
Open Access – Preliminary

Advanced RISC Machines

ARM

ARM740T
Datasheet

ENGLAND
Advanced RISC Machines Limited
90 Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@arm.com

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@arm.com

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@arm.com

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

World Wide Web address: http://www.arm.com

Document Number: ARM DDI 0008E

Issued: February 1998

Copyright Advanced RISC Machines Ltd (ARM) 1997, 1998

All rights reserved

Open Access – Preliminary

ii ARM740T Datasheet
ARM DDI 0008E

Proprietary Notice
ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or
reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and
its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not
limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage
arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the
product.

Key
Document Number
This document has a number which identifies it uniquely. The number is displayed on the front page and at the foot of each
subsequent page.

Document Status
The document’s status is displayed in a banner at the bottom of each page. This describes the document’s confidentiality and its
information status.

Confidentiality status is one of:

ARM Confidential Distributable to ARM staff and NDA signatories only
Named Partner Confidential Distributable to the above and to the staff of named partner companies only
Partner Confidential Distributable within ARM and to staff of all partner companies
Open Access No restriction on distribution

Information status is one of:

Advance Information on a potential product
Preliminary Current information on a product under development
Final Complete information on a developed product

Change Log
Issue Date By Change

A Jan 1997 HLC Created
B March 1997 BJH Formatted and Edited
C August 1997 paw Editing
D Dec 1997 paw Editing
E Feb 1998 paw Change to Open Access, signal table changes in Chapter 2.

ARM XXX 0000 X - 00

(On review drafts only) Two-digit draft number
Release code in the range A-Z
Unique four-digit number
Document type

1 Introduction 1-1
1.1 Overview 1-2
1.2 Block Diagram 1-3
1.3 Instruction Set Overview 1-4

2 Signal Descri ption 2-1
2.1 AMBA Interface Signals 2-2
2.2 Coprocessor Interface Signals 2-4
2.3 JTAG Signals 2-6
2.4 Debugger Signals 2-8
2.5 Miscellaneous Signals 2-9

3 Programmer’s Model 3-1
3.1 Processor Operating States 3-2
3.2 Data Types 3-2
3.3 Operating Modes 3-3
3.4 Memory Formats 3-4
3.5 Registers 3-5
3.6 Program Status Registers 3-9
3.7 Exceptions 3-11
3.8 Reset 3-15

4 Confi guration 4-1
4.1 Overview 4-2
4.2 Internal Coprocessor Instructions 4-3
4.3 Registers 4-4

Contents
Open Access – Preliminary

Contents-1ARM740T Datasheet
ARM DDI 0008E

5 Cache 5-1
5.1 Overview 5-2
5.2 Control Registers 5-4
5.3 Operating Modes 5-5
5.4 Cache Operation 5-7

6 Write Buffer 6-1
6.1 Overview of the Write Buffer 6-2
6.2 Write Buffer Operation 6-3

7 Protection Unit 7-1
7.1 Overview 7-2
7.2 Protection Unit Registers 7-3
7.3 Protection Unit Operation 7-7
7.4 Support for Overlapping Regions 7-9
7.5 External Aborts 7-11
7.6 Interaction of the Protection Unit, Cache and Write Buffer7-12

8 Debug Interface 8-1
8.1 Overview 8-2
8.2 Debug Systems 8-3
8.3 Entering Debug State 8-4
8.4 Scan Chains and JTAG Interface 8-5
8.5 Reset 8-8
8.6 Public Instructions 8-9
8.7 Test Data Registers 8-12
8.8 ARM7TDM Core Clocks 8-19
8.9 Determining the Core and System State 8-20
8.10 The PC During Debug 8-23
8.11 Priorities and Exceptions 8-26
8.12 Scan Interface Timing 8-27
8.13 Debug Timing 8-30

9 EmbeddedICE Macrocell 9-1
9.1 Overview 9-2
9.2 Watchpoint Registers 9-4
9.3 Programming Breakpoints 9-8
9.4 Programming Watchpoints 9-10
9.5 Debug Control Register 9-11
9.6 Debug Status Register 9-12
9.7 Coupling Breakpoints and Watchpoints 9-14
9.8 Debug Communications Channel 9-16

10 Bus Clockin g 10-1
10.1 Introduction 10-2
10.2 Fastbus Extension 10-3
10.3 Standard Mode 10-4
Open Access – Preliminary

Contents-2 ARM740T Datasheet
ARM DDI 0008E

11 AMBA Interface 11-1
11.1 ASB Bus Interface Signals 11-2
11.2 Cycle Types 11-3
11.3 Addressing Signals 11-6
11.4 Memory Request Signals 11-6
11.5 Data Signal Timing 11-6
11.6 Slave Response Signals 11-7
11.7 Maximum Sequential Length 11-9
11.8 Read-Lock-Write 11-9
11.9 Big-Endian / Little-Endian Operation 11-10
11.10 Multi-Master Operation 11-13

12 AMBA Test 12-1
12.1 Slave Operation (Test Mode) 12-2
12.2 ARM740T Test Mode 12-3
12.3 ARM7TDM Core Test Mode 12-3
12.4 RAM Test Mode 12-4
12.5 TAG Test Mode 12-5
12.6 Test Register Mapping 12-6
Open Access – Preliminary

Contents-3ARM740T Datasheet
ARM DDI 0008E

Open Access – Preliminary

Contents-4 ARM740T Datasheet
ARM DDI 0008E

This chapter provides an introduction to the ARM740T.

1.1 Overview 1-2
1.2 Block Diagram 1-3
1.3 Instruction Set Overview 1-4

Introduction1
Open Access – Preliminary

1-1ARM740T Datasheet
ARM DDI 0008E

Introduction

1.1 Overview

The ARM740T is a general-purpose 32-bit microprocessor with:

• 8KB cache or 4KB variants
• write buffer
• Protection Unit

combined in a single macrocell.

The ARM740T is software-compatible with the ARM processor family and can be used
with AMBA peripheral blocks, and has been optimised for use in embedded
applications. The CPU within ARM740T is the ARM7.

ARM740T is a fully static part and has been designed to minimise power requirements.
This makes it ideal for portable applications where both these features are essential.

The on-chip mixed data and instruction cache, and the write buffer, substantially raise
the average execution speed and reduce the average amount of memory bandwidth
required by the processor. This allows the external memory to support additional
processors or Direct Memory Access (DMA) channels with minimal performance loss.

RISC architecture

The ARM740T architecture is based on Reduced Instruction Set Computer (RISC)
principles, and the instruction set and related decode mechanism are greatly simplified
compared with microprogrammed Complex Instruction Set Computers (CISC).
Open Access – Preliminary

1-2 ARM740T Datasheet
ARM DDI 0008E

Introduction

1.2 Block Diagram

 Figure 1-1: ARM740T block diagram

 Cache CPU
Address
Buffer

COPROC

#15

8 or 4 KB ARM7TDMI

Data
Buffer

 Unit
Protection

 Interface
AMBA

ASB

JTAG
Interface

NFIQ
NIRQ

Address Bus

Data Bus

COPROC
Interface
Open Access – Preliminary

1-3ARM740T Datasheet
ARM DDI 0008E

Introduction

1.3 Instruction Set Overview

The instruction set comprises ten basic instruction types:

• Two make use of the on-chip arithmetic logic unit, barrel shifter and multiplier
to perform high-speed operations on the data in a bank of 31 registers, each
32 bits wide.

• Three classes of instruction control the data transfer between memory and the
registers:
- one optimised for flexibility of addressing
- one for rapid context switching
- one for swapping data

• Two control the flow and privilege level of execution.
• Three control external coprocessors which allow the functionality of the

instruction set to be extended off-chip in an open and uniform way.

The ARM instruction set is a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming is
also straightforward, unlike some RISC processors which depend on sophisticated
compiler technology to manage complicated instruction interdependencies.
Open Access – Preliminary

1-4 ARM740T Datasheet
ARM DDI 0008E

Introduction

1.3.1 ARM instruction set

This section gives an overview of the ARM instructions available. For full details of
these instructions, please refer to the ARM Architecture Reference Manual
(ARM DDI 0100).

Format summary

The ARM instruction set formats are shown below.

 Figure 1-2: ARM instruction set formats

Note Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken; for example, a Multiply instruction with bit 6 changed to 1. These
instructions should not be used, as their action may change in future ARM
implementations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data processing /
PSRTransfer Cond 0 0 I Opcode S Rn Rd Operand 2

Multiply Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Multiply Long
Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm

Single Data Swap Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

Branch and Exchange Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Halfword Data Transfer:
register offset Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm

Halfword Data Transfer:
immediate offset Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset

Single Data Transfer Cond 0 1 I P U B W L Rn Rd Offset

Undefined
Cond 0 1 1 1

Block Data Transfer Cond 1 0 0 P U S W L Rn Register List

Branch Cond 1 0 1 L Offset

Coprocessor Data Transfer
Cond 1 1 0 P U N W L Rn CRd CP# Offset

Coprocessor Data
Operation Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm

Coprocessor Register
Transfer

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm

Software Interrupt
Cond 1 1 1 1 Ignored by processor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Open Access – Preliminary

1-5ARM740T Datasheet
ARM DDI 0008E

Introduction

ARM instruction summary

The following table summarizes the ARM instruction set.

Mnemonic Instruction Action

ADC Add with carry Rd := Rn + Op2 + Carry

ADD Add Rd := Rn + Op2

AND AND Rd := Rn AND Op2

B Branch R15 := address

BIC Bit Clear Rd := Rn AND NOT Op2

BL Branch with Link R14 := R15, R15 := address

BX Branch and Exchange R15 := Rn,
T bit := Rn[0]

CDP Coprocessor Data Processing (Coprocessor-specific)

CMN Compare Negative CPSR flags := Rn + Op2

CMP Compare CPSR flags := Rn - Op2

EOR Exclusive OR Rd := (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd := (address)

MCR Move CPU register to coprocessor
register

cRn := rRn {<op>cRm}

MLA Multiply Accumulate Rd := (Rm * Rs) + Rn

MOV Move register or constant Rd : = Op2

MRC Move from coprocessor register to CPU
register

Rn := cRn {<op>cRm}

MRS Move PSR status/flags to register Rn := PSR

MSR Move register to PSR status/flags PSR := Rm

MUL Multiply Rd := Rm * Rs

MVN Move negative register Rd := 0xFFFFFFFF EOR Op2

ORR OR Rd := Rn OR Op2

RSB Reverse Subtract Rd := Op2 - Rn

RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry

 Table 1-1: ARM instruction summary
Open Access – Preliminary

1-6 ARM740T Datasheet
ARM DDI 0008E

Introduction
SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry

STC Store coprocessor register to memory address := CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address> := Rd

SUB Subtract Rd := Rn - Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd := [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags := Rn EOR Op2

TST Test bits CPSR flags := Rn AND Op2

Mnemonic Instruction Action

 Table 1-1: ARM instruction summary (Continued)
Open Access – Preliminary

1-7ARM740T Datasheet
ARM DDI 0008E

Introduction

1.3.2 THUMB Instruction Set

This section gives an overview of the THUMB instructions available. For full details of
these instructions, please refer to the ARM Architecture Reference Manual
(ARM DDI 0100).

Format summary

The THUMB instruction set formats are shown below.

 Figure 1-3: THUMB instruction set formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Move shifted register 1
0 0 0 Op Offset5 Rs Rd

Add/subtract 2 0 0 0 1 1 I Op Rn/offset3 Rs Rd

Move/compare/add/subtract immediate 3
0 0 1 Op Rd Offset8

ALU operations 4 0 1 0 0 0 0 Op Rs Rd

Hi register operations/branch exchange 5 0 1 0 0 0 1 Op H1 H2 Rs/Hs Rd/Hd

PC-relative load 6
0 1 0 0 1 Rd Word8

Load/store with register offset 7 0 1 0 1 L B 0 Ro Rb Rd

Load/store sign-extended byte/halfword 8 0 1 0 1 H S 1 Ro Rb Rd

Load/store with immediate offset 9
0 1 1 B L Offset5 Rb Rd

Load/store halfword 10 1 0 0 0 L Offset5 Rb Rd

SP-relative load/store 11 1 0 0 1 L Rd Word8

Load address 12
1 0 1 0 SP Rd Word8

Add offset to stack pointer 13 1 0 1 1 0 0 0 0 S SWord7

Push/pop registers 14 1 0 1 1 L 1 0 R Rlist

Multiple load/store 15
1 1 0 0 L Rb Rlist

Conditional branch 16 1 1 0 1 Cond Soffset8

Software Interrupt 17 1 1 0 1 1 1 1 1 Value8

Unconditional branch 18
1 1 1 0 0 Offset11

Long branch with link 19 1 1 1 1 H Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Open Access – Preliminary

1-8 ARM740T Datasheet
ARM DDI 0008E

Introduction

THUMB instruction summary

The following table summarizes the THUMB instruction set.

Mnemonic Instruction
Lo register
operand

Hi register
operand

Condition
codes set

ADC Add with Carry ✔ ✔

ADD Add ✔ ✔ ✔(1)

AND AND ✔ ✔

ASR Arithmetic Shift Right ✔ ✔

B Unconditional branch ✔

Bxx Conditional branch ✔

BIC Bit Clear ✔ ✔

BL Branch and Link

BX Branch and Exchange ✔ ✔

CMN Compare Negative ✔ ✔

CMP Compare ✔ ✔ ✔

EOR EOR ✔ ✔

LDMIA Load multiple ✔

LDR Load word ✔

LDRB Load byte ✔

LDRH Load halfword ✔

LSL Logical Shift Left ✔ ✔

LDSB Load sign-extended byte ✔

LDSH Load sign-extended halfword ✔

LSR Logical Shift Right ✔ ✔

MOV Move register ✔ ✔ ✔(2)

MUL Multiply ✔ ✔

MVN Move Negative register ✔ ✔

NEG Negate ✔ ✔

ORR OR ✔ ✔

POP Pop registers ✔

PUSH Push registers ✔

 Table 1-2: THUMB instruction summary
Open Access – Preliminary

1-9ARM740T Datasheet
ARM DDI 0008E

Introduction
1 The condition codes are unaffected by the format 5, 12 and 13 versions of this
instruction.

2 The condition codes are unaffected by the format 5 version of this instruction.

ROR Rotate Right ✔ ✔

SBC Subtract with Carry ✔ ✔

STMIA Store Multiple ✔

STR Store word ✔

STRB Store byte ✔

STRH Store halfword ✔

SWI Software Interrupt

SUB Subtract ✔ ✔

TST Test bits ✔ ✔

Mnemonic Instruction
Lo register
operand

Hi register
operand

Condition
codes set

 Table 1-2: THUMB instruction summary (Continued)
Open Access – Preliminary

1-10 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the signals.

2.1 AMBA Interface Signals 2-2
2.2 Coprocessor Interface Signals 2-4
2.3 JTAG Signals 2-6
2.4 Debugger Signals 2-8
2.5 Miscellaneous Signals 2-9

Signal Description2
Open Access – Preliminary

2-1ARM740T Datasheet
ARM DDI 0008E

Signal Description

2.1 AMBA Interface Signals

Name Type Drive Source/
Destination

Description

AGNT In – Arbiter Access Grant
This signal from the bus arbiter indicates that the bus master
is currently the highest priority master requesting the bus. If
AGNT is asserted at the end of a transfer (BWAIT LOW), the
master will be granted the bus. AGNT changes during the
LOW phase of BCLK , and remains valid through the HIGH
phase.

AREQ Out D4 Access Request
This signal indicates that the master requires the bus. This
signal changes during the HIGH phase of BCLK . This signal
is intended for use where the ARM740T is not the lowest
priority or default bus master.

BA[31:0] Out D6 Current bus
master

Bus Address
This is the system address bus.

BCLK In – Bus Clock
This clock times all bus transfers.

BD[31:0] InOut D6 Bus master Bus Data
This is the bidirectional system data bus. The data bus is
driven by the current bus master during write transfers, and
by the appropriate bus slave during read cycles.

BERROR InOut D4 System decoder
and current bus
master

Bus Error
This signal indicates a transfer error by the selected bus
slave. When BERROR is HIGH, a transfer error has
occurred. When BERROR is LOW, the transfer is
successful.
This signal is also used in combination with the BLAST
signal to indicate a bus retract operation.

BLAST InOut D4 System decoder
and current bus
master

Bus Last
This signal is driven by the selected bus slave to indicate if
the current transfer should be the last of a burst sequence.
When BLAST is HIGH, the next bus transfer must allow for
sufficient time for address decoding. When BLAST is LOW,
the next transfer may continue a burst sequence.
This signal is also used in combination with the BERROR
signal to indicate a bus retract operation.

BLOK Out D4 Arbiter Bus Lock
When HIGH, this signal indicates that the following transfer
is to be indivisible and no other bus master should be given
access to the bus.

BnRES In – Reset state
machine

Bus Reset
This signal indicates the reset status of the bus.

 Table 2-1: AMBA interface signal descriptions
Open Access – Preliminary

2-2 ARM740T Datasheet
ARM DDI 0008E

Signal Description
BPROT[1:0] Out D4 Current bus
master

Bus Protections
These signals provide additional information about the
transfer being performed. All write cycles are indicated as
being Supervisor accesses. These signals have the same
timing as the BA signals.

BSIZE[1:0] Out D4 Current bus
master

Bus Size
These signals indicate the size of the transfer, which may be
byte, halfword or word. These signals have the same timing
as the address bus.

BTRAN[1:0] Out D8 Bus master Bus Transaction Type
These signals indicate the type of the next transaction,
which may be address-only, nonsequential or sequential.
These signals are driven when AGNT is asserted, and are
valid during the HIGH phase of BCLK before the transfer to
which they refer.

BWAIT InOut D4 System decoder
and current bus
master

Bus Wait
This signal is driven by the selected slave to indicate if the
current transfer may complete. If BWAIT is HIGH, a further
bus cycle is required. If BWAIT is LOW, the transfer may
complete in the current bus cycle.

BWRITE Out D4 Current bus
master

Bus Write
When HIGH, this signal indicates a write cycle and when
LOW, a read cycle.This signal has the same timing as the
address bus.

DSEL In – System decoder Slave Select
This signal puts the ARM core into a test mode so that
vectors can be written in and out of the core.

Name Type Drive Source/
Destination

Description

 Table 2-1: AMBA interface signal descriptions (Continued)
Open Access – Preliminary

2-3ARM740T Datasheet
ARM DDI 0008E

Signal Description

2.2 Coprocessor Interface Signals

Name Type Drive Description

CPCLK Out D4 Coprocessor Clock
This clock controls the operation of the
coprocessor interface.

CPDATA[31:0] InOut D4 Coprocessor Data Bus
Using this bus, data is transferred to and from the
co-processor. Data is valid on the falling edge of
CPCLK .

CPDBE In – Coprocessor Data Bus Enable
When HIGH, this signal indicates that the
coprocessor intends to drive the coprocessor
data bus CPDATA . If the coprocessor interface is
not to be used then this signal should be tied
LOW.

CPnWAIT Out D4 Coprocessor Not Wait
The coprocessor clock CPCLK is qualified by
CPnWAIT to allow the ARM740T to control the
transfer of data on the coprocessor interface.

CPTESTREAD In – Coprocessor Test Read
This signal is used for test of a Piccolo
coprocessor (if attached) and should only be
used with the ARM740T held in reset. When
HIGH, it enables DB to be driven on to CPDATA ,
and should normally be held LOW. It must never
be asserted at the same time as CPTESTWRITE.

CPTESTWRITE In – Coprocessor Test Write
This signal is used for test of a Piccolo
coprocessor (if attached) and should only be
used with the ARM740T held in reset. When
HIGH, it enables DB to be driven on to CPDATA ,
and should normally be held LOW. It must never
be asserted at the same time as CPTESTREAD.

EXTCPA In – External Coprocessor Absent
A coprocessor that is capable of performing the
operation that ARM740T is requesting (by
asserting nCPI) should take EXTCPA LOW
immediately. If EXTCPA is HIGH at the end of the
LOW phase of the cycle in which nCPI went
LOW, ARM740T aborts the coprocessor
instruction and takes the undefined instruction
trap. If EXTCPA is LOW and remains LOW,
ARM740T busy-waits until EXTCPB is LOW and
then completes the coprocessor instruction.

 Table 2-2: Coprocessor interface signal descriptions
Open Access – Preliminary

2-4 ARM740T Datasheet
ARM DDI 0008E

Signal Description
EXTCPB In – External Coprocessor Busy
A coprocessor which is capable of performing the
operation which ARM740T is requesting (by
asserting nCPI), but cannot commit to starting it
immediately, should indicate this by driving
EXTCPB HIGH. When the coprocessor is ready
to start it should take EXTCPB LOW. ARM740T
samples ExtCPB at the end of the LOW phase of
each cycle in which nCPI is LOW.

nCPI Out D4 Not Coprocessor Instruction
When LOW, this signal indicates that the
ARM740T is executing a coprocessor instruction.

nOPC Out D8 Not OPcode Fetch
When LOW, this signal indicates that the
processor is fetching an instruction from memory.
When HIGH, data (if present) is being transferred.
This signal is used by the coprocessor to track
the ARM pipeline.

Name Type Drive Description

 Table 2-2: Coprocessor interface signal descriptions (Continued)
Open Access – Preliminary

2-5ARM740T Datasheet
ARM DDI 0008E

Signal Description

2.3 JTAG Signals

Name Type Drive Description

IR[3:0] Out D4 TAP Instruction Register
These signals reflect the current instruction loaded
into the TAP controller instruction register. These
signals change on the falling edge of TCK when the
TAP state machine is in the UPDATE-IR state.
These signals may be used to add additional scan
chains using the ARM740T TAP controller.

RSTCLKBS Out D4 Reset Boundary Scan Clock
This signal denotes that either the TAP controller
state machine is in the RESET state or that nTRST
has been asserted. This may be used to reset
boundary scan cells outside the ARM740T.

SCREG[3:0] Out D4 Scan Chain Register
These signals reflect the ID number of the scan
chain currently selected by the TAP controller.
These signals change on the falling edge of TCK
when the TAP state machine is in the UPDATE-DR
state.

SDINBS Out D4 Boundary Scan Serial Data In
This signal is the serial data to be applied to an
external scan chain.

SDOUTBS In – Boundary Scan Serial Data Out
This signal is the serial data from an external scan
chain. It allows a single TDO port to be used. If an
external scan chain is not connected, this input
should be tied LOW.

TAPSM[3:0] Out D4 TAP Controller State
These signals represent the current state of the
TAP controller state machine. These signals
change on the rising edge of TCK and may be used
to add additional scan chains using the ARM740T
TAP controller.

TCK In – Test Clock
This is part of the IEEE 1149.1 JTAG standard.

TCK1 Out D4 Test Clock 1
This clock represents the HIGH phase of TCK.
TCK1 is HIGH when TCK is HIGH. This signal may
be used to allow more scan chains to be added
using the ARM740T TAP controller.

 Table 2-3: JTAG signal descriptions
Open Access – Preliminary

2-6 ARM740T Datasheet
ARM DDI 0008E

Signal Description
TCK2 Out D4 Test Clock 2
This clock represents the LOW phase of TCK.
TCK2 is HIGH when TCK is LOW. This signal may
be used to allow more scan chains to be added
using the ARM740T TAP controller. TCK2 is the
non-overlapping compliment of TCK1.

TDI In – Test Data In
This is part of the IEEE 1149.1 JTAG standard.

TDO Out D3 Test Data Out
This is part of the IEEE 1149.1 JTAG standard.

TMS In – Test Mode Select
This is part of the IEEE 1149.1 JTAG standard.

nTDOEN Out D4 Not Test Data Out Output Enable
When LOW, this signal denotes that serial data is
being driven out on the TDO.

nTRST In – Not Test Reset
When LOW, resets the JTAG interface.

Name Type Drive Description

 Table 2-3: JTAG signal descriptions (Continued)
Open Access – Preliminary

2-7ARM740T Datasheet
ARM DDI 0008E

Signal Description

2.4 Debugger Signals

Name Type Drive Description

BREAKPOINT In – Breakpoint
This signal allows external hardware to halt
execution of the processor for debug purposes.
When HIGH causes the current memory access to
be breakpointed. If the memory access is an
instruction fetch, the core enters debug state if the
instruction reaches the execute stage of the core
pipeline. If the memory access is for data, the core
enters debug state after the current instruction
completes execution. This allows extension of the
internal breakpoints provided by the EmbeddedICE
module.

COMMRX Out D4 Communication Receive Empty
When HIGH, this signal denotes that the comms
channel receive buffer is empty.

COMMTX Out D4 Communication Transmit Empty
When HIGH, this signal denotes that the comms
channel transmit buffer is empty.

DBGACK Out D4 Debug Acknowledge
When HIGH, indicates that the ARM is in debug
state.

DBGEN In – Debug Enable
This signal allows the debug features of ARM740T
to be disabled. This signal should be LOW if debug
is not required.

DBGRQ In – Debug Requests
This signal causes the core to enter debug state
after executing the current instruction. This allows
external hardware to force the core into debug
state, in addition to the debugging features
provided by the EmbeddedICE module.

EXTERN[1:0] In – External Condition
These signals allow breakpoints and/or
watchpoints to be dependent on an external
condition.

RANGEOUT[1:0] Out D4 Rangeout
These signals indicate that the relevant
EmbeddedICE watchpoint register has matched
the conditions currently present on the address,
data and control buses. These signals are
independent of the state of the watchpoint enable
control bits.

 Table 2-4: Debugger signal descriptions
Open Access – Preliminary

2-8 ARM740T Datasheet
ARM DDI 0008E

Signal Description

2.5 Miscellaneous Signals

Name Type Drive Description

BIGEND Out D4 Big-endian Format
When this signal is HIGH, the processor treats
bytes in memory as being in big-endian format.
When it is LOW, memory is treated as little-endian.

FASTBUS In – Bus Clocking Mode Select Signal
When LOW, the ARM740T operates from a single
clock, BCLK , when HIGH selects fastbus mode
operating from two clocks, BCLK and FCLK .

FCLK In – Fast Clock
This is used during the RAM and TAG tests, to
enable efficient testing. In standard bus mode, is
used to clock the core.

nUSER Out D8 Not User Mode
When LOW, this signal indicates that the processor
is in user mode. It is used by a coprocessor to
qualify instructions.

nFIQ In – ARM Fast Interrupt Request
Typically there is only a single nFIQ signal in a
system, although this may be disabled by the
interrupt controller.

nIRQ In – ARM Interrupt Request
The interrupt controller mixes several interrupt
sources and produces ARM nIRQ.

SnA In – Synchronous / not Asynchronous
In standard ARM bus mode this signal determines
the bus interface mode and should be wired HIGH
or LOW depending on the desired relationship
between FCLK and BCLK in the application. See
10.3 Standard Mode on page 10-4. This pin is
ignored when operating with the fastbus extension.

TBIT Out D4 THUMB Mode
This signal when HIGH, indicates that the
processor is executing the THUMB instruction set.
When LOW, the processor is executing the ARM
instruction set.

 Table 2-5: Miscellaneous signal descriptions
Open Access – Preliminary

2-9ARM740T Datasheet
ARM DDI 0008E

Signal Description
Open Access – Preliminary

2-10 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the operating states of the ARM740T.

3.1 Processor Operating States 3-2
3.2 Data Types 3-2
3.3 Operating Modes 3-3
3.4 Memory Formats 3-4
3.5 Registers 3-5
3.6 Program Status Registers 3-9
3.7 Exceptions 3-11
3.8 Reset 3-15

Programmer’s Model3
Open Access – Preliminary

3-1ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.1 Processor Operating States

From the programmer’s point of view, the ARM740T can be in one of two states:

Note Transition between these two states does not affect the processor mode or the
contents of the registers.

3.1.1 Switching state

Entering THUMB state

Entry into THUMB state happens:

1 On Execution of a BX instruction with the state bit (bit 0) set in the operand
register.

2 On return from an exception (IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the
exception was entered with the processor in THUMB state.

Entering ARM state

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand
register.

• On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT,
SWI etc.). In this case, the PC is placed in the exception mode’s link register,
and execution starts at the exception’s vector address.

3.2 Data Types
ARM740T supports the following data types:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB
instructions. In this state, the PC uses bit 1 to select between
alternate halfwords.

byte (8-bit)

halfword (16-bit). Halfwords must be aligned to 2-byte boundaries.

word (32-bit). Words must be aligned to 4-byte boundaries.
Open Access – Preliminary

3-2 ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.3 Operating Modes

ARM740T supports seven modes of operation:

Mode changes may be made under software control, or may be brought about by
external interrupts or exception processing.

Most application programs execute in User mode. The non-user modes—known as
privileged modes—are entered in order to service interrupts or exceptions, or to access
protected resources.

User (usr) The normal ARM program execution state

FIQ (fiq) Designed to support a data transfer or channel process

IRQ (irq) Used for general-purpose interrupt handling

Supervisor (svc) Protected mode for the operating system

Abort mode (abt) Entered after a data or instruction prefetch abort

System (sys) A privileged user mode for the operating system

Undefined (und) Entered when an undefined instruction is executed
Open Access – Preliminary

3-3ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.4 Memory Formats

The bigend bit in the Control Register sets whether the ARM740T treats words in
memory as being stored in big-endian or little-endian format. See Chapter 4,
Configuration for more information on the Control Register.

ARM740T views memory as a linear collection of bytes numbered upwards from zero.
Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second and so on. ARM740T
can treat words in memory as being stored either in big-endian or little-endian format.

3.4.1 Big-endian format
In big-endian format:

• the most significant byte of a word is stored at the lowest numbered byte
• the least significant byte at the highest numbered byte

Byte 0 of the memory system is therefore connected to data lines 31 through 24.

3.4.2 Little-endian format
In little-endian format the lowest numbered byte in a word is considered the word’s least
significant byte, and the highest numbered byte the most significant.

Byte 0 of the memory system is therefore connected to data lines 7 through 0.

Higher Address 31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

 Figure 3-1: Big-endian address of bytes within words

Higher Address 31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

 Figure 3-2: Little-endian addresses of bytes with words
Open Access – Preliminary

3-4 ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.5 Registers

ARM740T has a total of 37 registers:

• 31 general-purpose 32-bit registers
• six status registers

These cannot all be seen at once. The processor state and operating mode dictate
which registers are available to the programmer.

3.5.1 The ARM state register set
In ARM state, 16 general registers and one or two status registers are visible at any one
time. In privileged (non-User) modes, mode-specific banked registers are switched in.
Figure 3-3: Register organization in ARM state shows which registers are available
in each mode: the banked registers are marked with a shaded triangle.

 Figure 3-3: Register organization in ARM state

ARM State General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM State Program Status Registers

= banked register
Open Access – Preliminary

3-5ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of
these except R15 are general-purpose, and may be used to hold either data or address
values. In addition to these, there is a 17th register used to store status information.

Pre-defined registers

FIQ mode

FIQ mode has seven banked registers mapped to R8 – 14 (R8_fiq – R14_fiq). In ARM
state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor,
Abort and Undefined mode each have two banked registers mapped to R13 and R14,
allowing each of these modes to have a private stack pointer and link registers.

Register 14 is used as the subroutine link register. This receives a copy
of R15 when a Branch and Link (BL) instruction is executed.
At all other times it may be treated as a general-purpose
register. The corresponding banked registers R14_svc,
R14_irq, R14_fiq, R14_abt and R14_und are similarly used
to hold the return values of R15 when interrupts and
exceptions arise, or when Branch and Link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of
R15 are zero and bits [31:2] contain the PC. In THUMB
state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the Current Program Status Register (CPSR). This
contains condition code flags and the current mode bits.
Open Access – Preliminary

3-6 ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.5.2 The THUMB state register set

The THUMB state register set is a subset of the ARM state set. The programmer has
direct access to eight general registers, [R0:R7]:

• a Program Counter (PC)
• a stack pointer register (SP)
• a link register (LR), and the CPSR.

There are banked Stack Pointers, Link Registers and Saved Process Status Registers
(SPSRs) for each privileged mode. This is shown in Figure 3-4: Register
organization in THUMB state .

 Figure 3-4: Register organization in THUMB state

3.5.3 The relationship between ARM and THUMB state registers
The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state [R0:R7] and ARM state [R0:R7] are identical
• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are

identical
• THUMB state SP maps onto ARM state R13
• THUMB state LR maps onto ARM state R14

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

LR_fiq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_svc

LR_svc

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_abt

LR_abt

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_irq

LR_irq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_und

LR_und

PC

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

= banked register
Open Access – Preliminary

3-7ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

• The THUMB state Program Counter maps onto the ARM state Program

Counter (R15)

This relationship is shown in Figure 3-5: Mapping of THUMB state registers onto
ARM state registers .

 Figure 3-5: Mapping of THUMB state registers onto ARM state registers

3.5.4 Accessing Hi registers in THUMB state
In THUMB state, registers [R8:R15] (the Hi registers) are not part of the standard
register set. However, the assembly language programmer has limited access to them,
and can use them for fast temporary storage.

A value may be transferred from a register in the range [R0:R7] (a Lo register) to a Hi
register, and from a Hi register to a Lo register, using special variants of the MOV
instruction. Hi register values can also be compared against or added to Lo register
values with the CMP and ADD instructions. See the information on high registers in the
ARM Architecture Reference Manual (ARM DDI 0100) for details.

R0

R1
R2

R3

R5
R6

R7
R8
R9

R10
R11
R12

Stack Pointer (R13)
Link Re gister (R14)

Program Counter (R15)

R0

R1
R2

R3

R5

R6

R7

Stack Pointer (SP)
Link Re gister (LR)

Program Counter (PC)

CPSR CPSR
SPSR SPSR

R4R4

Lo
 r

eg
is

te
rs

H
i r

eg
is

te
rs

THUMB state ARM state
Open Access – Preliminary

3-8 ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.6 Program Status Registers

The ARM740T contains a Current Program Status Register (CPSR), plus five Saved
Program Status Registers (SPSRs) for use by exception handlers. These registers:

• hold information about the most recently performed ALU operation
• control the enabling and disabling of interrupts
• set the processor operating mode

The arrangement of bits is shown in Figure 3-6: Program status register format .

 Figure 3-6: Program status register format

3.6.1 Condition code flags
The N, Z, C and V bits are the condition code flags. These may be changed as a result
of arithmetic and logical operations, and may be tested to determine whether an
instruction should be executed.

In ARM state, all instructions may be executed conditionally, in THUMB state, only the
Branch instruction is capable of conditional execution: See the ARM Architecture
Reference Manual (ARM DDI 0100) for details.

3.6.2 Control bits
The bottom 8 bits of a PSR (incorporating T, I, F and M[4:0]) are known collectively as
the control bits. These will change when an exception arises. If the processor is
operating in a privileged mode, they can also be manipulated by software.

0123456782728293031

M0M1M2M3M4. FIVCZN

Overflow

Carry / Borrow /Extend

Zero

Negative / Less Than

Mode bits

FIQ disable
IRQ disable

. .

condition code flags control bits

State bit

(reserved)

23

. .

24

T

25

.

26

.

T bit Reflects the operating state. When this bit is set, the
processor is executing in THUMB state, otherwise it is
executing in ARM state. This is reflected on the TBIT
external signal. The software must never change the state of
the TBIT in the CPSR. If this happens, the processor enters
an unpredictable state.

I and F bits The interrupt disable bits. When set, these disable the IRQ
and FIQ interrupts respectively.
Open Access – Preliminary

3-9ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model
Reserved bits

The remaining bits in the PSRs are reserved. When changing a PSR’s flag or control
bits, you must ensure that these unused bits are not altered. Also, your program should
not rely on their containing specific values, since in future processors they may read as
one or zero.

M[4:0] bits The mode bits. These determine the processor’s operating
mode, as shown in Table 3-1: PSR mode bit values on
page 3-10. Not all combinations of the mode bits define a
valid processor mode; you must use only those explicitly
described.

Note : If any illegal value is programmed into the mode bits,
M[4:0], the processor enters an unrecoverable state. If this
occurs, reset should be applied.

M[4:0] Mode Visible THUMB state registers Visible ARM state registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq..R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc..R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt..R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und..R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

 Table 3-1: PSR mode bit values
Open Access – Preliminary

3-10 ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.7 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example to service an interrupt from a peripheral.

Before an exception can be handled, the current processor state must be preserved so
that the original program can resume when the handler routine has finished.

Several exceptions may arise at the same time. If this happens, they are dealt with in a
fixed order - see 3.7.10 Exception priorities on page 3-14.

3.7.1 Action on entering an exception
When handling an exception, the ARM740T:

1 Preserves the address of the next instruction in the appropriate Link Register.
- If the exception has been entered from ARM state, the address of the next

instruction is copied into the Link Register (that is, current PC + 4 or PC +
8 depending on the exception. See Table 3-2: Exception entry/exit on
page 3-12 for details).

- If the exception has been entered from THUMB state, the value written into
the Link Register is the current PC offset by a value such that the program
resumes from the correct place on return from the exception. This means
that the exception handler need not determine which state the exception
was entered from.

For example, in the case of SWI, the instruction:
MOVS PC, R14_svc

always returns to the next instruction regardless of whether the SWI was
executed in ARM or THUMB state.

2 Copies the CPSR into the appropriate SPSR.
3 Forces the CPSR mode bits to a value which depends on the exception.
4 Forces the PC to fetch the next instruction from the relevant exception vector.

ARM740T may also set the interrupt disable flags to prevent otherwise unmanageable
nestings of exceptions.

Note If the processor is in THUMB state when an exception occurs, it automatically switches
into ARM state when the PC is loaded with the exception vector address.

3.7.2 Action on leaving an exception
On completion, the exception handler:

1 Moves the Link Register, minus an offset where appropriate, to the PC. The
offset varies depending on the type of exception.

2 Copies the SPSR back to the CPSR.
3 Clears the interrupt disable flags, if they were set on entry.

Note An explicit switch back to THUMB state is never needed, since restoring the CPSR
from the SPSR automatically sets the T bit to the value it held immediately prior to the
exception.
Open Access – Preliminary

3-11ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.7.3 Exception entry/exit summary

Table 3-2: Exception entry/exit summarizes the PC value preserved in the relevant
R14 on exception entry, and the recommended instruction for exiting the exception
handler.

Notes

1 PC is the address of the BL/SWI/Undefined Instruction fetch which had the
prefetch abort.

2 PC is the address of the instruction which did not get executed since the FIQ
or IRQ took priority.

3 PC is the address of the Load or Store instruction which generated the data
abort.

4 The value saved in R14_svc upon reset is unpredictable.

3.7.4 FIQ
The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or
channel process, and in ARM state has sufficient private registers to remove the need
for register saving (thus minimising the overhead of context switching).

FIQ is externally generated by taking the nFIQ input LOW. nFIQ and nIRQ are
considered asynchronous, and a cycle delay for synchronization is incurred before the
interrupt can affect the processor flow.

Irrespective of whether the exception was entered from ARM or THUMB state, a FIQ
handler should leave the interrupt by executing:

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR’s F flag (but note that this is not possible from
User mode). If the F flag is clear, ARM740T checks for a LOW level on the output of the
FIQ synchronizer at the end of each instruction.

3.7.5 IRQ
The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on
the nIRQ input. IRQ has a lower priority than FIQ and is masked out when a FIQ
sequence is entered. It may be disabled at any time by setting the I bit in the CPSR,
though this can only be done from a privileged (non-User) mode.

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA - - 4

 Table 3-2: Exception entry/exit
Open Access – Preliminary

3-12 ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

Irrespective of whether the exception was entered from ARM or THUMB state, an IRQ
handler should return from the interrupt by executing:

SUBS PC,R14_irq,#4

3.7.6 Abort
An abort indicates that the current memory access cannot be completed. It can be
signalled either by the Protection unit, or by the external BERROR input. ARM740T
checks for the abort exception during memory access cycles.

There are two types of abort:

Prefetch abort

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the
exception is not taken until the instruction reaches the head of the pipeline. If the
instruction is not executed—for example because a branch occurs while it is in the
pipeline—the abort does not take place.

Data abort

If a data abort occurs, the action taken depends on the instruction type:

1 Single data transfer instructions (LDR, STR) writeback-modified base
registers: the Abort handler must be aware of this.

2 The swap instruction (SWP) is aborted as though it had not been executed.
3 Block data transfer instructions complete (LDM, STM). If writeback is set, the

base is updated. If the instruction would have overwritten the base with data
(ie. it has the base in the transfer list), the overwriting is prevented. All register
overwriting is prevented after an abort is indicated, which means in particular
that R15 (always the last register to be transferred) is preserved in an aborted
LDM instruction.

Returning from an abort

After fixing the reason for the abort, the handler should execute the following
irrespective of the state (ARM or THUMB), to restore both the PC and the CPSR, and
retry the aborted instruction:

SUBS PC,R14_abt,#4 for a prefetch abort, or
SUBS PC,R14_abt,#8 for a data abort

Note Restrictions on the use of the external abort signal. are given in 7.5 External Aborts
on page 7-11.

3.7.7 Software interrupt
The software interrupt instruction (SWI) is used for entering Supervisor mode, usually
to request a particular supervisor function. A SWI handler should return by executing
the following irrespective of the state (ARM or THUMB):

MOV PC, R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

Prefetch abort occurs during an instruction prefetch.

Data abort occurs during a data access.
Open Access – Preliminary

3-13ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.7.8 Undefined instruction

When ARM740T comes across an instruction which it cannot handle, it takes the
undefined instruction trap. This mechanism may be used to extend either the THUMB
or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following
irrespective of the state (ARM or THUMB), to restore the CPSR and return to the
instruction following the undefined instruction:

MOVS PC,R14_und

3.7.9 Exception vectors
The following table shows the exception vector addresses.

3.7.10 Exception priorities
When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they are handled:

1 Reset (Highest priority)
2 Data abort
3 FIQ
4 IRQ
5 Prefetch abort
6 Undefined Instruction, Software Interrupt. (Lowest priority)

Not all exceptions can occur at once

Undefined Instruction and Software Interrupt are mutually exclusive, as they each
correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (that is, the
CPSR’s F flag is clear), ARM740T enters the data abort handler and then immediately
proceeds to the FIQ vector. A normal return from FIQ makes the data abort handler
resume execution.

Placing data abort at a higher priority than FIQ is necessary to ensure that the transfer
error does not escape detection. The time for this exception entry should be added to
worst-case FIQ latency calculations.

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

 Table 3-3: Exception vector addresses
Open Access – Preliminary

3-14 ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model

3.8 Reset

When the BnRES signal goes LOW, ARM740T:

1 Abandons the executing instruction.
2 Flushes the Cache.
3 Disables the Write Buffer, Cache and Memory Management Unit.
4 Resets the Process Identifier.
5 Continues to fetch instructions from incrementing word addresses.

When BnRES goes HIGH again, ARM740T:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and SPSR is not defined.

2 Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR,
and clears the CPSR’s T bit.

3 Forces the PC to fetch the next instruction from address 0x00.
4 Resumes execution in ARM state.
Open Access – Preliminary

3-15ARM740T Datasheet
ARM DDI 0008E

Programmer’s Model
Open Access – Preliminary

3-16 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the ARM740T configuration.

4.1 Overview 4-2
4.2 Internal Coprocessor Instructions 4-3
4.3 Registers 4-4

Configuration4
Open Access – Preliminary

4-1ARM740T Datasheet
ARM DDI 0008E

Configuration

4.1 Overview

The operation and configuration of ARM740T is controlled via coprocessor 15 (CP15).
Coprocessor instructions manipulate a number of on-chip registers which control the
configuration of the following:

• Cache
• write buffer
• Protection Unit
• a number of other configuration options.

4.1.1 Compatibility
To ensure backwards compatibility of future CPUs, all reserved or unused bits in
registers and coprocessor instructions should be programmed to ‘0’.

Invalid registers must not be read/written.

Note The gray areas in the register diagrams are reserved and should be programmed 0 for
future compatibility.
Open Access – Preliminary

4-2 ARM740T Datasheet
ARM DDI 0008E

Configuration

4.2 Internal Coprocessor Instructions

The on-chip configuration registers may be read using MRC instructions and written
using MCR instructions. These operations are only allowed in non-user modes and the
undefined instruction trap is taken if accesses are attempted in user mode.

Note The CP15 register map may change in later ARM processors. We strongly recommend
you structure software such that any code accessing coprocessor 15 is contained in a
single module. It can then be updated easily.

 Figure 4-1: Format of internal coprocessor instructions MRC and MCR

where:

The CRn field is normally used to determine which configuration register is being
accessed.

1 1 1 0 n 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd CRm

Cond ARM condition codes

Crn CP15 Source/Destination Register

Crm CP15 Operand Register

Rd ARM Register

n 1 = MRC register read
0 = MCR register write
Open Access – Preliminary

4-3ARM740T Datasheet
ARM DDI 0008E

Configuration

4.3 Registers

The configuration registers are accessed by CPRT instructions to CP15 with the
processor in privileged mode.

Only some CRn registers are valid:

• an access to an invalid register causes neither the access nor an undefined
instruction trap, and therefore should never be carried out

• an access to any of the registers [8:15] causes the undefined instruction trap
to be taken

4.3.1 Register 0: ID
Register 0 is a read-only identity register that returns the ARM code for this core. This
code is 0x4180740x.

 Figure 4-2: ID Code register

8KB cache variant

For the 8KB cache variant the id code is 0x41807400.

4KB cache variant

For the 4KB cache variant the ID code is 0x41817400.

Register Register Reads Register Writes

0 ID Register Reserved

1 Control Control

2 Cacheable Cacheable

3 Write Buffer Control Write Buffer Control

4 Reserved Reserved

5 Protection Protection

6 Memory Area Definition Memory Area Definition

7 Reserved Flush unlocked Cache banks

8-15 Reserved Reserved

 Table 4-1: System control registers

0341516232431

41 Revision80 740
Open Access – Preliminary

4-4 ARM740T Datasheet
ARM DDI 0008E

Configuration

4.3.2 Register 1: Control

Register 1 contains the control bits. All bits in this register are forced LOW by reset.

 Figure 4-3: Control register

4.3.3 Register 2: Cacheable
Register 2 holds the current values of the Cacheable bit. See 7.2 Protection Unit
Registers on page 7-3 for a description of the operation of the Protection Unit.

 Figure 4-4: Cacheable register

0123456782931

F B W C MSBank Lock

28 27 26 25 2430

M Bit 0 Protection Unit Enable/disable

0 on-chip Protection Unit turned off

1 on-chip Protection Unit turned on.

C Bit 2 Cache enable/disable

0 Cache turned off

1 Cache turned on

W Bit 3 Write buffer enable/disable

0 Write buffer turned off

1 Write buffer turned on

B Bit 7 Big/little-endian

0 little-endian operation

1 big-endian operation

S Bit 24 Split Instruction Data Mode
This bit controls the operating mode of the ARM740T
Cache. Refer to 5.3.3 Split instruction data operation on
page 5-5.

Lock Bits [26:25] Lock Cache Lockdown control register
This bit controls the ARM740T Cache. Refer to 5.3.2
Partially locked operation on page 5-5.

F Bit 27 Load Mode
This bit controls the ARM740T Cache. Refer to 5.3.2
Partially locked operation on page 5-5.

Bank Bits [29:28] Cache Bank select register
These bits controls the ARM740T Cache. Refer to 5.3.2
Partially locked operation on page 5-5.

Cacheable
1 0234567

31 8 7 6 5 4 3 2 1 0
Open Access – Preliminary

4-5ARM740T Datasheet
ARM DDI 0008E

Configuration

4.3.4 Register 3: Bufferable

Register 3 holds the current values of the Bufferable bit. See 7.2 Protection Unit
Registers on page 7-3 for a description of the operation of the Protection Unit.

 Figure 4-5: Bufferable register

4.3.5 Register 4: Reserved
This register is reserved.

4.3.6 Register 5: Protection
Register 5 contains the access permissions for the eight areas of memory. The access
permission bits are defined in 7.2.4 Protection register on page 7-4.

 Figure 4-6: Protection register

4.3.7 Register 6: Memory Area Definition
Register 6 is actually eight physical registers which are referenced by the CRm field of
a CPRT instruction. Each register defines a memory region. A fuller description of
these registers is given in 7.2.5 Area registers on page 7-5.

 Figure 4-7: Size register

When programming the Memory Area Register the appropriate region is selected using
the CRm parameter in the MCR or MRC instruction.

4.3.8 Register 7: IDC Flush
Register 7 is a write-only register. The data written to this register is discarded and all
unlocked banks of the cache are flushed.

4.3.9 Registers [8:15]: Reserved
Accessing any of these registers causes the undefined instruction trap to be taken.

Bufferable
1 0234567

31 8 7 6 5 4 3 2 1 0

1 0234567

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

31 1 023429 28 27 26 25 2430 567891011121314151623 22 21 20 19 18 17

Region Base Address Size E
Open Access – Preliminary

4-6 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the cache.

5.1 Overview 5-2
5.2 Control Registers 5-4
5.3 Operating Modes 5-5
5.4 Cache Operation 5-7

Cache5
Open Access – Preliminary

5-1ARM740T Datasheet
ARM DDI 0008E

Cache

5.1 Overview

The ARM740T can incorporate either an 8KB or 4KB general purpose cache. Both
variants are functionally equivalent.

The cache:

• is physically addressed
• is 4-way set associative
• is write through
• has four words and a a valid flag per line
• uses a random replacement algorithm
• is filled by line

 Figure 5-1: Cache architecture

Operating modes

Various operating modes are provided, to allow the cache to be tailored to the
application:

• mixed instruction data
• partially locked
• split instruction data

Cache operation

The cache is enabled or disabled and configured via the ARM740T control register.

The operation of the cache is further controlled by the cacheable function of the
protection unit. The protection unit must always be enabled if the cache is enabled or
the behavior is undefined. The two functions may be enabled simultaneously, with a
single write to the control register.

Replacement algorithm

The replacement algorithm of the cache is random. The various operating modes all
use random allocation, though the replacement algorithm is constrained.

In all cases, the options only affect cache replacements. The complete cache is always
searched for an address, and if the address is found, the data is used or updated. This
ensures that the cache is guaranteed to be self-consistent, and coherent with external
memory.

TAG RAMARM Core

Replacement controller

Data Bus

Address Bus
Open Access – Preliminary

5-2 ARM740T Datasheet
ARM DDI 0008E

Cache

5.1.1 The 8KB variant

The 8KB variant has 128 lines per bank (set). The Tag field is 21 bits and the line index
is 7 bits as shown below:

 Figure 5-2: 8KB variant

5.1.2 The 4KB variant
The 4KB variant has 64 lines per bank (set). The Tag field is 22 bits and the line index
is 6 bits as shown below:

 Figure 5-3: 4KB variant

5.1.3 Read-Lock-Write
The IDC treats the Read-Locked-Write instruction as a special case.

Externally the two phases are flagged as indivisible by asserting the BLOK signal.

5.1.4 Reset
The IDC is automatically disabled and flushed on BnRES . Once enabled, cacheable
read accesses place lines in the cache.

01234101131

Tag ByteLine Word

0123491031

Tag ByteLine Word

The read phase always forces a read of external memory, regardless of
whether the data is contained in the cache.

The write phase is treated as a normal write operation (and if the data is
already in the cache, the cache will be updated).
Open Access – Preliminary

5-3ARM740T Datasheet
ARM DDI 0008E

Cache

5.2 Control Registers

The cache is controlled by the following bits in the control register.

See 4.3.2 Register 1: Control on page 4-5 for a full description of the configuration
register.

bank[1:0] These bits select the bank to be loaded when the F bit is set.

Note: The cache banks are always locked starting from bank 0,
so the order of loading should be 0, 1, 2. While bank 3 can be
loaded, there is no mechanism for locking all four banks of
cache.

C Cache enable bit. The cache is filled when a cacheable
(instruction or data) fetch is performed. The cache is loaded by
a line fetch of four words.

F This bit forces all linefetches to occur to the bank selected by
bank[1:0]. When this bit is set, all instruction fetches are forced
to be 'Uncacheable'—data fetches are still subject to the
cacheable mapping in the protection unit.

lock[1:0] These bits are used to set the number of banks locked, and
when in Split Instruction Data mode, is it also used to program
the split. The effect of lock[1:0] when used to lock banks of the
cache is shown in Table 5-1: Cache banks locked by
lock[1:0] .

lock[1:0] Bank 3 Bank 2 Bank 1 Bank 0 Description

00 Cache Cache Cache Cache No Banks Locked

01 Cache Cache Cache Locked 1 Bank Locked

10 Cache Cache Locked Locked 2 Banks Locked

11 Cache Locked Locked Locked 3 Banks Locked

 Table 5-1: Cache banks locked by lock[1:0]

S This is the split instruction/data bit. When this bit is set, the
Cache is configured according to the value of the lock[1:0] bits.
It is illegal to have F and S set simultaneously. The effects of the
lock[1:0] bits when in split instruction/data mode is shown in
Table 5-2: Bank allocation in Split Instruction / Data mode
on page 5-5.
Open Access – Preliminary

5-4 ARM740T Datasheet
ARM DDI 0008E

Cache

5.3 Operating Modes

The following operating modes are provided, to allow the cache to be tailored to the
application:

• mixed instruction data
• partially locked
• split instruction data

5.3.1 Mixed instruction data operation
This is the standard mode of operation of the cache. In this mode, the cache functions
as a standard mixed instruction and data cache. Lines fetched into the cache are
randomly placed into one of the cache banks.

5.3.2 Partially locked operation
The ARM740T cache allows critical code and data to be locked into the cache to ensure
predictable high performance.

Locking code or data into the cache

To lock code or data into the cache:

1 Select the bank to be loaded using the bank[1:0] register, and set the F bit to
1. Cache banks are always locked starting from bank 0, hence should be
loaded and locked in the order 0, 1, 2.

2 Perform a cache flush operation. This is necessary to ensure that the required
instructions and data are loaded into the selected cache bank. If this is not
performed, they may be elsewhere in the cache, and therefore are not loaded
into the selected bank.

3 Load the instructions or data to be locked into the cache either using LDM or
LDR instructions, one per line. While in load mode, all instruction fetches are
uncacheable.

4 Set the F bit to zero.
5 Set the number of banks to be locked into the lock[1:0] register.

Once the lock register is set, the replacement algorithm is prevented from replacing in
the locked banks. This has the effect of reducing the associatively of the cache to the
number of banks remaining as cache.

5.3.3 Split instruction data operation
As a further option, the ARM740T cache can be operated in split instruction data mode.
This forces instructions and data to be cached in separate banks of the cache. This can
be used to improve performance where a small code set is processing a large data set.
The split nature of the cache prevents the data from replacing the cached instructions.
The banks of the cache are used as shown in Table 5-2: Bank allocation in Split
Instruction / Data mode on page 5-5.

lock[1:0] Bank 3 Bank 2 Bank 1 Bank 0 Description

00 - - - - Reserved

01 Data Data Data Instr . 1 Bank Instruction, 2 Banks Data

10 Data Data Instr . Instr . 2 Banks Instruction, 2 Banks Data

11 Data Instr . Instr . Instr . 3 Banks Instruction, 1 Bank Data

 Table 5-2: Bank allocation in Split Instruction / Data mode
Open Access – Preliminary

5-5ARM740T Datasheet
ARM DDI 0008E

Cache

It is not necessary to flush the cache before enabling split instruction / data mode. The
complete cache is searched, regardless of the split selected.

1 Set the S bit.
2 Select the required split using the lock[1:0] register.

If required, this mechanism can be used to ‘snapshot’ contents of the instruction banks,
and lock them into the cache. The required sequence of operations is as follows:

1 Set the S bit to 1, and select the required split using the lock[1:0] register.
2 Flush the cache to ensure that the code is loaded into the instruction banks.
3 Execute the required code fragment.
4 Set the S bit to 0, leaving the same value in the lock[1:0] register.

In all cases, when operating in split instruction / data mode, the associativity of each
section of the cache is equal to the number of banks allocated to it.

Notes It is illegal to simultaneously have the S bit and the F bit set.
It is illegal to have the S bit set, with a value of 00 in the lock[1:0] register.
Open Access – Preliminary

5-6 ARM740T Datasheet
ARM DDI 0008E

Cache

5.4 Cache Operation

The cache is always searched regardless of whether it is enabled. If an address hits,
then the data will be read or written. So when the cache is disabled it should also be
flushed.

5.4.1 Cacheable bit
The protection unit uses the appropriate cacheable bit in the cacheable register to
determine whether data being read may be placed in the IDC and used for subsequent
read operations.

Typically, main memory is marked as cacheable to improve system performance, and
I/O space as non-cacheable to stop the data being stored in ARM740T's cache.

For example, if the processor is polling a hardware flag in I/O space, it is important that
the processor is forced to read data from the external peripheral, and not a copy of the
initial data held in the cache. See Chapter 7, Protection Unit for more details.

5.4.2 Software IDC flush
All unlocked banks of the Cache may be marked as invalid by writing to the ARM740T
IDC Flush Register (Register 7), see 4.3.8 Register 7: IDC Flush on page 4-6. The
cache is flushed immediately the register is written, but note that the two instruction
fetches following may come from the cache before the register is written.

Cacheable reads A linefetch of four words is performed when a ‘cache-miss’
occurs in a cacheable area of memory. This is placed in the
cache according to the current mode of operation.

Uncacheable reads An external memory access is performed and the cache is
not written.

Writes All writes updates the data in the cache if present, and are
written through to the main memory.
Open Access – Preliminary

5-7ARM740T Datasheet
ARM DDI 0008E

Cache
Open Access – Preliminary

5-8 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the Write Buffer.

6.1 Overview of the Write Buffer 6-2
6.2 Write Buffer Operation 6-3

Write Buffer6
Open Access – Preliminary

6-1ARM740T Datasheet
ARM DDI 0008E

Write Buffer

6.1 Overview of the Write Buffer

The ARM740T write buffer is provided to improve system performance. It can buffer
up to eight words of data, and four independent addresses.

The write buffer may be enabled or disabled via the W bit (bit 3) in the ARM740T
Control Register, and the buffer is disabled and flushed on reset.

For a write to use the write buffer, both the W bit in the Control Register, and the
appropriate B bit in the Bufferable Register must be set.

It is not possible to abort buffered writes externally.

6.1.1 Bufferable bit
The operation of the write buffer is further controlled by the bufferable function of the
protection unit. If the write buffer is enabled the protection unit must also be enabled.
The two functions may however be enabled simultaneously, with a single write to the
Control Register.

This bit controls whether a write operation may or may not use the write buffer. Typically,
main memory is bufferable and I/O space unbufferable. The bufferable bit can be
configured for each area of memory, see 7.2.3 Bufferable register on page 7-4.

6.1.2 Bufferable write
If the write buffer is enabled and the processor performs a write to a bufferable area,
the data is placed in the write buffer at BCLK speeds and the CPU continues execution.
The write buffer then performs the external write in parallel.

If, however, the write buffer is full (either because there are already eight words of data
in the buffer, or because there is no slot for the new address), the processor is stalled
until there is sufficient space in the buffer.

• A single write requires one address slot and one data slot in the write buffer
• a sequential write of n words requires one address slot and n data slots.

The total of eight data slots in the buffer may be used as required. For example, there
could be three non-sequential writes and one sequential write of five words in the buffer,
and the processor could continue as normal: a fifth write or a sixth word in the forth
write would stall the processor until the first write had completed.

6.1.3 Unbufferable writes
If the write buffer is disabled or the CPU performs a write to an unbufferable area, the
processor is stalled until the write buffer empties and the write completes externally,
which may require synchronisation and several external clock cycles.

6.1.4 Read-lock-write
The write phase of a read-lock-write sequence is treated as an unbuffered write, even
if it is marked as buffered.
Open Access – Preliminary

6-2 ARM740T Datasheet
ARM DDI 0008E

Write Buffer

6.2 Write Buffer Operation

When the CPU performs a write operation, the Bufferable bit for that address is
inspected and the state of the B bit determines the subsequent action. If the write buffer
is disabled via the ARM740T Control Register, buffered writes are treated in the same
way as unbuffered writes.

6.2.1 To enable the write buffer
To enable the write buffer:

1 Ensure the Protection Unit is enabled by setting bit 0 in the Control Register.
2 Enable the write buffer by setting bit 3 in the Control Register.

The Protection Unit and write buffer may be enabled simultaneously with a single write
to the Control Register.

6.2.2 To disable the write buffer
To disable the write buffer, clear bit 3 in the Control Register.

Note Any writes already in the write buffer complete normally.
Open Access – Preliminary

6-3ARM740T Datasheet
ARM DDI 0008E

Write Buffer
Open Access – Preliminary

6-4 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the Protection Unit.

7.1 Overview 7-2
7.2 Protection Unit Registers 7-3
7.3 Protection Unit Operation 7-7
7.4 Support for Overlapping Regions 7-9
7.5 External Aborts 7-11
7.6 Interaction of the Protection Unit, Cache and Write Buffer 7-12

Protection Unit7
Open Access – Preliminary

7-1ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.1 Overview

The Protection Unit performs two primary functions by containing a description of the
properties of areas of memory in the memory map:

• controlling the cache and write buffer
• controlling memory access permissions

7.1.1 Controlling individual memory areas
The protection unit provides individual control for eight areas of memory (numbered 0
to 7). For each area the following registers can be programmed:

• Cachable
• Bufferable
• Basic Protection
• Size
• Base Address

This allows the memory architecture of the system to be described in an easily
programmable but flexible manner.
Open Access – Preliminary

7-2 ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.2 Protection Unit Registers

The ARM740T provides several registers which control the operation of the Protection
Unit. The format of these registers is shown in Table 7-1: System control registers .

For a complete description of the Control Coprocessor see Chapter 4, Configuration .

7.2.1 Control register
The Configuration register contains the protection enable bit M, which is shown in
Figure 7-1: Control register . On reset, this bit is set to zero, disabling the protection
mechanisms. This allows full access to all of memory, and all accesses are then
uncacheable and unbufferable.

 Figure 7-1: Control register

Note Other bits in the configuration register are also used for other functions. For a full
description of the configuration register see 4.3.2 Register 1: Control on page 4-5.

7.2.2 Cacheable register
The Cacheable register sets the cacheable bit for each of the eight areas of memory.

 Figure 7-2: Cacheable register

The cacheable bit determines if a linefetch should be performed for an access to a
given area of memory. The cache is always searched regardless of the state of this bit,
and if the required address is found the copy of the data in the cache will be used.

Register Register Reads Register Writes

0 ID Register Reserved

1 Configuration Configuration

2 Cacheable Cacheable

3 Bufferable Bufferable

4 Reserved Reserved

5 Protection Protection

6 Memory Area Definition Memory Area Definition

7 Reserved Flush unlocked Cache banks

8–15 Reserved Reserved

 Table 7-1: System control registers

M

31 1 0

Register 1

31 1 0

Register 2

2345678

Cacheable
1 0234567
Open Access – Preliminary

7-3ARM740T Datasheet
ARM DDI 0008E

Protection Unit

On reset all areas are marked as uncacheable.

Typically, main memory is marked as cacheable to provide maximum performance and
peripherals are marked as uncacheable.

7.2.3 Bufferable register
The Bufferable register sets the bufferable bit for each of the eight areas of memory.

 Figure 7-3: Bufferable register

The bufferable bit indicates that data at this address is written through the write buffer
(if the write buffer is enabled). On reset, all areas are marked as unbufferable.

Note The meaning of the cacheable and bufferable bits may change in later ARM
processors. It is strongly recommended that you structure software so that code which
manipulates the protection unit is contained in a single module. It can then be updated
easily when you port it to a different ARM processor.

7.2.4 Protection register
The Protection register controls the access permissions for the eight areas of memory.

 Figure 7-4: Protection register

For each area of memory, the access permissions are controlled by the value in the
Protection register. These control access as shown in Table 7-2: Access
permissions :

Register 3
Bufferable

1 0234567

31 8 7 6 5 4 3 2 1 0

Register 5 1 0234567

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Supervisor User

00 No Access No Access

01 Read / Write No Access

10 Read / Write Read Only

11 Read / Write Read / Write

 Table 7-2: Access permissions
Open Access – Preliminary

7-4 ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.2.5 Area registers

The Area registers control the parameters of the areas of memory controlled by the
Protection Unit. These registers differ from the other CP15 registers in how the areas
of memory are addressed. Rather than using separate bit-fields for each region of
memory, one register is used for each area indexed by the coprocessor operand
parameter in the instruction.

The number of the area of memory to be accessed should be placed in the CP15
operand field of the instruction. See Figure 7-5: Format of internal coprocessor
instructions MRC and MCR on page 7-5.

 Figure 7-5: Format of internal coprocessor instructions MRC and MCR

where:

Each Area register contains 3 fields to describe the location of the area of memory.

• The Base address of the Area
• The Size of the Area
• The enable bit, E

 Figure 7-6: Size register

The enable bit E determines if a given area is active. If this bit is set to zero, the area is
disabled.

The value in size[4:0] determines the size of a given area of memory, as shown in
Table 7-3: Area sizes :

1 1 1 0 n 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd CRm

Cond is an ARM condition code

CRn is the CP15 Source/Destination Register (equal to 6 for the
Area register)

CRm is the CP15 Operand Register, set to the area to be
accessed

Rd is an ARM Register

n 1 = MRC register read
0 = MCR register write

31 1 023429 28 27 26 25 2430 567891011121314151623 22 21 20 19 18 17

Base[31:12] Size[4:0] E

Size[4:0] Area Size[4:0] Area

0b01011 4KB 0b10110 8MB

0b01100 8KB 0b10111 16MB

 Table 7-3: Area sizes
Open Access – Preliminary

7-5ARM740T Datasheet
ARM DDI 0008E

Protection Unit
Base address

The base address of each area must be aligned with respect to the size of that area.

For example, if a region size is set to 16KB, then 0x8000 is a legal address for the
region to start at, and 0x5000 is not legal.

The finest resolution for setting the location of a section is 4KB, as determined by the
smallest region size setting. The behavior of the protection unit is undefined if this
requirement is not met.

Accessing the area register

This register is accessed using MCR and MRC instructions as follows:

• To write the descriptor for an area of memory:
MCR p15, 0, Rd, c6, CRm, 0

where:

• To read back the descriptor:
MRC p15, 0, Rd, c6, CRm, 0

where:

0b01101 16KB 0b11000 32MB

0b01110 32KB 0b11001 64MB

0b01111 64KB 0b11010 128MB

0b10000 128KB 0b11011 256MB

0b10001 256KB 0b11100 512MB

0b10010 512KB 0b11101 1GB

0b10011 1MB 0b11110 2GB

0b10100 2MB 0b11111 4GB

0b10101 4MB

CRm is the area of memory to be defined

Rd is the ARM register containing the value to be
written into the area register.

CRm is the area of memory to be read

Rd is the ARM register where the descriptor is
placed

Size[4:0] Area Size[4:0] Area

 Table 7-3: Area sizes (Continued)
Open Access – Preliminary

7-6 ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.3 Protection Unit Operation

The Protection Unit works by comparing the address generated by the ARM against the
parameters of the eight areas of memory. This can cause one of three results:

This is illustrated diagrammatically in Figure 7-7: Protection Unit operation .

 Figure 7-7: Protection Unit operation

7.3.1 Memory area properties
Each area of memory is defined in terms of the following properties:

• size
• base address
• access permissions
• bufferable bit
• cacheable bit

The Base address of the area of memory must be a multiple of the size of the area.

When an address matches multiple areas of memory, the properties of the highest
priority area of memory are used. The priority ordering of the areas is fixed such that:

No area hits The access is aborted

One area hit The properties of this area are applied to the access

Multiple areas hit The properties of the highest priority area is applied to the
access.

A
re

a
1

A
re

a
2

A
re

a
3

A
re

a
4

A
re

a
5

A
re

a
6

A
re

a
7

A
re

a
0

0

4GB

Access to Area 5

Access to Area 0

Access to Area 4

(Background Permissions)

(Highest Priority Area)

A
dd

re
ss

 S
pa

ce

area 7 has the HIGHEST priority

area 0 has the LOWEST priority
Open Access – Preliminary

7-7ARM740T Datasheet
ARM DDI 0008E

Protection Unit

The bufferable and cacheable bits for the selected area of memory are used to
determine if the cache and write buffer should be used (if enabled).

7.3.2 Access permissions
The access permission bits are checked against the access type. This decoding is
detailed in Table 7-2: Access permissions on page 7-4.

• If the access is permitted, it continues.
• If the access is prohibited, the ARM is aborted and the access does not occur

on the external bus.

7.3.3 Protection failures and external accesses
If the protection unit detects an access violation, it does so before the external memory
access takes place, and it therefore inhibits the access. External aborts do not
necessarily inhibit the external access, as described in 7.5 External Aborts on page
7-11.

An internally aborting access may cause the address on the external address bus to
change, even though the external bus cycle has been cancelled. No memory access is
performed to this address.

7.3.4 Reset
The Protection Unit is disabled on BnRES . Before it is enabled, all the Protection Unit
registers must be programmed. If this is not observed, unpredictable behaviour will
result.

Property Effect if Set

Bufferable If the Access is a write, the write buffer will be used.

Cacheable If the Access is a read, a cache linefill will be performed if the required
word is not in the cache.

 Table 7-4: Cacheable and bufferable properties
Open Access – Preliminary

7-8 ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.4 Support for Overlapping Regions

Overlapping regions can be used to allow greater flexibility over how logical memory
regions are mapped into physical memory devices.

For example, consider the case where the system has 4KB of supervisor code and
28KB of user code, both of which must be mapped into a 32KB RAM.

If overlapping memory is not supported, four regions would have to be used to achieve
this:

• one 4KB region for the supervisor code
• one 32KB region
• one 16KB region
• one 4KB region for the user code

This is as shown below in Figure 7-8: Use of overlapping memory regions .

Overlapping supervisor and code regions

If the supervisor and user code regions can be overlapped, this can be achieved using
only two regions:

• one 4KB region for the supervisor code
• one 32KB region for the user code, as shown in Figure 7-8: Use of

overlapping memory regions

 Figure 7-8: Use of overlapping memory regions

In this example, the supervisor code could be placed in Region 2, and the user code in
Region 1. This ensures that the supervisor mapping takes precedence over the less
strict user mapping.

3

2

1

2
4

1

Supervisor Only

Full Access

a) Four Regions
Required

b) Two Regions
Required
Open Access – Preliminary

7-9ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.4.1 Undefined address space

The mechanism for overlapping segments can be used to allow the default protection
for otherwise unmapped memory to be programmed. If the memory regions do not
completely fill the 4GB address space of the ARM7TDMI, there are ‘holes’ in the
address map. By configuring Region 0 (the lowest priority Region) to be 4GB in size,
you can program what happens if an access is made to a hole.

For example, the attributes could be set to full access or no access. Alternatively, you
may chose to ignore the holes, and any access to an area of memory not described by
the protection unit results in an abort.
Open Access – Preliminary

7-10 ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.5 External Aborts

In addition to the aborts generated by the protection unit, ARM740T has an external
abort input BERROR that may be used to flag an error on an external memory access.
However, not all accesses can be aborted in this way, so this input must be used with
great care.

7.5.1 Restrictions
The following accesses may be aborted and restarted safely.

• reads
• unbuffered writes
• read-lock-write sequence

If any of these are aborted, the external access ceases on the next cycle. In the case
of a read-lock-write sequence in which the read aborts, the write does not happen.

7.5.2 Cacheable reads (linefetches)
A linefetch may be safely aborted on any word in the transfer.

• If an abort occurs during the linefetch, the cache is purged, so it does not
contain invalid data.

• If the abort happens on a word that has been requested by the ARM740T, it is
aborted, otherwise the cache line is purged but program flow is not interrupted.

The line is therefore purged under all circumstances.

7.5.3 Buffered writes
Buffered writes cannot be externally aborted. Therefore, the system should be
configured so that it does not buffer writes to areas of memory that are capable of
flagging an external abort.

Note Areas of memory that can generate an external abort on a location that has previously
been read successfully must not be marked as cacheable or unbufferable. If all writes
to an area of memory abort, it is recommended that you mark it as read only in the
Protection Unit, otherwise mark it as uncacheable and unbufferable.
Open Access – Preliminary

7-11ARM740T Datasheet
ARM DDI 0008E

Protection Unit

7.6 Interaction of the Protection Unit, Cache and Write Buffer

The Protection Unit, cache and write buffer may be enabled and disabled
independently. However, in order for the write buffer or the cache to be enabled the
Protection Unit must also be enabled. There are no hardware interlocks on these
restrictions, so invalid combinations cause undefined results.

The following procedures must be observed:

To enable the Protection Unit:

1 Program the Cacheable, Bufferable, Protection and Area registers as required.
2 Enable the Protection Unit by setting bit 0 in the Control register.

To disable the Protection Unit:

1 Disable the write buffer by clearing bit 3 in the Control register.
2 Disable the cache by clearing bit 2 in the Control register.
3 Disable the Protection Unit by clearing bit 0 in the Control register.

Disabling of all three functions may be done simultaneously with a single write to the
control register.

Protection unit Cache Write buffer

off off off

on off off

on on off

on off on

on on on

 Table 7-5: Valid protection unit, cache and write buffer combinations
Open Access – Preliminary

7-12 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the ARM740T advanced debug interface.

8.1 Overview 8-2
8.2 Debug Systems 8-3
8.3 Entering Debug State 8-4
8.4 Scan Chains and JTAG Interface 8-5
8.5 Reset 8-8
8.6 Public Instructions 8-9
8.7 Test Data Registers 8-12
8.8 ARM7TDM Core Clocks 8-19
8.9 Determining the Core and System State 8-20
8.10 The PC During Debug 8-23
8.11 Priorities and Exceptions 8-26
8.12 Scan Interface Timing 8-27
8.13 Debug Timing 8-30

Debug Interface8
Open Access – Preliminary

8-1ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.1 Overview

In this chapter ARM7TDM refers to the ARM7TDM core excluding the EmbeddedICE
Macrocell. The ARM7TDM debug interface is based on IEEE Std. 1149.1 - 1990,
Standard Test Access Port and Boundary-Scan Architecture. Please refer to this
standard for an explanation of the terms used in this chapter and for a description of
the TAP controller states.

8.1.1 Debug extensions
ARM7TDM contains hardware extensions for advanced debugging features. These are
intended to ease the user’s development of application software, operating systems,
and the hardware itself.

The debug extensions allow the core to be stopped either on a given instruction fetch
(breakpoint) or data access (watchpoint), or asynchronously by a debug-request.
When this happens, ARM7TDM is said to be in debug state. At this point, the core’s
internal state and the system’s external state may be examined. Once examination is
complete, the core and system state may be restored and program execution resumed.

Debug state

ARM7TDM is forced into debug state either by a request on one of the external debug
interface signals, or by an internal functional unit known as EmbeddedICE. Once in
debug state, the core isolates itself from the memory system. The core can then be
examined while all other system activity continues as normal.

Internal state

ARM7TDM’s internal state is examined via a JTAG-style serial interface, which allows
instructions to be serially inserted into the core’s pipeline without using the external
data bus. Thus, when in debug state, a store-multiple (STM) could be inserted into the
instruction pipeline and this would dump the contents of ARM7TDM’s registers. This
data can be serially shifted out without affecting the rest of the system.

8.1.2 Pullup resistors
The IEEE 1149.1 standard effectively requires that TDI and TMS should have internal
pullup resistors. In order to minimise static current draw, these resistors are not fitted
to ARM7TDM. Accordingly, the four inputs to the test interface (the above four signals
plus TCK) must all be driven to good logic levels to achieve normal circuit operation.

8.1.3 Instruction register
The instruction register is four bits in length.

There is no parity bit. The fixed value loaded into the instruction register during the
CAPTURE-IR controller state is 0001.
Open Access – Preliminary

8-2 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.2 Debug Systems

The ARM7TDM forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by
ARM7TDM. Such a system typically has three parts:

 Figure 8-1: Typical debug system

The anatomy of ARM7TDM is shown in Figure 8-2: ARM740T scan chain
arrangement on page 8-6. The major blocks are:

The Debug Host and the Protocol Converter are system dependent. The rest of this
chapter describes the ARM7TDM’s hardware debug extensions.

The Debug Host This is a computer, for example a PC, running a
software debugger such as ARMSD. The debug
host allows the user to issue high level commands
such as “set breakpoint at location XX”, or “examine
the contents of memory from 0x0 to 0x100”.

The Protocol Converter The Debug Host is connected to the ARM7TDM
development system via an interface (an RS232, for
example). The messages broadcast over this
connection must be converted to the interface
signals of the ARM7TDM, and this function is
performed by the protocol converter.

ARM7TDM ARM7TDM, with hardware extensions to ease
debugging, is the lowest level of the system. The
debug extensions allow the user to stall the core
from program execution, examine its internal state
and the state of the memory system, and then
resume program execution.

ARM7TDM This is the CPU core, with hardware support for debug.

EmbeddedICE This is a set of registers and comparators used to
generate debug exceptions (eg. breakpoints). This unit
is described in Chapter 9, EmbeddedICE Macrocell .

TAP controller This controls the action of the scan chains via a JTAG
serial interface.

Host computer running ARMSD

Protocol
Converter

Development System
Containing ARM7TDMI

Debug
Host

Debug
Target
Open Access – Preliminary

8-3ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.3 Entering Debug State

ARM7TDM is forced into debug state after a breakpoint, watchpoint or debug request
has occurred. Conditions under which a breakpoint or watchpoint occur can be
programmed using EmbeddedICE. Alternatively, external logic can monitor the address
and data bus, and flag breakpoints and watchpoints via the BREAKPT pin.

8.3.1 Entering debug state on breakpoint
After an instruction has been breakpointed, the core does not enter debug state
immediately. Instructions are marked as being breakpointed as they enter ARM7TDM's
instruction pipeline. Thus ARM7TDM only enters debug state when (and if) the
instruction reaches the pipeline’s execute stage.

There are two reasons why a breakpointed instruction may not cause ARM7TDM to
enter debug state:

• a branch precedes the breakpointed instruction. When the branch is executed,
the instruction pipeline is flushed and the breakpoint is cancelled.

• an exception has occurred. Again, the instruction pipeline is flushed and the
breakpoint is cancelled. However, the normal way to exit from an exception is
to branch back to the instruction that would have executed next. This involves
refilling the pipeline, and so the breakpoint can be re-flagged.

When a breakpointed conditional instruction reaches the execute stage of the pipeline,
the breakpoint is always taken and ARM7TDM enters debug state, regardless of
whether the condition was met.

Breakpointed instructions are not executed. Instead, ARM7TDM enters debug state.
Thus, when the internal state is examined, the state before the breakpointed instruction
is seen. Once examination is complete, the breakpoint should be removed and program
execution restarted from the previously breakpointed instruction.

8.3.2 Entering debug state on watchpoint
Watchpoints occur on data accesses. A watchpoint is always taken, but the core may
not enter debug state immediately. In all cases, the current instruction does complete.
If this is a multi-word load or store (LDM or STM), many cycles may elapse before the
watchpoint is taken.

Watchpoints can be thought of as being similar to data aborts. The difference is that if
a data abort occurs, although the instruction completes, all subsequent changes to
ARM7TDM’s state are prevented. This allows the cause of the abort to be cured by the
abort handler, and the instruction re-executed. In the case of a watchpoint, the
instruction completes and all changes to the core’s state occur (load data is written into
the destination registers, and base writeback occurs). Thus, the instruction does not
need to be restarted.

Watchpoints are always taken. If an exception is pending when a watchpoint occurs,
the core enters debug state in the mode of that exception.

8.3.3 Entering debug state on debug-request
ARM7TDM may also be forced into debug state on debug request. This can be done
either through EmbeddedICE programming (see Chapter 9, EmbeddedICE
Macrocell) or by the assertion of the DBGRQ pin. This pin is an asynchronous input
and is thus synchronised by logic inside ARM7TDM before it takes effect. Following
synchronisation, the core normally enters debug state at the end of the current
instruction. However, if the current instruction is a busy-waiting access to a
coprocessor, the instruction terminates and ARM7TDM enters debug state
immediately (this is similar to the action of nIRQ and nFIQ).
Open Access – Preliminary

8-4 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.4 Scan Chains and JTAG Interface

There are several JTAG style scan chains inside ARM7TDM and chain inside the
ARM740T. These allow testing, debugging, and EmbeddedICE programming.

In addition, support is provided for an optional scan chain. This is intended to be used
for an external boundary scan chain around the pads of a packaged device. The control
signals provided for this scan chain are described later.

The scan chains are controlled from a JTAG-style Test Access Port (TAP) controller. For
further details of the JTAG specification, please refer to IEEE Standard 1149.1 - 1990
“Standard Test Access Port and Boundary-Scan Architecture”.

Note The scan cells are not fully JTAG-compliant. The following sections describe the
limitations on their use.

8.4.1 Scan limitations
The scan paths are shown in Figure 8-2: ARM740T scan chain arrangement on
page 8-6.

Scan Chain 0 allows access to the entire periphery of the ARM7TDM core,
including the data bus. The scan chain functions allow
inter-device testing (EXTEST) and serial testing of the core
(INTEST). The order of the scan chain (from SDIN to
SDOUTMS) is:

• data bus bits 0 through 3
• the control signals (see Table 8-3: Scan Chain 0

Bit Positions on page 8-28)
• the address bus bits 31 through 0

Scan Chain 1 is a subset of the signals that are accessible through scan
chain 0. Access to the core’s data bus D[31:0] , and the
BREAKPT signal is available serially. There are 33 bits in
this scan chain; the order is (from serial data in to out):

• data bus bits 0 through 31
• BREAKPT

Scan Chain 2 allows access to the EmbeddedICE registers. See Chapter
9, EmbeddedICE Macrocell for details.

Scan Chain 6 allows access to the TAG entries in the cache.

Scan Chain 15 allows access to the System Control Coprocessor registers.
Open Access – Preliminary

8-5ARM740T Datasheet
ARM DDI 0008E

Debug Interface
 Figure 8-2: ARM740T scan chain arrangement

8.4.2 The JTAG state machine
The process of serial test and debug is best explained in conjunction with the JTAG
state machine. Figure 8-3: Test access port (TAP) controller state transitions
shows the state transitions that occur in the TAP controller. The state numbers are also
shown on the diagram.

ARM7TDM
Processor

ARM7TDM

EmbeddedICE

ARM7TDM

TAP Controller

•

Scan Chain 1

Scan Chain 0

Scan Chain 2
•

System Control
Coprocessor

Scan Chain 15

Cache

Scan Chain 6
Open Access – Preliminary

8-6 ARM740T Datasheet
ARM DDI 0008E

Debug Interface
 Figure 8-3: Test access port (TAP) controller state transitions

Select-IR-Scan

Capture-IR

tms=0

Shift-IR

tms=0

Exit1-IR

tms=1

Pause-IR

tms=0

Exit2-IR

tms=1

Update-IR

tms=1

tms=0

tms=0

tms=1

tms=1

tms=0

Select-DR-Scan

Capture-DR

tms=0

Shift-DR

tms=0

Exit1-DR

tms=1

Pause-DR

tms=0

Exit2-DR

tms=1

Update-DR

tms=1

Test-Logic Reset

Run-Test/Idle

tms=0tms=1

tms=0

tms=0

tms=0

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1

tms=1 tms=1tms=0 tms=0

0xF

0xC 0x7 0x4

0xE

0xA

0x9

0xB

0x8

0xD0x5

0x0

0x3

0x1

0x2

0x6
Open Access – Preliminary

8-7ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.5 Reset

The boundary-scan interface includes a state-machine controller (the TAP controller).
In order to force the TAP controller into the correct state after power-up of the device,
a reset pulse must be applied to the nTRST signal.

If the boundary scan interface is to be used, nTRST must be driven LOW, and then
HIGH again. If the boundary scan interface is not to be used, the nTRST input may be
tied permanently LOW.

Note A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1 System mode is selected (the boundary scan chain cells do not intercept any
of the signals passing between the external system and the core).

2 The IDCODE instruction is selected. If the TAP controller is put into the
Shift-DR state and TCK is pulsed, the contents of the ID register is clocked out
of TDO.
Open Access – Preliminary

8-8 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.6 Public Instructions

The public instructions are listed below. In the descriptions that follow, TDI and TMS are
sampled on the rising edge of TCK and all output transitions on TDO occur as a result
of the falling edge of TCK.

EXTEST 0000 places the selected scan chain in test mode. This instruction
connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with EXTEST, all the scan
cells are placed in their test mode of operation.

CAPTURE-DR Inputs from the system logic and outputs from
the output scan cells to the system are captured
by the scan cells.

SHIFT-DR The previously captured test data is shifted out
of the scan chain via TDO, while new test data is
shifted in via the TDI input. This data is applied
immediately to the system logic and system
pins.

SCAN_N 0010 connects the Scan Path Select Register between TDI and TDO.
On reset, scan chain 3 is selected by default. The scan path
select register is 4 bits long in this implementation, although no
finite length is specified.

CAPTURE-DR The fixed value 1000 is loaded into the register.

SHIFT-DR The ID number of the desired scan path is
shifted into the scan path select register

UPDATE-DR The scan register of the selected scan chain is
connected between TDI and TDO, and remains
connected until a subsequent SCAN_N
instruction is issued.

INTEST 1100 places the selected scan chain test mode. This instruction
connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with this instruction, all the
scan cells are placed in their test mode of operation.

Single-step operation is possible using the INTEST instruction.

CAPTURE-DR The value of the data applied from the core logic
to the output scan cells, and the value of the data
applied from the system logic to the input scan
cells is captured.

SHIFT-DR The previously captured test data is shifted out
of the scan chain via the TDO pin, while new test
data is shifted in via the TDI pin.
Open Access – Preliminary

8-9ARM740T Datasheet
ARM DDI 0008E

Debug Interface
IDCODE 1110 connects the device identification register (or ID register) between
TDI and TDO. The ID register is a 32-bit register that allows the
manufacturer, part number and version of a component to be
determined through the TAP. See 8.7.2 ARM7TDM device
identification (ID) code register on page 8-12 for the details of
the ID register format.

When the instruction register is loaded with this instruction, all the
scan cells are placed in their normal (system) mode of operation.

CAPTURE-DR The device identification code is captured by the
ID register.

SHIFT-DR The previously captured device identification
code is shifted out of the ID register via the TDO
pin, while data is shifted in via the TDI pin into
the ID register.

UPDATE-DR The ID register is unaffected.

BYPASS 1111 connects a 1 bit shift register (the bypass register) between TDI
and TDO.

When this instruction is loaded into the instruction register, all the
scan cells are placed in their normal (system) mode of operation.
This instruction has no effect on the system pins.

Note: All unused instruction codes default to the BYPASS
instruction

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register via
TDI and out via TDO after a delay of one TCK
cycle. The first bit shifted out is a zero.

UPDATE-DR The bypass register is not affected.

CLAMP 0101 connects a 1 bit shift register (the bypass register) between TDI
and TDO.

When this instruction is loaded into the instruction register, the
state of all the output signals is defined by the values previously
loaded into the currently loaded scan chain.

Note: This instruction should only be used when scan chain 0 is
the currently selected scan chain.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register via
TDI and out via TDO after a delay of one TCK
cycle. The first bit shifted out is a zero.

UPDATE-DR The bypass register is not affected.
Open Access – Preliminary

8-10 ARM740T Datasheet
ARM DDI 0008E

Debug Interface
HIGHZ 0111 connects a 1 bit shift register (the bypass register) between TDI
and TDO.

When this instruction is loaded into the instruction register, the
Address bus, A[31:0] , the data bus, D[31:0] , plus nRW, nOPC,
LOCK , MAS[1:0] and nTRANS are all driven to the high
impedance state and the external HIGHZ signal is driven HIGH.
This is as if the signal TBE had been driven LOW.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register via
TDI and out via TDO after a delay of one TCK
cycle. Note that the first bit shifted out will be a
zero.

UPDATE-DR The bypass register is not affected.

CLAMPZ 1001 connects a 1 bit shift register (the bypass register) between TDI
and TDO.

When this instruction is loaded into the instruction register, all the
3-state outputs (as described above) are placed in their inactive
state, but the data supplied to the outputs is derived from the scan
cells. The purpose of this instruction is to ensure that, during
production test, each output can be disabled when its data value
is either a logic 0 or a logic 1.

CAPTURE-DR A logic 0 is captured by the bypass register.

SHIFT-DR Test data is shifted into the bypass register via
TDI and out via TDO after a delay of one TCK
cycle. Note that the first bit shifted out will be a
zero.

UPDATE-DR The bypass register is not affected.

RESTART 0100 restarts the processor on exit from debug state. It connects the
bypass register between TDI and TDO and the TAP controller
behaves as if the BYPASS instruction had been loaded. The
processor resynchronizes back to the memory system once the
RUN-TEST/IDLE state is entered.

SAMPLE/
PRELOAD

0011 Note: This instruction is included for production test only, and
should never be used.
Open Access – Preliminary

8-11ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.7 Test Data Registers

The following registers may be connected between TDI and TDO:

• Bypass Register
• ID Code Register
• Instruction Register
• Scan Chain Select Register
• Scan chain 0, 1, 2, 3, 6, or 15

These are described in detail in the following sections.

8.7.1 Bypass register
This register bypasses the device during scan testing by providing a path between TDI
and TDO. The bypass register is 1 bit in length.

Operating mode

When the BYPASS instruction is the current instruction in the instruction register, serial
data is transferred from TDI to TDO in the SHIFT-DR state with a delay of one TCK
cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR
state.

8.7.2 ARM7TDM device identification (ID) code register
This register reads the 32-bit device identification code. No programmable
supplementary identification code is provided. The register is 32 bits in length.

The format of the ID register is as follows:

 Figure 8-4: ID code register

Please contact your supplier for the correct Device Identification Code.

Operating mode

When the IDCODE instruction is current, the ID register is selected as the serial path
between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel inputs
during the CAPTURE-DR state.

Manufacturer IdentityPart NumberVersion

31 28 27 12 11 1 0

1

Open Access – Preliminary

8-12 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.7.3 Instruction register

This register changes the current TAP instruction. The register is 4 bits in length

Operating mode

When in the SHIFT-IR state, the instruction register is selected as the serial path
between TDI and TDO.

During the CAPTURE-IR state, the value 0001 binary is loaded into this register. This
is shifted out during SHIFT-IR (lsb, least significant bit, first), while a new instruction is
shifted in (lsb first).

During the UPDATE-IR state, the value in the instruction register becomes the current
instruction.

On reset, IDCODE becomes the current instruction.

8.7.4 Scan chain select register
This register changes the current active scan chain. The register is 4 bits in length.

Operating mode

After SCAN_N has been selected as the current instruction, when in the SHIFT-DR
state, the Scan Chain Select Register is selected as the serial path between TDI and
TDO.

During the CAPTURE-DR state, the value 1000 binary is loaded into this register.
This is shifted out during SHIFT-DR (lsb first), while a new value is shifted in (lsb first).

During the UPDATE-DR state, the value in the register selects a scan chain to become
the currently active scan chain. All further instructions, such as INTEST, then apply to
that scan chain.

The currently selected scan chain only changes when a SCAN_N instruction is
executed, or a reset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[3:0]
outputs. The TAP controller may be used to drive external scan chains in addition to
those within the ARM7TDM macrocell. The external scan chain must be assigned a
number and control signals for it can be derived from SCREG[3:0] , IR[3:0] ,
TAPSM[3:0] , TCK1 and TCK2.

The list of scan chain numbers allocated by ARM is shown in Table 8-1: Scan chain
number allocation . An external scan chain may take any other number. The serial
data stream to be applied to the external scan chain is made present on SDINBS and
the serial data back from the scan chain must be presented to the TAP controller on the
SDOUTBS input. The scan chain present between SDINBS and SDOUTBS is
connected between TDI and TDO whenever scan chain 3 is selected, or when any of
the unassigned scan chain numbers is selected. If there is more than one external scan
chain, a multiplexer must be built externally to apply the desired scan chain output to
SDOUTBS. The multiplexer can be controlled by decoding SCREG[3:0] .

Scan Chain Number Function Length

0 Macrocell scan test 105

1 Debug 33

2 EmbeddedICE programming 38

3 External boundary scan NA

 Table 8-1: Scan chain number allocation
Open Access – Preliminary

8-13ARM740T Datasheet
ARM DDI 0008E

Debug Interface
8.7.5 Overview of scan chains
These allow serial access to the core logic, and to EmbeddedICE for programming
purposes. They are described in detail in the following sections.

Each scan chain cell is fairly simple, and consists of a serial register and a multiplexer.
The scan cells perform two basic functions:

 Figure 8-5: Input scan cell

4 Reserved NA

6 TAG 88 (8KB variant)

6 TAG 92 (4KB variant)

8 Reserved NA

15 CP15 33

Scan Chain Number Function Length

 Table 8-1: Scan chain number allocation (Continued)

capture For input cells, the capture stage involves copying the value
of the system input to the core into the serial register.

For output cells, capture involves placing the value of a
core’s output into the serial register.

shift For input cells, during shift, this value is output serially. The
value applied to the core from an input cell is either the
system input or the contents of the serial register, and this is
controlled by the multiplexer.

For output cells, during shift, this value is serially output as
before. The value applied to the system from an output cell
is either the core output, or the contents of the serial register.

Shift
Register

Latch

System Data in

SHIFT Clock

Data to Core

Serial Data In

Serial Data Out

CAPTURE
Clock
Open Access – Preliminary

8-14 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

All the control signals for the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by the current instruction, and the state
of the TAP state machine. This is described in the following section.

Operating modes

The scan chains have three basic modes of operation. These are selected by the
various TAP controller instructions:

Note The scan cells are not fully JTAG-compliant in that they do not have an Update stage.
Therefore, while data is being moved around the scan chain, the contents of the scan
cell is not isolated from the output. Thus the output from the scan cell to the core or to
the external system could change on every scan clock.
This does not affect ARM7TDM because its internal state does not change until it is
clocked. However, the rest of the system needs to be aware that every output could
change asynchronously as data is moved around the scan chain. External logic must
ensure that this does not harm the rest of the system.

8.7.6 Scan chain 0
Scan chain 0 is intended primarily for inter-device testing (EXTEST), and testing the
core (INTEST). Scan chain 0 is selected via the SCAN_N instruction, and is 105 bits
long.

Serial testing the core

INTEST allows serial testing of the core. The TAP Controller must be placed in INTEST
mode after scan chain 0 has been selected.

• During CAPTURE-DR, the current outputs from the core’s logic are captured
in the output cells.

• During SHIFT-DR, this captured data is shifted out while a new serial test
pattern is scanned in, thus applying known stimuli to the inputs.

• During RUN-TEST/IDLE, the core is clocked. Normally, the TAP controller
should only spend one cycle in RUN-TEST/IDLE.

The whole operation may then be repeated.

See 8.8 ARM7TDM Core Clocks on page 8-19 for details of the core’s clocks during
test and debug.

Inter-device testing

EXTEST allows inter-device testing, which is useful for verifying the connections
between devices on a circuit board. The TAP Controller must be placed in EXTEST
mode after scan chain 0 has been selected.

• During CAPTURE-DR, the current inputs to the core's logic from the system
are captured in the input cells.

• During SHIFT-DR, this captured data is shifted out while a new serial test
pattern is scanned in, thus applying known values on the core’s outputs.

SYSTEM mode The scan cells are idle. System data is applied to inputs, and
core outputs are applied to the system.

INTEST mode The core is internally tested. The data serially scanned in is
applied to the core, and the resulting outputs are captured in
the output cells and scanned out.

EXTEST mode Data is scanned onto the core's outputs and applied to the
external system. System input data is captured in the input
cells and then shifted out.
Open Access – Preliminary

8-15ARM740T Datasheet
ARM DDI 0008E

Debug Interface

• During UPDATE-DR, the value shifted into the data bus D[31:0] scan cells

appears on the outputs. For all other outputs, the value appears as the data is
shifted round.

Note During RUN-TEST/IDLE, the core is not clocked.

The operation may then be repeated.

The ordering of signals on scan chain 0 is outlined in Table 8-3: Scan Chain 0 Bit
Positions on page 8-28.

8.7.7 Scan chain 1
The primary use for scan chain 1 is for debugging, although it can be used for EXTEST
on the data bus. Scan chain 1 is selected via the SCAN_N TAP Controller instruction.
Debugging is similar to INTEST, and the procedure described above for scan chain 0
should be followed.

Scan chain length and purpose

This scan chain is 33 bits long—32 bits for the data value, plus the scan cell on the
BREAKPT core input. This 33rd bit serves four purposes:

1 Under normal INTEST test conditions, it allows a known value to be scanned
into the BREAKPT input.

2 During EXTEST test conditions, the value applied to the BREAKPT input from
the system can be captured.

3 While debugging, the value placed in the 33rd bit determines whether
ARM7TDM synchronises back to system speed before executing the
instruction. See 8.10.5 System-speed access on page 8-24 for further details.

4 After ARM7TDM has entered debug state, the first time this bit is captured and
scanned out, its value tells the debugger whether the core entered debug state
due to a breakpoint (bit 33 LOW), or a watchpoint (bit 33 HIGH).

8.7.8 Scan chain 2
This scan chain allows EmbeddedICE's registers to be accessed. The scan chain is 38
bits in length.

The order of the scan chain, from TDI to TDO is:

• read/write
• register address bits 4 to 0
• data value bits 31 to 0

See Figure 9-2: EmbeddedICE block diagram on page 9-5 for more information.

To access this serial register, scan chain 2 must first be selected via the SCAN_N TAP
controller instruction. The TAP controller must then be place in INTEST mode.

• No action is taken during CAPTURE-DR.
• During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36

specify the address of the EmbeddedICE register to be accessed.
• During UPDATE-DR, this register is either read or written depending on the

value of bit 37 (0 = read). Refer to Chapter 9, EmbeddedICE Macrocell for
further details.
Open Access – Preliminary

8-16 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.7.9 Scan chain 3

This scan chain allows ARM7TDM to control an external boundary scan chain. Scan
chain 3 is provided so that an optional external boundary scan chain may be controlled
via ARM7TDM. Typically, this would be used for a scan chain around the pad ring of a
packaged device. Its length is user-defined.

The following control signals are provided. These are generated only when scan chain
3 has been selected. These outputs are inactive at all other times.

External scan chains

In addition to the above control outputs, the following are provided for use when an
external scan chain is in use:

8.7.10 Scan Chain 6

8KB variant

This scan chain is 88 bits long and across the Tag entries of the four banks. In
operation, addresses may be scanned into the chain and the corresponding Tag entries
scanned out. The cache is never written to by the scan chain, it is read only.

Although the scan chain is 88 bits long, only the seven bits of the line address are
significant for addressing the cache. These bits are A[10:4] and are the last seven bits
scanned into the chain. That is, A[4] is the very last bit scanned in and A[10] is the
seventh last bit scanned in.

For the line address presented in this way, the corresponding 21 bits of the tag entries
and their associated valid flags can be captured and scanned out. The first bit scanned
out is Bank 3. Valid flags are followed by the Bank 3 Tag address (msb, most significant
bit first) as shown in Table 8-5: Tag scan chain on page 8-31.

DRIVEBS This would be used to switch the scan cells from system
mode to test mode. This signal is asserted whenever either
the INTEST, EXTEST, CLAMP or CLAMPZ instruction is
selected.

PCLKBS This is an update clock, generated in the UPDATE-DR state.
Typically the value scanned into a chain would be transferred
to the cell output on the rising edge of this signal.

ICAPCLKBS
ECAPCLKBS

These are capture clocks used to sample data into the scan
cells during INTEST and EXTEST respectively. These clocks
are generated in the CAPTURE-DR state.

SHCLKBS
SHCLK2BS

These are non-overlapping clocks generated in the SHIFTDR
state used to clock the master and slave element of the scan
cells respectively. When the state machine is not in the
SHIFT-DR state, both these clocks are LOW.

nHIGHZ This signal may be used to drive the outputs of the scan cells
to the high impedance state. This signal is driven LOW when
the HIGHZ instruction is loaded into the instruction register,
and HIGH at all other times.

SDINBS output should be connected to the serial data input.

SDOUTBS input should be connected to the serial data output.
Open Access – Preliminary

8-17ARM740T Datasheet
ARM DDI 0008E

Debug Interface

4KB variant

This scan chain is 92 bits long and across the Tag entries of the four banks. In
operation, addresses may be scanned into the chain and the corresponding Tag entries
scanned out. The cache is never written to by the scan chain, it is read only.

Although the scan chain is 92 bits long, only the six bits of the line address are
significant for addressing the cache. These bits are A[9:4] and are the last six bits
scanned into the chain. That is, A[4] is the very last bit scanned in and A[9] is the sixth
last bit scanned in.

For the line addresses presented in this way, the corresponding 22 bits of the tag
entries and their associated valid flags can be captured and scanned out. The first bit
scanned out is the Bank 3 valid flag follow by the Bank 3 Tag address (msb first) as
shown in Table 8-5: Tag scan chain on page 8-31.

8.7.11 Scan Chain 15
This scan chain is 33 bits long and sits on the CData bus at the interface of CP15.

The first bit scanned in is the Instruction flag followed by the most significant bit if the
CData bus. If the Instruction flag is HIGH the scanned data value is considered to be a
COP instruction, otherwise it is treated as data.

This scan chain can be used to present instructions and data to CP15.
Open Access – Preliminary

8-18 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.8 ARM7TDM Core Clocks

ARM7TDM has two clocks:

• the memory clock, MCLK , generated by the ARM740T
• an internally TCK-generated clock, DCLK

During normal operation, the core is clocked by MCLK , and internal logic holds DCLK
LOW.

There are two cases in which the clocks switch:

• during debugging
• during testing

8.8.1 Clock switch during debug
When ARM7TDM is in the debug state, the core is clocked by DCLK under the control
of the TAP state machine, and MCLK may free run. The selected clock is output on the
signal ECLK for use by the external system.

Note When the CPU core is being debugged and is running from DCLK , nWAIT has no
effect.

When ARM7TDM enters debug state, it must switch from MCLK to DCLK . This is
handled automatically by logic in the ARM7TDM. On entry to debug state, ARM7TDM
asserts DBGACK in the HIGH phase of MCLK . The switch between the two clocks
occurs on the next falling edge of MCLK . This is shown in Figure 8-6: Clock
Switching on entry to debug state .

 Figure 8-6: Clock Switching on entry to debug state

ARM7TDM is forced to use DCLK as the primary clock until debugging is complete. On
exit from debug, the core must be allowed to synchronise back to MCLK . This must be
done in the following sequence:

1 The final instruction of the debug sequence must be shifted into the data bus
scan chain and clocked in by asserting DCLK .

2 At this point, BYPASS must be clocked into the TAP instruction register.
3 ARM7TDM now automatically resynchronizes back to MCLK and starts

fetching instructions from memory at MCLK speed.
Please refer also to 8.9.4 Exit from debug state on page 8-22.

MCLK

DBGACK

DCLK

ECLK

Multiplexer Switching
point
Open Access – Preliminary

8-19ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.9 Determining the Core and System State

When ARM7TDM is in debug state, the core and system’s state may be examined. This
is done by forcing load and store multiples into the instruction pipeline.

ARM or THUMB state

Before the core and system state can be examined, the debugger must first determine
whether the processor was in THUMB or ARM state when it entered debug. This is
achieved by examining bit 4 of EmbeddedICE’s Debug Status Register. If this is HIGH,
the core was in THUMB state when it entered debug.

8.9.1 Determining the core’s state
If the processor has entered debug state from THUMB state, the simplest course of
action is for the debugger to force the core back into ARM state. Once this is done, the
debugger can always execute the same sequence of instructions to determine the
processor's state.

While in debug state, only the following instructions may legally be scanned into the
instruction pipeline for execution:

• all data-processing instructions, except TEQP
• all load, store, load multiple and store multiple instructions
• MSR and MRS

Moving to ARM state

To force the processor into ARM state, the following sequence of THUMB instructions
should be executed on the core:

STR R0, [R0] ; Save R0 before use

MOV R0, PC ; Copy PC into R0

STR R0, [R0] ; Now save the PC in R0

BX PC ; Jump into ARM state

MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

As all THUMB instructions are only 16 bits long, the simplest course of action when
shifting them into Scan Chain 1 is to repeat the instruction twice.

For example, the encoding for BX R0 is 0x4700. Therefore, if 0x47004700 is shifted into
scan chain 1, the debugger does not have to keep track of which half of the bus the
processor expects to read the data from.

From this point on, the processor’s state can be determined by the sequences of ARM
instructions described below.

In ARM state

Once the processor is in ARM state, the first instruction executed would typically be:
STM R0, {R0-R15}

This makes the contents of the registers visible on the data bus. These values can then
be sampled and shifted out.

Note The above use of R0 as the base register for STM is for illustration only: any register
could be used.
Open Access – Preliminary

8-20 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

Accessing banked registers

After determining the values in the current bank of registers, it may be desirable to
access the banked registers. This can only be done by changing mode. Normally, a
mode change may only occur if the core is already in a privileged mode. However, while
in debug state, a mode change from any mode into any other mode may occur.

Note The debugger must restore the original mode before exiting debug state.

For example, assume that the debugger had been asked to return the state of the
USER and FIQ mode registers, and debug state was entered in supervisor mode.

The instruction sequence could be:

STM R0, {R0-R15} ; Save current registers
MRS R0, CPSR
STR R0, R0 ; Save CPSR to determine current mode
BIC R0, 0x1F ; Clear mode bits
ORR R0, 0x10 ; Select user mode
MSR CPSR, R0 ; Enter USER mode
STM R0, {R13,R14} ; Save register not previously visible
ORR R0, 0x01 ; Select FIQ mode
MSR CPSR, R0 ; Enter FIQ mode
STM R0, {R8-R14} ; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed is much slower
than system speed because between each core clock, 33 scan clocks occur in order to
shift in an instruction, or shift out data. Executing instructions more slowly than usual is
fine for accessing the core’s state because ARM7TDM is fully static. However, this
same method cannot be used for determining the state of the rest of the system.

8.9.2 Determining system state
In order to meet the dynamic timing requirements of the memory system, any attempt
to access system state must occur synchronously with it. Thus, ARM7TDM must be
forced to synchronise back to system speed. This is controlled by the 33rd bit of scan
chain 1.

Any instruction may be placed in scan chain 1 with bit 33 (the BREAKPT bit) LOW. This
instruction is then executed at debug speed. To execute an instruction at system speed,
the instruction prior to it must be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has been scanned into the data bus and clocked into
the pipeline, the BYPASS instruction must be loaded into the TAP controller. This
makes the ARM7TDM automatically synchronize back to MCLK (the system clock),
executes the instruction at system speed, and then re-enters debug state and switches
itself back to the internally generated DCLK . When the instruction has completed,
DBGACK is HIGH and the core will have switched back to DCLK . At this point, INTEST
can be selected in the TAP controller, and debugging can resume.

In order to determine that a system speed instruction has completed the debugger
must look at both DBGACK and nMREQ. In order to access memory, ARM7TDM
drives nMREQ LOW after it has synchronised back to system speed. This transition is
used by the memory controller to arbitrate whether ARM7TDM can have the bus in the
next cycle. If the bus is not available, ARM7TDM may have its clock stalled indefinitely.

Therefore, the only way to tell that the memory access has completed, is to examine
the state of both nMREQ and DBGACK . When both are HIGH, the access has
completed. Usually, the debugger would be using EmbeddedICE to control debugging,
and by reading EmbeddedICE’s status register, the state of nMREQ and DBGACK can
be determined. Refer to Chapter 9, EmbeddedICE Macrocell for more details.

By the use of system speed load multiples and debug speed store multiples, the state
of the system’s memory can be fed back to the debug host.
Open Access – Preliminary

8-21ARM740T Datasheet
ARM DDI 0008E

Debug Interface

Restrictions

There are restrictions on which instructions may have the 33rd bit set. The only valid
instructions where this bit can be set are:

• loads
• stores
• load multiple
• store multiple

See also 8.9.4 Exit from debug state .

When ARM7TDM returns to debug state after a system speed access, bit 33 of scan
chain 1 is set HIGH. This gives the debugger information about why the core entered
debug state the first time this scan chain is read.

8.9.3 Determining system control coprocessor state
In order to access the System Control Processor registers, debug state must be
entered by a breakpoint, watchpoint or debug request. This ensures that the
ARM7TDM core stops execution of code which may be dependent on the System
Control Coprocessor.

Scan Chain 15 can then be selected via the SCAN_N instruction.

Instructions may then be scanned down the scan chain as if being executed from the
ARM7TDM core. As the ARM7TDM is idle while Scan Chain 15 is being accessed, it is
necessary to provide the register data via the scan chain. The instruction prior to the
data must have the instruction/data flag cleared.

The data operation requires an additional clock from the TAP controller. This may be
achieved by remaining in the RUN-TEST-IDLE state for an additional TCK cycle.

8.9.4 Exit from debug state
Leaving debug state involves:

1 restoring ARM7TDM’s internal state.
2 branching to the next instruction to be executed.
3 synchronizing back to MCLK .

After restoring internal state, a branch instruction must be loaded into the pipeline. See
8.10 The PC During Debug on page 8-23 for details on calculating the branch.

Bit 33 of scan chain 1 is used to force ARM7TDM to resynchronize back to MCLK . The
penultimate instruction of the debug sequence is scanned in with bit 33 set HIGH. The
final instruction of the debug sequence is the branch, and this is scanned in with bit 33
LOW.

The core is then clocked to load the branch into the pipeline. Now, the RESTART
instruction is selected in the TAP controller. When the state machine enters the RUN-
TEST/IDLE state, the scan chain reverts back to system mode and clock
resynchronization to MCLK occurs within ARM7TDM. ARM7TDM then resumes
normal operation, fetching instructions from memory. This delay, until the state machine
is in the RUN-TEST/IDLE state, allows conditions to be set up in other devices in a
multiprocessor system without taking immediate effect. Then, when the RUN-TEST/
IDLE state is entered, all the processors resume operation simultaneously.
Open Access – Preliminary

8-22 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.10 The PC During Debug

So that ARM7TDM may be forced to branch back to the place at which program flow
was interrupted by debug, the debugger must keep track of what happens to the PC.

There are five cases:

• breakpoints
• watchpoints
• watchpoint when another exception occurs
• debug request
• system speed access

8.10.1 Breakpoints
Entry to the debug state from a breakpoint advances the PC by 4 addresses, or
16 bytes. Each instruction executed in debug state advances the PC by 1 address, or
4 bytes. The normal way to exit from debug state after a breakpoint is to remove the
breakpoint, and branch back to the previously breakpointed address.

For example, if ARM7TDM entered debug state from a breakpoint set on a given
address and two debug-speed instructions were executed, a branch of -7 addresses
must occur (4 for debug entry, +2 for the instructions, +1 for the final branch).

The following sequence shows the data scanned into scan chain 1. This is msb first,
and so the first digit is the value placed in the BREAKPT bit, followed by the instruction
data:

0 E0802000; ADD R2, R0, R0

1 E1826001; ORR R6, R2, R1

0 EAFFFFF9; B -7 (2’s complement)

Once in debug state, a minimum of two instructions must be executed before the
branch, although these may both be NOPs, for example:

MOV R0, R0

For small branches, the final branch could be replaced by a subtract with the PC as the
destination:

SUB PC, PC, #28

8.10.2 Watchpoints
Returning to program execution after entering debug state from a watchpoint is done in
the same way as the procedure described above. Debug entry adds 4 addresses to the
PC, and every instruction adds 1 address. The difference is that because the instruction
that caused the watchpoint has executed, the program returns to the next instruction.

8.10.3 Watchpoint with another exception
If a watchpointed access simultaneously causes a data abort, ARM7TDM enters debug
state in abort mode. Entry into debug is held off until the core has changed into abort
mode, and fetched the instruction from the abort vector.

A similar sequence is followed when an interrupt, or any other exception, occurs during
a watchpointed memory access. ARM7TDM enters debug state in the exception’s
mode, and so the debugger must check to see whether this happened. The debugger
can deduce whether an exception occurred by looking at the current and previous
mode (in the CPSR and SPSR), and the value of the PC. If an exception did take place,
the user should be given the choice of whether to service the exception before
debugging.
Open Access – Preliminary

8-23ARM740T Datasheet
ARM DDI 0008E

Debug Interface

Exiting from debug state

Exiting debug state if an exception occurred is slightly different from the other cases.

Here, entry to debug state causes the PC to be incremented by 3 addresses rather than
4, and this must be taken into account in the return branch calculation.

For example, suppose that an abort occurred on a watchpointed access and 10
instructions had been executed to determine this. The following sequence could be
used to return to program execution:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFF0; B -16

This forces a branch back to the abort vector, causing the instruction at that location to
be refetched and executed.

Note After the abort service routine, the instruction which caused the abort and watchpoint
is re-executed. This generates the watchpoint and ARM7TDM enters debug state
again.

8.10.4 Debug request
Entry into debug state via a debug request is similar to a breakpoint. However, unlike a
breakpoint, the last instruction will have completed execution and so must not be
refetched on exit from debug state. Therefore, entry to debug state adds 3 addresses
to the PC, and every instruction executed in debug state adds 1.

For example, suppose that the user has invoked a debug request, and decides to return
to program execution straight away. The following sequence could be used:

0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFFA; B -6

This restores the PC, and restarts the program from the next instruction.

8.10.5 System-speed access
If a system-speed access is performed during debug state, the value of the PC is
increased by 3 addresses. As system-speed instructions access the memory system,
it is possible for aborts to take place. If an abort occurs during a system-speed memory
access, ARM7TDM enters abort mode before returning to debug state.

This is similar to an aborted watchpoint except that the problem is much harder to fix,
because the abort was not caused by an instruction in the main program, and the PC
does not point to the instruction which caused the abort. An abort handler usually looks
at the PC to determine the instruction which caused the abort, and hence the abort
address. In this case, the value of the PC is invalid, but the debugger should know what
location was being accessed. Thus the debugger can be written to help the abort
handler fix the memory system.
Open Access – Preliminary

8-24 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.10.6 Summary of return address calculations

The calculation of the branch return address can be summarized as follows:

• For normal breakpoint and watchpoint, the branch is:
- (4 + N + 3S)

• For entry through debug request (DBGRQ), or watchpoint with exception, the
branch is:
- (3 + N + 3S)

where:

N is the number of debug speed instructions executed
(including the final branch)

S is the number of system speed instructions executed.
Open Access – Preliminary

8-25ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.11 Priorities and Exceptions

Because the normal program flow is broken when a breakpoint or a debug request
occurs, debug can be thought of as being another type of exception. Some of the
interaction with other exceptions has been described in earlier sections. This section
summarizes these priorities.

8.11.1 Breakpoint with prefetch abort
When a breakpointed instruction fetch causes a prefetch abort, the abort is taken and
the breakpoint is disregarded. Normally, prefetch aborts occur when, for example, an
access is made to a virtual address which does not physically exist, and the returned
data is therefore invalid.

In such a case, the operating system’s normal action is to swap in the page of memory
and return to the previously invalid address. Here, when the instruction is fetched, and
providing the breakpoint is activated (it may be data-dependent), ARM7TDM enters
debug state.

In this case, the prefetch abort takes higher priority than the breakpoint.

8.11.2 Interrupts
When ARM7TDM enters debug state, interrupts are automatically disabled. If interrupts
are disabled during debug, ARM7TDM is never forced into an interrupt mode. Interrupts
only have this effect on watchpointed accesses. They are ignored at all times on
breakpoints.

If an interrupt was pending during the instruction prior to entering debug state,
ARM7TDM enters debug state in the mode of the interrupt. Thus, on entry to debug
state, the debugger cannot assume that ARM7TDM is in the expected mode of the
user’s program. It must check the PC, the CPSR and the SPSR to fully determine the
reason for the exception.

Thus, debug takes higher priority than the interrupt, although ARM7TDM remembers
that an interrupt has occurred.

8.11.3 Data aborts
When a data abort occurs on a watchpointed access, ARM7TDM enters debug state in
abort mode. Thus, the watchpoint has higher priority than the abort, although, as in the
case of interrupt, ARM7TDM remembers that the abort happened.
Open Access – Preliminary

8-26 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.12 Scan Interface Timing

This section describes the scan interface timing.

 Figure 8-7: Scan general timing

In the following table, all units are ns. All delays are provisional and assume a process
which achieves 33MHz MCLK maximum operating frequency.

Notes 1 For correct data latching, the I/O signals (from the core and the pads) must be
setup and held with respect to the rising edge of TCK in the CAPTURE-DR
state of the INTEST and EXTEST instructions.

2 Assumes that the data outputs are loaded with the AC test loads.

Symbol Parameter Min Type Max Notes

Tbscl TCK low period

Tbsch TCK high period

Tbsis TDI,TMS setup to [TCr]

Tbsih TDI,TMS hold from [TCr]

Tbsoh TDO hold time 2

Tbsod TCr to TDO valid 2

Tbsss I/O signal setup to [TCr] 1

Tbssh I/O signal hold from [TCr] 1

Tbsdh data output hold time 2

Tbsdd TCf to data output valid 2

Tbsr Reset period

Tbse Output Enable time 2

Tbsz Output Disable time 2

 Table 8-2: JTAG Timing Parameters

TCK

TMS
TDI

TDO

Data In

Data Out

Tbscl Tbsch

Tbsis Tbsih

Tbsoh
Tbsod

Tbsss Tbssh

Tbsdh
Tbsdd

Tbsdh
Tbsdd
Open Access – Preliminary

8-27ARM740T Datasheet
ARM DDI 0008E

Debug Interface

Key

I Input

O Output

I/O Input/Output

No Signal Type No Signal Type

1 D[0] I/O 28 D[27] I/O

2 D[1] I/O 29 D[28] I/O

3 D[2] I/O 30 D[29] I/O

4 D[3] I/O 31 D[30] I/O

5 D[4] I/O 32 D[31] I/O

6 D[5] I/O 33 BREAKPT I

7 D[6] I/O 34 NENIN I

8 D[7] I/O 35 NENOUT O

9 D[8] I/O 36 LOCK O

10 D[9] I/O 37 BIGEND I

11 D[10] I/O 38 DBE I

12 D[11] I/O 39 MAS[0] O

13 D[12] I/O 40 MAS[1] O

14 D[13] I/O 41 BL[0] I

15 D[14] I/O 42 BL[1] I

16 D[15] I/O 43 BL[2] I

17 D[16] I/O 44 BL[3] I

18 D[17] I/O 45 DCTL ** O

19 D[18] I/O 46 nRW O

20 D[19] I/O 47 DBGACK O

21 D[20] I/O 48 CGENDBGACK O

22 D[21] I/O 49 nFIQ I

23 D[22] I/O 50 nIRQ I

24 D[23] I/O 51 nRESET I

25 D[24] I/O 52 ISYNC I

26 D[25] I/O 53 DBGRQ I

27 D[26] I/O 54 ABORT I

 Table 8-3: Scan Chain 0 Bit Positions
Open Access – Preliminary

8-28 ARM740T Datasheet
ARM DDI 0008E

Debug Interface
Note DCTL is not described in this datasheet. DCTL is an output from the processor used to
control the unidirectional data out latch, DOUT[31:0] . This signal is not visible from the
periphery of ARM7TDM.

55 CPA I 81 A[24] O

56 nOPC O 82 A[23] O

57 IFEN I 83 A[22] O

58 nCPI O 84 A[21] O

59 nMREQ O 85 A[20] O

60 SEQ O 86 A[19] O

61 nTRANS O 87 A[18] O

62 CPB I 88 A[17] O

63 nM[4] O 89 A[16] O

64 nM[3] O 90 A[15] O

65 nM[2] O 91 A[14] O

66 nM[1] O 92 A[13] O

67 nM[0] O 93 A[12] O

68 nEXEC O 94 A[11] O

69 ALE I 95 A[10] O

70 ABE I 96 A[9] O

71 APE I 97 A[8] O

72 TBIT O 98 A[7] O

73 nWAIT I 99 A[6] O

74 A[31] O 100 A[5] O

75 A[30] O 101 A[4] O

76 A[29] O 102 A[3] O

77 A[28] O 103 A[2] O

78 A[27] O 104 A[1] O

79 A[26] O 105 A[0] O

80 A[25] O

No Signal Type No Signal Type

 Table 8-3: Scan Chain 0 Bit Positions (Continued)
Open Access – Preliminary

8-29ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.13 Debug Timing

Notes • All delays are provisional and assume a process which achieves 33MHz
MCLK maximum operating frequency.

• Assumes that the data outputs are loaded with the AC test loads.
All units are ns.

Symbol Parameter Min Max

Ttdbgd TCK falling to DBGACK , DBGRQI changing

Ttpfd TCKf to TAP outputs

Ttpfh TAP outputs hold time from TCKf

Ttprd TCKr to TAP outputs

Ttprh TAP outputs hold time from TCKr

Ttckr TCK to TCK1, TCK2 rising

Ttckf TCK to TCK1, TCK2 falling

Tecapd TCK to ECAPCLK changing

Tdckf DCLK induced: TCKf to various outputs valid

Tdckfh DCLK induced: Various outputs hold from TCKf

Tdckr DCLK induced: TCKr to various outputs valid

Tdckrh DCLK induced: Various outputs hold from TCKr

Ttrstd nTRSTf to TAP outputs valid

Ttrsts nTRSTr setup to TCKr

Tsdtd SDOUTBS to TDO valid

Tclkbs TCK to Boundary Scan Clocks

Tshbsr TCK to SHCLKBS, SHCLK2BS rising

Tshbsf TCK to SHCLKBS, SHCLK2BS falling

 Table 8-4: Debug Timing Parameters
Open Access – Preliminary

8-30 ARM740T Datasheet
ARM DDI 0008E

Debug Interface

8.13.1 Tag scan chain

Bit 8KB Variant Bit 4KB Variant

0 Bank3 Valid Flag 0 Bank3 Valid Flag

1 Bank3 Tag[20] 1 Bank3 Tag[21]

2 Bank3 Tag[19] 2 Bank3 Tag[20]

– – – –

20 Bank3 Tag[1] 21 Bank3 Tag[1]

21 Bank3 Tag[0] 22 Bank3 Tag[0]

22 Bank2 Valid Flag 23 Bank2 Valid Flag

23 Bank2 Tag[20] 24 Bank2 Tag[21]

24 Bank2 Tag[19] 25 Bank2 Tag[20]

– – – –

42 Bank2 Tag[1] 44 Bank2 Tag[1]

43 Bank2 Tag[0] 45 Bank2 Tag[0]

44 Bank1 Valid Flag 46 Bank1 Valid Flag

45 Bank1 Tag[20] 47 Bank1 Tag[21]

46 Bank1 Tag[19] 48 Bank1 Tag[20]

– – – –

64 Bank1 Tag[1] 67 Bank1 Tag[1]

65 Bank1 Tag[0] 68 Bank1 Tag[0]

66 Bank0 Valid Flag 69 Bank0 Valid Flag

67 Bank0 Tag[20] 70 Bank0 Tag[21]

68 Bank0 Tag[19] 71 Bank0 Tag[20]

– – – –

86 Bank0 Tag[1] 90 Bank0 Tag[1]

87 Bank0 Tag[0] 91 Bank0 Tag[0]

 Table 8-5: Tag scan chain
Open Access – Preliminary

8-31ARM740T Datasheet
ARM DDI 0008E

Debug Interface
Open Access – Preliminary

8-32 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the ARM740T EmbeddedICE module.

The ARM7TDM EmbeddedICE module, referred to simply as EmbeddedICE, provides
integrated on-chip debug support for the ARM7TDM core.

9.1 Overview 9-2
9.2 Watchpoint Registers 9-4
9.3 Programming Breakpoints 9-8
9.4 Programming Watchpoints 9-10
9.5 Debug Control Register 9-11
9.6 Debug Status Register 9-12
9.7 Coupling Breakpoints and Watchpoints 9-14
9.8 Debug Communications Channel 9-16

EmbeddedICE Macrocell9
Open Access – Preliminary

9-1ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.1 Overview

In this chapter ARM7TDM refers to the ARM7TDM core excluding the EmbeddedICE
Macrocell.

EmbeddedICE is programmed in a serial fashion using the ARM7TDM TAP controller.
It consists of two real-time watchpoint units, together with a control and status register.
One or both watchpoint units can be programmed to halt the execution of instructions
by the ARM7TDM core via its BREAKPT signal. Two independent registers, Debug
Control and Debug Status, provide overall control of EmbeddedICE's operation.
Figure 9-1: ARM7TDM block diagram shows the relationship between the core,
EmbeddedICE and the TAP controller.

Execution is halted when a match occurs between the values programmed into
EmbeddedICE and the values currently appearing on the address bus, data bus and
various control signals. Any bit can be masked so that its value does not affect the
comparison.

Note Only those signals that are pertinent to EmbeddedICE are shown.

 Figure 9-1: ARM7TDM block diagram

Either watchpoint unit can be configured to be a watchpoint (monitoring data accesses)
or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints can be
made to be data-dependent.

MAS[1:0]

A[31:0]

D[31:0]

nOPC

nRW

nTRANS

DBGACKI

BREAKPTI

DBGRQI

IFEN

ECLK

nMREQ

EXTERN1

EXTERN0

BREAKPT

DBGRQ

DBGACK

TCK

DBGEN

TAP

EmbeddedICEProcessor

TMS

TDI
TDO

SDIN SDOUT

nTRST

TBIT

RANGEOUT0

RANGEOUT1
Open Access – Preliminary

9-2 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.1.1 Disabling EmbeddedICE

EmbeddedICE may be disabled by wiring the DBGEN input LOW.

When DBGEN is LOW:

• BREAKPT and DBGRQ to the core are forced LOW
• DBGACK from the ARM7TDM is also forced LOW
• IFEN input to the core is forced HIGH, enabling interrupts to be detected by

ARM7TDM

When DBGEN is LOW, EmbeddedICE is also put into a low-power mode.

9.1.2 EmbeddedICE timing
The EXTERN1 and EXTERN0 inputs are sampled by EmbeddedICE on the falling
edge of ECLK . Sufficient set-up and hold time must therefore be allowed for these
signals.
Open Access – Preliminary

9-3ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.2 Watchpoint Registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three
pairs of registers:

1 Address Value and Address Mask
2 Data Value and Data Mask
3 Control Value and Control Mask

Each register is independently programmable and has its own address, as shown in
Table 9-1: Function and mapping of EmbeddedICE registers :

9.2.1 Programming and reading watchpoint registers
A register is programmed by scanning data into the EmbeddedICE scan chain
(scan chain 2). The scan chain consists of a 38-bit shift register comprising:

• a 32-bit data field
• a 5-bit address field
• a read/write bit

This is shown in Figure 9-2: EmbeddedICE block diagram on page 9-5.

Address Width Function

00000 3 Debug Control

00001 5 Debug Status

00100 6 Debug Comms Control Register

00101 32 Debug Comms Data Register

01000 32 Watchpoint 0 Address Value

01001 32 Watchpoint 0 Address Mask

01010 32 Watchpoint 0 Data Value

01011 32 Watchpoint 0 Data Mask

01100 9 Watchpoint 0 Control Value

01101 8 Watchpoint 0 Control Mask

10000 32 Watchpoint 1 Address Value

10001 32 Watchpoint 1 Address Mask

10010 32 Watchpoint 1 Data Value

10011 32 Watchpoint 1 Data Mask

10100 9 Watchpoint 1 Control Value

10101 8 Watchpoint 1 Control Mask

 Table 9-1: Function and mapping of EmbeddedICE registers
Open Access – Preliminary

9-4 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell
 Figure 9-2: EmbeddedICE block diagram

The data to be written is scanned into the 32-bit data field, the address of the register
into the 5-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the
read\write bit. The 32-bit data field is ignored. The register addresses are shown in
Table 9-1: Function and mapping of EmbeddedICE registers on page 9-4.

Note A read or write takes place when the TAP controller enters the UPDATE-DR state.

9.2.2 Using the mask registers
For each Value register in a register pair, there is a Mask register of the same format.
Setting a bit to 1 in the Mask register has the effect of disregarding the corresponding
bit in the Value register in the comparison. For example, if a watchpoint is required on
a particular memory location but the data value is irrelevant, the Data Mask register can
be programmed to 0xFFFFFFFF (all bits set to 1) to make the entire Data Bus field
ignored.

Note The mask is an XNOR mask rather than a conventional AND mask. When a mask bit
is set to 1, the comparator for that bit position always matches, irrespective of the value
register or the input value.

Setting the mask bit to 0 means that the comparator only matches if the input value
matches the value programmed into the value register.

9.2.3 The control registers
Control Value and Control Mask registers are mapped identically in the lower 8 bits.
Bit 8 of the control value register is the ENABLE bit, which cannot be masked.

 Figure 9-3: Watchpoint control value and mask format

31

Address

Data

Address
Decoder

Update

32

r/w

TDI TDO

A[31:0]
D[31:0]

+

Watchpoint Registers and Comparators

BREAKPOINT

0

0

4

Control

Scan Chain Register

C
om

pa
ra

to
r

V
al

ue

M
as

k

ENABLE RANGE CHAIN EXTERN nTRANS nOPC MAS[0] nRW

012345678

MAS[1]
Open Access – Preliminary

9-5ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

The bits have the following functions:

nRW compares against the not-read/write signal from the core in
order to detect the direction of bus activity. nRW is 0 for a
read cycle and 1 for a write cycle.

MAS[1:0] compares against the MAS[1:0] signal from the core in
order to detect the size of bus activity. The encoding is
shown in the following table:

bit 1 bit 0 Data size

0 0 byte

0 1 halfword

1 0 word

1 1 (reserved)

 Table 9-2: MAS[1:0] signal encoding

nOPC detects whether the current cycle is an instruction fetch
(nOPC = 0) or a data access (nOPC = 1).

nTRANS compares against the not-translate signal from the core in
order to distinguish between User mode (nTRANS = 0) and
non-User mode (nTRANS = 1) accesses.

EXTERN is an external input to EmbeddedICE which allows the
watchpoint to be dependent upon an external condition. The
EXTERN input for Watchpoint 0 is labelled EXTERN0 and
the EXTERN input for Watchpoint 1 is labelled EXTERN1.

CHAIN can be connected to the chain output of another watchpoint
in order to implement, for example, debugger requests of the
form “breakpoint on address YYY only when in process
XXX”.

In the ARM7TDM EmbeddedICE, the CHAINOUT output of
Watchpoint 1 is connected to the CHAIN input of Watchpoint
0. The CHAINOUT output is derived from a latch; the
address/control field comparator drives the write enable for
the latch and the input to the latch is the value of the data
field comparator. The CHAINOUT latch is cleared when the
Control Value register is written or when nTRST is LOW.
Open Access – Preliminary

9-6 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell
For each of the bits [8:0] in the Control Value register, there is a corresponding bit in the
Control Mask register. This removes the dependency on particular signals.

RANGE can be connected to the range output of another watchpoint
register. In the ARM7TDM EmbeddedICE, the RANGEOUT
output of Watchpoint 1 is connected to the RANGE input of
Watchpoint 0. This allows the two watchpoints to be coupled
for detecting conditions that occur simultaneously, for
example, in range-checking.

ENABLE If a watchpoint match occurs, the BREAKPT signal is
asserted only when the ENABLE bit is set. This bit only
exists in the value register: it cannot be masked.
Open Access – Preliminary

9-7ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.3 Programming Breakpoints

Breakpoints can be classified as hardware breakpoints or software breakpoints.

9.3.1 Hardware breakpoints
To make a watchpoint unit cause hardware breakpoints (ie. on instruction fetches):

1 Program its Address Value register with the address of the instruction to be
breakpointed.

2 Program the breakpoint bits as follows:

In both cases, the remaining bits are set to 0.

3 Program the Data Value register only if you require a data-dependent
breakpoint, that is only if the actual instruction code fetched must be matched
as well as the address. If the data value is not required, program the Data Mask
register to 0xFFFFFFFF (all bits to 1), otherwise program it to 0x00000000.

4 Program the Control Value register with nOPC = 0.
5 Program the Control Mask register with nOPC = 0, all other bits to 1.
6 If you need to make the distinction between user and non-user mode

instruction fetches, program the nTRANS Value and Mask bits as above.
7 If required, program the EXTERN, RANGE and CHAIN bits in the same way.

9.3.2 Software breakpoints
To make a watchpoint unit cause software breakpoints (that is, on instruction fetches of
a particular bit pattern):

1 Program its Address Mask register to 0xFFFFFFFF (all bits set to 1) so that the
address is disregarded.

2 Program the Data Value register with the particular bit pattern that has been
chosen to represent a software breakpoint.
For a THUMB software breakpoint, the 16-bit pattern must be repeated in both
halves of the Data Value register. For example, if the bit pattern is 0xDFFF,
then 0xDFFFDFFF must be programmed. When a 16-bit instruction is fetched,
EmbeddedICE only compares the valid half of the data bus against the
contents of the Data Value register. In this way, a single Watchpoint register
can be used to catch software breakpoints on both the upper and lower halves
of the data bus.

3 Program the Data Mask register to 0x00000000.
4 Program the Control Value register with nOPC = 0.
5 Program the Control Mask register with nOPC = 0, all other bits to 1.

Hardware These typically monitor the address value and can be set in
any code, even in code that is in ROM or code that is self-
modifying.

Software These monitor a particular bit pattern being fetched from any
address. One EmbeddedICE watchpoint can thus be used
to support any number of software breakpoints. Software
breakpoints can normally only be set in RAM because an
instruction has to be replaced by the special bit pattern
chosen to cause a software breakpoint.

ARM state program bits [1:0] of the Address Mask register to 1.

THUMB state program bit 0 of the Address Mask to 1.
Open Access – Preliminary

9-8 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

6 If you wish to make the distinction between user and non-user mode instruction

fetches, program the nTRANS bit in the Control Value and Control Mask
registers accordingly.

7 If required, program the EXTERN, RANGE and CHAIN bits in the same way.
Note The address value register need not be programmed.

Setting the breakpoint

To set the software breakpoint:

1 Read the instruction at the desired address and store it.
2 Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
Open Access – Preliminary

9-9ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.4 Programming Watchpoints

The above are just examples of how to program the watchpoint register to generate
breakpoints and watchpoints; many other ways of programming the registers are
possible. For instance, simple range breakpoints can be provided by setting one or
more of the address mask bits.

To make a watchpoint unit cause watchpoints (ie. on data accesses):

1 Program its Address Value register with the address of the data access to be
watchpointed.

2 Program the Address Mask register to 0x00000000.
3 Program the Data Value register only if you require a data-dependent

watchpoint; ie. only if the actual data value read or written must be matched as
well as the address. If the data value is irrelevant, program the Data Mask
register to 0xFFFFFFFF (all bits set to 1) otherwise program it to 0x00000000.

4 Program the Control Value register with nOPC = 1, nRW = 0 for a read or nRW
= 1 for a write, MAS[1:0] with the value corresponding to the appropriate data
size.

5 Program the Control Mask register with nOPC = 0, nRW = 0, MAS[1:0] = 0, all
other bits to 1. Note that nRW or MAS[1:0] may be set to 1 if both reads and
writes or data size accesses are to be watchpointed respectively.

6 If you wish to make the distinction between user and non-user mode data
accesses, program the nTRANS bit in the Control Value and Control Mask
registers accordingly.

7 If required, program the EXTERN, RANGE and CHAIN bits in the same way.

9.4.1 Programming restriction
The EmbeddedICE watchpoint units should only be programmed when the clock to the
core is stopped. This can be achieved by putting the core into the debug state.

The reason for this restriction is that if the core continues to run at ECLK rates when
EmbeddedICE is being programmed at TCK rates, it is possible for the BREAKPT
signal to be asserted asynchronously to the core.

This restriction does not apply if MCLK and TCK are driven from the same clock, or if
it is known that the breakpoint or watchpoint condition can only occur some time after
EmbeddedICE has been programmed.

Note This restriction does not apply to the Debug Control or Status Registers.
Open Access – Preliminary

9-10 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.5 Debug Control Register

The Debug Control Register is 3 bits wide.

• If the register is accessed for a write (with the read/write bit HIGH), the control
bits are written.

• If the register is accessed for a read (with the read/write bit LOW), the control
bits are read.

The function of each bit in this register is as follows:

 Figure 9-4: Debug control register format

Bits 1 and 0 allow the values on DBGRQ and DBGACK to be forced.

DBGRQ

As shown in Figure 9-6: Structure of TBIT, NMREQ, DBGACK, DBGRQ and INTDIS
bits on page 9-13, the value stored in bit 1 of the control register is synchronized and
then ORed with the external DBGRQ before being applied to the processor. The output
of this OR gate is the signal DBGRQI which is brought out externally from the
macrocell.

The synchronization between control bit 1 and DBGRQI is to assist in multiprocessor
environments. The synchronization latch only opens when the TAP controller state
machine is in the RUN-TEST/IDLE state. This allows an enter debug condition to be set
up in all the processors in the system while they are still running. Once the condition is
set up in all the processors, it can then be applied to them simultaneously by entering
the RUN-TEST/IDLE state.

DBGACK

In the case of DBGACK , the value of DBGACK from the core is ORed with the value
held in bit 0 to generate the external value of DBGACK seen at the periphery of
ARM7TDM. This allows the debug system to signal to the rest of the system that the
core is still being debugged even when system-speed accesses are being performed
(in which case the internal DBGACK signal from the core is LOW).

INTDIS

If bit 2 (INTDIS) is asserted, the interrupt enable signal (IFEN) of the core is forced
LOW. Thus all interrupts (IRQ and FIQ) are disabled during debugging (DBGACK =1)
or if the INTDIS bit is asserted. The IFEN signal is driven according to the following
table:

DBGACK INTDIS IFEN

0 0 1

1 x 0

x 1 0

 Table 9-3: IFEN signal control

INTDIS DBGRQ DBGACK

012
Open Access – Preliminary

9-11ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.6 Debug Status Register

The Debug Status Register is 5 bits wide.

• If it is accessed for a write (with the read/write bit set HIGH), the status bits are
written.

• If it is accessed for a read (with the read/write bit LOW), the status bits are
read.

 Figure 9-5: Debug status register format

The function of each bit in this register is as follows:

The structure of the debug status register bits is shown in Figure 9-6: Structure of
TBIT, NMREQ, DBGACK, DBGRQ and INTDIS bits on page 9-13.

Bits 1 and 0 allow the values on the synchronized versions of DBGRQ
and DBGACK to be read.

Bit 2 allows the state of the core interrupt enable signal (IFEN) to
be read. As the capture clock for the scan chain may be
asynchronous to the processor clock, the DBGACK output
from the core is synchronized before being used to generate
the IFEN status bit.

Bit 3 allows the state of the NMREQ signal from the core
(synchronised to TCK) to be read. This allows the debugger
to determine that a memory access from the debug state
has completed.

Bit 4 allows TBIT to be read. This enables the debugger to
determine what state the processor is in, and which
instructions to execute.

IFEN DBGRQ DBGACK

0123

nMREQ

4

TBIT
Open Access – Preliminary

9-12 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell
 Figure 9-6: Structure of TBIT, NMREQ, DBGACK, DBGRQ and INTDIS bits

DBGRQ
DBGRQ

DBGACK
DBGACK

Bit 1

Bit 1

Debug Control Register Debug Status Register

(from ARM7TDMI
input)

(to ARM7TDMI output)

(to core and

(from core)

+

Bit 0

+

Bit 2 Bit 2

+ IFEN
(to core)

DBGACK
(from core)

Synch

Bit 0

Synch

+

Bit 3SynchnMREQ
(from core)

Bit 4SynchTBIT
(from core)

Synch

ARM7TDMI output)
Open Access – Preliminary

9-13ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.7 Coupling Breakpoints and Watchpoints

Watchpoint units 1 and 0 can be coupled together via the CHAIN and RANGE inputs.

9.7.1 Example
Let:

CHAINOUT signal

The CHAINOUT signal is then derived as follows:
WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}
== 0xFFFFFFFFF)

CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR
{Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 provides the CHAIN input to
Watchpoint 0. This allows for quite complicated configurations of breakpoints and
watchpoints.

For example, the request by a debugger to breakpoint on the instruction at location YYY
when running process XXX in a multiprocess system.

If the current process ID is stored in memory, the above function can be implemented
with a watchpoint and breakpoint chained together. The watchpoint address is set to a
known memory location containing the current process ID, the watchpoint data is set to
the required process ID and the ENABLE bit is set to “off”.

The address comparator output of the watchpoint is used to drive the write enable for
the CHAINOUT latch, the input to the latch being the output of the data comparator
from the same watchpoint. The output of the latch drives the CHAIN input of the
breakpoint comparator. The address YYY is stored in the breakpoint register and when
the CHAIN input is asserted and the breakpoint address matches, the breakpoint
triggers correctly.

CHAIN enables watchpoint 0 to be triggered only if watchpoint 1 has
previously matched.

RANGE enables simple range checking to be performed by
combining the outputs of both watchpoints.

Av[31:0] be the value in the Address Value Register

Am[31:0] be the value in the Address Mask Register

A[31:0] be the Address Bus from the ARM7TDM

Dv[31:0] be the value in the Data Value Register

Dm[31:0] be the value in the Data Mask Register

D[31:0] be the Data Bus from the ARM7TDM

Cv[8:0] be the value in the Control Value Register

Cm[7:0] be the value in the Control Mask Register

C[9:0] be the combined Control Bus from the ARM7TDM, other
watchpoint registers and the EXTERN signal.
Open Access – Preliminary

9-14 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

RANGEOUT signal

The RANGEOUT signal is then derived as follows:
RANGEOUT = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR
{Am[31:0],Cm[4:0]}) == 0xFFFFFFFFF) AND ((({Dv[31:0],Cv[7:5]} XNOR
{D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)

The RANGEOUT output of watchpoint register 1 provides the RANGE input to
watchpoint register 0. This allows two breakpoints to be coupled together to form range
breakpoints.

Note The selectable ranges are restricted to being powers of 2.

Example

If a breakpoint is to occur when the address is in the first 256 bytes of memory, but not
in the first 32 bytes, the watchpoint registers should be programmed as follows:

1 Watchpoint 1 is programmed with an address value of 0x00000000 and an
address mask of 0x0000001F. The ENABLE bit is cleared. All other Watchpoint
1 registers are programmed as normal for a breakpoint. An address within the
first 32 bytes causes the RANGE output to go HIGH but the breakpoint is not
triggered.

2 Watchpoint 0 is programmed with an address value of 0x00000000 and an
address mask of 0x000000FF. The ENABLE bit is set and the RANGE bit
programmed to match a 0. All other Watchpoint 0 registers are programmed as
normal for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not (for example, if the RANGE input
to Watchpoint 0 is 0), the breakpoint is triggered.
Open Access – Preliminary

9-15ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

9.8 Debug Communications Channel

ARM7TDM’s EmbeddedICE contains a communication channel for passing information
between the target and the host debugger. This is implemented as coprocessor 14.

The communications channel consists of:

• a 32-bit wide Comms Data Read register.
• a 32-bit wide Comms Data Write register.
• 6-bit wide Comms Control register for synchronized handshaking between

the processor and the asynchronous debugger.

These registers live in fixed locations in EmbeddedICE’s memory map (as shown in
Table 9-1: Function and mapping of EmbeddedICE registers on page 9-4) and are
accessed from the processor via MCR and MRC instructions to coprocessor 14.

9.8.1 Debug comms channel registers
The Debug Comms Control register is read-only and allows synchronized handshaking
between the processor and the debugger.

 Figure 9-7: Debug comms control register

The function of each register bit is described below:

From the debugger’s point of view, the registers are accessed via the scan chain in the
usual way. From the processor’s point of view, these registers are accessed via
coprocessor register transfer instructions.

Bits [31:28] contain a fixed pattern which denotes the EmbeddedICE
version number, in this case 0001.

Bit 1 denotes whether the Comms Data Write register is free
(from the processor’s point of view). From the processor’s
point of view:

• if the Comms Data Write register is free (W=0), new
data may be written.

• if it is not free (W=1), the processor must poll until
W=0.

From the debugger’s point of view, if W=1, new data has
been written which may then be scanned out.

Bit 0 denotes whether there is some new data in the Comms Data
Read register. From the processor’s point of view:

• if R=1, there is some new data which may be read
via an MRC instruction.

From the debugger’s point of view:

• if R=0, the Comms Data Read register is free and
new data may be placed there through the scan
chain.

• if R=1, this denotes that data previously placed
there through the scan chain has not been collected
by the processor and so the debugger must wait.

31

0

30

0

29

0

28

1

0

R

1

W

...

...
Open Access – Preliminary

9-16 ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell

Instructions

The following instructions should be used.

This instruction returns the Debug Comms Control register into Rd:
MRC CP14, 0, Rd, C0, C0

This instruction writes the value in Rn to the Comms Data Write register:
MCR CP14, 0, Rn, C1, C0

This instruction returns the Debug Data Read register into Rd:
MRC CP14, 0, Rd, C1, C0

Note As the THUMB instruction set does not contain coprocessor instructions, it is
recommended that these are accessed via SWI instructions when in THUMB state.

9.8.2 Communications via the comms channel
Communication between the debugger and the processor occurs as follows:

1 When the processor wishes to send a message to EmbeddedICE, it first
checks that the Comms Data Write register is free for use.

2 This is done by reading the Debug Comms Control register to check that the
W bit is clear:
- If it is clear, the Comms Data Write register is empty and a message is

written by a register transfer to the coprocessor. The action of this data
transfer automatically sets the W bit.

- If it is set, this implies that previously-written data has not been picked up
by the debugger and the processor must poll until the W bit is clear.

3 Because the data transfer occurs from the processor to the Comms Data Write
register, the W bit is set in the Debug Comms Control register.

4 When the debugger polls this register it sees a synchronized version of both
the R and W bit.
- When the debugger sees that the W bit is set, it can read the Comms Data

Write register and scan the data out.
- The action of reading this data register clears the W bit of the Debug

Comms Control register. At this point, the communications process may
begin again.

9.8.3 Message transfer
Message transfer from the debugger to the processor is carried out in a similar fashion:

1 The debugger polls the R bit of the Debug Comms Control register:
- If the R bit is LOW, the Data Read register is free and so data can be

placed there for the processor to read.
- If the R bit is set, previously deposited data has not yet been collected and

so the debugger must wait.

2 When the Comms Data Read register is free, data is written there via the scan
chain. The action of this write sets the R bit in the Debug Comms Control
register.

3 When the processor polls this register, it sees an MCLK synchronized version.
- If the R bit is set, this denotes that there is data waiting to be collected, and

this can be read via a CPRT load. The action of this load clears the R bit
in the Debug Comms Control register.

- If the R bit is clear, this denotes that the data has been taken and the
process may now be repeated.
Open Access – Preliminary

9-17ARM740T Datasheet
ARM DDI 0008E

EmbeddedICE Macrocell
Open Access – Preliminary

9-18 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the bus interface clocking.

10.1 Introduction 10-2
10.2 Fastbus Extension 10-3
10.3 Standard Mode 10-4

Bus Clocking10
Open Access – Preliminary

10-1ARM740T Datasheet
ARM DDI 0008E

Bus Clocking

10.1 Introduction

The ARM740T bus interface can be operated using either:

• the standard mode of operation
• the new fastbus extension

As the ARM740T is a fully static design, the clock can be stopped indefinitely in either
mode of operation. Care should be taken to ensure that the memory system does not
dissipate power in the state in which it is stopped.

10.1.1 Standard mode
For designs using low-cost, low-speed memory, and wishing to operate the core at a
faster speed, it is recommended that you use standard mode.

This mode consists of:

• two clocks, FCLK and BCLK
• synchronous or fully asynchronous operation

10.1.2 Fastbus extension
For new designs, you can operate the device using the fastbus extension. In fastbus
mode, the device is clocked off a single clock, and the bus is operated at the same
frequency as the core. This allows the bus interface to be clocked faster than if the
device is operated in standard mode. It is recommended that you use this mode of
operation in systems with high-speed memory and a single clock.

This mode consists of:

• single device clock
• increased maximum BCLK frequency
Open Access – Preliminary

10-2 ARM740T Datasheet
ARM DDI 0008E

Bus Clocking

10.2 Fastbus Extension

Using the fastbus extension, the ARM740T has a single input clock, BCLK . This is used
to clock the internals of the device, and qualified by BWAIT, controls the memory
interface:

 Figure 10-1: Conceptual device clocking using the fastbus extension

When operating the device with FASTBUS HIGH, the input FCLK and SnA are not
used.

Note To prevent unwanted power dissipation, ensure that they do not float to an undefined
level. New designs should tie these signals LOW for compatibility with future products.

10.2.1 Using BWAIT
The BWAIT signal is used to insert entire BCLK cycles into the bus cycle timing.
BWAIT may only change when BCLK is LOW, and extends the memory access by
inserting BCLK cycles into the access whilst BWAIT is asserted.

Figure 11-4: Use of the BWAIT pin to stop ARM740T for 1 BCLK cycle on page 11-
8 shows the use of BWAIT in more detail.

Memory cycles

It is preferable to use BWAIT to extend memory cycles, rather than stretching BCLK
externally to the device because it is possible for the core to be accessing the Cache
while bus activity is occurring. This allows the maximum performance, as the Core can
continue execution in parallel with the memory bus activity. All BCLK cycles are
available to the CPU and Cache, regardless of the state of BWAIT.

In some circumstances, it may be desirable to stretch BCLK phases in order to match
memory timing which is not an integer multiple of BCLK . There are certain cases
where this results in a higher performance than using BWAIT to extend the access by
an integer number of cycles.

CPU and Cache operation

CPU and Cache operation can only continue in parallel with buffered writes to the
external bus. For all read accesses, the CPU is stalled until the bus activity has
completed. So, if read accesses can be achieved faster by stretching BCLK rather than
using BWAIT, this results in improved performance. An example of where this may be
useful would be to interface to a ROM which has a cycle time of 2.5 times the BCLK
period.

CPU Cache

Bus Interface
BCLK

BWAIT
Open Access – Preliminary

10-3ARM740T Datasheet
ARM DDI 0008E

Bus Clocking

10.3 Standard Mode

Using the standard mode of operation (without the fastbus extension), and FASTBUS
tied LOW, the ARM740T has two input clocks:

• FCLK
• BCLK

The bus interface is always controlled by the memory clock, BCLK , qualified by BWAIT.
However, the core and cache are clocked by the fast clock, FCLK .

In standard mode, the FCLK frequency must be greater than or equal to the BCLK
frequency at all times. This relationship must be maintained on a cycle-by-cycle basis.

10.3.1 Memory access
When running in this mode, memory access cycles can be stretched either by using
BWAIT, or by stretching phases of BCLK . The resulting performance is determined by
the access time, regardless of which method is used.

 Figure 10-2: Conceptual device clocking in standard mode

10.3.2 Synchronous and asynchronous modes
When not using the fastbus extension, the ARM740T bus interface has two distinct
modes of operation:

• synchronous
• asynchronous

These are selected by tying SnA either HIGH or LOW.

FCLK and BCLK

The two modes differ in the relationship between FCLK and BCLK :

• In asynchronous mode (SnA LOW), the clocks may be completely
asynchronous and of unrelated frequency

• In synchronous mode (SnA HIGH), BCLK may only make transitions before
the falling edge of FCLK .

In systems where a satisfactory relationship exists between FCLK and BCLK ,
synchronization penalties can be avoided by selecting the synchronous mode of
operation.

CPU Cache

BCLK
BWAIT

FCLK

Bus Interface
Open Access – Preliminary

10-4 ARM740T Datasheet
ARM DDI 0008E

Bus Clocking

Asynchronous mode

In this mode, FCLK and BCLK may be completely asynchronous. You should select
this mode by tying SnA LOW when the two clocks are of unrelated frequency.

There is a synchronisation penalty whenever the internal core clock switches between
the two input clocks. This penalty is symmetrical and varies between nothing and a
whole period of the clock to which the core is resynchronizing:

• when changing from FCLK to BCLK , the average resynchronization penalty is
half an BCLK period

• when changing from BCLK to FCLK , the average resynchronization penalty is
half an FCLK period.

Synchronous mode

You select this mode by tying SnA HIGH. In this mode, here is a tightly defined
relationship between FCLK and BCLK , in that BCLK may only make transitions on the
falling edge of FCLK . Some jitter between the two clocks is permitted, but BCLK must
meet the setup and hold requirements relative to FCLK.

 Figure 10-3: Relationship of FCLK and BCLK in synchronous mode

FCLK

BCLK

Tfclkl Tfclkh

Tfmh
Tfms
Open Access – Preliminary

10-5ARM740T Datasheet
ARM DDI 0008E

Bus Clocking
Open Access – Preliminary

10-6 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the operation of the AMBA bus interface.

In normal operation, the ARM740T is an Advanced System Bus (ABS) bus master. As
a bus master it performs a subset of the possible ASB cycle types.

The ASB is further described in the AMBA Specification, ARM IHI 0001.

11.1 ASB Bus Interface Signals 11-2
11.2 Cycle Types 11-3
11.3 Addressing Signals 11-6
11.4 Memory Request Signals 11-6
11.5 Data Signal Timing 11-6
11.6 Slave Response Signals 11-7
11.7 Maximum Sequential Length 11-9
11.8 Read-Lock-Write 11-9
11.9 Big-Endian / Little-Endian Operation 11-10
11.10 Multi-Master Operation 11-13

AMBA Interface11
Open Access – Preliminary

11-1ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.1 ASB Bus Interface Signals

The signals in the ASB interface can be grouped into four categories:

System Arbiter

In addition to these signals, there are also three signals interfacing to the system arbiter
and control logic:

Addressing signals BA[31:0]
BWRITE
BSIZE
BLOK

Memory request signals BTRAN[1:0]

Data sampled signals BD[31:0]

Slave response signals BERROR
BWAIT
BLAST

AGNT selects the ARM as a test bus master

AREQ indicates that the ARM740T requires bus mastership

DSEL selects the ARM as a test bus slave
Open Access – Preliminary

11-2 ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.2 Cycle Types

In normal operation, the ARM740T bus interface can perform two types of cycle:

• address cycles
• sequential cycles

These cycles are differentiated by the pipelined signal BTRAN[1:0] . Conventionally,
cycles are considered to start from the falling edge of BCLK , and this is how they are
shown in all diagrams.

These cycle types are a subset of the possible ASB cycle types. Other cycle types can
be forced by the use of the Slave Response signals. See the (AMBA Specification
ARM IHI 0001) for more details.

The Addressing and Memory Request signals are pipelined ahead of the Data
Addressing by a phase (1/2 a cycle), and BTRAN[1:0] by a cycle. This advance
information allows the implementation of efficient memory systems.

11.2.1 Single-word memory access
A simple single-word memory access is shown in Figure 11-1: Simple single-cycle
access .

 Figure 11-1: Simple single-cycle access

The access starts with the address being broadcast. This can be used for decoding,
but the access is not committed until BTRAN[1:0] (Bus Transaction Type) signals a
sequential cycle in the following HIGH phase of BCLK . This indicates that the next
cycle is a memory access cycle.

In this example, BTRAN[1:0] returns to Address after a single cycle, indicating that
there will be a single memory access cycle, followed by an address cycle. The data is
transferred on the falling edge of BCLK at the end of the sequential cycle.

Therefore, a memory access consists of:

• an address cycle, with a valid address
• a memory cycle with the same address

The initial address cycle allows the memory controller more time to decode the
address. See Table 11-1: BTRAN[1:0] encoding on page 11-6 for the encoding of
BTRAN[1:0] .

BCLK

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]

Address Seq. Address

Address

Data

Idle Cycle Memory Cycle Idle Cycle
Open Access – Preliminary

11-3ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.2.2 Sequential accesses

ARM740T can perform sequential bursts of accesses. These consist of:

• an address cycle and a sequential cycle, as shown previously,
• further sequential cycles to:

- incrementing word addresses (ie. a, a+4, a+8 etc.), or
- halfword addresses (ie. a, a+2, a+4 etc.)

See Figure 11-2: Simple sequential access on page 11-4. After the initial address
cycle, the address is pipelined by half a bus cycle from the data.

Note BTRAN[1:0] is pipelined by a bus cycle from the data. If BWAIT is being used
to stretch cycles, BTRAN[1:0] no longer refers to the next BCLK cycle, but rather to
the next bus cycle. See 11.6.2 BWAIT on page 11-7.

 Figure 11-2: Simple sequential access

Sequential bursts can occur on word or halfword accesses, and are always in the same
direction; that is Read (BWRITE LOW) or Write (BWRITE HIGH).

A memory controller should always qualify the use of the address with BTRAN[1:0] .
There are certain circumstances in which a new address can be broadcast on the
address bus, but BTRAN[1:0] does not signal a sequential access. This only happens
when an internal (Protection Unit generated) abort occurs.

BCLK

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]

Address Seq. Seq. Address

Address Address+4

Data 1 Data 2

Idle Cycle Memory Cycle Memory Cycle Idle Cycle
Open Access – Preliminary

11-4 ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.2.3 Bus accesses

The minimum interval between bus accesses can occur after a buffered write. In this
case, there may only be a single address cycle between two memory cycles to
nonsequential addresses. This means that the address for the second access is
broadcast on BA[31:0] during the HIGH phase of the final memory cycle of the buffered
write.

See Figure 11-3: Minimum interval between bus accesses for more information.

 Figure 11-3: Minimum interval between bus accesses

This is the closest case of back-to-back cycles on the bus, and the memory controller
should be designed to handle this case. In high-speed systems one solution is to use
BWAIT to increase the decode and access time available for the second access.

Note Memory and peripheral strobes should not be direct decodes of the address bus.
This could result in their changing during the last cycle of a write burst.

BCLK

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]

Address Seq. Address Seq.

Address 1 (Buffered Write) Address 2 (Read)

Write
Data

Read
Data

Idle Cycle Memory Cycle Idle Cycle Memory Cycle
Open Access – Preliminary

11-5ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.3 Addressing Signals

Memory accesses may be read or write, and are differentiated by the signal BWRITE.

BWRITE may not change during a sequential access, so if a read from address A is
followed immediately by a write to address (A+4), the write to address (A+4) is
performed on the bus as a non-sequential access.

In the same way, any memory access may be a word, a half-word or a byte. These are
differentiated by the signal BSIZE[1:0] . Again, BSIZE[1:0] may not change during
sequential accesses. It is not possible to perform sequential byte accesses.

In order to reduce system power consumption, the addressing signals are left with their
current values at the end of an access, until the next access occurs.

After a buffered write, there may be only a single address cycle between the two
memory cycles. In this case, the next non-sequential address is broadcast in the last
cycle of the previous access. This is the worst case for address decoding, as shown in
Figure 11-3: Minimum interval between bus accesses on page 11-5.

11.4 Memory Request Signals
The memory request signals, BTRAN[1:0] are pipelined by 1 bus cycle, and refer to
the next bus cycle.

Care must be taken when de-pipelining these signals if BWAIT is being used, as they
always refer to the following bus cycle, rather than the following BCLK cycle. BWAIT
stretches the bus cycle by an integer number of BCLK cycles. See 11.6.2 BWAIT on
page 11-7.

Note 1 This cycle can only occur as a result of the slave response signals. In normal
operation, ARM740T does not generate this cycle type.

11.5 Data Signal Timing
During a read access, the data is sampled on the falling edge of BCLK at the end of
the sequential cycle. During a write access, the data on BD[31:0] is timed off the falling
edge of BCLK at the start of the memory cycle. If BWAIT is being used to stretch this
cycle, the data is valid from the falling edge of BCLK at the end of the previous cycle,
when BWAIT was HIGH. See 11.6.2 BWAIT on page 11-7.

Note In a low-power system, you must ensure that the databus is not allowed to float to an
undefined level. This causes power to be dissipated in the inputs of devices connected
to the bus. This is particularly important when a system is put into a low-power sleep
mode. It is recommended that one set of Databus drivers in the system is left enabled
during sleep to hold the bus at a defined level.

BTRAN[1:0] Cycle Type Description Note

00 Address Address transfer or idle cycle

01 Reserved

10 Non-Sequential Non-Sequential Data transfer cycle 1

11 Sequential Sequential Data transfer cycle

 Table 11-1: BTRAN[1:0] encoding
Open Access – Preliminary

11-6 ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.6 Slave Response Signals

11.6.1 BERROR
The BERROR signal is sampled on the rising edge of BCLK during a sequential cycle,
on both read and write accesses. The effect of BERROR on the operation of the
ARM740T is discussed in 3.7 Exceptions on page 3-11.

BERROR can be flagged on any sequential cycle; however, it is ignored on buffered
writes, which cannot be aborted.

Linefetches

The effect of BERROR during linefetches is slightly different to that during other
access.

During a linefetch the ARM740T fetches four words of data, regardless of which words
of data were requested by the ARM core, and the rest of the words are fetched
speculatively.

• If BERROR is asserted on a word which was requested by the ARM core, the
abort functions normally.

• If the abort is signalled on a word which was not requested by the ARM core,
the access is not aborted, and program flow is not interrupted.

Regardless of which word was aborted, the line of data is not placed in the cache as it
is assumed to contain invalid data.

11.6.2 BWAIT
The BWAIT pin can be used to extend memory accesses in whole cycle increments.

BWAIT is driven by the selected slave during the LOW phase of BCLK . When a slave
cannot complete an access in the current cycle, it drives BWAIT HIGH to stall the
ARM740T.

BWAIT does not prevent changes in BTRAN[1:0] and write data on BD[31:0] during
the cycle in which it was asserted HIGH. Changes in these signals are then prevented
until the BCLK HIGH phase after BWAIT was taken LOW. The addressing signals do
not change from the rising BCLK edge when BWAIT goes HIGH, until the next BCLK
HIGH phase after BWAIT returns LOW.
Open Access – Preliminary

11-7ARM740T Datasheet
ARM DDI 0008E

AMBA Interface
 Figure 11-4: Use of the BWAIT pin to stop ARM740T for 1 BCLK cycle

In Figure 11-4: Use of the BWAIT pin to stop ARM740T for 1 BCLK cycle , the heavy
bars indicate the cycle for which signals are stable as a result of asserting BWAIT.

The signal BTRAN[1:0] is pipelined by one bus cycle. This pipelining should be taken
into account when these signals are being decoded. The value of BTRAN[1:0]
indicates whether the next bus cycle is a data cycle or an address cycle.

As bus cycles are stretched by BWAIT the boundary between bus cycles is determined
by the falling edge of BCLK when BWAIT was sampled as LOW on the rising edge of
BCLK . A useful rule of thumb is to sample the value of BTRAN[1:0] on the falling edge
of BCLK only when BWAIT was LOW on the previous rising edge of BCLK .

When BWAIT is used to stretch a sequential cycle, BTRAN[1:0] returns to signalling
address during the first phase of the sequential cycle if a single word access is
occurring. In this case, it is important that the memory controller does not interpret that
an address cycle is signalled when it is a stretched memory cycle.

11.6.3 Other slave responses
Other slave response combinations including bus last, and bus retract are detailed in
the AMBA Specification (ARM IHI 0001).

BCLK

BWAIT

BTRAN[1:0]

BA[31:0]
BWRITE
BSIZE[1:0]
BLOCK

BD[31:0]
(Write)

BD[31:0]
(Read)

Address Seq. Address Address

Data

Data

Idle Cycle Memory Cycle Idle Cycle
Open Access – Preliminary

11-8 ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.7 Maximum Sequential Length

The ARM740T may perform sequential memory accesses whenever the cycle is of the
same type as the previous cycle (for example, read/write), and the addresses are
consecutive. However, sequential accesses are interrupted on a 256-word boundary.

If a sequential access is performed over a 256-word boundary, the access to word 256
is turned into a non-sequential access, and further accesses continue sequentially as
before.

This simplifies the design of the memory controller. Provided that peripherals and areas
of memory are aligned to 256-word boundaries, sequential bursts are always local to
one peripheral or memory device. This means that all accesses to a device always start
with a non-sequential access.

A DRAM controller can take advantage of the fact that sequential cycles are always
within a DRAM page, provided the page size is greater than 256.

11.8 Read-Lock-Write
The read-lock-write sequence is generated by a SWP instruction.

The BLOK signal indicates that the two accesses should be treated as an atomic unit.
A memory controller should ensure that no other bus activity is allowed to happen
between the accesses when BLOK is asserted. When the ARM has started a
read-lock-write sequence, it cannot be interrupted until it has completed.

On the bus, the sequence consists of:

• a read access
• a write access to the same address

This sequence is differentiated by the BLOK signal. BLOK :

• goes HIGH in the HIGH phase of BCLK at the start of the read access
• always goes LOW at the end of the write access

The read cycle is always performed as a single, non-sequential, external read cycle,
regardless of the contents of the cache.

The write is forced to be unbuffered, so that it can be aborted if necessary.

The cache is updated on the write.
Open Access – Preliminary

11-9ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.9 Big-Endian / Little-Endian Operation

The ARM740T treats words in memory as being stored in big-endian or little-endian
format depending on the value of the big-end bit in the control register, see 4.3.2
Register 1: Control on page 4-5.

Load and store are the only instructions affected by the endianness. Refer to the ARM
Architecture Reference Manual for details of the LDR and STR instructions.

Because the ARM740T duplicates the byte to be written across the databus and
internally rotates bytes after reading them from the databus, a 32-bit memory system
only needs to have control logic to enable the appropriate byte. There is no need to
rotate or shift the data externally.

To ensure that all of the databus is driven during a byte read, it is valid to read a word
back from the memory.

Little-endian format

In little-endian format:

• the lowest-numbered byte in a word is considered to be the least significant
byte of the word.

• the highest-numbered byte is the most significant.

Byte 0 of the memory system should be connected to data lines 7 through 0 (BD[7:0])
in this format.

 Figure 11-5: Little-endian addresses of bytes within word

Databus Bits

Higher Address 31 24 23 16 15 8 7 0 Word
Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address
Open Access – Preliminary

11-10 ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

Big-endian format

In big-endian format:

• the most significant byte of a word is stored at the lowest-numbered byte.
• the least significant byte is stored at the highest-numbered byte.

Byte 0 of the memory system should therefore be connected to data lines 31 through
24 (BD[31:24]).

 Figure 11-6: Big-endian addresses of bytes within words

11.9.1 Word operations
All word operations expect the data to be presented on data bus inputs 31 through 0.
The external memory system should ignore the bottom two bits of the address if a word
operation is indicated.

11.9.2 Halfword operations
A halfword store (STRH) repeats the bottom 16 bits of the source register twice across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystems to store the data.

Little-endian operation

A halfword load (LDRH) expects the data on data bus inputs 15 through 0 if the supplied
address is on a word boundary, or on data bus inputs 31 through 16 if it is a word
address plus two bytes. The selected halfword is placed in the bottom 16 bits of the
destination register. The other two bytes on the databus are ignored. See Figure 11-5:
Little-endian addresses of bytes within word on page 11-10.

Big-endian operation

A halfword load (LDRH) expects the data on data bus inputs 31 through 16 if the
supplied address is on a word boundary, or on data bus inputs 15 through 0 if it is a
word address plus two bytes. The selected halfword is placed in the bottom 16 bits of
the destination register. The other two bytes on the databus are ignored. See
Figure 11-6: Big-endian addresses of bytes within words on page 11-11.

11.9.3 Byte operations
A byte store (STRB) repeats the bottom eight bits of the source register four times
across data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

Databus Bits

Higher Address 31 24 23 16 15 8 7 0 Word
Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address
Open Access – Preliminary

11-11ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

Little-endian operation

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied
address is on a word boundary, on data bus inputs 15 through 8 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom eight bits of the
destination register. The other three bytes on the databus are ignored. See
Figure 11-5: Little-endian addresses of bytes within word on page 11-10.

Big-endian operation

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied
address is on a word boundary; on data bus inputs 23 through 16 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register. The other three bytes on the databus are ignored. See
Figure 11-6: Big-endian addresses of bytes within words on page 11-11.
Open Access – Preliminary

11-12 ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

11.10Multi-Master Operation

The AMBA bus specification supports multiple bus masters on the high performance
Advanced System Bus (ASB). A simple two wire request/grant mechanism is
implemented between the arbiter and each bus master. The arbiter ensures that only
one bus master is active on the bus and also ensures that when no masters are
requesting the bus, a default master is granted.

The specification also supports a shared lock signal. This allows bus masters to
indicate that the current transfer is indivisible from the following transfer and will prevent
other bus masters from gaining access to the bus until the locked transfers have
completed.

Arbitration

Efficient arbitration is important to reduce “dead-time” between successive masters
being active on the bus. The bus protocol supports pipelined arbitration, such that
arbitration for the next transfer is performed during the current transfer.

The arbitration protocol is defined, but the prioritization is flexible and left to the
application. Typically, the Test Interface would be given the highest priority to ensure
test access under all conditions. Every system must also include a default bus master,
which is granted the bus when no bus masters are requesting it.

The request signal, AREQ, from each bus master to the arbiter indicates that the bus
master requires the bus. The grant signal from the arbiter to the bus master, AGNT,
indicates that the bus master is currently the highest priority master requesting the bus.

The bus master:

• Must drive the BTRAN signals during BCLK HIGH when AGNT is HIGH.
• Will become granted when AGNT is HIGH and BWAIT is LOW on a rising edge

of BCLK .

The shared bus lock signal, BLOK , indicates to the arbiter that the following transfer is
indivisible from the current transfer and no other bus master should be given access to
the bus.

A bus master must always drive a valid level on the BLOK signal when granted the bus
to ensure the arbitration process can continue, even if the bus master is not performing
any transfers.

11.10.1Arbiter
The arbiter functions as follows:

1 Bus masters assert AREQ during the HIGH phase of BCLK .
2 The arbiter samples all AREQ signals on the falling edge of BCLK .
3 During the LOW phase of BCLK , the arbiter also samples the BLOK signal and

then asserts the appropriate AGNT signal.
If BLOK is LOW, the arbiter grants the highest priority bus master.
If BLOK is HIGH the arbiter keeps the same bus master granted.

The arbiter can update the grant signals every bus cycle; however, a new bus master
can only become granted and start driving the bus when the current transfer completes,
as indicated by BWAIT being LOW. Therefore, it is possible for the potential next bus
master to change during waited transfers.

The BLOK signal is ignored by the arbiter during the single cycle of handover between
two different bus masters. If no bus masters are requesting the bus then the arbiter
must grant the default bus master.
Open Access – Preliminary

11-13ARM740T Datasheet
ARM DDI 0008E

AMBA Interface

The arbitration protocol is defined, but the prioritization is flexible and left to the
application. A simple fixed-priority scheme may be used; alternatively, a more complex
scheme can be implemented if required by the application.

11.10.2Bus Master Handover
Bus master handover occurs when a bus master, which is not currently granted the bus,
becomes the new granted bus master.

A bus master becomes granted when AGNT is HIGH and BWAIT is LOW. AGNT HIGH
indicates the bus master is currently the highest priority master requesting the bus and
BWAIT LOW indicates the previous transfer has completed.

The handover process is as follows:

1 When AGNT is asserted, a bus master must drive the BTRAN signals during
BCLK HIGH.
This may continue for many cycles if the previous transfer is waited.
Prior to handover, BTRAN must indicate an address-only cycle as the new bus
master must commence with an address-only cycle to allow for bus
turnaround.

2 When the previous transfer completes, the new bus master becomes granted.
3 In the last clock HIGH phase of the previous transfer, the address bus stops

being driven by the previous bus master.
4 The new bus master starts to drive the address bus and control signals during

the clock LOW phase.
5 The first transfer may then commence in the following bus cycle.

During a waited transfer, bus master handover may be delayed and it is possible that
the AGNTx to a particular bus master may be asserted and then negated, if another
higher priority bus master then requests the bus before the current transfer has
completed.

11.10.3Default Bus Master
If the ARM740T is to be the default bus master, as is the case in many systems. The
AREQ signal from the ARM740T should not be used. In this case the arbiter should
always allocate the bus to the ARM740T when not requested by higher priority bus
masters.

This will result in a system with good bus performance, as the ARM740T will not have
to wait for the bus to be granted when it wishes to perform a bus transfer.
Open Access – Preliminary

11-14 ARM740T Datasheet
ARM DDI 0008E

This chapter describes the test features of ARM740T.

12.1 Slave Operation (Test Mode) 12-2
12.2 ARM740T Test Mode 12-3
12.3 ARM7TDM Core Test Mode 12-3
12.4 RAM Test Mode 12-4
12.5 TAG Test Mode 12-5
12.6 Test Register Mapping 12-6

AMBA Test12
Open Access – Preliminary

12-1ARM740T Datasheet
ARM DDI 0008E

AMBA Test

12.1 Slave Operation (Test Mode)

When the ARM740T block is selected as a slave, it is possible to write and read test
vectors to the core using the AMBA test methodology.

The ARM740T provides four test modes for this purpose:

• ARM740T test mode
• ARM7TDM Core test mode
• RAM test mode
• TAG test mode

To apply test vectors to the ARM740T, the ARM740T block must have been deselected
as a master (AGNT goes LOW). The Test Interface Controller becomes the bus master,
and the ARM740T is selected as a slave using the signal DSELARM . This places the
ARM740T into test mode, and allows access to the test registers.

The tests are sequenced by the test state machine in the AMBA interface, which
generates the appropriate control signals for the test modes.

A sample test sequence is shown in Figure 12-1: Running a test vector on the
processor core .

 Figure 12-1: Running a test vector on the processor core

BCLK

TREQA

TREQB

BD[31:0]

Slave state

CTRL inputs

MclkEnable

ECLK

One test cycle

Ctrl in Data in Status Address Ctrl in

CTRL-IN DATA-IN STAT-OUT ADDR-OUT TURNAROUND CTRL-IN
Open Access – Preliminary

12-2 ARM740T Datasheet
ARM DDI 0008E

AMBA Test

12.2 ARM740T Test Mode

The ARM740T test mode is used to test the functionality of:

• cache control logic
• write buffer
• protection unit
• cache

To perform this test control, stimuli are applied to the control register, see Table 12-1:
RAM test mode address packet bit positions on page 12-4.

Data packets are read or written as appropriate and the address and status are read
back (see Table 12-1: RAM test mode address packet bit positions on page 12-4).

The sequencing for this test mode is as shown in Figure 12-2: State machine for
ARM740T and ARM7TDMI test . This is the default test mode, and is selected when
the bits [31:29] of the control register are set LOW (see Table 12-1: RAM test mode
address packet bit positions on page 12-4).
.

 Figure 12-2: State machine for ARM740T and ARM7TDMI test

12.3 ARM7TDM Core Test Mode
The ARM7TDMI test places the ARM740T into a test mode so that the signals of the
ARM7TDM are visible to the AMBA interface. In this mode, the rest of ARM740T is held
in reset. The ARM740T is placed in the mode by setting bit 31 of the control register,
see Table 12-1: RAM test mode address packet bit positions on page 12-4.

Reset 0000

0001

0011

0010

0100

0110

0101

T’AROUND

ADDR OUT

STAT OUT

DATA OUTDATA IN

CONTROL

INACTIVE
Open Access – Preliminary

12-3ARM740T Datasheet
ARM DDI 0008E

AMBA Test

12.4 RAM Test Mode

The RAM test mode is used to perform an intensive test of the RAM arrays, to provide
full coverage of bit faults. In this test mode, the rest of the ARM740T is held in reset and
direct access is provided to the data, address and control signals of the RAM.

To accommodate this, an alternative test sequence is used, see Figure 12-3: State
machine for RAM test mode .

In this test mode, the RAM control signals are derived from unused address bits, as
shown in Table 12-1: RAM test mode address packet bit positions on page 12-4.

To enter RAM test mode, bits 30 and 28 of the control packet should be set. This places
the ARM740T into RAM test mode, and forces the RAM to be clocked from the FCLK
input.

 Figure 12-3: State machine for RAM test mode

Address packet bit RAM signal Description

[24:23] MAS[1:0] RAM access size

22 RSEQ RAM sequential signal

21 IMMED Immediate write signal, controls write pipeline, and
selects between RAMSEL[3:0] and SETSEL[3:0].

20 WRITE RAM write strobe

19 READ RAM read strobe

[18:15] RAMSEL[3:0] RAM bank select signal, used when IMMED is
LOW

[14:11] SETSEL[3:0] RAM bank select signal, used when IMMED is
HIGH

[10:0] ADDR[10:0] RAM address

 Table 12-1: RAM test mode address packet bit positions

CONTROL

DATA IN DATA OUT

INACTIVE

ADDRESS

T’AROUND

Reset
Open Access – Preliminary

12-4 ARM740T Datasheet
ARM DDI 0008E

AMBA Test

12.5 TAG Test Mode

The TAG test mode is used to perform an intensive test of all of the cells of the TAG
array, and to test the TAG comparators. In this test mode, the rest of the ARM740T is
held in reset and direct access is provided to the data, address and control signals of
the RAM. See Figure 12-4: State machine for TAG test mode .

In this test mode the TAG control signals are derived from the TAG CTL packet as
shown in Table 12-1: RAM test mode address packet bit positions on page 12-4.

To enter TAG test mode, bits 29 and 28 of the control packet should be set. This places
the ARM740T into TAG test mode, and forces the TAG to be clocked from the FCLK
input.

 Figure 12-4: State machine for TAG test mode

TAG CTL packet bit TAG signal Description

[11:8] FLUSH[3:0] When asserted each bit flushes the appropriate
TAG arrays

[7:4] TAGSEL[3:0] Tag select signal, each bit selects a TAG array

2 WRITE TAG write strobe

1 READ TAG read strobe

0 VALID Valid input, the value on VALID is written into the
valid cell in the array on a write.

 Table 12-2: TAG test mode TAG CTL packet bit positions

CONTROL

STATUS

TAG CTL

ADDRESS

T’AROUND

Reset INACTIVE
Open Access – Preliminary

12-5ARM740T Datasheet
ARM DDI 0008E

AMBA Test

12.6 Test Register Mapping

The test registers are defined in the following tables:

• Table 12-3: Status packet bit positions
• Table 12-4: Control Packet bit positions

12.6.1 Status packet bit positions

Bit ARM7TDMI Test ARM740T Test Notes

31 BUSDIS
Bus Disable

30 SCREG[2]
Scan chain register

SCREG[2]
Scan chain register

29 SCREG[2]
Scan chain register

SCREG[2]
Scan chain register

28 SCREG[1]
Scan chain register

SCREG[1]
Scan chain register

27 SCREG[0]
Scan chain register

SCREG[0]
Scan chain register

26 HIGHZ
HIGHZ instruction in TAP
controller

HIGHZ
HIGHZ instruction in TAP
controller

25 nTDOEN
not TDO enable

nTDOEN
not TDO enable

24 DBGRQI
Internal debug request

DBGRQI
Internal debug request

23 RANGEOUT0
ICEbreaker Rangeout0

RANGEOUT0
ICEbreaker Rangeout0

22 RANGEOUT1
ICEbreaker Rangeout1

RANGEOUT1
ICEbreaker Rangeout1

21 COMMRX
Communications channel receive

COMMRX
Communications channel receive

20 COMMTX
Communications channel transmit

COMMTX
Communications channel transmit

19 DBGACK
Debug acknowledge

DBGACK
Debug acknowledge

18 TDO
Test data out

TDO
Test data out

17 nENOUT
Not enable output.

nENOUT
Not enable output

nENOUT is only valid during the data
access cycle, so MclkEnable is used
to clock a transparent latch that will
capture the correct state.

 Table 12-3: Status packet bit positions
Open Access – Preliminary

12-6 ARM740T Datasheet
ARM DDI 0008E

AMBA Test
16 nENOUTI
Not enable output

PROTWATCH[3]
Protection Unit test output

nENOUTI as nENOUT

15 TBIT
Thumb state

PROTWATCH[2]
Protection Unit test output

14 nCPI
Not Coprocessor instruction.

PROTWATCH[1]
Protection Unit test output

13 nM[4]
Not processor mode

PROTWATCH[0]
Protection Unit test output

12 nM[3]
Not processor mode

CAMWATCH[1]
Replacement test output

11 nM[2]
Not processor mode

CAMWATCH[0]
Replacement test output

10 nM[1]
Not processor mode

IDCWATCH[3]
Cache test output

9 nM[0]
Not processor mode

IDCWATCH[2]
Cache test output

8 nTRANS
Not memory translate

IDCWATCH[1]
Cache test output

7 nEXEC
Not executed

IDCWATCH[0]
Cache test output

6 LOCK
Locked operation

LOCK
Locked operation.

5 MAS[1]
Memory Access Size

MAS[1]
Memory Access Size

4 MAS[0]
Memory Access Size

MAS[0]
Memory Access Size

3 nOPC
Not op-code fetch

nENOUT
Not enable output

2 nRW
Not read/write

nRW
Not read/write

1 nMREQ
Not memory request

nMREQ
Not memory request.

0 SEQ
Sequential address

SEQ
Sequential address

Bit ARM7TDMI Test ARM740T Test Notes

 Table 12-3: Status packet bit positions (Continued)
Open Access – Preliminary

12-7ARM740T Datasheet
ARM DDI 0008E

AMBA Test

12.6.2 Control packet bit positions

Bit ARM7TDMI Input ARM740T Input Notes

31 TESTCPU
ARM7TDM test enable

TESTCPU
ARM7TDMI test enable

30 TAGTEST
TAG test mode enable

29 RAMTEST
RAM test mode enable

28 nENIN
NOT enable input

FORCEFCLK
Clock select override

nENIN is gated with MCLKENABLE ,
so it is only valid (LOW) during data
access.

27 SDOUTBS
Boundary scan serial output data

26 TBE
Test bus enable

25 APE
Address pipeline enable

24 BL[3]
Byte Latch Control

ANDed with MCLKENABLE , so will
only be valid during data access cycle.
Not Supported.

23 BL[2]
Byte Latch Control

ANDed with MCLKENABLE , so is
only valid during data access cycle.
Not Supported.

22 BL[1]
Byte Latch Control

ANDed with MCLKENABLE , so is
only valid during data access cycle.
Not Supported.

21 BL[0]
Byte Latch Control

ANDed with MCLKENABLE , so is
only valid during data access cycle.
Not Supported.

20 TMS
Test Mode Select

TMS
Test Mode Select

19 TDI
Test Data in

TDI
Test Data in

18 TCK
Test clock

TCK
Test clock

ANDed with MCLKENABLE and
BCLK .

17 nTRST
Not Test Reset

nTRST
Not Test Reset.

16 EXTERN1
External input 1

EXTERN1
External input 1

 Table 12-4: Control Packet bit positions
Open Access – Preliminary

12-8 ARM740T Datasheet
ARM DDI 0008E

AMBA Test
15 EXTERN0
External input 0

EXTERN0
External input 0.

14 DBGRQ
Debug request

DBGRQ
Debug request

13 BREAKPT
Breakpoint

BREAKPT
Breakpoint

12 DBGEN
Debug Enable

DBGEN
Debug Enable

11 ISYNC
Synchronous interrupts

ISYNC
Synchronous interrupts.

10 BIGEND
Big Endian configuration

BIGEND
Big Endian configuration

9 CPA
Coprocessor absent

CPA
Coprocessor absent

8 CPB
Coprocessor busy

CPB
Coprocessor busy

7 ABE
Address bus enable

SnA
Clock Configuration

This should normally be set HIGH, as
if the address bus is tri-stated (ABE
LOW), then it is not possible to read
address values

6 ALE
Address latch enable

ALE
Address latch enable

5 DBE
Data Bus Enable

FASTBUS
Clock configuration

DBE to the ARM7TDM is ANDed with
the state machine generated DBE and
BCLK to prevent bus conflict.

4 nFIQ
Not fast interrupt request

nFIQ
Not fast interrupt request

3 nIRQ
Not interrupt request

nIRQ
Not interrupt request

2 ABORT
Memory Abort

ABORT
Memory Abort

1 nWAIT
Not wait

nWAIT
Not wait.

ANDed with MCLKENABLE , so that
the core state can only change during
the data access cycle.

0 nRESET
Not reset

nRESET
Not reset

Bit ARM7TDMI Input ARM740T Input Notes

 Table 12-4: Control Packet bit positions (Continued)
Open Access – Preliminary

12-9ARM740T Datasheet
ARM DDI 0008E

	Introduction
	1.1 Overview
	RISC architecture

	1.2 Block Diagram
	1.3 Instruction Set Overview
	1.3.1 ARM instruction set
	Format summary
	ARM instruction summary

	1.3.2 THUMB Instruction Set
	Format summary
	THUMB instruction summary

	Signal Description
	2.1 AMBA Interface Signals
	2.2 Coprocessor Interface Signals
	2.3 JTAG Signals
	2.4 Debugger Signals
	2.5 Miscellaneous Signals

	Programmer’s Model
	3.1 Processor Operating States
	3.1.1 Switching state
	Entering THUMB state
	Entering ARM state

	3.2 Data Types
	3.3 Operating Modes
	3.4 Memory Formats
	3.4.1 Big�endian format
	3.4.2 Little�endian format

	3.5 Registers
	3.5.1 The ARM state register set
	Pre�defined registers
	FIQ mode

	3.5.2 The THUMB state register set
	3.5.3 The relationship between ARM and THUMB state registers
	3.5.4 Accessing Hi registers in THUMB state

	3.6 Program Status Registers
	3.6.1 Condition code flags
	3.6.2 Control bits
	Reserved bits

	3.7 Exceptions
	3.7.1 Action on entering an exception
	3.7.2 Action on leaving an exception
	3.7.3 Exception entry/exit summary
	Notes

	3.7.4 FIQ
	3.7.5 IRQ
	3.7.6 Abort
	Prefetch abort
	Data abort
	Returning from an abort

	3.7.7 Software interrupt
	3.7.8 Undefined instruction
	3.7.9 Exception vectors
	3.7.10 Exception priorities
	Not all exceptions can occur at once

	3.8 Reset

	Configuration
	4.1 Overview
	4.1.1 Compatibility

	4.2 Internal Coprocessor Instructions
	4.3 Registers
	4.3.1 Register 0: ID
	8KB cache variant
	4KB cache variant

	4.3.2 Register 1: Control
	4.3.3 Register 2: Cacheable
	4.3.4 Register 3: Bufferable
	4.3.5 Register 4: Reserved
	4.3.6 Register 5: Protection
	4.3.7 Register 6: Memory Area Definition
	4.3.8 Register 7: IDC Flush
	4.3.9 Registers [8:15]: Reserved

	Cache
	5.1 Overview
	Operating modes
	Cache operation
	Replacement algorithm
	5.1.1 The 8KB variant
	5.1.2 The 4KB variant
	5.1.3 Read-Lock-Write
	5.1.4 Reset

	5.2 Control Registers
	5.3 Operating Modes
	5.3.1 Mixed instruction data operation
	5.3.2 Partially locked operation
	Locking code or data into the cache

	5.3.3 Split instruction data operation

	5.4 Cache Operation
	5.4.1 Cacheable bit
	5.4.2 Software IDC flush

	Write Buffer
	6.1 Overview of the Write Buffer
	6.1.1 Bufferable bit
	6.1.2 Bufferable write
	6.1.3 Unbufferable writes
	6.1.4 Read-lock-write

	6.2 Write Buffer Operation
	6.2.1 To enable the write buffer
	6.2.2 To disable the write buffer

	Protection Unit
	7.1 Overview
	7.1.1 Controlling individual memory areas

	7.2 Protection Unit Registers
	7.2.1 Control register
	7.2.2 Cacheable register
	7.2.3 Bufferable register
	7.2.4 Protection register
	7.2.5 Area registers
	Base address
	Accessing the area register

	7.3 Protection Unit Operation
	7.3.1 Memory area properties
	7.3.2 Access permissions
	7.3.3 Protection failures and external accesses
	7.3.4 Reset

	7.4 Support for Overlapping Regions
	Overlapping supervisor and code regions
	7.4.1 Undefined address space

	7.5 External Aborts
	7.5.1 Restrictions
	7.5.2 Cacheable reads (linefetches)
	7.5.3 Buffered writes

	7.6 Interaction of the Protection Unit, Cache and Write Buffer

	Debug Interface
	8.1 Overview
	8.1.1 Debug extensions
	Debug state
	Internal state

	8.1.2 Pullup resistors
	8.1.3 Instruction register

	8.2 Debug Systems
	8.3 Entering Debug State
	8.3.1 Entering debug state on breakpoint
	8.3.2 Entering debug state on watchpoint
	8.3.3 Entering debug state on debug-request

	8.4 Scan Chains and JTAG Interface
	8.4.1 Scan limitations
	8.4.2 The JTAG state machine

	8.5 Reset
	8.6 Public Instructions
	8.7 Test Data Registers
	8.7.1 Bypass register
	Operating mode

	8.7.2 ARM7TDM device identification (ID) code register
	Operating mode

	8.7.3 Instruction register
	Operating mode

	8.7.4 Scan chain select register
	Operating mode

	8.7.5 Overview of scan chains
	Operating modes

	8.7.6 Scan chain 0
	Serial testing the core
	Inter�device testing

	8.7.7 Scan chain 1
	Scan chain length and purpose

	8.7.8 Scan chain 2
	8.7.9 Scan chain 3
	External scan chains

	8.7.10 Scan Chain 6
	8KB variant
	4KB variant

	8.7.11 Scan Chain 15

	8.8 ARM7TDM Core Clocks
	8.8.1 Clock switch during debug

	8.9 Determining the Core and System State
	ARM or THUMB state
	8.9.1 Determining the core’s state
	Moving to ARM state
	In ARM state
	Accessing banked registers

	8.9.2 Determining system state
	Restrictions

	8.9.3 Determining system control coprocessor state
	8.9.4 Exit from debug state

	8.10 The PC During Debug
	8.10.1 Breakpoints
	8.10.2 Watchpoints
	8.10.3 Watchpoint with another exception
	Exiting from debug state

	8.10.4 Debug request
	8.10.5 System�speed access
	8.10.6 Summary of return address calculations

	8.11 Priorities and Exceptions
	8.11.1 Breakpoint with prefetch abort
	8.11.2 Interrupts
	8.11.3 Data aborts

	8.12 Scan Interface Timing
	8.13 Debug Timing
	8.13.1 Tag scan chain

	EmbeddedICE Macrocell
	9.1 Overview
	9.1.1 Disabling EmbeddedICE
	9.1.2 EmbeddedICE timing

	9.2 Watchpoint Registers
	9.2.1 Programming and reading watchpoint registers
	9.2.2 Using the mask registers
	9.2.3 The control registers

	9.3 Programming Breakpoints
	9.3.1 Hardware breakpoints
	9.3.2 Software breakpoints
	Setting the breakpoint
	Clearing the breakpoint

	9.4 Programming Watchpoints
	9.4.1 Programming restriction

	9.5 Debug Control Register
	DBGRQ
	DBGACK
	INTDIS

	9.6 Debug Status Register
	9.7 Coupling Breakpoints and Watchpoints
	9.7.1 Example
	CHAINOUT signal
	RANGEOUT signal
	Example

	9.8 Debug Communications Channel
	9.8.1 Debug comms channel registers
	Instructions

	9.8.2 Communications via the comms channel
	9.8.3 Message transfer

	Bus Clocking
	10.1 Introduction
	10.1.1 Standard mode
	10.1.2 Fastbus extension

	10.2 Fastbus Extension
	10.2.1 Using BWAIT
	Memory cycles
	CPU and Cache operation

	10.3 Standard Mode
	10.3.1 Memory access
	10.3.2 Synchronous and asynchronous modes
	FCLK and BCLK
	Asynchronous mode
	Synchronous mode

	AMBA Interface
	11.1 ASB Bus Interface Signals
	System Arbiter

	11.2 Cycle Types
	11.2.1 Single�word memory access
	11.2.2 Sequential accesses
	11.2.3 Bus accesses

	11.3 Addressing Signals
	11.4 Memory Request Signals
	11.5 Data Signal Timing
	11.6 Slave Response Signals
	11.6.1 BERROR
	Linefetches

	11.6.2 BWAIT
	11.6.3 Other slave responses

	11.7 Maximum Sequential Length
	11.8 Read-Lock-Write
	11.9 Big-Endian / Little-Endian Operation
	Little�endian format
	Big�endian format
	11.9.1 Word operations
	11.9.2 Halfword operations
	Little-endian operation
	Big-endian operation

	11.9.3 Byte operations
	Little-endian operation
	Big-endian operation

	11.10 Multi-Master Operation
	Arbitration
	11.10.1 Arbiter
	11.10.2 Bus Master Handover
	11.10.3 Default Bus Master

	AMBA Test
	12.1 Slave Operation (Test Mode)
	12.2 ARM740T Test Mode
	12.3 ARM7TDM Core Test Mode
	12.4 RAM Test Mode
	12.5 TAG Test Mode
	12.6 Test Register Mapping
	12.6.1 Status packet bit positions
	12.6.2 Control packet bit positions

