3 Data aborts
When a data abort occurs on a watchpointed access, ARM7TDM enters debug state in 
abort mode. Thus, the watchpoint has higher priority than the abort, although, as in the 
case of interrupt, ARM7TDM remembers that the abort happened.
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8.12 Scan Interface Timing

This section describes the scan interface timing.

 Figure 8-7: Scan general timing

In the following table, all units are ns. All delays are provisional and assume a process 
which achieves 33MHz MCLK  maximum operating frequency.

Notes 1 For correct data latching, the I/O signals (from the core and the pads) must be 
setup and held with respect to the rising edge of TCK in the CAPTURE-DR 
state of the INTEST and EXTEST instructions. 

2 Assumes that the data outputs are loaded with the AC test loads. 

Symbol Parameter Min Type Max Notes

Tbscl TCK low period

Tbsch TCK high period  

Tbsis TDI,TMS setup to [TCr]

Tbsih TDI,TMS hold from [TCr]

Tbsoh TDO hold time 2

Tbsod TCr to TDO valid 2

Tbsss I/O signal setup to [TCr] 1

Tbssh I/O signal hold from [TCr] 1

Tbsdh data output hold time 2

Tbsdd TCf to data output valid 2

Tbsr Reset period

Tbse Output Enable time 2

Tbsz Output Disable time 2

 Table 8-2: JTAG Timing Parameters

TCK

TMS
TDI

TDO

Data In

Data Out

Tbscl Tbsch

Tbsis Tbsih

Tbsoh
Tbsod

Tbsss Tbssh

Tbsdh
Tbsdd

Tbsdh
Tbsdd
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Key

 

I Input

O Output

I/O Input/Output 

No Signal Type No Signal Type

1 D[0] I/O 28 D[27] I/O

2 D[1] I/O 29 D[28] I/O

3 D[2] I/O 30 D[29] I/O

4 D[3] I/O 31 D[30] I/O

5 D[4] I/O 32 D[31] I/O

6 D[5] I/O 33 BREAKPT I

7 D[6] I/O 34 NENIN I

8 D[7] I/O 35 NENOUT O

9 D[8] I/O 36 LOCK O

10 D[9] I/O 37 BIGEND I

11 D[10] I/O 38 DBE I

12 D[11] I/O 39 MAS[0] O

13 D[12] I/O 40 MAS[1] O

14 D[13] I/O 41 BL[0] I

15 D[14] I/O 42 BL[1] I

16 D[15] I/O 43 BL[2] I

17 D[16] I/O 44 BL[3] I

18 D[17] I/O 45 DCTL ** O

19 D[18] I/O 46 nRW O

20 D[19] I/O 47 DBGACK O

21 D[20] I/O 48 CGENDBGACK O

22 D[21] I/O 49 nFIQ I

23 D[22] I/O 50 nIRQ I

24 D[23] I/O 51 nRESET I

25 D[24] I/O 52 ISYNC I

26 D[25] I/O 53 DBGRQ I

27 D[26] I/O 54 ABORT I

 Table 8-3: Scan Chain 0 Bit Positions
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Note DCTL  is not described in this datasheet. DCTL is an output from the processor used to 
control the unidirectional data out latch, DOUT[31:0] . This signal is not visible from the 
periphery of ARM7TDM.

55 CPA I 81 A[24] O

56 nOPC O 82 A[23] O

57 IFEN I 83 A[22] O

58 nCPI O 84 A[21] O

59 nMREQ O 85 A[20] O

60 SEQ O 86 A[19] O

61 nTRANS O 87 A[18] O

62 CPB I 88 A[17] O

63 nM[4] O 89 A[16] O

64 nM[3] O 90 A[15] O

65 nM[2] O 91 A[14] O

66 nM[1] O 92 A[13] O

67 nM[0] O 93 A[12] O

68 nEXEC O 94 A[11] O

69 ALE I 95 A[10] O

70 ABE I 96 A[9] O

71 APE I 97 A[8] O

72 TBIT O 98 A[7] O

73 nWAIT I 99 A[6] O

74 A[31] O 100 A[5] O

75 A[30] O 101 A[4] O

76 A[29] O 102 A[3] O

77 A[28] O 103 A[2] O

78 A[27] O 104 A[1] O

79 A[26] O 105 A[0] O

80 A[25] O

No Signal Type No Signal Type

 Table 8-3: Scan Chain 0 Bit Positions (Continued)
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8.13 Debug Timing

Notes • All delays are provisional and assume a process which achieves 33MHz 
MCLK  maximum operating frequency.

• Assumes that the data outputs are loaded with the AC test loads.
All units are ns.

Symbol Parameter Min Max

Ttdbgd TCK falling to DBGACK , DBGRQI changing

Ttpfd TCKf to TAP outputs

Ttpfh TAP outputs hold time from TCKf

Ttprd TCKr to TAP outputs

Ttprh TAP outputs hold time from TCKr

Ttckr TCK to TCK1, TCK2 rising

Ttckf TCK to TCK1, TCK2 falling

Tecapd TCK to ECAPCLK changing

Tdckf DCLK induced: TCKf to various outputs valid

Tdckfh DCLK induced: Various outputs hold from TCKf

Tdckr DCLK induced: TCKr to various outputs valid

Tdckrh DCLK induced: Various outputs hold from TCKr

Ttrstd nTRSTf to TAP outputs valid

Ttrsts nTRSTr setup to TCKr

Tsdtd SDOUTBS to TDO valid

Tclkbs TCK to Boundary Scan Clocks

Tshbsr TCK to SHCLKBS, SHCLK2BS rising

Tshbsf TCK to SHCLKBS, SHCLK2BS falling

 Table 8-4: Debug Timing Parameters
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8-30 ARM740T Datasheet
ARM DDI 0008E



Debug Interface

8.13.1 Tag scan chain

Bit 8KB Variant Bit 4KB Variant

0 Bank3 Valid Flag 0 Bank3 Valid Flag

1 Bank3 Tag[20] 1 Bank3 Tag[21]

2 Bank3 Tag[19] 2 Bank3 Tag[20]

– – – –

20 Bank3 Tag[1] 21 Bank3 Tag[1]

21 Bank3 Tag[0] 22 Bank3 Tag[0]

22 Bank2 Valid Flag 23 Bank2 Valid Flag

23 Bank2 Tag[20] 24 Bank2 Tag[21]

24 Bank2 Tag[19] 25 Bank2 Tag[20]

– – – –

42 Bank2 Tag[1] 44 Bank2 Tag[1]

43 Bank2 Tag[0] 45 Bank2 Tag[0]

44 Bank1 Valid Flag 46 Bank1 Valid Flag

45 Bank1 Tag[20] 47 Bank1 Tag[21]

46 Bank1 Tag[19] 48 Bank1 Tag[20]

– – – –

64 Bank1 Tag[1] 67 Bank1 Tag[1]

65 Bank1 Tag[0] 68 Bank1 Tag[0]

66 Bank0 Valid Flag 69 Bank0 Valid Flag

67 Bank0 Tag[20] 70 Bank0 Tag[21]

68 Bank0 Tag[19] 71 Bank0 Tag[20]

– – – –

86 Bank0 Tag[1] 90 Bank0 Tag[1]

87 Bank0 Tag[0] 91 Bank0 Tag[0]

 Table 8-5: Tag scan chain
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This chapter describes the ARM740T EmbeddedICE module.

The ARM7TDM EmbeddedICE module, referred to simply as EmbeddedICE, provides 
integrated on-chip debug support for the ARM7TDM core.

9.1 Overview 9-2
9.2 Watchpoint Registers 9-4
9.3 Programming Breakpoints 9-8
9.4 Programming Watchpoints 9-10
9.5 Debug Control Register 9-11
9.6 Debug Status Register 9-12
9.7 Coupling Breakpoints and Watchpoints 9-14
9.8 Debug Communications Channel 9-16

EmbeddedICE Macrocell9
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9.1 Overview

In this chapter ARM7TDM refers to the ARM7TDM core excluding the EmbeddedICE 
Macrocell. 

EmbeddedICE is programmed in a serial fashion using the ARM7TDM TAP controller. 
It consists of two real-time watchpoint units, together with a control and status register. 
One or both watchpoint units can be programmed to halt the execution of instructions 
by the ARM7TDM core via its BREAKPT  signal. Two independent registers, Debug 
Control and Debug Status, provide overall control of EmbeddedICE's operation. 
Figure 9-1: ARM7TDM block diagram  shows the relationship between the core, 
EmbeddedICE and the TAP controller.

Execution is halted when a match occurs between the values programmed into 
EmbeddedICE and the values currently appearing on the address bus, data bus and 
various control signals. Any bit can be masked so that its value does not affect the 
comparison.

Note Only those signals that are pertinent to EmbeddedICE are shown.

 Figure 9-1: ARM7TDM block diagram

Either watchpoint unit can be configured to be a watchpoint (monitoring data accesses) 
or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints can be 
made to be data-dependent. 
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9.1.1 Disabling EmbeddedICE

EmbeddedICE may be disabled by wiring the DBGEN input LOW.

When DBGEN is LOW:

• BREAKPT  and DBGRQ to the core are forced LOW
• DBGACK  from the ARM7TDM is also forced LOW 
• IFEN input to the core is forced HIGH, enabling interrupts to be detected by 

ARM7TDM

When DBGEN is LOW, EmbeddedICE is also put into a low-power mode.

9.1.2 EmbeddedICE timing
The EXTERN1 and EXTERN0 inputs are sampled by EmbeddedICE on the falling 
edge of ECLK . Sufficient set-up and hold time must therefore be allowed for these 
signals.
Open Access – Preliminary
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9.2 Watchpoint Registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three 
pairs of registers: 

1 Address Value and Address Mask
2 Data Value and Data Mask
3 Control Value and Control Mask

Each register is independently programmable and has its own address, as shown in 
Table 9-1: Function and mapping of EmbeddedICE registers :

9.2.1 Programming and reading watchpoint registers
A register is programmed by scanning data into the EmbeddedICE scan chain 
(scan chain 2). The scan chain consists of a 38-bit shift register comprising:

• a 32-bit data field
• a 5-bit address field
• a read/write bit

This is shown in Figure 9-2: EmbeddedICE block diagram  on page 9-5.

Address Width Function

00000 3 Debug Control

00001 5 Debug Status

00100 6 Debug Comms Control Register

00101 32 Debug Comms Data Register

01000 32 Watchpoint 0 Address Value

01001 32 Watchpoint 0 Address Mask

01010 32 Watchpoint 0 Data Value

01011 32 Watchpoint 0 Data Mask

01100 9 Watchpoint 0 Control Value

01101 8 Watchpoint 0 Control Mask

10000 32 Watchpoint 1 Address Value

10001 32 Watchpoint 1 Address Mask

10010 32 Watchpoint 1 Data Value

10011 32 Watchpoint 1 Data Mask

10100 9 Watchpoint 1 Control Value

10101 8 Watchpoint 1 Control Mask

 Table 9-1: Function and mapping of EmbeddedICE registers
Open Access – Preliminary
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 Figure 9-2: EmbeddedICE block diagram

The data to be written is scanned into the 32-bit data field, the address of the register 
into the 5-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the 
read\write bit. The 32-bit data field is ignored. The register addresses are shown in 
Table 9-1: Function and mapping of EmbeddedICE registers  on page 9-4.

Note A read or write takes place when the TAP controller enters the UPDATE-DR state.

9.2.2 Using the mask registers
For each Value register in a register pair, there is a Mask register of the same format. 
Setting a bit to 1 in the Mask register has the effect of disregarding the corresponding 
bit in the Value register in the comparison. For example, if a watchpoint is required on 
a particular memory location but the data value is irrelevant, the Data Mask register can 
be programmed to 0xFFFFFFFF (all bits set to 1) to make the entire Data Bus field 
ignored.

Note The mask is an XNOR mask rather than a conventional AND mask. When a mask bit 
is set to 1, the comparator for that bit position always matches, irrespective of the value 
register or the input value.

Setting the mask bit to 0 means that the comparator only matches if the input value 
matches the value programmed into the value register.

9.2.3 The control registers
Control Value and Control Mask registers are mapped identically in the lower 8 bits. 
Bit 8 of the control value register is the ENABLE  bit, which cannot be masked.

 Figure 9-3: Watchpoint control value and mask format
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The bits have the following functions:

nRW compares against the not-read/write signal from the core in 
order to detect the direction of bus activity. nRW is 0 for a 
read cycle and 1 for a write cycle.

MAS[1:0] compares against the MAS[1:0]  signal from the core in 
order to detect the size of bus activity. The encoding is 
shown in the following table:

bit 1 bit 0 Data size

0 0 byte

0 1 halfword

1 0 word

1 1 (reserved)

 Table 9-2: MAS[1:0] signal encoding

nOPC detects whether the current cycle is an instruction fetch 
(nOPC = 0) or a data access (nOPC = 1).

nTRANS compares against the not-translate signal from the core in 
order to distinguish between User mode (nTRANS = 0) and 
non-User mode (nTRANS = 1) accesses.

EXTERN is an external input to EmbeddedICE which allows the 
watchpoint to be dependent upon an external condition. The 
EXTERN input for Watchpoint 0 is labelled EXTERN0 and 
the EXTERN input for Watchpoint 1 is labelled EXTERN1.

CHAIN can be connected to the chain output of another watchpoint 
in order to implement, for example, debugger requests of the 
form “breakpoint on address YYY only when in process 
XXX”.

In the ARM7TDM EmbeddedICE, the CHAINOUT output of 
Watchpoint 1 is connected to the CHAIN input of Watchpoint 
0. The CHAINOUT output is derived from a latch; the 
address/control field comparator drives the write enable for 
the latch and the input to the latch is the value of the data 
field comparator. The CHAINOUT latch is cleared when the 
Control Value register is written or when nTRST is LOW.
Open Access – Preliminary
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For each of the bits [8:0] in the Control Value register, there is a corresponding bit in the 
Control Mask register. This removes the dependency on particular signals.

RANGE can be connected to the range output of another watchpoint 
register. In the ARM7TDM EmbeddedICE, the RANGEOUT 
output of Watchpoint 1 is connected to the RANGE input of 
Watchpoint 0. This allows the two watchpoints to be coupled 
for detecting conditions that occur simultaneously, for 
example, in range-checking.

ENABLE If a watchpoint match occurs, the BREAKPT  signal is 
asserted only when the ENABLE bit is set. This bit only 
exists in the value register: it cannot be masked.
Open Access – Preliminary
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9.3 Programming Breakpoints

Breakpoints can be classified as hardware breakpoints or software breakpoints.

9.3.1 Hardware breakpoints
To make a watchpoint unit cause hardware breakpoints (ie. on instruction fetches):

1 Program its Address Value register with the address of the instruction to be 
breakpointed.

2 Program the breakpoint bits as follows:

In both cases, the remaining bits are set to 0.

3 Program the Data Value register only if you require a data-dependent 
breakpoint, that is only if the actual instruction code fetched must be matched 
as well as the address. If the data value is not required, program the Data Mask 
register to 0xFFFFFFFF (all bits to 1), otherwise program it to 0x00000000.

4 Program the Control Value register with nOPC = 0.
5 Program the Control Mask register with nOPC = 0, all other bits to 1. 
6 If you need to make the distinction between user and non-user mode 

instruction fetches, program the nTRANS Value and Mask bits as above. 
7 If required, program the EXTERN, RANGE and CHAIN bits in the same way.

9.3.2 Software breakpoints
To make a watchpoint unit cause software breakpoints (that is, on instruction fetches of 
a particular bit pattern):

1 Program its Address Mask register to 0xFFFFFFFF (all bits set to 1) so that the 
address is disregarded.

2 Program the Data Value register with the particular bit pattern that has been 
chosen to represent a software breakpoint.
For a THUMB software breakpoint, the 16-bit pattern must be repeated in both 
halves of the Data Value register. For example, if the bit pattern is 0xDFFF, 
then 0xDFFFDFFF must be programmed. When a 16-bit instruction is fetched, 
EmbeddedICE only compares the valid half of the data bus against the 
contents of the Data Value register. In this way, a single Watchpoint register 
can be used to catch software breakpoints on both the upper and lower halves 
of the data bus.

3 Program the Data Mask register to 0x00000000.
4 Program the Control Value register with nOPC = 0.
5 Program the Control Mask register with nOPC = 0, all other bits to 1. 

Hardware These typically monitor the address value and can be set in 
any code, even in code that is in ROM or code that is self-
modifying.

Software These monitor a particular bit pattern being fetched from any 
address. One EmbeddedICE watchpoint can thus be used 
to support any number of software breakpoints. Software 
breakpoints can normally only be set in RAM because an 
instruction has to be replaced by the special bit pattern 
chosen to cause a software breakpoint.

ARM state program bits [1:0] of the Address Mask register to 1.

THUMB state program bit 0 of the Address Mask to 1.
Open Access – Preliminary
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6 If you wish to make the distinction between user and non-user mode instruction 

fetches, program the nTRANS bit in the Control Value and Control Mask 
registers accordingly. 

7 If required, program the EXTERN, RANGE and CHAIN bits in the same way.
Note The address value register need not be programmed.

Setting the breakpoint

To set the software breakpoint:

1 Read the instruction at the desired address and store it.
2 Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
Open Access – Preliminary
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9.4 Programming Watchpoints

The above are just examples of how to program the watchpoint register to generate 
breakpoints and watchpoints; many other ways of programming the registers are 
possible. For instance, simple range breakpoints can be provided by setting one or 
more of the address mask bits.

To make a watchpoint unit cause watchpoints (ie. on data accesses):

1 Program its Address Value register with the address of the data access to be 
watchpointed.

2 Program the Address Mask register to 0x00000000.
3 Program the Data Value register only if you require a data-dependent 

watchpoint; ie. only if the actual data value read or written must be matched as 
well as the address. If the data value is irrelevant, program the Data Mask 
register to 0xFFFFFFFF (all bits set to 1) otherwise program it to 0x00000000.

4 Program the Control Value register with nOPC = 1, nRW = 0 for a read or nRW 
= 1 for a write, MAS[1:0] with the value corresponding to the appropriate data 
size.

5 Program the Control Mask register with nOPC = 0, nRW = 0, MAS[1:0] = 0, all 
other bits to 1. Note that nRW or MAS[1:0] may be set to 1 if both reads and 
writes or data size accesses are to be watchpointed respectively.

6 If you wish to make the distinction between user and non-user mode data 
accesses, program the nTRANS bit in the Control Value and Control Mask 
registers accordingly.

7 If required, program the EXTERN, RANGE and CHAIN bits in the same way.

9.4.1 Programming restriction
The EmbeddedICE watchpoint units should only be programmed when the clock to the 
core is stopped. This can be achieved by putting the core into the debug state.

The reason for this restriction is that if the core continues to run at ECLK  rates when 
EmbeddedICE is being programmed at TCK rates, it is possible for the BREAKPT  
signal to be asserted asynchronously to the core.

This restriction does not apply if MCLK  and TCK are driven from the same clock, or if 
it is known that the breakpoint or watchpoint condition can only occur some time after 
EmbeddedICE has been programmed.

Note This restriction does not apply to the Debug Control or Status Registers. 
Open Access – Preliminary
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9.5 Debug Control Register

The Debug Control Register is 3 bits wide. 

• If the register is accessed for a write (with the read/write bit HIGH), the control 
bits are written.

• If the register is accessed for a read (with the read/write bit LOW), the control 
bits are read.

The function of each bit in this register is as follows:

 Figure 9-4: Debug control register format

Bits 1 and 0 allow the values on DBGRQ and DBGACK  to be forced.

DBGRQ

As shown in Figure 9-6: Structure of TBIT, NMREQ, DBGACK, DBGRQ and INTDIS 
bits  on page 9-13, the value stored in bit 1 of the control register is synchronized and 
then ORed with the external DBGRQ before being applied to the processor. The output 
of this OR gate is the signal DBGRQI which is brought out externally from the 
macrocell.

The synchronization between control bit 1 and DBGRQI is to assist in multiprocessor 
environments. The synchronization latch only opens when the TAP controller state 
machine is in the RUN-TEST/IDLE state. This allows an enter debug condition to be set 
up in all the processors in the system while they are still running. Once the condition is 
set up in all the processors, it can then be applied to them simultaneously by entering 
the RUN-TEST/IDLE state.

DBGACK

In the case of DBGACK , the value of DBGACK  from the core is ORed with the value 
held in bit 0 to generate the external value of DBGACK  seen at the periphery of 
ARM7TDM. This allows the debug system to signal to the rest of the system that the 
core is still being debugged even when system-speed accesses are being performed 
(in which case the internal DBGACK  signal from the core is LOW).

INTDIS

If bit 2 (INTDIS) is asserted, the interrupt enable signal (IFEN) of the core is forced 
LOW. Thus all interrupts (IRQ and FIQ) are disabled during debugging (DBGACK =1) 
or if the INTDIS bit is asserted. The IFEN signal is driven according to the following 
table:

DBGACK INTDIS IFEN

0 0 1

1 x 0

x 1 0

 Table 9-3: IFEN signal control

INTDIS DBGRQ DBGACK

012
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9.6 Debug Status Register

The Debug Status Register is 5 bits wide. 

• If it is accessed for a write (with the read/write bit set HIGH), the status bits are 
written.

• If it is accessed for a read (with the read/write bit LOW), the status bits are 
read.

 Figure 9-5: Debug status register format

The function of each bit in this register is as follows:

The structure of the debug status register bits is shown in Figure 9-6: Structure of 
TBIT, NMREQ, DBGACK, DBGRQ and INTDIS bits  on page 9-13.

Bits 1 and 0 allow the values on the synchronized versions of DBGRQ 
and DBGACK  to be read. 

Bit 2 allows the state of the core interrupt enable signal (IFEN) to 
be read. As the capture clock for the scan chain may be 
asynchronous to the processor clock, the DBGACK  output 
from the core is synchronized before being used to generate 
the IFEN status bit.

Bit 3 allows the state of the NMREQ signal from the core 
(synchronised to TCK) to be read. This allows the debugger 
to determine that a memory access from the debug state 
has completed.

Bit 4 allows TBIT to be read. This enables the debugger to 
determine what state the processor is in, and which 
instructions to execute.

IFEN DBGRQ DBGACK

0123

nMREQ

4

TBIT
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 Figure 9-6: Structure of TBIT, NMREQ, DBGACK, DBGRQ and INTDIS bits
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9.7 Coupling Breakpoints and Watchpoints

Watchpoint units 1 and 0 can be coupled together via the CHAIN and RANGE inputs. 

9.7.1 Example
Let:

CHAINOUT signal

The CHAINOUT signal is then derived as follows:
WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} 
== 0xFFFFFFFFF)

CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR 
{Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The CHAINOUT output of watchpoint register 1 provides the CHAIN input to 
Watchpoint 0. This allows for quite complicated configurations of breakpoints and 
watchpoints.

For example, the request by a debugger to breakpoint on the instruction at location YYY 
when running process XXX in a multiprocess system.

If the current process ID is stored in memory, the above function can be implemented 
with a watchpoint and breakpoint chained together. The watchpoint address is set to a 
known memory location containing the current process ID, the watchpoint data is set to 
the required process ID and the ENABLE bit is set to “off”.

The address comparator output of the watchpoint is used to drive the write enable for 
the CHAINOUT latch, the input to the latch being the output of the data comparator 
from the same watchpoint. The output of the latch drives the CHAIN input of the 
breakpoint comparator. The address YYY is stored in the breakpoint register and when 
the CHAIN input is asserted and the breakpoint address matches, the breakpoint 
triggers correctly.

CHAIN enables watchpoint 0 to be triggered only if watchpoint 1 has 
previously matched. 

RANGE enables simple range checking to be performed by 
combining the outputs of both watchpoints.

Av[31:0] be the value in the Address Value Register 

Am[31:0] be the value in the Address Mask Register

A[31:0] be the Address Bus from the ARM7TDM

Dv[31:0] be the value in the Data Value Register

Dm[31:0] be the value in the Data Mask Register

D[31:0] be the Data Bus from the ARM7TDM

Cv[8:0] be the value in the Control Value Register

Cm[7:0] be the value in the Control Mask Register

C[9:0] be the combined Control Bus from the ARM7TDM, other 
watchpoint registers and the EXTERN signal.
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RANGEOUT signal

The RANGEOUT signal is then derived as follows:
RANGEOUT = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR 
{Am[31:0],Cm[4:0]}) == 0xFFFFFFFFF) AND ((({Dv[31:0],Cv[7:5]} XNOR 
{D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF) 

The RANGEOUT output of watchpoint register 1 provides the RANGE input to 
watchpoint register 0. This allows two breakpoints to be coupled together to form range 
breakpoints. 

Note The selectable ranges are restricted to being powers of 2.

Example

If a breakpoint is to occur when the address is in the first 256 bytes of memory, but not 
in the first 32 bytes, the watchpoint registers should be programmed as follows:

1 Watchpoint 1 is programmed with an address value of 0x00000000 and an 
address mask of 0x0000001F. The ENABLE bit is cleared. All other Watchpoint 
1 registers are programmed as normal for a breakpoint. An address within the 
first 32 bytes causes the RANGE output to go HIGH but the breakpoint is not 
triggered.

2 Watchpoint 0 is programmed with an address value of 0x00000000 and an 
address mask of 0x000000FF. The ENABLE bit is set and the RANGE bit 
programmed to match a 0. All other Watchpoint 0 registers are programmed as 
normal for a breakpoint. 

If Watchpoint 0 matches but Watchpoint 1 does not (for example, if the RANGE input 
to Watchpoint 0 is 0), the breakpoint is triggered.
Open Access – Preliminary
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9.8 Debug Communications Channel

ARM7TDM’s EmbeddedICE contains a communication channel for passing information 
between the target and the host debugger. This is implemented as coprocessor 14.

The communications channel consists of:

• a 32-bit wide Comms Data Read register.
• a 32-bit wide Comms Data Write register.
• 6-bit wide Comms Control register for synchronized handshaking between 

the processor and the asynchronous debugger.

These registers live in fixed locations in EmbeddedICE’s memory map (as shown in 
Table 9-1: Function and mapping of EmbeddedICE registers  on page 9-4) and are 
accessed from the processor via MCR and MRC instructions to coprocessor 14.

9.8.1 Debug comms channel registers
The Debug Comms Control register is read-only and allows synchronized handshaking 
between the processor and the debugger.

 Figure 9-7: Debug comms control register

The function of each register bit is described below:

From the debugger’s point of view, the registers are accessed via the scan chain in the 
usual way. From the processor’s point of view, these registers are accessed via 
coprocessor register transfer instructions.

Bits [31:28] contain a fixed pattern which denotes the EmbeddedICE 
version number, in this case 0001.

Bit 1 denotes whether the Comms Data Write register is free 
(from the processor’s point of view). From the processor’s 
point of view:

• if the Comms Data Write register is free (W=0), new 
data may be written.

• if it is not free (W=1), the processor must poll until 
W=0. 

From the debugger’s point of view, if W=1, new data has 
been written which may then be scanned out.

Bit 0 denotes whether there is some new data in the Comms Data 
Read register. From the processor’s point of view:

• if R=1, there is some new data which may be read 
via an MRC instruction. 

From the debugger’s point of view:

• if R=0, the Comms Data Read register is free and 
new data may be placed there through the scan 
chain. 

• if R=1, this denotes that data previously placed 
there through the scan chain has not been collected 
by the processor and so the debugger must wait.

31

0

30

0

29

0

28

1

0

R

1

W

...

...
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Instructions

The following instructions should be used.

This instruction returns the Debug Comms Control register into Rd:
MRC CP14, 0, Rd, C0, C0

This instruction writes the value in Rn to the Comms Data Write register:
MCR CP14, 0, Rn, C1, C0

This instruction returns the Debug Data Read register into Rd:
MRC CP14, 0, Rd, C1, C0

Note As the THUMB instruction set does not contain coprocessor instructions, it is 
recommended that these are accessed via SWI instructions when in THUMB state.

9.8.2 Communications via the comms channel
Communication between the debugger and the processor occurs as follows:

1 When the processor wishes to send a message to EmbeddedICE, it first 
checks that the Comms Data Write register is free for use. 

2 This is done by reading the Debug Comms Control register to check that the 
W bit is clear:
- If it is clear, the Comms Data Write register is empty and a message is 

written by a register transfer to the coprocessor. The action of this data 
transfer automatically sets the W bit.

- If it is set, this implies that previously-written data has not been picked up 
by the debugger and the processor must poll until the W bit is clear.

3 Because the data transfer occurs from the processor to the Comms Data Write 
register, the W bit is set in the Debug Comms Control register. 

4 When the debugger polls this register it sees a synchronized version of both 
the R and W bit. 
- When the debugger sees that the W bit is set, it can read the Comms Data 

Write register and scan the data out. 
- The action of reading this data register clears the W bit of the Debug 

Comms Control register. At this point, the communications process may 
begin again.

9.8.3 Message transfer
Message transfer from the debugger to the processor is carried out in a similar fashion:

1 The debugger polls the R bit of the Debug Comms Control register:
- If the R bit is LOW, the Data Read register is free and so data can be 

placed there for the processor to read. 
- If the R bit is set, previously deposited data has not yet been collected and 

so the debugger must wait.

2 When the Comms Data Read register is free, data is written there via the scan 
chain. The action of this write sets the R bit in the Debug Comms Control 
register. 

3 When the processor polls this register, it sees an MCLK  synchronized version. 
- If the R bit is set, this denotes that there is data waiting to be collected, and 

this can be read via a CPRT load. The action of this load clears the R bit 
in the Debug Comms Control register. 

- If the R bit is clear, this denotes that the data has been taken and the 
process may now be repeated.
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This chapter describes the bus interface clocking.

10.1 Introduction 10-2
10.2 Fastbus Extension 10-3
10.3 Standard Mode 10-4
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10.1 Introduction

The ARM740T bus interface can be operated using either:

• the standard mode of operation
• the new fastbus extension

As the ARM740T is a fully static design, the clock can be stopped indefinitely in either 
mode of operation. Care should be taken to ensure that the memory system does not 
dissipate power in the state in which it is stopped.

10.1.1 Standard mode
For designs using low-cost, low-speed memory, and wishing to operate the core at a 
faster speed, it is recommended that you use standard mode. 

This mode consists of:

• two clocks, FCLK  and BCLK
• synchronous or fully asynchronous operation

10.1.2 Fastbus extension
For new designs, you can operate the device using the fastbus extension. In fastbus 
mode, the device is clocked off a single clock, and the bus is operated at the same 
frequency as the core. This allows the bus interface to be clocked faster than if the 
device is operated in standard mode. It is recommended that you use this mode of 
operation in systems with high-speed memory and a single clock.

This mode consists of:

• single device clock
• increased maximum BCLK  frequency
Open Access – Preliminary
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10.2 Fastbus Extension

Using the fastbus extension, the ARM740T has a single input clock, BCLK . This is used 
to clock the internals of the device, and qualified by BWAIT,  controls the memory 
interface:

 Figure 10-1: Conceptual device clocking using the fastbus extension

When operating the device with FASTBUS  HIGH, the input FCLK  and SnA  are not 
used. 

Note To prevent unwanted power dissipation, ensure that they do not float to an undefined 
level. New designs should tie these signals LOW for compatibility with future products.

10.2.1 Using BWAIT
The BWAIT  signal is used to insert entire BCLK  cycles into the bus cycle timing. 
BWAIT  may only change when BCLK  is LOW, and extends the memory access by 
inserting BCLK  cycles into the access whilst BWAIT  is asserted.

Figure 11-4: Use of the BWAIT pin to stop ARM740T for 1 BCLK cycle  on page 11-
8 shows the use of BWAIT  in more detail.

Memory cycles

It is preferable to use BWAIT  to extend memory cycles, rather than stretching BCLK  
externally to the device because it is possible for the core to be accessing the Cache 
while bus activity is occurring. This allows the maximum performance, as the Core can 
continue execution in parallel with the memory bus activity. All BCLK  cycles are 
available to the CPU and Cache, regardless of the state of BWAIT.

In some circumstances, it may be desirable to stretch BCLK  phases in order to match 
memory timing which is not an integer multiple of BCLK . There are certain cases 
where this results in a higher performance than using BWAIT  to extend the access by 
an integer number of cycles.

CPU and Cache operation

CPU and Cache operation can only continue in parallel with buffered writes to the 
external bus. For all read accesses, the CPU is stalled until the bus activity has 
completed. So, if read accesses can be achieved faster by stretching BCLK  rather than 
using BWAIT,  this results in improved performance. An example of where this may be 
useful would be to interface to a ROM which has a cycle time of 2.5 times the BCLK  
period.

CPU Cache

Bus Interface
BCLK

BWAIT
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10.3 Standard Mode

Using the standard mode of operation (without the fastbus extension), and FASTBUS  
tied LOW, the ARM740T has two input clocks:

• FCLK
• BCLK

The bus interface is always controlled by the memory clock, BCLK , qualified by BWAIT. 
However, the core and cache are clocked by the fast clock, FCLK . 

In standard mode, the FCLK  frequency must be greater than or equal to the BCLK  
frequency at all times. This relationship must be maintained on a cycle-by-cycle basis.

10.3.1 Memory access
When running in this mode, memory access cycles can be stretched either by using 
BWAIT, or by stretching phases of BCLK . The resulting performance is determined by 
the access time, regardless of which method is used.

 Figure 10-2: Conceptual device clocking in standard mode

10.3.2 Synchronous and asynchronous modes
When not using the fastbus extension, the ARM740T bus interface has two distinct 
modes of operation: 

• synchronous
• asynchronous

These are selected by tying SnA  either HIGH or LOW. 

FCLK and BCLK

The two modes differ in the relationship between FCLK  and BCLK :

• In asynchronous mode (SnA  LOW), the clocks may be completely 
asynchronous and of unrelated frequency

• In synchronous mode (SnA  HIGH), BCLK  may only make transitions before 
the falling edge of FCLK .

In systems where a satisfactory relationship exists between FCLK  and BCLK , 
synchronization penalties can be avoided by selecting the synchronous mode of 
operation.

CPU Cache

BCLK
BWAIT

FCLK

Bus Interface
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Asynchronous mode

In this mode, FCLK  and BCLK  may be completely asynchronous. You should select 
this mode by tying SnA  LOW when the two clocks are of unrelated frequency.

There is a synchronisation penalty whenever the internal core clock switches between 
the two input clocks. This penalty is symmetrical and varies between nothing and a 
whole period of the clock to which the core is resynchronizing:

• when changing from FCLK  to BCLK , the average resynchronization penalty is 
half an BCLK  period

• when changing from BCLK  to FCLK , the average resynchronization penalty is 
half an FCLK  period.

Synchronous mode

You select this mode by tying SnA  HIGH. In this mode, here is a tightly defined 
relationship between FCLK  and BCLK , in that BCLK  may only make transitions on the 
falling edge of FCLK . Some jitter between the two clocks is permitted, but BCLK  must 
meet the setup and hold requirements relative to FCLK.  

 Figure 10-3: Relationship of FCLK and BCLK in synchronous mode

FCLK

BCLK

Tfclkl Tfclkh

Tfmh
Tfms
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This chapter describes the operation of the AMBA bus interface.

In normal operation, the ARM740T is an Advanced System Bus (ABS) bus master. As 
a bus master it performs a subset of the possible ASB cycle types. 

The ASB is further described in the AMBA Specification, ARM IHI 0001.

11.1 ASB Bus Interface Signals 11-2
11.2 Cycle Types 11-3
11.3 Addressing Signals 11-6
11.4 Memory Request Signals 11-6
11.5 Data Signal Timing 11-6
11.6 Slave Response Signals 11-7
11.7 Maximum Sequential Length 11-9
11.8 Read-Lock-Write 11-9
11.9 Big-Endian / Little-Endian Operation 11-10
11.10 Multi-Master Operation 11-13

AMBA Interface11
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11.1 ASB Bus Interface Signals

The signals in the ASB interface can be grouped into four categories:

System Arbiter

In addition to these signals, there are also three signals interfacing to the system arbiter 
and control logic:

Addressing signals BA[31:0]
BWRITE
BSIZE
BLOK

Memory request signals BTRAN[1:0]

Data sampled signals BD[31:0]

Slave response signals BERROR
BWAIT
BLAST

AGNT selects the ARM as a test bus master

AREQ indicates that the ARM740T requires bus mastership

DSEL selects the ARM as a test bus slave
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11.2 Cycle Types

In normal operation, the ARM740T bus interface can perform two types of cycle:

• address cycles
• sequential cycles

These cycles are differentiated by the pipelined signal BTRAN[1:0] . Conventionally, 
cycles are considered to start from the falling edge of BCLK , and this is how they are 
shown in all diagrams.

These cycle types are a subset of the possible ASB cycle types. Other cycle types can 
be forced by the use of the Slave Response signals. See the (AMBA Specification 
ARM IHI 0001) for more details.

The Addressing and Memory Request signals are pipelined ahead of the Data 
Addressing by a phase (1/2 a cycle), and BTRAN[1:0]  by a cycle. This advance 
information allows the implementation of efficient memory systems. 

11.2.1 Single-word memory access
A simple single-word memory access is shown in Figure 11-1: Simple single-cycle 
access . 

 Figure 11-1: Simple single-cycle access

The access starts with the address being broadcast. This can be used for decoding, 
but the access is not committed until BTRAN[1:0]  (Bus Transaction Type) signals a 
sequential cycle in the following HIGH phase of BCLK . This indicates that the next 
cycle is a memory access cycle. 

In this example, BTRAN[1:0]  returns to Address after a single cycle, indicating that 
there will be a single memory access cycle, followed by an address cycle. The data is 
transferred on the falling edge of BCLK  at the end of the sequential cycle.

Therefore, a memory access consists of:

• an address cycle, with a valid address
• a memory cycle with the same address

The initial address cycle allows the memory controller more time to decode the 
address. See Table 11-1: BTRAN[1:0] encoding  on page 11-6 for the encoding of 
BTRAN[1:0] .

BCLK

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]

Address Seq. Address

Address

Data

Idle Cycle Memory Cycle Idle Cycle
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11.2.2 Sequential accesses

ARM740T can perform sequential bursts of accesses. These consist of:

• an address cycle and a sequential cycle, as shown previously,
• further sequential cycles to:

- incrementing word addresses (ie. a, a+4, a+8 etc.), or 
- halfword addresses (ie. a, a+2, a+4 etc.)

See Figure 11-2: Simple sequential access  on page 11-4. After the initial address 
cycle, the address is pipelined by half a bus cycle from the data.

Note BTRAN[1:0]  is pipelined by a bus cycle from the data. If BWAIT  is being used 
to stretch cycles, BTRAN[1:0]  no longer refers to the next BCLK  cycle, but rather to 
the next bus cycle. See 11.6.2 BWAIT  on page 11-7.

 Figure 11-2: Simple sequential access

Sequential bursts can occur on word or halfword accesses, and are always in the same 
direction; that is Read (BWRITE LOW) or Write (BWRITE HIGH).

A memory controller should always qualify the use of the address with BTRAN[1:0] . 
There are certain circumstances in which a new address can be broadcast on the 
address bus, but BTRAN[1:0]  does not signal a sequential access. This only happens 
when an internal (Protection Unit generated) abort occurs.

BCLK

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]

Address Seq. Seq. Address

Address Address+4

Data 1 Data 2

Idle Cycle Memory Cycle Memory Cycle Idle Cycle
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11.2.3 Bus accesses

The minimum interval between bus accesses can occur after a buffered write. In this 
case, there may only be a single address cycle between two memory cycles to 
nonsequential addresses. This means that the address for the second access is 
broadcast on BA[31:0]  during the HIGH phase of the final memory cycle of the buffered 
write. 

See Figure 11-3: Minimum interval between bus accesses  for more information.

 Figure 11-3: Minimum interval between bus accesses

This is the closest case of back-to-back cycles on the bus, and the memory controller 
should be designed to handle this case. In high-speed systems one solution is to use 
BWAIT  to increase the decode and access time available for the second access. 

Note Memory and peripheral strobes should not be direct decodes of the address bus. 
This could result in their changing during the last cycle of a write burst. 

BCLK

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]

Address Seq. Address Seq.

Address 1 (Buffered Write) Address 2 (Read)

Write
Data

Read
Data

Idle Cycle Memory Cycle Idle Cycle Memory Cycle
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11.3 Addressing Signals

Memory accesses may be read or write, and are differentiated by the signal BWRITE.

BWRITE may not change during a sequential access, so if a read from address A is 
followed immediately by a write to address (A+4), the write to address (A+4) is 
performed on the bus as a non-sequential access.

In the same way, any memory access may be a word, a half-word or a byte. These are 
differentiated by the signal BSIZE[1:0] . Again, BSIZE[1:0]  may not change during 
sequential accesses. It is not possible to perform sequential byte accesses.

In order to reduce system power consumption, the addressing signals are left with their 
current values at the end of an access, until the next access occurs.

After a buffered write, there may be only a single address cycle between the two 
memory cycles. In this case, the next non-sequential address is broadcast in the last 
cycle of the previous access. This is the worst case for address decoding, as shown in 
Figure 11-3: Minimum interval between bus accesses  on page 11-5.

11.4 Memory Request Signals
The memory request signals, BTRAN[1:0]  are pipelined by 1 bus cycle, and refer to 
the next bus cycle. 

Care must be taken when de-pipelining these signals if BWAIT  is being used, as they 
always refer to the following bus cycle, rather than the following BCLK  cycle. BWAIT  
stretches the bus cycle by an integer number of BCLK  cycles. See 11.6.2 BWAIT  on 
page 11-7.

Note 1 This cycle can only occur as a result of the slave response signals. In normal 
operation, ARM740T does not generate this cycle type.

11.5 Data Signal Timing
During a read access, the data is sampled on the falling edge of BCLK  at the end of 
the sequential cycle. During a write access, the data on BD[31:0]  is timed off the falling 
edge of BCLK  at the start of the memory cycle. If BWAIT  is being used to stretch this 
cycle, the data is valid from the falling edge of BCLK  at the end of the previous cycle, 
when BWAIT  was HIGH. See 11.6.2 BWAIT  on page 11-7.

Note In a low-power system, you must ensure that the databus is not allowed to float to an 
undefined level. This causes power to be dissipated in the inputs of devices connected 
to the bus. This is particularly important when a system is put into a low-power sleep 
mode. It is recommended that one set of Databus drivers in the system is left enabled 
during sleep to hold the bus at a defined level.

BTRAN[1:0] Cycle Type Description Note

00 Address Address transfer or idle cycle

01 Reserved

10 Non-Sequential Non-Sequential Data transfer cycle 1

11 Sequential Sequential Data transfer cycle

 Table 11-1: BTRAN[1:0] encoding
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11.6 Slave Response Signals

11.6.1 BERROR
The BERROR signal is sampled on the rising edge of BCLK  during a sequential cycle, 
on both read and write accesses. The effect of BERROR on the operation of the 
ARM740T is discussed in 3.7 Exceptions  on page 3-11.

BERROR can be flagged on any sequential cycle; however, it is ignored on buffered 
writes, which cannot be aborted.

Linefetches

The effect of BERROR during linefetches is slightly different to that during other 
access.

During a linefetch the ARM740T fetches four words of data, regardless of which words 
of data were requested by the ARM core, and the rest of the words are fetched 
speculatively.

• If BERROR is asserted on a word which was requested by the ARM core, the 
abort functions normally.

• If the abort is signalled on a word which was not requested by the ARM core, 
the access is not aborted, and program flow is not interrupted.

Regardless of which word was aborted, the line of data is not placed in the cache as it 
is assumed to contain invalid data.

11.6.2 BWAIT
The BWAIT  pin can be used to extend memory accesses in whole cycle increments.

BWAIT  is driven by the selected slave during the LOW phase of BCLK . When a slave 
cannot complete an access in the current cycle, it drives BWAIT  HIGH to stall the 
ARM740T.

BWAIT  does not prevent changes in BTRAN[1:0]  and write data on BD[31:0]  during 
the cycle in which it was asserted HIGH. Changes in these signals are then prevented 
until the BCLK  HIGH phase after BWAIT  was taken LOW. The addressing signals do 
not change from the rising BCLK  edge when BWAIT  goes HIGH, until the next BCLK  
HIGH phase after BWAIT  returns LOW. 
Open Access – Preliminary
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 Figure 11-4: Use of the BWAIT pin to stop ARM740T for 1 BCLK cycle

In Figure 11-4: Use of the BWAIT pin to stop ARM740T for 1 BCLK cycle , the heavy 
bars indicate the cycle for which signals are stable as a result of asserting BWAIT.

The signal BTRAN[1:0] is pipelined by one bus cycle. This pipelining should be taken 
into account when these signals are being decoded. The value of BTRAN[1:0]  
indicates whether the next bus cycle is a data cycle or an address cycle. 

As bus cycles are stretched by BWAIT the boundary between bus cycles is determined 
by the falling edge of BCLK  when BWAIT  was sampled as LOW on the rising edge of 
BCLK . A useful rule of thumb is to sample the value of BTRAN[1:0]  on the falling edge 
of BCLK  only when BWAIT  was LOW on the previous rising edge of BCLK . 

When BWAIT  is used to stretch a sequential cycle, BTRAN[1:0]  returns to signalling 
address during the first phase of the sequential cycle if a single word access is 
occurring. In this case, it is important that the memory controller does not interpret that 
an address cycle is signalled when it is a stretched memory cycle. 

11.6.3 Other slave responses
Other slave response combinations including bus last, and bus retract are detailed in 
the AMBA Specification (ARM IHI 0001).

BCLK

BWAIT

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]
(Write)

BD[31:0]
(Read)

Address Seq. Address Address

Data

Data

Idle Cycle Memory Cycle Idle Cycle
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11.7 Maximum Sequential Length

The ARM740T may perform sequential memory accesses whenever the cycle is of the 
same type as the previous cycle (for example, read/write), and the addresses are 
consecutive. However, sequential accesses are interrupted on a 256-word boundary. 

If a sequential access is performed over a 256-word boundary, the access to word 256 
is turned into a non-sequential access, and further accesses continue sequentially as 
before. 

This simplifies the design of the memory controller. Provided that peripherals and areas 
of memory are aligned to 256-word boundaries, sequential bursts are always local to 
one peripheral or memory device. This means that all accesses to a device always start 
with a non-sequential access.

A DRAM controller can take advantage of the fact that sequential cycles are always 
within a DRAM page, provided the page size is greater than 256.

11.8 Read-Lock-Write
The read-lock-write sequence is generated by a SWP instruction. 

The BLOK  signal indicates that the two accesses should be treated as an atomic unit. 
A memory controller should ensure that no other bus activity is allowed to happen 
between the accesses when BLOK  is asserted. When the ARM has started a 
read-lock-write sequence, it cannot be interrupted until it has completed.

On the bus, the sequence consists of:

• a read access
• a write access to the same address

This sequence is differentiated by the BLOK  signal. BLOK :

• goes HIGH in the HIGH phase of BCLK  at the start of the read access
• always goes LOW at the end of the write access

The read cycle is always performed as a single, non-sequential, external read cycle, 
regardless of the contents of the cache.

The write is forced to be unbuffered, so that it can be aborted if necessary. 

The cache is updated on the write.
Open Access – Preliminary
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11.9 Big-Endian / Little-Endian Operation

The ARM740T treats words in memory as being stored in big-endian or little-endian 
format depending on the value of the big-end bit in the control register, see 4.3.2 
Register 1: Control  on page 4-5.

Load and store are the only instructions affected by the endianness. Refer to the ARM 
Architecture Reference Manual for details of the LDR and STR instructions.

Because the ARM740T duplicates the byte to be written across the databus and 
internally rotates bytes after reading them from the databus, a 32-bit memory system 
only needs to have control logic to enable the appropriate byte. There is no need to 
rotate or shift the data externally.

To ensure that all of the databus is driven during a byte read, it is valid to read a word 
back from the memory.

Little-endian format

In little-endian format:

• the lowest-numbered byte in a word is considered to be the least significant 
byte of the word.

• the highest-numbered byte is the most significant.

Byte 0 of the memory system should be connected to data lines 7 through 0 (BD[7:0] ) 
in this format.

 Figure 11-5: Little-endian addresses of bytes within word

Databus Bits

Higher Address 31 24 23 16 15 8 7 0 Word 
Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address
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Big-endian format

In big-endian format:

• the most significant byte of a word is stored at the lowest-numbered byte.
• the least significant byte is stored at the highest-numbered byte. 

Byte 0 of the memory system should therefore be connected to data lines 31 through 
24 (BD[31:24] ).

 Figure 11-6: Big-endian addresses of bytes within words

11.9.1 Word operations
All word operations expect the data to be presented on data bus inputs 31 through 0. 
The external memory system should ignore the bottom two bits of the address if a word 
operation is indicated.

11.9.2 Halfword operations
A halfword store (STRH) repeats the bottom 16 bits of the source register twice across 
data bus outputs 31 through 0. The external memory system should activate the 
appropriate byte subsystems to store the data.

Little-endian operation

A halfword load (LDRH) expects the data on data bus inputs 15 through 0 if the supplied 
address is on a word boundary, or on data bus inputs 31 through 16 if it is a word 
address plus two bytes. The selected halfword is placed in the bottom 16 bits of the 
destination register. The other two bytes on the databus are ignored. See Figure 11-5: 
Little-endian addresses of bytes within word  on page 11-10. 

Big-endian operation

A halfword load (LDRH) expects the data on data bus inputs 31 through 16 if the 
supplied address is on a word boundary, or on data bus inputs 15 through 0 if it is a 
word address plus two bytes. The selected halfword is placed in the bottom 16 bits of 
the destination register. The other two bytes on the databus are ignored. See 
Figure 11-6: Big-endian addresses of bytes within words  on page 11-11.

11.9.3 Byte operations
A byte store (STRB) repeats the bottom eight bits of the source register four times 
across data bus outputs 31 through 0. The external memory system should activate the 
appropriate byte subsystem to store the data.

Databus Bits

Higher Address 31 24 23 16 15 8 7 0 Word 
Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address
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Little-endian operation

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied 
address is on a word boundary, on data bus inputs 15 through 8 if it is a word address 
plus one byte, and so on. The selected byte is placed in the bottom eight bits of the 
destination register. The other three bytes on the databus are ignored. See 
Figure 11-5: Little-endian addresses of bytes within word  on page 11-10. 

Big-endian operation

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied 
address is on a word boundary; on data bus inputs 23 through 16 if it is a word address 
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the 
destination register. The other three bytes on the databus are ignored. See 
Figure 11-6: Big-endian addresses of bytes within words  on page 11-11.
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11.10Multi-Master Operation

The AMBA bus specification supports multiple bus masters on the high performance 
Advanced System Bus (ASB). A simple two wire request/grant mechanism is 
implemented between the arbiter and each bus master. The arbiter ensures that only 
one bus master is active on the bus and also ensures that when no masters are 
requesting the bus, a default master is granted.

The specification also supports a shared lock signal. This allows bus masters to 
indicate that the current transfer is indivisible from the following transfer and will prevent 
other bus masters from gaining access to the bus until the locked transfers have 
completed.

Arbitration

Efficient arbitration is important to reduce “dead-time” between successive masters 
being active on the bus. The bus protocol supports pipelined arbitration, such that 
arbitration for the next transfer is performed during the current transfer.

The arbitration protocol is defined, but the prioritization is flexible and left to the 
application. Typically, the Test Interface would be given the highest priority to ensure 
test access under all conditions. Every system must also include a default bus master, 
which is granted the bus when no bus masters are requesting it.

The request signal, AREQ, from each bus master to the arbiter indicates that the bus 
master requires the bus. The grant signal from the arbiter to the bus master, AGNT, 
indicates that the bus master is currently the highest priority master requesting the bus.

The bus master:

• Must drive the BTRAN  signals during BCLK  HIGH when AGNT is HIGH.
• Will become granted when AGNT is HIGH and BWAIT  is LOW on a rising edge 

of BCLK .

The shared bus lock signal, BLOK , indicates to the arbiter that the following transfer is 
indivisible from the current transfer and no other bus master should be given access to 
the bus.

A bus master must always drive a valid level on the BLOK  signal when granted the bus 
to ensure the arbitration process can continue, even if the bus master is not performing 
any transfers.

11.10.1Arbiter
The arbiter functions as follows:

1 Bus masters assert AREQ during the HIGH phase of BCLK .
2 The arbiter samples all AREQ signals on the falling edge of BCLK .
3 During the LOW phase of BCLK , the arbiter also samples the BLOK  signal and 

then asserts the appropriate AGNT signal.
If BLOK  is LOW, the arbiter grants the highest priority bus master.
If BLOK  is HIGH the arbiter keeps the same bus master granted.

The arbiter can update the grant signals every bus cycle; however, a new bus master 
can only become granted and start driving the bus when the current transfer completes, 
as indicated by BWAIT  being LOW. Therefore, it is possible for the potential next bus 
master to change during waited transfers.

The BLOK  signal is ignored by the arbiter during the single cycle of handover between 
two different bus masters. If no bus masters are requesting the bus then the arbiter 
must grant the default bus master.
Open Access – Preliminary
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The arbitration protocol is defined, but the prioritization is flexible and left to the 
application. A simple fixed-priority scheme may be used; alternatively, a more complex 
scheme can be implemented if required by the application.

11.10.2Bus Master Handover
Bus master handover occurs when a bus master, which is not currently granted the bus, 
becomes the new granted bus master.

A bus master becomes granted when AGNT is HIGH and BWAIT  is LOW. AGNT HIGH 
indicates the bus master is currently the highest priority master requesting the bus and 
BWAIT  LOW indicates the previous transfer has completed.

The handover process is as follows:

1 When AGNT is asserted, a bus master must drive the BTRAN  signals during 
BCLK  HIGH.
This may continue for many cycles if the previous transfer is waited.
Prior to handover, BTRAN  must indicate an address-only cycle as the new bus 
master must commence with an address-only cycle to allow for bus 
turnaround.

2 When the previous transfer completes, the new bus master becomes granted.
3 In the last clock HIGH phase of the previous transfer, the address bus stops 

being driven by the previous bus master.
4 The new bus master starts to drive the address bus and control signals during 

the clock LOW phase.
5 The first transfer may then commence in the following bus cycle.

During a waited transfer, bus master handover may be delayed and it is possible that 
the AGNTx  to a particular bus master may be asserted and then negated, if another 
higher priority bus master then requests the bus before the current transfer has 
completed.

11.10.3Default Bus Master
If the ARM740T is to be the default bus master, as is the case in many systems. The 
AREQ signal from the ARM740T should not be used. In this case the arbiter should 
always allocate the bus to the ARM740T when not requested by higher priority bus 
masters.

This will result in a system with good bus performance, as the ARM740T will not have 
to wait for the bus to be granted when it wishes to perform a bus transfer.
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This chapter describes the test features of ARM740T.
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12.1 Slave Operation (Test Mode)

When the ARM740T block is selected as a slave, it is possible to write and read test 
vectors to the core using the AMBA test methodology. 

The ARM740T provides four test modes for this purpose:

• ARM740T test mode
• ARM7TDM Core test mode
• RAM test mode
• TAG test mode

To apply test vectors to the ARM740T, the ARM740T block must have been deselected 
as a master (AGNT goes LOW). The Test Interface Controller becomes the bus master, 
and the ARM740T is selected as a slave using the signal DSELARM . This places the 
ARM740T into test mode, and allows access to the test registers. 

The tests are sequenced by the test state machine in the AMBA interface, which 
generates the appropriate control signals for the test modes. 

A sample test sequence is shown in Figure 12-1: Running a test vector on the 
processor core .

 Figure 12-1: Running a test vector on the processor core

 

BCLK

TREQA

TREQB

BD[31:0]

Slave state

CTRL inputs

MclkEnable

ECLK

One test cycle

Ctrl in Data in Status Address Ctrl in

CTRL-IN DATA-IN STAT-OUT ADDR-OUT TURNAROUND CTRL-IN
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12.2 ARM740T Test Mode

The ARM740T test mode is used to test the functionality of:

• cache control logic
• write buffer
• protection unit
• cache 

To perform this test control, stimuli are applied to the control register, see Table 12-1: 
RAM test mode address packet bit positions  on page 12-4. 

Data packets are read or written as appropriate and the address and status are read 
back (see Table 12-1: RAM test mode address packet bit positions  on page 12-4). 

The sequencing for this test mode is as shown in Figure 12-2: State machine for 
ARM740T and ARM7TDMI test . This is the default test mode, and is selected when 
the bits [31:29] of the control register are set LOW (see Table 12-1: RAM test mode 
address packet bit positions  on page 12-4).
.

 Figure 12-2: State machine for ARM740T and ARM7TDMI test

12.3 ARM7TDM Core Test Mode
The ARM7TDMI test places the ARM740T into a test mode so that the signals of the 
ARM7TDM are visible to the AMBA interface. In this mode, the rest of ARM740T is held 
in reset. The ARM740T is placed in the mode by setting bit 31 of the control register, 
see Table 12-1: RAM test mode address packet bit positions  on page 12-4.

Reset 0000

0001

0011

0010

0100

0110

0101

T’AROUND

ADDR OUT

STAT OUT

DATA OUTDATA IN

CONTROL

INACTIVE
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12.4 RAM Test Mode

The RAM test mode is used to perform an intensive test of the RAM arrays, to provide 
full coverage of bit faults. In this test mode, the rest of the ARM740T is held in reset and 
direct access is provided to the data, address and control signals of the RAM.

To accommodate this, an alternative test sequence is used, see Figure 12-3: State 
machine for RAM test mode . 

In this test mode, the RAM control signals are derived from unused address bits, as 
shown in Table 12-1: RAM test mode address packet bit positions  on page 12-4.

To enter RAM test mode, bits 30 and 28 of the control packet should be set. This places 
the ARM740T into RAM test mode, and forces the RAM to be clocked from the FCLK  
input.

 Figure 12-3: State machine for RAM test mode

Address packet bit RAM signal Description

[24:23] MAS[1:0] RAM access size

22 RSEQ RAM sequential signal

21 IMMED Immediate write signal, controls write pipeline, and 
selects between RAMSEL[3:0]  and SETSEL[3:0].

20 WRITE RAM write strobe

19 READ RAM read strobe

[18:15] RAMSEL[3:0] RAM bank select signal, used when IMMED is 
LOW

[14:11] SETSEL[3:0] RAM bank select signal, used when IMMED is 
HIGH

[10:0] ADDR[10:0] RAM address

 Table 12-1: RAM test mode address packet bit positions

CONTROL

DATA IN DATA OUT

INACTIVE

ADDRESS

T’AROUND

Reset
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12.5 TAG Test Mode

The TAG test mode is used to perform an intensive test of all of the cells of the TAG 
array, and to test the TAG comparators. In this test mode, the rest of the ARM740T is 
held in reset and direct access is provided to the data, address and control signals of 
the RAM. See Figure 12-4: State machine for TAG test mode .

In this test mode the TAG control signals are derived from the TAG CTL packet as 
shown in Table 12-1: RAM test mode address packet bit positions  on page 12-4.

To enter TAG test mode, bits 29 and 28 of the control packet should be set. This places 
the ARM740T into TAG test mode, and forces the TAG to be clocked from the FCLK  
input.

 Figure 12-4: State machine for TAG test mode

TAG CTL packet bit TAG signal Description

[11:8] FLUSH[3:0] When asserted each bit flushes the appropriate 
TAG arrays

[7:4] TAGSEL[3:0] Tag select signal, each bit selects a TAG array

2 WRITE TAG write strobe

1 READ TAG read strobe

0 VALID Valid input, the value on VALID  is written into the 
valid cell in the array on a write.

 Table 12-2: TAG test mode TAG CTL packet bit positions

CONTROL

STATUS

TAG CTL

ADDRESS

T’AROUND

Reset INACTIVE
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12.6 Test Register Mapping

The test registers are defined in the following tables:

• Table 12-3: Status packet bit positions
• Table 12-4: Control Packet bit positions

12.6.1 Status packet bit positions

Bit ARM7TDMI Test ARM740T Test Notes

31 BUSDIS
Bus Disable

30 SCREG[2]
Scan chain register

SCREG[2]
Scan chain register

29 SCREG[2]
Scan chain register

SCREG[2]
Scan chain register

28 SCREG[1]
Scan chain register

SCREG[1]
Scan chain register

27 SCREG[0]
Scan chain register

SCREG[0]
Scan chain register

26 HIGHZ
HIGHZ instruction in TAP 
controller

HIGHZ
HIGHZ instruction in TAP 
controller

25 nTDOEN
not TDO enable

nTDOEN
not TDO enable

24 DBGRQI
Internal debug request

DBGRQI
Internal debug request

23 RANGEOUT0
ICEbreaker Rangeout0

RANGEOUT0
ICEbreaker Rangeout0

22 RANGEOUT1
ICEbreaker Rangeout1

RANGEOUT1
ICEbreaker Rangeout1

21 COMMRX
Communications channel receive

COMMRX
Communications channel receive

20 COMMTX
Communications channel transmit

COMMTX
Communications channel transmit

19 DBGACK
Debug acknowledge

DBGACK
Debug acknowledge

18 TDO
Test data out

TDO
Test data out

17 nENOUT
Not enable output.

nENOUT
Not enable output

nENOUT is only valid during the data 
access cycle, so MclkEnable is used 
to clock a transparent latch that will 
capture the correct state.

 Table 12-3: Status packet bit positions
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16 nENOUTI
Not enable output

PROTWATCH[3]
Protection Unit test output

nENOUTI as nENOUT

15 TBIT
Thumb state

PROTWATCH[2]
Protection Unit test output

14 nCPI
Not Coprocessor instruction. 

PROTWATCH[1]
Protection Unit test output

13 nM[4]
Not processor mode

PROTWATCH[0]
Protection Unit test output

12 nM[3]
Not processor mode

CAMWATCH[1]
Replacement test output

11 nM[2]
Not processor mode

CAMWATCH[0]
Replacement test output

10 nM[1]
Not processor mode

IDCWATCH[3]
Cache test output

9 nM[0]
Not processor mode

IDCWATCH[2]
Cache test output

8 nTRANS
Not memory translate

IDCWATCH[1]
Cache test output

7 nEXEC
Not executed

IDCWATCH[0]
Cache test output

6 LOCK
Locked operation

LOCK
Locked operation.

5 MAS[1]
Memory Access Size

MAS[1]
Memory Access Size

4 MAS[0]
Memory Access Size

MAS[0]
Memory Access Size

3 nOPC
Not op-code fetch

nENOUT
Not enable output

2 nRW
Not read/write

nRW
Not read/write

1 nMREQ
Not memory request

nMREQ
Not memory request.

0 SEQ
Sequential address

SEQ
Sequential address

Bit ARM7TDMI Test ARM740T Test Notes

 Table 12-3: Status packet bit positions (Continued)
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12.6.2 Control packet bit positions

Bit ARM7TDMI Input ARM740T Input Notes

31 TESTCPU
ARM7TDM test enable

TESTCPU
ARM7TDMI test enable

30 TAGTEST
TAG test mode enable

29 RAMTEST
RAM test mode enable

28 nENIN
NOT enable input

FORCEFCLK
Clock select override

nENIN is gated with MCLKENABLE , 
so it is only valid (LOW) during data 
access.

27 SDOUTBS
Boundary scan serial output data

26 TBE
Test bus enable

25 APE
Address pipeline enable

24 BL[3]
Byte Latch Control

ANDed with MCLKENABLE , so will 
only be valid during data access cycle. 
Not Supported.

23 BL[2]
Byte Latch Control

ANDed with MCLKENABLE , so is 
only valid during data access cycle. 
Not Supported.

22 BL[1]
Byte Latch Control

ANDed with MCLKENABLE , so is 
only valid during data access cycle. 
Not Supported.

21 BL[0]
Byte Latch Control

ANDed with MCLKENABLE , so is 
only valid during data access cycle. 
Not Supported.

20 TMS
Test Mode Select

TMS
Test Mode Select

19 TDI
Test Data in

TDI
Test Data in

18 TCK
Test clock

TCK
Test clock

ANDed with MCLKENABLE  and 
BCLK .

17 nTRST
Not Test Reset

nTRST
Not Test Reset.

16 EXTERN1
External input 1

EXTERN1
External input 1

 Table 12-4: Control Packet bit positions
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15 EXTERN0
External input 0

EXTERN0
External input 0.

14 DBGRQ
Debug request

DBGRQ
Debug request

13 BREAKPT
Breakpoint

BREAKPT
Breakpoint 

12 DBGEN
Debug Enable

DBGEN
Debug Enable 

11 ISYNC
Synchronous interrupts

ISYNC
Synchronous interrupts.

10 BIGEND
Big Endian configuration 

BIGEND
Big Endian configuration 

9 CPA
Coprocessor absent

CPA
Coprocessor absent

8 CPB
Coprocessor busy 

CPB
Coprocessor busy 

7 ABE
Address bus enable

SnA
Clock Configuration

This should normally be set HIGH, as 
if the address bus is tri-stated (ABE  
LOW), then it is not possible to read 
address values

6 ALE
Address latch enable

ALE
Address latch enable

5 DBE
Data Bus Enable 

FASTBUS
Clock configuration

DBE to the ARM7TDM is ANDed with 
the state machine generated DBE and 
BCLK  to prevent bus conflict.

4 nFIQ
Not fast interrupt request

nFIQ
Not fast interrupt request

3 nIRQ
Not interrupt request

nIRQ
Not interrupt request

2 ABORT
Memory Abort

ABORT
Memory Abort

1 nWAIT
Not wait

nWAIT
Not wait.

ANDed with MCLKENABLE , so that 
the core state can only change during 
the data access cycle.

0 nRESET
Not reset

nRESET
Not reset

Bit ARM7TDMI Input ARM740T Input Notes

 Table 12-4: Control Packet bit positions (Continued)
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