
n only on signaling NaNs.

osed in braces ({ and }).

eptions
Invalid operation
Overflow
Underflow
Inexact result
Division by zero

TAT to transfer flags.
TAT to transfer flags.

ddress in Rn.
ing)
g)

ddress in Rn.
g)
ing)

FMDHR.
FMRDH.
FMDLR.
FMRDL.
M until all VFP ops complete.
M until all VFP ops complete.

nt to FMRX R15, FPSCR

umulative exception bits
3 2 1 0

UFC OFC DZC IOC
ouble precision operands.

ank of registers.
Vector Floating Point Instruction Set
Quick Reference Card

Key to Tables
{cond} See Table Condition Field (on ARM side). {E} E : raise exception on any NaN. Without E : raise exceptio
<S/D> S (single precision) or D (double precision). {Z} Round towards zero. Overrides FPSCR rounding mode.
<S/D/X> As above, or X (unspecified precision). <VFPregs> A comma separated list of consecutive VFP registers, encl
Fd, Fn, Fm Sd, Sn, Sm (single precision), or Dd, Dn, Dm (double precision). <VFPsysreg> FPSCR, or FPSID.

Operation Assembler Exceptions Action Notes
Vector arithmetic Multiply FMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fn * Fm

and negate FNMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := – (Fn * Fm)
and accumulate FMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd + (Fn * Fm)
negate and accumulate FNMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd – (Fn * Fm) Exc
and subtract FMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := – Fd + (Fn * Fm) IO
negate and subtract FNMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := – Fd – (Fn * Fm) OF

Add FADD<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn + Fm UF
Subtract FSUB<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn – Fm IX
Divide FDIV<S/D>{cond} Fd, Fn, Fm IO, DZ, OF, UF, IX Fd := Fn / Fm DZ
Copy FCPY<S/D>{cond} Fd, Fm Fd := Fm
Absolute FABS<S/D>{cond} Fd, Fm Fd := abs(Fm)
Negative FNEG<S/D>{cond} Fd, Fm Fd := – Fm
Square root FSQRT<S/D>{cond} Fd, Fm IO, IX Fd := sqrt(Fm)

Scalar compare FCMP{E}<S/D>{cond} Fd, Fm IO Set FPSCR flags on Fd – Fm Use FMS
Compare with zero FCMP{E}Z<S/D>{cond} Fd IO Set FPSCR flags on Fd – 0 Use FMS

Scalar convert Single to double FCVTDS{cond} Dd, Sm IO Dd := convertStoD(Sm)
Double to single FCVTSD{cond} Sd, Dm IO, OF, UF, IX Sd := convertDtoS(Dm)
Unsigned integer to float FUITO<S/D>{cond} Fd, Sm IX Fd := convertUItoF(Sm)
Signed integer to float FSITO<S/D>{cond} Fd, Sm IX Fd := convertSItoF(Sm)
Float to unsigned integer FTOUI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoUI(Fm)
Float to signed integer FTOSI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoSI(Fm)

Save VFP registers FST<S/D>{cond} Fd, [Rn{, #<immed_8*4>}] [address] := Fd
Multiple, unindexed FSTMIA<S/D/X>{cond} Rn, <VFPregs> Saves list of VFP registers, starting at a

increment after FSTMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMEA (empty ascend
decrement before FSTMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMFD (full descendin

Load VFP registers FLD<S/D>{cond} Fd, [Rn{, #<immed_8*4>}] Fd := [address]
Multiple, unindexed FLDMIA<S/D/X>{cond} Rn, <VFPregs> Loads list of VFP registers, starting at a

increment after FLDMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMFD (full descendin
decrement before FLDMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMEA (empty ascend

Transfer registers ARM to single FMSR{cond} Sn, Rd Sn := Rd
Single to ARM FMRS{cond} Rd, Sn Rd := Sn
ARM to lower half of double FMDLR{cond} Dn, Rd Dn[31:0] := Rd Use with
Lower half of double to ARM FMRDL{cond} Rd, Dn Rd := Dn[31:0] Use with
ARM to upper half of double FMDHR{cond} Dn, Rd Dn[63:32] := Rd Use with
Upper half of double to ARM FMRDH{cond} Rd, Dn Rd := Dn[63:32] Use with
ARM to VFP system register FMXR{cond} <VFPsysreg>, Rd VFPsysreg := Rd Stalls AR
VFP system register to ARM FMRX{cond} Rd, <VFPsysreg> Rd := VFPsysreg Stalls AR
FPSCR flags to CPSR FMSTAT{cond} CPSR flags := FPSCR flags Equivale

FPSCR format Rounding (Stride – 1)*3 Vector length – 1 Exception trap enable bits C
31 30 29 28 24 23 22 21 20 18 17 16 12 11 10 9 8 4
N Z C V FZ RMODE STRIDE LEN IXE UFE OFE DZE IOE IXC

FZ: 1 = flush to zero mode. Rounding: 0 = round to nearest, 1 = towards +∞, 2 = towards –∞, 3 = towards zero. (Vector length * Stride) must not exceed 4 for d

If Fd is S0-S7 or D0-D3, operation is Scalar (regardless of vector length). If Fd is S8-S31 or D4-D15, and Fm is S0-S7 or D0-D3, operation is Mixed (Fm scalar, others vector).
If Fd is S8-S31 or D4-D15, and Fm is S8-S31 or D4-D15, operation is Vector. S0-S7 (or D0-D3), S8-S15 (D4-D7), S16-S23 (D8-D11), S24-S31 (D12-D15) each form a circulating b

.

.

gned). Flags not affected.
ligned). Flags not affected.
ligned). Flags not affected.

gned). Flags not affected.

§4T, unchanged in §5T.
Lo, or Hi to Hi.

affected if shift is 0.
0.

0.

0.
0.

258 bytes of current instruction.
side). AL not allowed.

rrent instruction.
ions.
urrent instruction.
= 0.
ions.
urrent instruction.

in instruction.
Thumb® Instruction Set
Quick Reference Card

All Thumb registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.

Operation § Assembler Updates Action Notes
Move Immediate MOV Rd, #<immed_8> N Z Rd := immed_8 8-bit immediate value.

Lo to Lo MOV Rd, Rm N Z * * Rd := Rm * Clears C and V flags.
Hi to Lo, Lo to Hi, Hi to Hi MOV Rd, Rm Rd := Rm Not Lo to Lo. Flags not affected

Arithmetic Add ADD Rd, Rn, #<immed_3> N Z C V Rd := Rn + immed_3 3-bit immediate value.
Lo and Lo ADD Rd, Rn, Rm N Z C V Rd := Rn + Rm
Hi to Lo, Lo to Hi, Hi to Hi ADD Rd, Rm Rd := Rd + Rm Not Lo to Lo. Flags not affected
immediate ADD Rd, #<immed_8> N Z C V Rd := Rd + immed_8 8-bit immediate value.
with carry ADC Rd, Rm N Z C V Rd := Rd + Rm + C-bit
value to SP ADD SP, #<immed_7*4> R13 := R13 + immed_7 * 4 9-bit immediate value (word-ali
form address from SP ADD Rd, SP, #<immed_8*4> Rd := R13 + immed_8 * 4 10-bit immediate value (word-a
form address from PC ADD Rd, PC, #<immed_8*4> Rd := (R15 AND 0xFFFFFFFC) + immed_8 * 4 10-bit immediate value (word-a

Subtract SUB Rd, Rn, Rm N Z C V Rd := Rn – Rm
immediate 3 SUB Rd, Rn, #<immed_3> N Z C V Rd := Rn – immed_3 3-bit immediate value.
immediate 8 SUB Rd, #<immed_8> N Z C V Rd := Rd – immed_8 8-bit immediate value.
with carry SBC Rd, Rm N Z C V Rd := Rd – Rm – NOT C-bit
value from SP SUB SP, #<immed_7*4> R13 := R13 – immed_7 * 4 9-bit immediate value (word-ali

Negate NEG Rd, Rm N Z C V Rd := – Rm
Multiply MUL Rd, Rm N Z * * Rd := Rm * Rd * C and V flags unpredictable in
Compare CMP Rn, Rm N Z C V update CPSR flags on Rn – Rm Can be Lo to Lo, Lo to Hi, Hi to

negative CMN Rn, Rm N Z C V update CPSR flags on Rn + Rm
immediate CMP Rn, #<immed_8> N Z C V update CPSR flags on Rn – immed_8 8-bit immediate value.

No operation NOP R8 := R8 Flags not affected.
Logical AND AND Rd, Rm N Z Rd := Rd AND Rm

Exclusive OR EOR Rd, Rm N Z Rd := Rd EOR Rm
OR ORR Rd, Rm N Z Rd := Rd OR Rm
Bit clear BIC Rd, Rm N Z Rd := Rd AND NOT Rm
Move NOT MVN Rd, Rm N Z Rd := NOT Rm
Test bits TST Rn, Rm N Z update CPSR flags on Rn AND Rm

Shift/rotate Logical shift left LSL Rd, Rm, #<immed_5> N Z C* Rd := Rm << immed_5 Allowed shifts 0-31. * C flag un
LSL Rd, Rs N Z C* Rd := Rd << Rs[7:0] * C flag unaffected if Rs[7:0] is

Logical shift right LSR Rd, Rm, #<immed_5> N Z C Rd := Rm >> immed_5 Allowed shifts 1-32.
LSR Rd, Rs N Z C Rd := Rd >> Rs[7:0] * C flag unaffected if Rs[7:0] is

Arithmetic shift right ASR Rd, Rm, #<immed_5> N Z C Rd := Rm ASR immed_5 Allowed shifts 1-32.
ASR Rd, Rs N Z C* Rd := Rd ASR Rs[7:0] * C flag unaffected if Rs[7:0] is

Rotate right ROR Rd, Rs N Z C* Rd := Rd ROR Rs[7:0] * C flag unaffected if Rs[7:0] is
Branch Conditional branch B{cond} label R15 := label label must be within – 252 to +

See Table Condition Field (ARM
Unconditional branch B label R15 := label label must be within ±2Kb of cu
Long branch with link BL label R14 := R15 – 2, R15 := label Encoded as two Thumb instruct

label must be within ±4Mb of c
Branch and exchange BX Rm R15 := Rm AND 0xFFFFFFFE Change to ARM state if Rm[0]
Branch with link and exchange 5T BLX label R14 := R15 – 2, R15 := label

Change to ARM
Encoded as two Thumb instruct
label must be within ±4Mb of c

Branch with link and exchange 5T BLX Rm R14 := R15 – 2, R15 := Rm AND 0xFFFFFFFE
Change to ARM if Rm[0] = 0

Software
Interrupt

SWI <immed_8> Software interrupt processor exception 8-bit immediate value encoded

Breakpoint 5T BKPT <immed_8> Prefetch abort or enter debug state

www.arm.com

Notes

Clears bits 31:16
Clears bits 31:8

Clears bits 31:16
Sets bits 31:16 to bit 15
Clears bits 31:8
Sets bits 31:8 to bit 7

Always updates base register.

Ignores Rd[31:16]
Ignores Rd[31:8]

Ignores Rd[31:16]
Ignores Rd[31:8]

Always updates base register.
Full descending stack.

nge
Release
nd Release
d Release
th Release
Release
Thumb Instruction Set
Quick Reference Card

Operation § Assembler Action
Load with immediate offset, word LDR Rd, [Rn, #<immed_5*4>] Rd := [Rn

halfword LDRH Rd, [Rn, #<immed_5*2>] Rd := Zer
byte LDRB Rd, [Rn, #<immed_5>] Rd := Zer

with register offset, word LDR Rd, [Rn, Rm] Rd := [Rn
halfword LDRH Rd, [Rn, Rm] Rd := Zer
signed halfword LDRSH Rd, [Rn, Rm] Rd := Sign
byte LDRB Rd, [Rn, Rm] Rd := Zer
signed byte LDRSB Rd, [Rn, Rm] Rd := Sign

PC-relative LDR Rd, [PC, #<immed_8*4>] Rd := [(R1
SP-relative LDR Rd, [SP, #<immed_8*4>] Rd := [R1
Multiple LDMIA Rn!, <reglist> Loads list

Store with immediate offset, word STR Rd, [Rn, #<immed_5*4>] [Rn + imm
halfword STRH Rd, [Rn, #<immed_5*2>] [Rn + imm
byte STRB Rd, [Rn, #<immed_5>] [Rn + imm

with register offset, word STR Rd, [Rn, Rm] [Rn + Rm
halfword STRH Rd, [Rn, Rm] [Rn + Rm
byte STRB Rd, [Rn, Rm] [Rn + Rm

SP-relative, word STR Rd, [SP, #<immed_8*4>] [R13 + im
Multiple STMIA Rn!, <reglist> Stores list

Push/
Pop

Push PUSH <reglist> Push regis
Push with link PUSH <reglist, LR> Push LR a
Pop POP <reglist> Pop regist
Pop and return POP <reglist, PC> Pop regist
Pop and return with exchange 5T POP <reglist, PC> Pop, branc

Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited.
Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be
liable for any loss or damage arising from the use of any information in this reference card, or any error
or omission in such information, or any incorrect use of the product.

Docu
ARM QR

Chan
Issue
A
B
C
D
E

+ immed_5 * 4]
oExtend([Rn + immed_5 * 2][15:0])
oExtend([Rn + immed_5][7:0])
+ Rm]

oExtend([Rn + Rm][15:0])
Extend([Rn + Rm][15:0])

oExtend([Rn + Rm][7:0])
Extend([Rn + Rm][7:0])
5 AND 0xFFFFFFFC) + immed_8 * 4]

3 + immed_8 * 4]
of registers
ed_5 * 4] := Rd
ed_5 * 2][15:0] := Rd[15:0]
ed_5][7:0] := Rd[7:0]

] := Rd
][15:0] := Rd[15:0]
][7:0] := Rd[7:0]
med_8 * 4] := Rd
of registers
ters onto stack
nd registers onto stack
ers from stack
ers, branch to address loaded to PC
h, and change to ARM state if address[0] = 0

ment Number
C 0001E

ge Log
Date By Cha
June 1995 BJH First
Sept 1996 BJH Seco
Nov 1998 BJH Thir
Oct 1999 CKS Four
Oct 2000 CKS Fifth

