FUJITSU SEMICONDUCTOR

CONTROLLER MANUAL CM71-00101-5E

FR Family

32-BIT MICROCONTROLLER

INSTRUCTION MANUAL

(o8
FUJITSU






FR Family

32-BIT MICROCONTROLLER

INSTRUCTION MANUAL

FUJITSU LIMITED






PREFACE

B Objectives and intended reader
| The FR* family CPU core features proprietary Fujitsu architecture and is designed for controller
applications using 32-bit RISC based computing. The architecture is optimized for use in microcontroller
CPU coresfor built-in control applications where high-speed control is required.

This manual is written for engineers involved in the development of products using the FR family of
microcontrollers. It is designed specifically for programmers working in assembly language for use with
FR family assemblers, and describes the various instructions used with FR family. Be sure to read the entire
manual carefully.

Note* that the use or non-use of coprocessors, as well as coprocessor specifications depends on the
functions of individual FR family products.

For information about coprocessor specifications, users should consult the coprocessor section of the
product documentation. Also, for the rules of assembly language grammar and the use of assembler
programs, refer to the "FR Family Assembler Manual".

* . FR, the abbreviation of FUJITSU RISC controller, isaline of products of FUJITSU Limited.

| W Trademark

The company names and brand names herein are the trademarks or registered trademarks of their respective
owners.


線
( "FR" → "FR*" )


線
( " *: " is added. )


線
( "■ Trademark" is added. )


線
( "The company names and brand names herein are the trademarks or registered trademarks of their
respective owners." is added. )



B Organization of this manual
This manual consists of the following 7 chapters and 1 appendix:
CHAPTER 1 FR FAMILY OVERVIEW
This chapter describes the features of the FR FAMILY CPU core, and provides sample configurations.
CHAPTER 2 MEMORY ARCHITECTURE
This chapter describes memory space in the FR family CPU.
CHAPTER 3 REGISTER DESCRIPTIONS
This chapter describes the registers used in the FR family CPU.
CHAPTER 4 RESET AND "EIT" PROCESSING
This chapter describes reset and "EIT" processing in the FR family CPU.
CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
This chapter presents precautionary information related to the use of the FR family CPU.
CHAPTER 6 INSTRUCTION OVERVIEW
This chapter presents an overview of the instructions used with the FR family CPU.
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

This chapter presents each of the execution instructions used by the FR family assembler, in reference
format.
APPENDI X

The appendix section includes lists of CPU instructions used in the FR family, as well as instruction map
diagrams.



« The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

« Theinformation, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJITSU semiconductor device; FUJITSU does not warrant
proper operation of the device with respect to use based on such information. When you develop equipment incorporating the
device based on such information, you must assume any responsibility arising out of such use of the information. FUJTSU
assumes no liability for any damages whatsoever arising out of the use of the information.

* Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU or any
third party or does FUJITSU warrant non-infringement of any third-party's intellectual property right or other right by using such
information. FUJITSU assumes no liability for any infringement of the intellectual property rights or other rights of third parties
which would result from the use of information contained herein.

« The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e, nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).

Please note that FUJITSU will not be liable against you and/or any third party for any claims or damages arising in connection
with above-mentioned uses of the products.

* Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

« Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

* The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyright ©1997-2007 FUJTSU LIMITED All rights reserved.







CONTENTS

CHAPTER 1 FR FAMILY OVERVIEW ...t 1
1.1 Features of the FR Family CPU COre ......ccoooiiiii i s e e e e e e e e e e e e e e e e e e e anaaeenenaas 2
1.2 Sample Configuration of an FR Family DEVICE .........ccuiiiiiiiiiiiiiiiiie e 3
1.3 Sample Configuration of the FR Family CPU ..ot e e 4

CHAPTER 2 MEMORY ARCHITECTURE ... 5
2.1 FR FamMily MEMOIY SPACE .....uuiuuiuuiiiiiiis it e i e e e e e e et e ee ettt et e et as s e s s e s e e aaaaaaeaatateeeeeeeaesesenneennnnnnnnns 6

211 [T To N [0 | TSR Y (- P EEPRRRR 7
2.1.2 RV Z=Tot (o g =T o S =T PRSPPI 8
2.2 TR o [T ar= T o I =7 (= O o =] O 10
2.3 WOIA ATIGNIMENT ettt e e st e e s e bbbt e e s bbbt e e e eanbe e e e e annbbe e e e anrneas 11

CHAPTER 3 REGISTER DESCRIPTIONS ... 13
3.1 FR Family Register CONfIQUIALtION ..........uuuiiiiiiiiiee e r e e e e s e s s er e e e e e e e e s s s e e eneeaeeeeeean 14
3.2 GENEral-PUIPOSE REGISIEIS ...uiiiii i e e e e e e e e e et et e e e e e e e e r e e e e eaeaaeas 15
3.3 DediCAted REQISLEIS .....eiiiiiiiiiiie ittt e et e e e e sttt e e e s et bt e e e e bbbt e e e aabe e e e e e e sabbeeeeenrneas 17

3.3.1 oo =T I @Ko 10T 1 C=T gl (3 PR 18
3.3.2 Program STATUS (PS) ....eeeeiiiiiiiiiiiiite ettt ettt et e e e e e e e et bbb et et e e e e e e e e e s e nnnbbnbeeeeaaaaaeaaaan 19
3.3.3 Table Base REQISIEr (TBR) ....ueiiiiiiiiiiieiiitiie ettt et e st e e e e e e e e nnneas 23
3.34 RELUIN POINTET (RP) ..eiiiiiiiiiiiiee ettt e e e e e e s s e e e e e e e e e s s s s e e e e e e eeeeesesannnnsrnaneaneeaaeeanean 25
3.35 System Stack Pointer (SSP), User Stack Pointer (USP) ... 27
3.3.6 Multiplication/DiviSion RegISIEr (IMD) .....coiiiiiiiiiiieiiiiiie et e sbre e e e e 29

CHAPTER 4 RESET AND "EIT" PROCESSING .....oooiiiiiiii e 31
4.1 LTS B o o o711 ] o RSP EEER 33
4.2 Basic Operations in "EIT" PrOCESSING .......uuuiiiiiiaaaiiiiiiiiitiee et e e e e e e et e e e e e e e e e s s s anbab e e eeaeaaaaaeaaaeas 34
4.3 11T 0 U] o TP PTPTPPPTPPIOE 37

43.1 L LY== ¢ 1] ) PPN 38
4.3.2 Non-maskable INterruptS (NIMI) ... e e e e e ar e e e e e e e e e e an 40
4.4 EXCEPLION PrOCESSING ..eeiiiiiiiiieiiiitie ettt ettt e et e e e s bbbt e e e e st bt e e e s bbbt e e e e anbb e e e e e e sabbeeeeanbneas 42
4.4.1 Undefined INStruCtion EXCEPLIONS .....uvuiiiiiiiiieeieeeie it e e e e e e e e e s s st e e e e e e e e e s e s nnsnnbannereeeeaeaeaeean 43
4.5 LT 0L T TP PR 44
45.1 B LN I 1S3 8 o3 1T PRSP 45
452 "INTE" INSIFUCTION vttt e e st e s et sa e e e n et e s ne e e s nmn e s nn e e e nnnee s 46
45.3 SEEP TTACE TIPS ..ieiiiiiiiiiiittttette e e e et et e e e e e e e eeteteeeeeeeaetsbe bbbt b s e oe e e e e e e e e aaaeeeteeeeeeesesnsbannnnnnnnnan 47
454 CopProcesSOr NOt FOUNG TIPS ..uveeiiieiiiiiiee ettt rit ettt ettt ettt e e st e e e e sanb e e e e annneeeee s 48
455 (O70] o] fo Lot ST Yo T gl = ¢ e gl N - o OSSN 49
4.6 PHIOFEY LEVEIS ..ottt ettt et e e e e e e e e e st bbbt et e e et e e e e e e s aaannbbebeeeeaaaaaaaaean 51



CHAPTERS5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU ............. 53

51 PIPEIINE OPEIALION ...t et e e e e e e e s e s bbb e e e et et e e e e e e s e e nnbbebeeeeaeaeeeaaean 54
5.2 Pipeline Operation and INtErrupt PrOCESSING .....ccoiiiiiiiiiiiiieiie e a e e e e e e e 55
5.3 T o 1S (=] gl = V= ([P EPSRR 56
5.4 Delayed BranChing PrOCESSING ....cccoiiiiiiiiiiiiiiei ettt e e et e e e e e e e e e e s s r e eeaaaeeeaaean 58
54.1 Processing Non-delayed Branching INStrUCLIONS ..........oiiiiiiiiiiiiiiieieee e 60
5.4.2 Processing Delayed Branching INSLIUCLIONS ........c..vuiiiiiiiiiiee et ee e e e e e 61
CHAPTER 6  INSTRUCTION OVERVIEW ...t 63
6.1 INSTFUCHION FOIMALS ...ttt et e e e e e e bbbt ettt e e e e e e e s e bbb bs e e e e eaeaeeesasannnnnes 64
6.2 INStrUCtiON NOLAtION FOMMALS ....coiiieiiieie ettt e e e e e e e e e s e bbb e e e e e e e e aeeeeanannnenes 66
CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS ..., 67
7.1 ADD (Add Word Data of Source Register to Destination RegiSter) .........cccocvevriiiiiieeeiiiiiieee i, 72
7.2 ADD (Add 4-bit Immediate Data to Destination REQISEr) ........ocvvvviiiiiiiiiiiiiiiis e 73
7.3 ADD2 (Add 4-bit Immediate Data to Destination RegiSter) ........ccuuveiiiiiiiiiiiiiiieeee e 74
7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register) ...........ccccovuuneee. 75
7.5 ADDN (Add Word Data of Source Register to Destination Register) ........cccccvecvieiiiiiiiiiiiiieeeeeeeeeeee, 76
7.6 ADDN (Add Immediate Data to Destination REQISEI) ........coouiiiiiiiiiiiiiiiiiie e 77
7.7 ADDN2 (Add Immediate Data to Destination REQISLEN) ........cceeiiiiiiiiiiiiiiiiriee e s er e e e e e e e 78
7.8 SUB (Subtract Word Data in Source Register from Destination Register) ..........ooovvvvvvviviiiiinininnnn. 79
7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination Register) ............... 80
7.10 SUBN (Subtract Word Data in Source Register from Destination Register) .......cccccccevveeeeeviiiinnnnnne, 81
7.11 CMP (Compare Word Data in Source Register and Destination Register) .........ccccccvvcviiiiiiiiiiienennn. 82
7.12 CMP (Compare Immediate Data of Source Register and Destination Register) ...........ccccooeviuunnnnee. 83
7.13 CMP2 (Compare Immediate Data and Destination REQISIEN) .........cevveeeiiiiiiiiiiiiiiieee e 84
7.14 AND (And Word Data of Source Register to Destination Register) ..........ccccovvvviivevvvveiiiiiiiicie e, 85
7.15 AND (And Word Data of Source Register to Data in MEMOIY) ........cccooeiiiiiiiiiiiiiiieieee e 86
7.16 ANDH (And Half-word Data of Source Register to Data in MEMOIY) ..........oooecvvvvieeieeieee e 88
7.17 ANDB (And Byte Data of Source Register to Data in MEmOIY) ......cccooeeeiiiiiiiiieeeeeeeee e 90
7.18 OR (Or Word Data of Source Register to Destination REgISLEr) .........ccouuiiiiiiiiiiiiiiieeae i 92
7.19 OR (Or Word Data of Source Register to Data in MEMOIY) .....ccuvviiiiiiieieee e e e 93
7.20 ORH (Or Half-word Data of Source Register to Data in Memory) .........ccccovviviiiveeeviiviiiiscee e 95
7.21 ORB (Or Byte Data of Source Register to Data in MEMOIY) ........uuuiiiiiiiiiiiiiiiieiieeee e 97
7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register) .......cccccccevvvvvcnvvvveennnnn. 99
7.23 EOR (Exclusive Or Word Data of Source Register to Data in MemMOory) ........ccccvvvevvvvvvvvnvnnnniennnnnn. 100
7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in MeMOory) ..........cccooevcvviieennenn. 102
7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory) .......ccccccceeeeeevieiicivnvnnnnen. 104
7.26 BANDL (And 4-bit Imnmediate Data to Lower 4 Bits of Byte Data in Memory) .......ccccccevvvvvvvvvinnnnnnn. 106
7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in MeMOry) ........cccccooeviiiiviinnnn. 108
7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in MemMory) .......cccccceeveeeveeviiicnvvnnnee. 110
7.29 BORH (Or 4-bit Imnmediate Data to Higher 4 Bits of Byte Data in MeMOry) ......cccccevvvvvvvvvnvnnnnnnnnnn, 112
7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory) ..........cccccceviiiuivinnnnn. 114
7.31 BEORH (Eor 4-bit Inmediate Data to Higher 4 Bits of Byte Data in MeMOry) ........cccccccoevvecvvvnnnen. 116
7.32 BTSTL (Test Lower 4 Bits of Byte Data in MEMOIY) ........uuiuuiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeereen s 118
7.33 BTSTH (Test Higher 4 Bits of Byte Data in MEMOIY) .....oooiiiiiiiiiiiiiee e 119
7.34  MUL (MUIIPly WOId DALA) ......cccceveriiieiiieiee e e s e ittt e e e e e e e e e e s s s sttt e e e e e aeeeesssnnnnsaeaeeeeeeeeeesanssnnnnnnnnes 120

Vi



7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80
7.81

MULU (Multiply Unsigned WOrd Data) ............eeeeiieaaiiiiiiiiiie et e e e eeaaa e s 122

MULH (Multiply Half-Word DAtA) ........cooiuriiieiiiiiieee ittt 124
MULUH (Multiply Unsigned Half-word Data) ...............coovviiiiiiiiiiiiiiiiisieis s e e e e eeeeeeeeeeeeeeesaeesinnnens 126
DIVOS (Initial Setting Up for Signed DiVISION) ......cooiiiiiiiiiiiiiieiieae e a e 128
DIVOU (Initial Setting Up for Unsigned DiIVISION) .........ceiiiiiiiieieiiiiiie ettt rieee e 130
DIV1 (Main Process Of DIVISION) ...uuuuuuiiiiiieii i e ettt s s s s e s e e e e e e aaeeaeaeeeeeeaeeesesennnne 132
DIV2 (Correction when RemMaiNder iS 0) .........cieiiiaoiiiiiiiiiiee it ee e e e e e e e e be e e e e e e e e s 134
DIV3 (Correction when RemMainder iS 0) ........ocuueiiiiiiiiieeiiiiiie ettt e e e 136
DIV4S (Correction Answer for Signed DIVISION) .......coooiiiiiiiiiiiecsrres e e e e e e e e e e 137
LSL (Logical Shift to the Left DIr@CON) ..........oiiiiiiiiiiie e 138
LSL (Logical Shift to the Left DIr€CHON) .......coiiuieiiiiiiiie et 139
LSL2 (Logical Shift to the Left DIFeCHION) ......cccooiiiiiiieee e e e e e e e e e e e e e e e eaar e 140
LSR (Logical Shift to the Right DIF€CLION) .......ciiiiiiiiiiiiiie et e e e 141
LSR (Logical Shift to the Right DIF€CHION) .......c.ueeiiiiiiiieeiiiiie e 142
LSR2 (Logical Shift to the Right DIr€CHION) .......cccoeiiiiiiiie e e e e e e e e e e e e 143
ASR (Arithmetic Shift to the Right DIreCtion) ............ueiiiiiiiiii e 144
ASR (Arithmetic Shift to the Right DIr€CtiON) ........cccuviiiiiiiiie e 145
ASR2 (Arithmetic Shift to the Right DIireCtion) .........cccooeiiiii i e 146
LDI:32 (Load Immediate 32-bit Data to Destination RegiSter) ..o 147
LDI:20 (Load Immediate 20-bit Data to Destination RegISter) ...........covcvviviieiiiieeeeii e 148
LDI:8 (Load Immediate 8-bit Data to Destination RegiSter) ........ccccceeeveiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 149
LD (Load Word Data in Memory t0 REQISIEI) ...cooiiiiiiiiiiiiiee et 150
LD (Load Word Data in Memory t0 REQISIEN) ...ccvvieeiiiiiiiiee e e e e e e e e e e 151
LD (Load Word Data in Memory t0 REQISIEN) .....ccciiiiiiiiieeeeeiee s s s s s e e e e e e e e e e e e e e e e e eeeeeaaesennenes 152
LD (Load Word Data in Memory t0 REQISIEI) ...ccoiiiiiiiiiiiiiee et 153
LD (Load Word Data in Memory t0 REQISIE) ...ccvvveeiiiiiiiiee e e e nae e e e e e e 154
LD (Load Word Data in Memory t0 REQISIEN) .....ccciiiiiieieeeeeeieeii s s s e e e e e e e e e e e e e e e e e eeeeeaaeeennnees 155
LD (Load Word Data in Memory to Program Status RegiSter) ........coooiiiiiiiiiiiiiieiiiiiiieeeee e 157
LDUH (Load Half-word Data in Memory t0 REQISIEI) .......uuuiiiiiiieeeiieiiiiieiie e e e e e en e e 159
LDUH (Load Half-word Data in Memory t0 REQISLEI) ......cevvviiiiiiiiiiiiiiiii i eeeee e ee e e 160
LDUH (Load Half-word Data in Memory t0 REQISTEI) .........uuiiiiiiiiiiiiiiiiiieieeeee e 161
LDUB (Load Byte Data in Memory t0 REQISIE) ....cccciiiiieiiiiieeieeee e ee e e e e n e e e e e 162
LDUB (Load Byte Data in Memory t0 REQISIEN) .......coiiviiiiiieeeieieiiiicis s es e e e e e e e e e e e e e e e e e e eeaeeaeanees 163
LDUB (Load Byte Data in Memory t0 REGISIEI) .....cooiiiiiiiiiiieiieeie ettt 164
ST (Store Word Data in RegiSter t0 MEMOIY) ....cviviiieeiiiiiciiieee e e e s se s e r e e e e e e e s snnennaraeeeeeees 165
ST (Store Word Data in RegisSter t0 MEMIOIY) ....cuuvuuriiiiiiiiiiiieie i e e e e e e e e e e e e e e e e e e eeee e eas 166
ST (Store Word Data in RegiSter t0 MEMOIY) ....cooiiiiiiiiiiiiiieie ettt e e 167
ST (Store Word Data in RegiSter t0 MEMOIY) ....cviiiiieeiiiicciiiiieie e e e e s e et e e e e e e e e s e s s naeeeeeees 168
ST (Store Word Data in RegisSter t0 MEMIOIY) ....cuvvuiiiiiiiiiiiiiiieie i e e e e e e e e e e e e ee e e e e e as 169
ST (Store Word Data in RegiSter t0 MEMOIY) ....cooiiiiiiiiiiiiiiiie et e e 170
ST (Store Word Data in Program Status Register to MEMOIY) .....ccooivviiciviiiiiieiiee e ceeivneeeee e e 171
STH (Store Half-word Data in Register t0 MEMOIY) .......uuuuuuiiiiiiiiiiee e eee e s 172
STH (Store Half-word Data in Register t0 MEMOIY) .....ccuuiiiiiiiiiiiaaae et 173
STH (Store Half-word Data in Register to0 MEMOIY) ....ccccvvviiiiiiiieeee e citiee e e e e e e srrrrreee e e e e 174
STB (Store Byte Data in RegiSter t0 MEMIOIY) ...c.vuvuuriiiiiiiiiisieieie e e e e e e e e e e e e e e e e 175
STB (Store Byte Data in RegiSter t0 MEMOIY) ...cooiiiiiiiiiiiiieiiie e 176
STB (Store Byte Data in RegisSter t0 MEMOIY) ...ccviiieii i e e e e s sse e e e e e e s e raeeeee e s 177

Vi



7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98
7.99
7.100
7.101
7.102

7.103

7.104

7.105

7.106
7.107
7.108

7.109

7.110
7.111
7.112

7.113

7.114
7.115
7.116
7.117
7.118
7.119
7.120
7.121
7.122

MOV (Move Word Data in Source Register to Destination Register) .........cccccooeiiiiiiiiiiiiiiieenennenn. 178

MOV (Move Word Data in Source Register to Destination Register) ........cccocoveeiiiiiiiieiiniiieeeene 179
MOV (Move Word Data in Program Status Register to Destination Register) ............cccceevvvvvvvennnns 180
MOV (Move Word Data in Source Register to Destination Register) .........ccccoceiiiiiiiiiiiiiiiieeneenenn. 181
MOV (Move Word Data in Source Register to Program Status Register) .........cccovveieinniiinenenne 182
1Y T o ] o ) PRSP 184
CALL (Call SUDFOULINE) ...ttt ettt e e e e e e e e s s bbb e e e e e e e e e e e e e aaaannnbbbbbeeeaaeans 185
CALL (Call SUBIOULING) ...eeiiiiiiiiiee ittt ettt e e rtb e e e s st b e e e st e e e e e e s abbeeeeeans 186
RET (Return from SUBFOULINE) ......ueeeeiiiii i e e e e e e e e e e e e e e e e e e aeeaaeeenranes 187
INT (SOFtWAIE INTEITUPL) ..eeeiiiiieeii ittt e e e e e e et e e e e e e e e e e e e s bbb besaeeeeaaaaaeeaaaanns 188
INTE (Software Interrupt for EMUIALOT) .......occuiiiiiiiiiiiieeiie e 190
RETI (Return from INEEITUPL) ..vvveeieiiieiiie et s s e e e e e e e e e e e aeaeeaeeeasanenenrnne 192
Bcce (Branch Relative if Condition Satisfied) ..........oooiiiiiiiiii e 194
1Yt I (U 40T o) PP PP PPPPPP 196
(07 N I I B I (@ 1 S]] o] o 11 11 =) I 197
CALL:D (Call SUBFOULINE) ....eetieieeiiieeee ettt ettt e e e e e e e e s bbbt e e e e e e e e e e e e e e annnbbbbreeeaaeaens 199
RET:D (Return from SUBFOULING) .....cooiiiiiiiiiiii e e 201
Bcc:D (Branch Relative if Condition Satisfied) ...........oooviviiiiiieescs e 203
DMOV (Move Word Data from Direct ADdress to RegiSter) ........coooviiiiiiiiiiiiiiiieeeiiiiieeeee e 205
DMOV (Move Word Data from Register to DireCt AdAreSS) ....oovveeevviiiiiiiiiieiieee e eeciereee e 206
DMOV (Move Word Data from Direct Address to Post Increment Register Indirect Address)
......................................................................................................................................................... 207
DMOYV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
......................................................................................................................................................... 209
DMOYV (Move Word Data from Direct Address to Pre-decrement Register Indirect Address)
......................................................................................................................................................... 211
DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
......................................................................................................................................................... 213
DMOVH (Move Half-word Data from Direct Address to RegiSter) ........cccueveeeiiiieiiiiiiiiiiiiieeeeeeenn 215
DMOVH (Move Half-word Data from Register to Direct ADAress) ......cccccvvvveeeieeeeeeiisiiiiiiinneeeeeeeen 216
DMOVH (Move Half-word Data from Direct Address to Post Increment Register Indirect Address)
......................................................................................................................................................... 217
DMOVH (Move Half-word Data from Post Increment Register Indirect Address to Direct Address)
......................................................................................................................................................... 219
DMOVB (Move Byte Data from Direct Address to REQISIEl) .....cceeevviiiiiiiiiiieeeeeee e 221
DMOVB (Move Byte Data from Register to DireCt AAAreSsS) ........veveeeiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeesieennns 222
DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect Address)
......................................................................................................................................................... 223
DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct Address)
......................................................................................................................................................... 225
LDRES (Load Word Data in Memory t0 RESOUICE) .......cceevvviiuiiiiiiiiiiiisisisieseeeeeeeaeeeeaeeeeeesesnnnsennnnes 227
STRES (Store Word Data in ReSoUrce t0 MEMOIY) ....ccuuiiiiiiiiiiieaaee ettt 228
(OO 12 0] el (@fe] o] o lel=TTo] @) o =1 =11 o] o ) RSP 229
COPLD (Load 32-bit Data from Register to Coprocessor RegiSter) .........ccccvvvvvvvvvvvvvvvvnnniniiiininennn 231
COPST (Store 32-bit Data from Coprocessor Register t0 RegiSter) .......cccccccvieeeiiniiiiiiiiiiieeeeeeenn, 233
COPSV (Save 32-bit Data from Coprocessor Register to Register) ........ccccvvveeveeeeeeiniiiiiiiinieeeeen 235
L@ N o @ 0 T=T =4[ ) IR PRRSUP 237
ANDCCR (And Condition Code Register and Immediate Data) ........cccccceeviiiiiiiiiiiiiiiiiieieeeeeeee 238
ORCCR (Or Condition Code Register and Immediate Data) ............cocecvvvvieiieeeeeeieeiieiiieeeee e 239

viii



7.123 STILM (Set Immediate Data to Interrupt Level Mask RegiSter) ..., 240

7.124 ADDSP (Add Stack Pointer and Immediate Data) ...........ccceeeeeiiiiiiieiiiiiiie e 241
7.125 EXTSB (Sign Extend from Byte Data to Word Data) ..........cccccceeeeiiiiiiiiiiieeeeeeeececeeeeeeeveev e 242
7.126 EXTUB (Unsign Extend from Byte Data to Word Data) ............eeeeeiiiiieaiiiiiiiiiiiieeeeee e 243
7.127 EXTSH (Sign Extend from Byte Data to WOrd Data) ..........cceoiiuriiieiiiiiiieeiiiieee st 244
7.128 EXTUH (Unsigned Extend from Byte Data to Word Data) ........ccccooeeviiiiiieiiiiiiiiccceeeeev 245
7.129 LDMO (Load MUILIPIE REGISIEIS) ....eeiiieiiiiieaiii ittt bbbttt e e e e e e e et e e e e e e e e e e e e e aanbneeees 246
7.130 LDM1 (Load MUILIPIE REQISLEIS) .....iiiiiiiiiiieiiiitie ettt seit ettt e st e e s et e e e e e ebbe e e e enees 248
7.131 STMO (Store MURIPIE REQISIEIS) ....ccieeeiieiieiee et e e e e e e e e e e e et e e e e e e e e e aeaeeas 250
7.132 STML (Store MUltiple REQISEIS) .....eeiiiiiiiaieiiiiiite ettt e e e e e e e e e e e e e e e e e e e e annbeeeees 252
7.133 ENTER (ENLEF FUNCLION) ...etiiiiiiiiiiie ettt ettt ettt ettt e e sttt e e e et e e e e ab e e e e e ennbne e e e enees 254
7.134 LEAVE (LEAVE FUNCHION) ...uiiiiiii it s e e e e e e e e e e e e e e e e e e e e eeeeeeaa e e et nn s e e e aeaeaeaas 256
7.135 XCHB (EXChange BYte DAta) ..........eueeeiiiiiiaiiiiiiiiiiiieee e e e e e e ettt e e e e e e e e e s s bbb beeeeeaaaaaeeesannbeneees 258

N e o 11D P 261
APPENDIX A INSIIUCLION LISES ...tttiiiiiiiiiiiiiiiiiiiiiii it e e e e e e e s s sttt e e e e e e e s s st eeeeaaeeesessaasssrnaneeeeaaaeesessanns 262
A1l Symbols Used in INSIIUCHION LISES .....ccoiiiiiiiii i e e e e e e e e e e e e e e e e e e e e eeaeereneenennes 263

YN | 0153 {8 ox 1T o T I ] PP PUPTT PR 265
APPENDIX B INSIIUCLION IMBPS oeieiiiitiiieeiititt ettt ettt ettt e sttt e e e s ettt e e e et b b e e e e e anbb e e e e e e nabaeeeeennnes 274

= 00 1 1= 1 0T 0 T Y/ > o 275

= B L 01 (11T | TP PP O TP PP PP TTPPPPN 276
1310 PP 277






Main changes in this edition

Page

Changes (For details, refer to main body.)

Be sure to refer to the "Check Sheet" for the latest cautions on development. is changed.
("Check Sheet" is seen at the following support page... is deleted.)

"M Objectives and intended reader” is changed.
( IIFRII % |YFR*H )

"l Objectives and intended reader" is changed.
(" *:"is added. )

"PREFACE" is changed.
( "M Trademark" is added. )

"PREFACE" is changed.
( "The company names and brand names herein are the trademarks or registered trademarks of their
respective owners." is added. )

"Table 2.1-1 Structure of a Vector Table Area" is changed.
For 3F8H, ( "No" — "Yes")

18

"@ Lowest Bit Value of Program Counter" is changed.
( "incremented by one, and therefore” — "incremented and therefore" )

20

"Figure 3.3-4 "ILM" Register Functions" is changed.
( A line from ILM to COMP is added. )

23

"Figure 3.3-7 Sample of Table Base Register (TBR) Operation" is changed.
("31" - "bit31")

27

"l System Stack Pointer (SSP), User Stack Pointer (USP)" is changed.
("STRI13","@-R15" — "STRI13, @-R15")

The title of "Figure 3.3-12 Example of Stack Pointer Operation in Execution of Instruction "ST R13", "@-
R15" when "S" Flag = 0" is changed.
("STRI13","@-R15" — "STRI13, @-R15")

28

The title of "Figure 3.3-13 Example of Stack Pointer Operation in Execution of Instruction "ST R13", "@-
R15" when "S" Flag = 1" is changed.
("STR13","@-R15" — "STRI13, @-R15")

28

"l Recovery from EIT handler" is changed.
("4.2 Basic Operations in "EIT" Processing ll Recovery from EIT handler" —
"l Recovery from EIT handler"of "4.2 Basic Operations in "EIT" Processing" )

37

"4.3 Interrupts" is changed.
( "External" — "User")

"l Sources of Interrupts" is changed.
( "External" — "User" )

Xi




Page

Changes (For details, refer to main body.)

38

"4.3.1 User Interrupts" is changed.
( "External" — "User" ), ( "external" — "user"

"l Overview of User Interrupts" is changed.
( "External" — "User")

"l Overview of User Interrupts" is changed.
( "Interrupts are referred to as "external" when they originate outside the CPU." is deleted. )

"l Conditions for Acceptance of User Interrupt Requests" is changed.
( "External" — "User")

"l Conditions for Acceptance of User Interrupt Requests" is changed.
( "The CPU accepts interrupts" — "The CPU accepts user interrupts" )

"l Operation Following Acceptance of an User Interrupt" is changed.
( "External" — "User"), ( "external" — "user")

39

"l How to Use User Interrupts" is changed.

( "External" — "User" ), ( "external" — "user"

"Figure 4.3-1 How to Use User Interrupts” is changed.
( "External" — "User")

51

"Table 4.6-1 Priority of "EIT" Requests" is changed.
( "External" — "User"), ("INT" — "INTE")

62

"l Examples of Programing Delayed Branching Instructions" is changed.
( The position of comment ";not satisfy" is changed. )
(R12 - RI13)

66

"@ Calculations are designated by a mnemonic placed between operand 1 and operand 2, with the results
stored at operand 2" is changed.
( The position of R2 is changed. )

72

"7.1 ADD (Add Word Data of Source Register to Destination Register)" is changed.
( "Instruction bit pattern : 1010 0110 0010 0011" is added. )

75

"7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)" is changed.
( "Instruction bit pattern : 1010 0111 0010 0011" is added. )

79

"7.8 SUB (Subtract Word Data in Source Register from Destination Register)" is changed.
( "Instruction bit pattern : 1010 1100 0010 0011" is added. )

80

"7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination Register)" is changed.
( "Instruction bit pattern : 1010 1101 0010 0011" is added. )

81

"7.10 SUBN (Subtract Word Data in Source Register from Destination Register)" is changed.
( "Instruction bit pattern : 1010 1110 0010 0011" is added. )

82

"7.11 CMP (Compare Word Data in Source Register and Destination Register)" is changed.
( "Instruction bit pattern : 1010 1010 0010 0011" is added. )

85

"7.14 AND (And Word Data of Source Register to Destination Register)" is changed.
( "Instruction bit pattern : 1000 0010 0010 0011" is added. )

Xii




Page Changes (For details, refer to main body.)
37 "7.15 AND (And Word Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1000 0100 0010 0011" is added.)
29 "7.16 ANDH (And Half-word Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1000 0101 0010 0011" is added. )
01 "7.17 ANDB (And Byte Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1000 0110 0010 0011" is added. )
9 "7.18 OR (Or Word Data of Source Register to Destination Register)" is changed.
( "Instruction bit pattern : 1001 0010 0010 0011" is added.)
o4 "7.19 OR (Or Word Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1001 0100 0010 0011" is added. )
96 "7.20 ORH (Or Half-word Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1001 0101 0010 0011" is added. )
08 "7.21 ORB (Or Byte Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1001 0110 0010 0011" is added. )
99 "7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register)" is changed.
( "Instruction bit pattern : 1001 1010 0010 0011" is added. )
101 "7.23 EOR (Exclusive Or Word Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1001 1100 0010 0011" is added. )
103 "7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1001 1101 0010 0011" is added. )
105 "7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory)" is changed.
( "Instruction bit pattern : 1001 1110 0010 0011" is added. )
121 "7.34 MUL (Multiply Word Data)" is changed.
( "Instruction bit pattern : 1010 1111 0010 0011" is added. )
123 "7.35 MULU (Multiply Unsigned Word Data)" is changed.
( "Instruction bit pattern : 1010 1011 0010 0011" is added. )
125 "7.36 MULH (Multiply Half-word Data)" is changed.
( "Instruction bit pattern : 1011 1111 0010 0011" is added. )
127 "7.37 MULUH (Multiply Unsigned Half-word Data)" is changed.
( "Instruction bit pattern : 1011 1011 0010 0011" is added. )
129 "7.38 DIVOS (Initial Setting Up for Signed Division)" is changed.
( "Instruction bit pattern : 1001 0111 0100 0010" is added. )
131 "7.39 DIVOU (Initial Setting Up for Unsigned Division)147/308" is changed.
( "Instruction bit pattern : 1001 0111 0101 0010" is added. )
133 "7.40 DIV1 (Main Process of Division)" is changed.
( "Instruction bit pattern : 1001 0111 0110 0010" is added. )
135 "7.41 DIV2 (Correction when Remainder is 0)" is changed.

( "Instruction bit pattern : 1001 0111 0111 0010" is added. )

Xiii




Page Changes (For details, refer to main body.)
136 "7.42 DIV3 (Correction when Remainder is 0)" is changed.
( "Instruction bit pattern : 1001 1111 0110 0000" is added. )
137 "7.43 DIV4S (Correction Answer for Signed Division)" is changed.
( "Instruction bit pattern : 1001 1111 0111 0000" is added. )
138 "7.44 LSL (Logical Shift to the Left Direction)" is changed.
( "Instruction bit pattern : 1011 0110 0010 0011" is added. )
141 "7.47 LSR (Logical Shift to the Right Direction)" is changed.
( "Instruction bit pattern : 1011 0010 0010 0011" is added. )
144 "7.50 ASR (Arithmetic Shift to the Right Direction)" is changed.
( "Instruction bit pattern : 1011 1010 0010 0011" is added. )
"7.53 LDI:32 (Load Immediate 32-bit Data to Destination Register)" is changed.
147 ( "Instruction bit pattern : 1001 1111 1000 0011
: 10000111 0110 0101
20100 0011 0010 0001" is added. )
"7.54 LDI:20 (Load Immediate 20-bit Data to Destination Register)" is changed.
148 ( "Instruction bit pattern : 1001 1011 0101 0011
201000011 0010 0001" is added. )
149 "7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register)" is changed.
( "Instruction bit pattern : 1100 0010 0001 0011" is added. )
150 "7.56 LD (Load Word Data in Memory to Register)"is changed.
( "Instruction bit pattern : 0000 0100 0010 0011" is added. )
151 "7.57 LD (Load Word Data in Memory to Register)" is changed.
( "Instruction bit pattern : 0000 0000 0010 0011" is added. )
153 "7.59 LD (Load Word Data in Memory to Register)" is changed.
( ||04" % Hu4ll )
154 "7.60 LD (Load Word Data in Memory to Register)" is changed.
( "Instruction bit pattern : 0000 0111 0000 0011" is added. )
156 "7.61 LD (Load Word Data in Memory to Register)" is changed.
( "Instruction bit pattern : 0000 0111 1000 0100" is added. )
157 "7.62 LD (Load Word Data in Memory to Program Status Register)" is changed.
Flag change: ("Ri" — "RI15")
158 "7.62 LD (Load Word Data in Memory to Program Status Register)" is changed.
( "Instruction bit pattern : 0000 0111 1001 0000" is added. )
159 "7.63 LDUH (Load Half-word Data in Memory to Register)" is changed.
( "Instruction bit pattern : 0000 0101 0010 0011" is added. )
160 "7.64 LDUH (Load Half-word Data in Memory to Register)" is changed.
( "Instruction bit pattern : 0000 0001 0010 0011" is added. )
162 "7.66 LDUB (Load Byte Data in Memory to Register)" is changed.

( "Instruction bit pattern : 0000 0110 0010 0011" is added. )

Xiv




Page Changes (For details, refer to main body.)

163 "7.67 LDUB (Load Byte Data in Memory to Register)" is changed.
( "Instruction bit pattern : 0000 0010 0010 0011" is added. )

165 "7.69 ST (Store Word Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0100 0010 0011" is added. )

166 "7.70 ST (Store Word Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0000 0010 0011" is added. )

168 "7.72 ST (Store Word Data in Register to Memory)" is changed.
( "04" % Hu4ll )

169 "7.73 ST (Store Word Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0111 0000 0011" is added. )

170 "7.74 ST (Store Word Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0111 1000 0100" is added. )

171 "7.75 ST (Store Word Data in Program Status Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0111 1001 0000" is added. )

172 "7.76 STH (Store Half-word Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0101 0010 0011" is added. )

173 "7.77 STH (Store Half-word Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0001 0010 0011" is added. )

175 "7.79 STB (Store Byte Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0110 0010 0011" is added. )

176 "7.80 STB (Store Byte Data in Register to Memory)" is changed.
( "Instruction bit pattern : 0001 0010 0010 0011" is added. )

178 "7.82 MOV (Move Word Data in Source Register to Destination Register)" is changed.
( "Instruction bit pattern : 1000 1011 0010 0011" is added. )

179 "7.83 MOV (Move Word Data in Source Register to Destination Register)" is changed.
( "Instruction bit pattern : 1011 0111 0101 0011" is added. )

130 "7.84 MOV (Move Word Data in Program Status Register to Destination Register)" is changed.
( "Instruction bit pattern : 0001 0111 0001 0011" is added. )

181 "7.85 MOV (Move Word Data in Source Register to Destination Register)" is changed.
( "Instruction bit pattern : 1011 0011 0101 0011" is added. )

183 "7.86 MOV (Move Word Data in Source Register to Program Status Register)" is changed.
( "Instruction bit pattern : 0000 0111 0001 0011" is added. )

184 "7.87 JMP (Jump)" is changed.
( "Instruction bit pattern : 1001 0111 0000 0001" is added. )

XV




Page Changes (For details, refer to main body.)
"7.88 CALL (Call Subroutine)" is changed.
( "extension for use as the branch destination address" — "extension" )
"7.88 CALL (Call Subroutine)" is changed.
("CALL 120H" —»
185 " CALL label
label: ; CALL instruction address + 122" )
"7.88 CALL (Call Subroutine)" is changed.
( "Instruction bit pattern : 1101 0000 1001 0000" is added. )
186 "7.89 CALL (Call Subroutine)" is changed.
( "Instruction bit pattern : 1001 0111 0001 0001" is added. )
187 "7.90 RET (Return from Subroutine)" is changed.
( "Instruction bit pattern : 1001 0111 0010 0000" is added. )
188 "7.91 INT (Software Interrupt)" is changed.
("INTH9" to "#13", "#64", "#65" — "INT#9" to "INT#13", "INT#64", "INT#65" )
189 "7.91 INT (Software Interrupt)” is changed.
( "Instruction bit pattern : 0001 1111 0010 0000" is added. )
191 "7.92 INTE (Software Interrupt for Emulator)" is changed.
( "Instruction bit pattern : 1001 1111 0011 0000" ) is added.
192 "7.93 RETI (Return from Interrupt)" is changed.
(D2,D1,—> §,)
193 "7.93 RETI (Return from Interrupt)" is changed.
( "Instruction bit pattern : 1001 0111 0011 0000" is added. )
"7.94 Bcee (Branch Relative if Condition Satisfied)" is changed.
194 . . .
( "extension, for use as the branch destination address." — "extension" )
"7.94 Bcee (Branch Relative if Condition Satisfied)" is changed.
("BHI50H" —
195 " BHI label
label: ; BHI instruction address + 50" )
196 "7.95 JMP:D (Jump)" is changed.
( "Instruction bit pattern : 1001 1111 0000 0001" is added. )
197 "7.96 CALL:D (Call Subroutine)" is changed.
( "extension for use as the branch destination address" — "extension" )

XVi




Page

Changes (For details, refer to main body.)

198

"7.96 CALL:D (Call Subroutine)" is changed.
("CALL : D 120H
LDI : 8 #0, R2 ; Instruction placed in delay slot" —
"CALL:D label
LDI : 8 #0, R2 ; Instruction placed in delay slot

label: ; CALL: D instruction address + 1224" )

"7.96 CALL:D (Call Subroutine)" is changed.
( "Instruction bit pattern : 1101 1000 1001 0000" is added. )

200

"7.97 CALL:D (Call Subroutine)" is changed.
( "Instruction bit pattern : 1001 1111 0001 0001" is added. )

202

"7.98 RET:D (Return from Subroutine)" is changed.
( "Instruction bit pattern : 1001 1111 0010 0000" is added. )

203

"7.99 Bcee:D (Branch Relative if Condition Satisfied)" is changed.
( "extension, for use as the branch destination address" — "extension" )

204

"7.99 Bcece:D (Branch Relative if Condition Satisfied)" is changed.
("BHI :D 50H

LDI :8 #255, R1 ; Instruction placed in delay slot" —

"BHI:D label

LDI :8 #255, R1 ; Instruction placed in delay slot
label: ; BHI: D instruction address + 50" )

"7.99 Bcee:D (Branch Relative if Condition Satisfied)" is changed.
( "Instruction bit pattern : 1111 1111 0010 1000" is changed. )

227

"7.114 LDRES (Load Word Data in Memory to Resource)" is changed.
( "Instruction bit pattern : 1011 1100 1000 0010" is added. )

228

"7.115 STRES (Store Word Data in Resource to Memory)" is changed.
( "Instruction bit pattern : 1011 1101 1000 0010" is added. )

229

"7.116 COPOP (Coprocessor Operation)" is changed.

( "Resource" — "Coprocessor" )

231

"7.117 COPLD (Load 32-bit Data from Register to Coprocessor Register)" is changed.

( "Resource" — "Coprocessor" )

233

"7.118 COPST (Store 32-bit Data from Coprocessor Register to Register)" is changed.

( "Resource" — "Coprocessor" )

235

"7.119 COPSV (Save 32-bit Data from Coprocessor Register to Register)" is changed.

( "Resource” — "Coprocessor" )

237

"7.120 NOP (No Operation)" is changed.
( "Instruction bit pattern : 1001 1111 1010 0000" is addded. )

XVii




Page Changes (For details, refer to main body.)
738 "7.121 ANDCCR (And Condition Code Register and Immediate Data)" is changed.
( "Instruction bit pattern : 1000 0011 1111 1110" is added. )
239 "7.122 ORCCR (Or Condition Code Register and Immediate Data)" is changed.
( "Instruction bit pattern : 1001 0011 0001 0000" is added. )
240 "7.123 STILM (Set Immediate Data to Interrupt Level Mask Register)" is changed.
( "Instruction bit pattern : 1000 0111 0001 0100" is added. )
42 "7.125 EXTSB (Sign Extend from Byte Data to Word Data)" is changed.
( "Instruction bit pattern : 1001 0111 1000 0001" is added. )
243 "7.126 EXTUB (Unsign Extend from Byte Data to Word Data)" is changed.
( "Instruction bit pattern : 1001 0111 1001 0001" is changed. )
a4 "7.127 EXTSH (Sign Extend from Byte Data to Word Data)" is changed.
( "Instruction bit pattern : 1001 0111 1010 0001" is added. )
245 "7.128 EXTUH (Unsigned Extend from Byte Data to Word Data)" is changed.
( "Instruction bit pattern : 1001 0111 1011 0001" is added. )
555 "7.133 ENTER (Enter Function)" is changed.
("XXXX XXXX 00000011" — "0000 1111 0000 0011")
)57 "7.134 LEAVE (Leave Function)" is changed.
( "Instruction bit pattern : 1001 1111 1001 0000" is addded. )
253 "7.135 XCHB (Exchange Byte Data)" is chenged.
("extu (Rj) > Ri"— "extu ((Rj)) > Ri")
759 "7.135 XCHB (Exchange Byte Data)" is chenged.
( "Instruction bit pattern : 1000 1010 0001 0000" is added. )

XViii




Page

Changes (For details, refer to main body.)

263

"A.1 Symbols Used in Instruction Lists" is chenged.
@ Symbols in Mnemonic and Operation Columns is changed.
i8 i ("128 to 255" — "Oto255")

"A.1 Symbols Used in Instruction Lists" is chenged.
@ Symbols in Mnemonic and Operation Columns is changed.
( "Note: Data from -128 to -1 is handled as data from 128 to 255." is deleted. )

"A.1 Symbols Used in Instruction Lists" is chenged.
@ Symbols in Mnemonic and Operation Columns is changed.
i20 ..o ( "0x80000g to OXFFFFFy" — "00000y to FFFFFy" )

"A.1 Symbols Used in Instruction Lists" is chenged.
@ Symbols in Mnemonic and Operation Columns is changed.
( "Note: Data from -0x80000y to -1 is handled as data from 0x80000 to OxFFFFFy." is deleted. )

"A.1 Symbols Used in Instruction Lists" is chenged.
@ Symbols in Mnemonic and Operation Columns is changed.
32 . ( "0x80000000g to OXFFFFFFFFy" — "00000000y to FFFFFFFFy" )

"A.1 Symbols Used in Instruction Lists" is chenged.
@ Symbols in Mnemonic and Operation Columns is changed.
( "Note: Data from -0x80000000y to -1 is handled as data from 0x80000000 to OxFFFFFFFFy." is deleted. )

263

"A.1 Symbols Used in Instruction Lists" is changed.
@ Symbols in Mnemonic and Operation Columns is changed.
ll. Rill % ll. Ri’ Rj" )

"@ Symbols in Operation Column" is changed.
(GO () S indicates indirect addressing, which values reading or loading from/to the memory address
where the registers within () or the formula indicate.
o { Jrorn indicates the calculation priority; () is used for specifying indiiirect address" is added. )

264

"@ Cycle (CYC) Column" is changed.
("special" — "dedicated" )

266

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.
("(Ri)&=(FOH+u4)" — "(Ri)&={FOH+u4}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.
("(Ri)&=((u4<<4)+FH)" —» "(Ri)&={{ud<<4}+FH}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.
("(Ri) 1= (ud<<4)" — "(Ri) | = {ud<<4}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.
("(Ri) A = (ud<<4)" — "(Ri) A= {ud<<4}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.
("(Ri) & (ud4<<4)" > "(Ri) & {ud<<4}")

XiX




Page Changes (For details, refer to main body.)

"Table A.2-6 Shift Instructions (9 Instructions)" is changed.

67 ("Ri<<(u4+16) > Ri"— "Ri<<{ud4+16} —» Ri")
("Ri>>(4+16) » Ri"— "Ri>>{u4+16} —» Ri")
("Ri>>(4+16) > Ri"— "Ri>>{ud4+16} > Ri")

975 "Table A.2-13 Direct Addressing Instructions (14 Instructions)" is changed.
("disp8" — "dir8"), ("disp9" — "dir9"), ("disp10" — "dir10")

273 "Table A.2-16 Other Instructions (16 Instructions)" is changed.
(Hi8" % HuSII)

276 "Table B.2-1 "E" Format" is changed.
("-: Undefined" is added. )

XX




CHAPTER 1

FR FAMILY OVERVIEW

This chapter describes the features of the FR FAMILY
CPU core, and provides sample configurations.

1.1 Features of the FR Family CPU Core
1.2 Sample Configuration of an FR Family Device

1.3 Sample Configuration of the FR Family CPU



CHAPTER 1 FR FAMILY OVERVIEW

1.1 Features of the FR Family CPU Core

The FR family CPU core features proprietary Fujitsu architecture and is designed for
controller applications using 32-bit "RISC" based computing. The architecture is
optimized for use in microcontroller CPU cores for built-in control applications where
high-speed control is required.

B Features of the FR Family CPU Core
» Genera-purpose register architecture
« Linear space for 32-bit (4 Gbytes) addressing
« 16-bit fixed instruction length (excluding immediate data, coprocessor instructions)
« 5-stage pipeline configuration for basic instructions, one-instruction one-cycle execution
» 32-bit by 32-bit computation enables completion of multiplication instructions within five cycles
« Stepwise division instructions enable 32-bit/ 32-bit division
» Direct addressing instructions for peripheral circuit access
« Coprocessor instructions for direct designation of peripheral accelerator
» High speed interrupt processing complete within 6 cycles



CHAPTER 1 FR FAMILY OVERVIEW

1.2 Sample Configuration of an FR Family Device

FR family devices have block configuration with bus connections between individual
modules. This enables module connections to be altered as necessary to accommodate
a wide variety of functional configurations.

Figure 1.2-1 shows an example of the configuration of an FR family device.

B Sample Configuration of an FR Family Device

Figure 1.2-1 Sample Configuration of an FR Family Device

o e e e e e e o o v

O il
O il
O il
i i

. ; Low speed !
i FR family CPU = peripherals — i
E L R %

: o | |LiLowspeed:
E DMAC 1 n s o peripheralsf_ il
g | =t I CTTTTTTTTTT i
E Dat A “llallt 51 | Lowspeed | %

. Data cache g|Ql| = — i |
i | : § gl 3 : : peripherals; il
gy | Tttt e 1E=1 1 ]
0| | s 5| £ 3 i
O | RAM /] @ """ ® 1
1 = s i
g ! High speed __ 'g ]
[ | peripherals ] a I
g| | i
O il
[ Internal bus interface = 1
f ] | i
[ . ROM Integrated bus | = Iﬁg‘r'}'pi%?,:gi— i
il N ] [1perieheral: I
O il
O il
[ User bus interface General-purpose port i
O il

S )
Mandatory: Standard in all models
E ' Option: Not included in some models




CHAPTER 1 FR FAMILY OVERVIEW

1.3

Sample Configuration of the FR Family CPU

The FR family CPU core features a block configuration organized around general-

purpose registers, with dedicated registers, "ALU" units, multipliers and other features
included for each specific application.
Figure 1.3-1 shows a sample configuration of an FR family CPU.

B Sample Configuration of the FR Family CPU

Figure 1.3-1 Sample Configuration of the FR Family CPU

Instruction
data

Data

Data address

Instruction
address

B!

c |: Instruction ] > Bypass - Exception -1
O L — - Lt I -t rocessin
- €5 >| sequencer [ Pipeline ™| interlock P Ing
= = - control < Wai | >
i Y Tt -
| -
— | |—
A Yy vy Yy Yy \ -
- » Internal bus
- A A » Internal bus
Yy v / \ \ R ) ? ? Y \/J
N Barrel
o shifter . PC
Multiplier ALU Bypass ﬁeglster adder PC
32x8 ne /inc
bits

» Internal bus

Y

AA

Yy

Y

Interrupt
NMI

Wait bus
control




CHAPTER 2
MEMORY ARCHITECTURE

This chapter describes memory space in the FR family
CPU.

Memory architecture includes the allocation of memory
space as well as methods used to access memory.

2.1 FR Family Memory Space
2.2 Bit Order and Byte Order
2.3 Word Alignment



CHAPTER 2 MEMORY ARCHITECTURE

2.1 FR Family Memory Space

The FR family controls memory space in byte units, and provides linear designation of
32-bit spaces. Also, to enhance instruction efficiency, specific areas of memory are

allocated for use as direct address areas and vector table areas.

B Memory Space

Figure 2.1-1 illustrates memory space in the FR family.

For a detailed description of the direct address area, see Section "2.1.1 Direct Address Area’, and for the

vector table area, see Section "2.1.2 Vector Table Area.

Figure 2.1-1 FR Family Memory Space

0000 0000H
0000 0100H
0000 0200H

0000 0400H

000F FCOOH

0010 0000H

FFFF FFFFH

Byte data

Half-word data

Word data

Direct address area

General addressing

Vector table
initial area

~

Program or data area

000F FCOOH

TBR

1 TBR initial value

Bl Unused Vector Table Area

Unused vector table areais available for use as program or data area.




CHAPTER 2 MEMORY ARCHITECTURE

2.1.1 Direct Address Area

The lower portion of the address space is used for the direct address area. Instructions
that specify direct addresses allow you to access this area without the use of general-
purpose registers, using only the operand information in the instruction itself. The size
of the address area that can be specified by direct addressing varies according to the
length of the data being transferred.

B Direct Address Area

The size of the address area that can be specified by direct addressing varies according to the length of the
data being transferred, as follows:

» Transfer of byte data: 0000 0000y to 0000 00FF4
» Transfer of half-word data: 0000 0000y to 0000 O1FF
» Transfer of word data: 0000 00004 to 0000 03FF

B Use of Operand Information Contained in Instructions
The 8-bit address information contained in the instruction has the following significance.
¢ Inbyte data Vaue represents the lower 8 bits of the address.
e Inhalf-word data: Valueisdoubled and used as the lower 9 bits of the address.
¢ Inword data: Valueis multiplied by 4 and used as the lower 10 bits of the address.

Figure 2.1-2 shows the relationship between the length of the data that designates the direct address, and
the actual addressin memory.

Figure 2.1-2 Relation between Direct Address Data and Memory Address Value

[Example 1] Byte data: DMOVB R13,@58H
Memory space

Object code:1A58H = No data shift === = 58 ~
R13 |12345678 0000 0058+ | 78

[Example 2] Half-word data: DMOVH R13,@58H
r nght 1-bit Shlftgﬁr Memory space

Object code:192CH = Left 1-bit shift = === 584
U
R13 | 12345678 0000 0058H 5678

[Example 3] Word data: DMOV R13,@58H

{Right 2-bit shift 7 Memory space

~ ~

Object code:1816H = Left 2-bit shift = === 58H
[
R13 |12345678 ™ 0000 0058H 1345678




CHAPTER 2 MEMORY ARCHITECTURE

2.1.2 Vector Table Area

An area of 1 Kbyte beginning with the address shown in the table base register (TBR) is
used to store "EIT" vector addresses.

B Overview of Vector Table Areas

An areaof 1 Kbyte beginning with the address shown in the table base register (TBR) is used to store "EIT"
vector addresses. Data written to this area includes entry addresses for exception processing, interrupt
processing and trap processing.

The table base register (TBR) can be rewritten to allocate this area to any desired location within word

alignment limitations.

Figure 2.1-3 Relation between Table Base Register (TBR) and Vector Table Addresses

Memory space
0000 0000H [———

TBR

-

Vector

1 Kbyte table
area

FFFF FFFFH | |

Number frgrf]quﬁéR EIT source
FFH 000H Entry address for INT instruction
FEH 004+ Entry address for INT instruction
FDH 008H Entry address for INT instruction
FCH 00CH Entry address for INT instruction
00H 3FCH Entry address for reset processing




CHAPTER 2 MEMORY ARCHITECTURE

Bl Contents of Vector Table Areas

A vector table is composed of entry addresses for each of the "EIT" processing programs. Each table
contains some values whose use is fixed according to the CPU architecture, and some that vary according
to the types of built-in peripheral circuits present. Table 2.1-1 shows the structure of a vector table area.

Table 2.1-1 Structure of a Vector Table Area

Offset from Number Model- o
TBR (hex) dependent EIT value description Remarks
OOOH FFH No INT #OFFH
004 FEH No INT #OFE
2F8y 41y No System reserved
Do not use
2FCy 40y No System reserved }
33Ch 304 No INT #0304
340y 2Fy Yes INT #02F or IR31 Values will increase
towards higher limits

344 2E Yes INT #02Ey or IR30 .

H H H when using over 32-

s s s _[ source extension. iy
T Refer to User's Manual
3BCq 10y Yes INT #0104 or IROO for each model.
3CO0y OFy No INT #00Fy or NMI
3C4y OEy No Undefined instruction exception
3C8y 0Dy No Emulator exception
3CCq 0Ch No Step trace break trap
3D0y 0By No Operand break trap
3D4y 0Aq No Instruction break trap
3D8y 09y No Emulator exception
3DCH 08y No INT #0084 or coprocessor error trap
3E0, 07,4 No INT #0074 or coprocessor not-found
trap
3E4y 06y No System reserved
} Do not use
3F8y4 01y Yes System reserved or Mode Vector Refer to User's Manual for
each model.

3FCh 00y No Reset *

*: Even when the "TBR" value is changed, the reset vector remains the fixed address "000FFFFCy".

B Vector Table Area Initial Value

After areset, the value of the table base register (TBR) is initialized to "000FFC004", so that the vector
table area is between addresses "000FFCO0" and "O00FFFFF".


線
( "No" → "Yes" )



CHAPTER 2 MEMORY ARCHITECTURE

2.2 Bit Order and Byte Order

This section describes the order in which three types of data, 8, 16, and 32 bits, are
placed in the memory in the FR family.

In the FR family, the bit number increases approaching the MSB, and the byte number
increases approaching the lowest address value.

B Bit Order and Byte Order

Bit order in the general-purpose register is that the larger numbers are placed in the vicinity of the MSB
while the smaller numbers are near the LSB. Byte order configuration requires the upper data to be placed
in the smaller address memory, while the lower data are placed in the larger address memory.

Figure 2.2-1 illustrates the bit order and byte order in the FR family.

Figure 2.2-1 Bit Order and Byte Order

Bitorder — 31 2423 1615 87 0
RO 12H 34H 56H 78H

0000 0000H  Memory space . : : . .

~ ~

1234 5678H 12H 41

1234 5679H 34H LD @R10,R0
1234 567AH 56H
1234 567BH 78H

~

FFFF FFFFH | |

R10| 12345678H

10



2.3 Word Alignment

CHAPTER 2 MEMORY ARCHITECTURE

In the FR family, the type of data length used determines restrictions on the
designation of memory addresses (word alignment).

B Program Restrictions on Word Alignment

When using half-word instruction length, memory addresses must be accessed in multiples of two. With
branching instructions and other instructions that may result in attempting to store odd numbered values to
the "PC", the lowest value in the "PC" will be read as "0". Thus an even numbered address will always be
generated by fetching a branching instruction.

B Data Restrictions on Word Alignment

@® Word data

Data must be assigned to addresses that are multiples of 4. Even if the operand value is not a multiple of 4,
the lower two bits of the memory address will explicitly beread as"0".

@ Half-word data

Data must be assigned to addresses that are multiples of 2. Even if the operand value is not a multiple of 2,
the lowest bit of the memory address will explicitly be read as"0".

@ Byte data

There are no restrictions on addresses.

The forced setting of some bits to 0" during memory access for word data and half-word data is applied
after the computation of the execution address, not at the source of the address information.

Figure 2.3-1 shows an example of the program-word boundary and data-word boundary.

Figure 2.3-1 Example of Program-word Boundary and Data-word Boundary

R10 | 12345679H

Memory space

’JMP @R10:Bit0 = 0‘ 0000 0000H T

~

~ R14 4321567BH

PC | 123456784 | —® 1234 5678H

ST R13,@(R14,4)

STH R13,@R2

1234 567AH
R1 | 43215679H

STB R13,@R1

l

1234 567CH
R2 | 4321567BH .
T asitis

4321567BH
+
00000004H
J
— ] 43&1567FH
~ RI13 |89ABCDEFH| Bits 1,0 =0
- U
4321567CH

] L 432156784 | EFH
Bit0=0
4321 567An CDEFH
4321 567CH 89ABH
4321 567EH CDEFH

FFFF FFFFH |

‘

11



CHAPTER 2 MEMORY ARCHITECTURE

12



CHAPTER 3

REGISTER DESCRIPTIONS

This chapter describes the registers used in the FR
family CPU.

3.1 FR Family Register Configuration
3.2 General-purpose Registers

3.3 Dedicated Registers

13



CHAPTER 3 REGISTER DESCRIPTIONS

3.1 FR Family Register Configuration

FR family devices use two types of registers, general-purpose registers and dedicated

registers.

* General-purpose registers: Store computation data and address information

» Dedicated registers: Store information for specific applications
Figure 3.1-1 shows the configuration of registers in FR family devices.

B FR Family Register Configuration

Figure 3.1-1 FR Family Register Configuration

RO
General-purpose registers

R1
R2
R3

R12
R13
R14
R15

PC
Dedicated registers

PS

TBR

RP

SSP

USP

.~ 32bits —

Accumulator(AC)

Frame pointer(FP)

SSP or USP

ILM | - | SCR| CCR

MD

64 bits

Initial value

Undefined

Undefined

Undefined
Undefined

Undefined
Undefined

Undefined
00000000H

Reset entry address

ILM=011118B
SCR=XX08B
CCR=XX00XXXXB

00OFFCO0H

Undefined

00000000H

Undefined

Undefined

14




CHAPTER 3 REGISTER DESCRIPTIONS

3.2 General-purpose Registers

The FR family CPU uses general-purpose registers to hold the results of various
calculations, as well as information about addresses to be used as pointers for memory
access. These registers also have special functions with certain types of instructions.

B Overview of General-purpose Registers

The FR family CPU has sixteen (16) general-purpose registers each 32 bits in length. Normal instructions
can use any of these sixteen registers without distinction.

Figure 3.2-1 shows the configuration of a general-purpose register.

Figure 3.2-1 General-purpose Register Configuration

Initial value
~ 32bits —

RO Undefined
R1 Undefined
R2 Undefined
R3 Undefined
R12 Undefined
R13 Accumulator(AC) Undefined
R14 Frame pointer(FP) Undefined
R15 SSP or USP 00000000+

B Special Uses of General-purpose Registers

In addition to functioning as general-purpose registers, "R13", "R14", and "R15" have the following special
uses with certain types of instructions.

@ R13 (Accumulator: AC)

« Base address register for load/store to memory instructions
[Example: LD @(R13, Rj), Ri]

» Accumulator for direct address designation
[Example: DMOV @dir10,R13]

* Memory pointer for direct address designation
[Example: DMOV @dirl0, @R13+]

15



CHAPTER 3 REGISTER DESCRIPTIONS

@ R14 (Frame Pointer: FP)

* Index register for load/store to memory instructions
[Example: LD @(R14, displ0), Ri]

« Frame pointer for reserve/rel ease of dynamic memory area
[Example: ENTER #ul0]

@ R15 (Stack Pointer: SP)

* Index register for load/store to memory instructions
[Example: LD @(R15, udisp6), Ri]

 Stack pointer
[Example: LD @R15+, Ri]

» Stack pointer for reserve/release of dynamic memory area
[Example: ENTER #ul0]

B Relation between "R15" and Stack Pointer

The "R15" functions physically as either the system stack pointer (SSP) or user stack pointer (USP) for the
general-purpose registers. When the notation "R15" is used in an instruction, this register will function as
the "USP" if the "S" flag in the condition code register (CCR) section of the program status register (PS) is
set to "1". The R15 register will function asthe "SSP" if the"S" flag is set to "0".

Ensure that the S flag value is set to "0" when R15 is recovered from the EIT handler with the RETI

instruction.

W Initial Value of General-purpose Registers

After a reset, the value of registers "R00" through "R14" are undefined, and the value of "R15" is

"00000000y".

16



3.3 Dedicated Registers

CHAPTER 3 REGISTER DESCRIPTIONS

The FR family has six 32-bit registers reserved for various special purposes, plus one

64-bit dedicated register for multiplication and division operations.

B Dedicated Registers

The following seven dedicated registers are provided. For details, see the descriptions in Sections "3.3.1
Program Counter (PC)" through "3.3.6 Multiplication/Division Register (MD)".

@ 32-bit Dedicated Registers

* Program counter (PC)

e Program status (PS)

» Tablebaseregister (TBR)
* Return pointer (RP)

e System stack pointer (SSP)
e User stack pointer (USP)

@ 64-bit Dedicated Register

* Multiplication/Division Register (MD)

Figure 3.3-1 shows the configuration of the dedicated registers.

Figure 3.3-1 Dedicated Register Configuration

MD

PC

PS | -

ILM

SCR

CCR

TBR

RP

SSP

USP

64 bits

Reset entry address

ILM=011118B
SCR=XX08B
CCR=XX00XXXXB

000FFCO0H

Undefined

00000000H

Undefined

Undefined

17



CHAPTER 3 REGISTER DESCRIPTIONS

3.3.1 Program Counter (PC)

This register indicates the address containing the instruction that is currently
executing. Following areset, the contents of the PC are set to the reset entry address
contained in the vector table.

B Overview of the Program Counter

This register indicates the address containing the instruction that is currently executing. The value of the
lowest bit is always read as "0", and therefore al instructions must be written to addresses that are
multiples of 2.

B Program Counter Functions

@ Lowest Bit Value of Program Counter

The vaue of the lowest hit in the program counter is read as "0" by the internal circuits in the FR family
device. Even if "1" is written to this bit, it will be treated as "0" for addressing purposes. A physical cell
does exist for this bit, however, the lowest bit value remains "0" even when the program address value is
incremented and therefore the value of thisbit is aways 0" except following a branching operation.

Because the interna circuits in the FR family device are designed to read the value of the lowest bit as"0",
al instructions must be written to addresses that are multiples of 2.

@ Program Counter Initial Value

Following a reset, the contents of the PC are set to the reset entry address contained in the vector table.
Because initialization is applied first to the table base register (TBR), the value of the reset vector address
will be "000FFFFC".

18


線
( "incremented by one, and therefore" → "incremented and therefore" )



CHAPTER 3 REGISTER DESCRIPTIONS

3.3.2 Program Status (PS)

The program status (PS) indicates the status of program execution, and consists of the
following three parts:

* Interrupt level mask register (ILM)

» System condition code register (SCR)

» Condition code register (CCR)

B Overview of Program Status Register

The program status register consists of sections that set the interrupt enable level, control the program trace
break function in the CPU, and indicate the status of instruction execution.

B Program Status Register Configuration
Figure 3.3-2 shows the configuration of the program status register.

Figure 3.3-2 Program Status Register Configuration

Bitno. — 31 2120 1615 1110— 0807——— 00
PS Unused ILM Unused| SCR CCR

B Unused Bits in the Program Status Register

Unused hits are all reserved for future system expansion. Write values should always be "0". The read
value of these bitsis always"0".

B Interrupt Level Mask Register (ILM: Bit 20 to bit 16)
@ Bit Configuration of the ILM Register

Figure 3.3-3 Bit Configuration of the ILM Register

20 19 18 17 16
ILM  [ILM4|ILM3|ILM2|ILM1|ILMO | Initial value: 011118

@® ILM Functions

The "ILM" determines the level of interrupt that will be accepted. Whenever the "I" flag in the "CCR"
register is"1", the contents of this register are compared to the level of the current interrupt request. If the
value of this register is greater than the level of the request, interrupt processing is activated. Interrupt
levels are higher in priority at value approaching "0", and lower in priority at increasing values up to "31".
Note that bit "ILM4" differs from the other bits in the register, in that setting values for this bit are
restricted.

Figure 3.3-4 shows the functions of the "ILM".

19



CHAPTER 3 REGISTER DESCRIPTIONS

Figure 3.3-4 "ILM" Register Functions

FR family CPU
Interrupt controller ILM | flag
ICR 29  H L 1 | o —Interrupt activated
:I Z
Peripheral [— Interrupt 25 Comp <
request 29|>25 Activation OK

@ Range of ILM Program Setting Values

If the original value of the register isin the range 16 to 31, the new value may be set in the range 16 to 31.
If an instruction attempts to set a value between 0 and 15, that value will be converted to "setting value +

16" and then transferred.
If the original valueisin the range 0 to 15, any new vaue from 0 to 31 may be set.

@ |Initialization of the ILM at Reset

Thereset valueis"01111g".

B System Condition Code Register (SCR: Bit 10 to bit 08)
@ Bit Configuration of the SCR

Figure 3.3-5 Bit Configuration of the SCR

10 09 08
SCR D1 DO T Initial value: XX0B

@ SCR Functions

« BitsD1, DO
Bits"D1", "D0" are used for intermediate data in stepwise division calculations. This register is used to
assure resumption of division calculations when the stepwise division program is interrupted during
processing. If changes are made to the contents of this register during division processing, the results of
the division are not assured.

e T-hit
The T-bit is astep trace trap flag. When thishit is set to "1", step trace trap operation is enabled.
Note: Step trace trap processing routines cannot be debugged using emulators.

@ Initialization of the SCR at Reset

The values of bits"D1", "D0" are undefined, and the T-bit is set to "0".

20


線
( A line from ILM to COMP is added. )



CHAPTER 3 REGISTER DESCRIPTIONS

B Condition Code Register (CCR: Bit 07 to bit 00)

@ Bit Configuration of the "CCR"

Figure 3.3-6 Bit Configuration of the "CCR"

CCR| - - S I N Z \ C Initial value: --00XXXXB

07 06 05 04 03 02 01 00

@® "CCR" Functions

"S' Hag

This flag selects the stack pointer to be used. The value "0" selects the system stack pointer (SSP), and
"1" selects the user stack pointer (USP).

RETI instruction is executable only when the Sflagis"0".

"I" Flag

Thisflag is used to enable/disable system interrupts. The value "0" disables, and "1" enables interrupts.
"N" Flag

Thisflag is used to indicate positive or negative values when the results of a calculation are expressed in
two’s complement form. The value "0" indicates positive, and "1" indicates negative.

"Z" Flag

This flag indicates whether the results of a calculations are zero. The value "0" indicates a non-zero
value, and "1" indicates a zero value.

"V" Flag

This flag indicates that an overflow occurred when the results of a calculation are expressed in two's
complement form. The value "0" indicates no overflow, and "1" indicates an overflow.

"C" Flag

This flag indicates whether a carry or borrow condition has occurred in the highest bit of the results of a
calculation. The value "0" indicates no carry or borrow, and "1" indicates a carry or borrow condition.
Thisbit is aso used with shift instructions, and contains the value of the last bit that is "shifted out".

@ |Initialization of the "CCR" at Reset

Following areset, the"S" and "I" flags are set to "0" and the "N", "Z", "V" and "C" flags are undefined.

21



CHAPTER 3 REGISTER DESCRIPTIONS

B Note on PS Register
Because of prior processing of the PS register by some commands, a break may be brought in an interrupt
processing subroutine during the use of a debugger or flag display content in the PS register may be
changed with the following exceptional operations. In both cases, right re-processing is designed to
execute after returning from the EIT. So, operations before and after EIT are performed conforming to the
specifications.

@ When a) a user interrupt or NMI is executed, b) step execution is implemented, or c) a break occurs in a
data event or emulator menu due to a command just before DIVOU/DIVOS commands, the following
operation may be implemented.

(1) DOand D1 flags are changed first.
(2) EIT process routine (user interrupt, NMI or emulator) is executed.

(3) Returning from EIT, DIVOU/DIVO0S commands are executed and DO and D1 flags are set to the same
valuein"(1)".

@ When a user interrupt or NMI factor exists, and a command such as ORCCR/STILM/
MOV Ri,PS is executed to allow an interruption, the following operation is executed:

(1) PSregister ischanged first.
(2) EIT process routine (user interrupt, NMI) is executed.
(3) Returning from EIT, any above command is executed and PS register is set to the samevaluein "(1)".

22



CHAPTER 3 REGISTER DESCRIPTIONS

3.3.3 Table Base Register (TBR)

The Table Base Register (TBR) designates the table containing the entry address for
"EIT" operations.

B Overview of the Table Base Register

The Table Base Register (TBR) designates the table containing the entry address for "EIT" operations.
When an "EIT" condition occurs, the address of the vector reference is determined by the sum of the
contents of this register and the vector offset corresponding to the "EIT" operation.

Figure 3.3-7 shows an example of the operation of the table base register.

Figure 3.3-7 Sample of Table Base Register (TBR) Operation

Vector correspondence table

bit31 0
EAddrO| EAddrl| EAddr2| EAddr3| PC

Vector no. | Vector offset

~ ~ ~

Timer
interrupt > 11H 3B8H | | 876541231 TBR

- L L L
] | | Adder

Vector table

87654123H+000003B8H +0 +1 +2 +3

4
876544DBH ~ ~ ~ ~ ~

876544D8H —| EAddr0| EAddrl| EAddr2| EAddr3

~ ~ ~ ~ ~

Note: The process of referencing a vector table involves application of address alignment rules
for word access.

23


線
( "31" → "bit31" )



CHAPTER 3 REGISTER DESCRIPTIONS

B Table Base Register Configuration
Figure 3.3-8 shows the bit configuration of the table base register.

Figure 3.3-8 Table Base Register Bit Configuration

Bitno. — 31 00

TBR

B Table Base Register Functions

@ \ector Table Reference Addresses

Addresses for vector reference are generated by adding the contents of the "TBR" register and the vector
offset value, which is determined by the type of interrupt used. Because vector access is in word units, the
lower two bits of the resulting address value are explicitly read as"0".

@ Vector Table Layout

Vector table layout can be realized in word (32 bits) units.

@ Initial Values in Table Base Register

After areset, theinitial valueis"000FFCOOL".

B Precautions Related to the Table Base Register
The "TBR" should not be assigned values greater than "FFFFFCOO". If values higher than this are placed

in the register, the operation may result in an overflow when summed with the offset value. An overflow
condition will result in vector access to the area "000000004" to "000003FF", which can cause program

runaway.

24



CHAPTER 3 REGISTER DESCRIPTIONS

3.34 Return Pointer (RP)

The return pointer (RP) is aregister used to contain the program counter (PC) value
during execution of call instructions, in order to assure return to the correct address
after the call instruction has executed.

B Overview of the Return Pointer

The contents of the return pointer (RP) depend on the type of instruction. For acall instruction with a delay
slot, the value is the address stored +4, and for a call instruction with no delay slot, the value is the address
stored +2. The save data is returned from the "RP" pointer to the "PC" counter by execution of a "RET"
instruction.

Figure 3.3-9 shows a sample operation of the "RP" pointer in the execution of a"CALL" instruction with
no delay slot, and Figure 3.3-10 shows a sample operation of the "RP" pointer in the execution of a"RET"
instruction.

Figure 3.3-9 Sample Operation of "RP" in Execution of a "CALL" Instruction with No Delay Slot

. Memory space , . Memory space
Before execution ,—LP—| ; After execution ,—Lp—|

~ ~ ' ~ ~

PC | 12345678+|— | CALL SUB1 PC SUB1 CALL SUB1
RP | 22?27?27?27H ~ ~ RP | 1234567AH ~ ~
SUB1 | RET SUB1 | RET
~ ~ ~ ~

Figure 3.3-10 Sample Operation of "RP" in Execution of a "RET" Instruction

Memory space . Memory space
Before execution N ~ After execution N T
CALL SuUB1 : CALL:D SuB
PC| SuBt ADD #1.R00 PC 1234567AHL ADD #1.R00
RP | 1234567AH ~ ~ RP | 1234567AH ~ ~
SUB1 | RET SUB1 | RET
I I

25



CHAPTER 3 REGISTER DESCRIPTIONS

B Return Pointer Configuration
Figure 3.3-11 shows the bit configuration of the return pointer.

Figure 3.3-11 Return Pointer Bit Configuration

Bit no. - 31 00

RP

B Return Pointer Functions

@ Return Pointer in Multiple "CALL" Instructions

Because the "RP" does not have a stack configuration, it is necessary to first execute a save when calling
one subroutine from another subroutine.

@ Initial Value of Return Pointer

Theinitia value is undefined.

26



CHAPTER 3 REGISTER DESCRIPTIONS

3.3.5 System Stack Pointer (SSP), User Stack Pointer (USP)

The system stack pointer (SSP) and user stack pointer (USP) are registers that refer to
the stack area. The "S" flag in the "CCR" determines whether the "SSP" or "USP" is
used. Also, when an "EIT" event occurs, the program counter (PC) and program status
(PS) values are saved to the stack area designated by the "SSP", regardless of the value
of the "S" flag at that time.

B System Stack Pointer (SSP), User Stack Pointer (USP)

The system stack pointer (SSP) and user stack pointer (USP) are pointers that refer to the stack area. The
stack areais accessed by instructions that use general-purpose register "R15" as an indirect register, as well
as register multi-transfer instructions. "R15" is used as an indirect register by the "SSP" when the "'S" flag
in the condition code register (CCR) is "0" and the "USP" when the "S" flag is "1". Also, when an "EIT"
event occurs, the program counter (PC) and program status (PS) values are saved to the stack area
designated by the "SSP", regardless of the value of the"S" flag at that time.

Figure 3.3-12 shows an example of stack pointer operation in executing the instruction "ST R13, @-R15"

when the"S" flag is set to "0". Figure 3.3-13 shows an example of the same operation when the "S" flag is
setto"1".

Figure 3.3-12 Example of Stack Pointer Operation in Execution of Instruction "ST R13, @-R15"
when "S" Flag =0

Before execution of ST R13,@-R15 | After execution of ST R13,@-R15
Memory space ' Memory space
r 00000000H 7 ;  00000000H 7
SSP | 12345678H 299997 SSP | 12345674H—| 17263540H
—|_. 27?22?27 ?2??7227?
USP | 76543210H USP | 76543210H
R13 | 17263540H R13 | 17263540H
s L FFFFFFFFH- ; S L FFFFFFFFH-
CCR 0 CCR 0

27


線
( "ST R13", "@-R15" → "ST R13, @-R15" )


線
( "ST R13", "@-R15" → "ST R13, @-R15" )



CHAPTER 3 REGISTER DESCRIPTIONS

Figure 3.3-13 Example of Stack Pointer Operation in Execution of Instruction "ST R13, @-R15"
when "S" Flag =1

Before execution of ST R13,@-R15 After execution of ST R13,@-R15

Memory space
~ 00000000H -

~

Memory space
- 00000000H =

~

SSP | 12345678H 22222222 SSP | 12345678+ J—~ 17263540H
22222222
USP | 76543210H - USP | 7654320CH
R13 | 172635401 R13 | 172635404
S L FrFFFFFFH S L FFFFFFFFH -
CCR| | 1 CCR| | 1

B Stack Pointer Configuration
Figure 3.3-14 shows the bit configuration of the stack pointer.

Figure 3.3-14 Bit Configuration of the Stack Pointers

Bitno. — 31 00

SSP

USP

B Functions of the System Stack Pointer and User Stack Pointer

@ Automatic increment/decrement of stack pointer

The stack pointer uses automatic pre-decrement/post-increment counting.

@ Stack Pointer Initial Value

The"SSP" has the initial value "000000004". The"USP" initial value is undefined.

B Recovery from EIT handler
When RETI instruction is used for recovery from an EIT handler, it is necessary to set the "S" flag to "0"
and select the system stack. For further details, see "I Recovery from EIT handler" of "4.2 Basic
Operationsin "EIT" Processing”.

28


線
( "ST R13", "@-R15" → "ST R13, @-R15" )


線
( "4.2 Basic Operations in "EIT" Processing ■ Recovery from EIT handler" →
"■ Recovery from EIT handler"of "4.2 Basic Operations in "EIT" Processing" )



CHAPTER 3 REGISTER DESCRIPTIONS

3.3.6 Multiplication/Division Register (MD)

The multiplication/division register (MD) is a 64-bit register used to contain the result of
multiplication operations, as well as the dividend and result of division operations.

B Overview of the Multiplication/Division Register

The multiplication/division register (MD) is a register used to contain the result of multiplication
operations, as well as the dividend and result of division operations. The products of multiplication are
stored in the "MD" in 64-bit format. In division operations, the dividend must first be placed in the lower
32 bits of the "MD" beforehand. Then as the division process is executed, the remainder is placed in the
higher 32 bits of the "MD", and the quotient in the lower 32 bits.

Figure 3.3-15 shows an example of the use of the "MD" in multiplication, and Figure 3.3-16 shows an
example of division.

Figure 3.3-15 Sample Operation of "MD" in Multiplication

Before execution of instruction MUL R00,R01 After execution of instruction MUL R00,R01
ROO | 12345678H | ROO | 12345678H
RO1 | 76543210H RO1 | 76543210H
MD | ?2222?222?222?2?2??7H MD | 086A1C970B88D780H

Figure 3.3-16 Sample Operation of "MD" in Division

Before execution of stepwise division After execution of stepwise division
ROO | 12345678H | ROO | 12345678H
Using R0O
MD | ??2?2?2??76543210H MD | 091A264000000006H

29



CHAPTER 3 REGISTER DESCRIPTIONS

B Configuration of the "MD" Register
Figure 3.3-17 shows the bit configuration of the "MD".

Figure 3.3-17 Bit Configuration of the "MD"

Bitno. — 31 00

MDH

MDL

B Functions of the "MD"

@ Storing Results of Multiplication and Division

The results of multiplication operations are stored in the "MDH" (higher 32 bits) and "MDL" (lower 32
bits) registers.

The results of division are stored as follows: quotients in the 32-bit "MDL" register, and remainders in the
32-bit "MDH" register.

@ Initial Value of the "MD"

Theinitia value is undefined.

30



CHAPTER 4

RESET AND "EIT"
PROCESSING

This chapter describes reset and "EIT" processing in the

FR family CPU.

A reset is a means of forcibly terminating the currently

executing process, initializing the entire device, and

restarting the program from the beginning. "EIT"
processing, in contrast, terminates the currently
executing process and saves restart information to the
memory, then transfers control to a predetermined
processing program. "EIT" processing programs can
return to the prior program by use of the "RETI"
instruction.

"EIT" processing operates in essentially the same

manner for exceptions, interrupts and traps, with the

following minor differences.

* Interrupts originate independently of the instruction
sequence. Processing is designed to resume from the
instruction immediately following the acceptance of
the interrupt.

* Exceptions are related to the instruction sequence,
and processing is designed to resume from the
instruction in which the exception occurred.

* Traps are also related to the instruction sequence,
and processing is designed to resume from the
instruction immediately following the instruction in
which the trap occurred.

31



CHAPTER 4 RESET AND "EIT" PROCESSING

32

4.1 Reset Processing

4.2 Basic Operations in "EIT" Processing
4.3 Interrupts

4.4 Exception Processing

4.5 Traps

4.6 Priority Levels



CHAPTER 4 RESET AND "EIT" PROCESSING

4.1 Reset Processing

A reset is a means of forcibly terminating the currently executing process, initializing
the entire device, and restarting the program from the beginning. Resets are used to
start the LSl operating from its initial state, as well as to recover from error conditions.

B Reset Operations

When areset is applied, the CPU terminates processing of the instruction executing at that time and goes
into inactive status until the reset is canceled. When the reset is canceled, the CPU initializes all interna
registers and starts execution beginning with the program indicated by the new value of the program
counter (PC).

W Initialization of CPU Internal Register Values at Reset
When areset is applied, the FR family CPU initializes internal registers to the following values.

« PC: Word data stored at address "000FFFFC"
o ILM: "011115"

 THag: "0" (trace OFF)

« | Hag: "0" (interrupt disabled)

* SFag: "0" (use SSP pointer)

 TBR: "000FFCO004"

e SSP: "000000004"

+ RO00to R14: Undefined

 RI15: SSP

For a description of built-in functions following a reset, refer to the Hardware Manual provided with each
FR family device.

B Reset Priority Level
Resets have a higher priority than al "EIT" operations.

33



CHAPTER 4 RESET AND "EIT" PROCESSING

4.2 Basic Operations in "EIT" Processing

Interrupts, exceptions and traps are similar operations applied under partially differing
conditions. Each "EIT" event involves terminating the execution of instructions, saving
information for restarting, and branching to a designated processing program.

B Basic Operations in "EIT" Processing
The FR family device processes "EIT" events as follows.

(1) The vector table indicated by the table base register (TBR) and the number corresponding to the
particular "EIT" event are used to determine the entry address for the processing program for the
"EIT".

(2) For restarting purposes, the contents of the old program counter (PC) and the old program status (PS)
are saved to the stack area designated by the system stack pointer (SSP).

(3) After the processing flow is completed, the presence of new "EIT" sources is determined.
Figure 4.2-1 shows the operationsin the "EIT" processing sequence.

Figure 4.2-1 "EIT" Processing Sequence

Instruction at which EIT event is detected — IF | ID | EX| MA| WB
Canceled instruction — IF | ID [xxxx |xxxx | xxxx
Canceled instruction — IF | XXXX | XXXX | XXXX | XXXX
(1) Vector address calculation and new PC setting — [ ID(1) | EX(1)|MA(1)|WB(1
EIT sequence (2) SSP update and PS save - — | ID2) |EX(2) [MA2)|WB(2)
(3) SSP update and PC save — — | ID@3) | EX(@3) |MA(3)|WB(3)
(4) Detection of new EIT event — — | ID(4) | EX(4)[MA(@4)\WB(4
First instruction in EIT handler sequence (branching instruction) — IF | ID | EX| MA| PC
Note:

For a description of pipeline operations, see Section "5.1 Pipeline Operation".

34



CHAPTER 4 RESET AND "EIT" PROCESSING

B Vector Table Configuration

Vector tables are located in the main memory, occupying an area of 1 Kbyte beginning with the address
shown in the TBR. These areas are intended for use as a table of entry addresses for "EIT" processing,

however in applications where vector tables are not required, this area can be used as a normal instruction
or data area.

Figure 4.2-2 shows the structure of the vector table. (Example of 32-source)

Figure 4.2-2 Vector Table Configuration

TBR —| Offset |Vector no. Description
{ | ooon | FFH INT #OFFH
Memory space
000000004 " 004H | FEH INT #OFEH
008H FDH INT #OFDH
1 Kbyte
33CH 30H INT #030H
~ ~ 340H 2FH INT #02FH or IR31
FFFFFFFFHL——ox«+ |
' 344H 2EH INT #02EH or IR30
3BCH 10H INT #010H or IROO
'; 3COH | OFH INT #OOFH or NMI
3C4H OEH Undefined instruction exception
3C8H ODH Emulator exception
3CCH OCH Step trace trap
3DOH OBH Operand break trap
3FE8H 01H System reserved or Mode Vector
3FCH OOH Reset

35



CHAPTER 4 RESET AND "EIT" PROCESSING

B Saved Registers
Except in the case of reset processing, the values of the "PS"' and "PC" are saved to the stack as designated
by the "SSP", regardless of the value of the "S" flag in the "CCR". No save operation is used in reset
processing.
Figure 4.2-3 illustrates the saving of the values of the "PC" and "PS" in "EIT" processing.

Figure 4.2-3 Saving "PC" and "PS" Values in "EIT" Processing

Immediately before interrupt Immediately after interrupt
Memory space Memory space
00000000H ] 00000000H—
7EFFFFF8H SSP | 7TFFFFFF8H - 12345678H
Interrupt 7TFFFFFFCH 7FFFFFFCH | 000C0010H
SSP | 80000000H [ 80000000H
IL=9 ~ ~ ~ ~
TBR | 000FFCO0H TBR | 000FFCOOH [+
+- 56781234H +- 567812341
offset: 000003B8H offset: 000003B8H  —!
PC [ 12345678H PC | 56781234H
PS | 000CO010H PS | 00090010+
FFFFFFFFH L— | FFFFFFFFH L—o

B Recovery from EIT handler
RETI instruction is used for recovery from the EIT handler.

To insure the program execution results after recovery, it is required that all the contents of the CPU
register are saved.

Ensure that the PC and PS values in the stack are not overwritten unless necessary because those values,
saved in the stack at the occurrence of EIT, are recovered from the stack during the recovery sequence
using the RETI instruction. Be sureto set the"S" flag to "0" when the RETI instruction is executed.

36



4.3

CHAPTER 4 RESET AND "EIT" PROCESSING

Interrupts

Interrupts originate independently of the instruction sequence. They are processed by
saving the necessary information to resume the currently executing instruction
sequence, and then starting the processing routine corresponding to the type of
interrupt that has occurred.

There are two types of interrupt sources.

* User interrupts

* Non-maskable interrupts (NMI)

B Overview of Interrupt Processing

Interrupts originate independently of the instruction sequence. They are processed by saving the necessary
information to resume the currently executing instruction sequence, and then starting the processing routine
corresponding to the type of interrupt that has occurred.

Instructions loaded and executing in the CPU before the interrupt will be executed to completion, however,
any instructions loaded in the pipeline after the interrupt will be canceled. After completion of interrupt
processing, therefore, execution will return to the next instruction following the generation of the interrupt
signal.

B Sources of Interrupts

There are two types of interrupt sources.

e User interrupts (See Section "4.3.1 User Interrupts")
« Non-maskable interrupts (NMI) (See Section "4.3.2 Non-maskable Interrupts (NM1)")

B Interrupts during Execution of Stepwise Division Programs

To enable resumption of processing when interrupts occur during stepwise division programs, intermediate
data is placed in the program status (PS), and saved to the stack. Therefore, if the interrupt processing
program overwrites the contents of the "PS" data in the stack, the processor will resume executing the
stepwise division instruction following the completion of interrupt processing, however the results of the
division calculation will be incorrect.

37


線
( "External" → "User" )


線
( "External" → "User" )



CHAPTER 4 RESET AND "EIT" PROCESSING

4.3.1 User Interrupts

values.

User interrupts originate as requests from peripheral circuits. Each interrupt request is
assigned an interrupt level, and it is possible to mask requests according to their level

This section describes conditions for acceptance of user interrupts, as well as their

operation and uses.

B Overview of User Interrupts
User interrupts originate as requests from peripheral circuits.

Each interrupt request is assigned an interrupt level, and it is possible to mask requests according to their
level values. Also, it is possible to disable al interrupts by using the | flag in the condition code register
(CCR) in the program status (PS).

It is possible to enter an interrupt signal through a signal pin, but in virtualy al cases the interrupt
originates from the peripheral circuits contained on the FR family microcontroller chip itself.

| B Conditions for Acceptance of User Interrupt Requests
| The CPU accepts user interrupts when the following conditions are met:

The peripheral circuit is operating and generates an interrupt request.

Theinterrupt enable bit in the periphera circuit’'s control register is set to "enable".

The value of the interrupt request (ICR"1) islower than the value of the ILM"2 setting.

The"I" flagissetto"1".

*1: ICR = Interrupt Control Register ...aregister on the microcontroller that controls interrupts
*2: ILM = Interrupt Level Mask Register ... aregister in the CPU’ s program status (PS)

B Operation Following Acceptance of a User Interrupt
The following operating sequence takes place after a user interrupt is accepted.

38

The contents of the program status (PS) are saved to the system stack.

The address of the next instruction is saved to the system stack.

The value of the system stack pointer (SSP) is reduced by 8.

The value (level) of the accepted interrupt is stored inthe "ILM".

Thevalue "0" iswritten to the"S" flag in the condition code register (CCR) in the program status (PS).
The vector address of the accepted interrupt is stored in the program counter (PC).


線
( "External" → "User" )


線
( "The CPU accepts interrupts" → "The CPU accepts user interrupts" )


線
( "External" → "User" ), ( "external" → "user" )


線
( "External" → "User" ), ( "external" → "user" )


線
( "External" → "User" )



CHAPTER 4 RESET AND "EIT" PROCESSING

B Time to Start of Interrupt Processing

The time required to start interrupt processing can be expressed as a maximum of "n + 6" cycles from the
start of the instruction currently executing when the interrupt was received, where "n" represents the
number of execution cyclesin theinstruction.

If the instruction includes memory access, or insufficient instructions are present, the corresponding
number of wait cycles must be added.

B "PC" Values Saved for Interrupts

When an interrupt is accepted by the processor, those instructions in the pipeline that cannot be interrupted
in time will be executed. The remainder of the instructions will be canceled, and will not be processed after
the interrupt. The "EIT" processing sequence saves "PC" values to the system stack representing the
addresses of canceled instructions.

B How to Use User Interrupts
The following programming steps must be set up to enable the use of user interrupts.
Figure 4.3-1 illustrates the use of user interrupts.

Figure 4.3-1 How to Use User Interrupts

FR family CPU SSP| USP Interrupt Peri.pheral
(2) controller device
PS Ll v | s |
{7) {
J 7 J 6r—2) ICR#n Interrupt
INT enable bit
OK AND Comparator f
@ ©)
| | |
I [ | Internal bus

(1) Enter valuesin the interrupt vector table (defined as data).
(2) Setupthe"SSP" values.
(3) Set up thetable base register (TBR) values.

(4) Within the interrupt controller, enter the appropriate level for the "ICR" corresponding to interrupts
from the peripheral from which the interrupt will originate.

(5) Initialize the peripheral function that requests the occurrence of the interrupt, and enable its interrupt
function.

(6) Set up the appropriate valuein the"ILM" field in the "PS".
(7) Setthe"l"flagto"1".

39


線
( "External" → "User" ), ( "external" → "user" )


線
( "External" → "User" )



CHAPTER 4 RESET AND "EIT" PROCESSING

4.3.2

Non-maskable Interrupts (NMI)

Non-maskable interrupts (NMI) are interrupts that cannot be masked. "NMI" requests
can be produced when "NMI" external signal pin input to the microcontroller is active.
This section describes conditions for the acceptance of "NMI" interrupts, as well as
their operation and uses.

B Overview of Non-maskable Interrupts

Non-maskable interrupts (NMI) are interrupts that cannot be masked. "NMI" requests can be produced
when "NMI" external signa pin input to the microcontroller is active.

Non-maskable interrupts cannot be disabled by the "I" flag in the condition code register (CCR) in the
program status (PS).
The masking function of the interrupt level mask register (ILM) inthe "PS" isvalid for "NMI". However, it

is not possible to use the software input to set "ILM" values for masking of "NMI", so that these interrupts
cannot be masked by programming.

B Conditions for Acceptance of Non-maskable Interrupt Requests

The FR family CPU will accept an "NMI" request when the following conditions are met:

@ If "NMI" Pin Input is Active:

« Innormal operation: Detection of a negative signal edge
e In stop mode: Detection of an "L" level signa

@ [f the "ILM" Value is Greater than 15.

B Operation Following Acceptance of a Non-maskable Interrupt

When an "NMI" is accepted, the following operations take place:

(1) The contents of the "PS" are saved to the system stack.

(2) The address of the next instruction is saved to the system stack.
(3) Thevalue of the system stack pointer (SSP) is reduced by 8.

(4) Thevaue"15" iswritten to the "ILM".

(5) Thevaue"0" iswrittento the"S" flagin "CCR" inthe"PS".
(6) Thevalue"TBR + 3C0Oy" isstored in the program counter (PC).

B Time to Start of Non-maskable Interrupt Processing

40

The time required to start processing of an "NMI" can be expressed as a maximum of "n + 6" cycles from
the start of the instruction currently executing when the interrupt was received, where "n" represents the
number of execution cyclesin theinstruction.

If the instruction includes memory access, or insufficient instructions are present, the corresponding
number of wait cycles must be added.



CHAPTER 4 RESET AND "EIT" PROCESSING

W "PC" Values Saved for Non-maskable Interrupts

When an "NMI" is accepted by the processor, those instructions in the pipeline that cannot be interrupted in
time will be executed. The remainder of the instructions will be canceled, and will not be processed after
the interrupt. The "EIT" processing sequence saves "PC" values to the system stack representing the
addresses of canceled instructions.

B How to Use Non-maskable Interrupts
The following programming steps must be set up to enable the use of "NMI".

(1) Enter valuesin the interrupt vector table (defined as data).
(2) Setupthe"SSP' values.

(3) Setup"TBR" values.

(4) Set up the appropriate valuein the "ILM" field in the "PS".

41



CHAPTER 4 RESET AND "EIT" PROCESSING

4.4

Exception Processing

Exceptions originate from within the instruction sequence. Exceptions are processed
by first saving the necessary information to resume the currently executing instruction,
and then starting the processing routine corresponding to the type of exception that
has occurred.

B Overview of Exception Processing

Exceptions originate from within the instruction sequence. Exceptions are processed by first saving the
necessary information to resume the currently executing instruction, and then starting the processing
routine corresponding to the type of exception that has occurred.

Branching to the exception processing routine takes place before execution of the instruction that has
caused the exception.

The address of the instruction in which the exception occurs becomes the program counter (PC) vaue that
is saved to the stack.

B Factors Causing Exception Processing

42

The factor which causes the exception processing is the undefined-instruction exception (For details, see
"4.4.1 Undefined Instruction Exceptions").



CHAPTER 4 RESET AND "EIT" PROCESSING

4.4.1 Undefined Instruction Exceptions

Undefined instruction exceptions are caused by attempts to execute instruction codes
that are not defined.

This section describes the operation, time requirements and uses of undefined-
instruction exceptions.

B Overview of Undefined Instruction Exceptions
Undefined instruction exceptions are caused by attempts to execute instruction codes that are not defined.

B Operations of Undefined Instruction Exceptions
The following operating sequence takes place when an undefined instruction exception occurs.
(1) The contents of the program status (PS) are saved to the system stack.

(2) The address of the instruction that caused the undefined-instruction exception is saved to the system
stack.

(3) Thevalue of the system stack pointer (SSP) is reduced by 8.
(4) Thevaue"0" iswrittento the"S" flag in the condition code register (CCR) inthe"PS".
(5) Thevalue"TBR + 3C4y" is stored in the program counter (PC).

B Time to Start of Undefined Instruction Exception Processing
The time required to start exception processing is 7 cycles.

B "PC" Values Saved for Undefined Instruction Exceptions

The address saved to the system stack as a "PC" value represents the instruction itself that caused the
undefined instruction exception. When a RETI instruction is executed, the contents of the system stack
should be rewritten with the exception processing routine so that execution will either resume from the
address of the next instruction after the instruction that caused the exception, or branch to the appropriate
processing routine.

B How to Use Undefined Instruction Exceptions
The following programming steps must be set up to enable the use of undefined instruction exceptions.

(1) Enter valuesin the interrupt vector table (defined as data).
(2) Setupthe"SSP' value.
(3) Setup"TBR" value.

B Undefined Instructions Placed in Delay Slots

Undefined instructions placed in delay slots do not generate undefined instruction exceptions. In such
cases, undefined instructions have the same operation as "NOP" instructions.

43



CHAPTER 4 RESET AND "EIT" PROCESSING

4.5 Traps

Traps originate from within the instruction sequence. Traps are processed by first
saving the necessary information to resume processing from the next instruction in the
sequence, and then starting the processing routine corresponding to the type of trap
that has occurred.

Sources of traps include the following:

e "INT" instructions

"INTE" instructions

Step trace traps

Coprocessor not found traps

Coprocessor error traps

B Overview of Traps
Traps originate from within the instruction sequence. Traps are processed by first saving the necessary
information to resume processing from the next instruction in the sequence, and then starting the processing
routine corresponding to the type of trap that has occurred.
Branching to the exception processing routine takes place after execution of the instruction that has caused
the exception.

The address of the instruction in which the exception occurs becomes the program counter (PC) vaue that
is saved to the stack.

B Sources of Traps
Sources of trapsinclude the following:
e INT instructions (For details, see Section "4.5.1 "INT" Instructions")
* INTE instructions (For details, see Section "4.5.2 "INTE" Instruction")
« Step trace traps (For details, see Section "4.5.3 Step Trace Traps')
» Coprocessor not found traps (For details, see Section "4.5.4 Coprocessor Not Found Traps")
» Coprocessor error traps (For details, see Section "4.5.5 Coprocessor Error Trap™")

44



CHAPTER 4 RESET AND "EIT" PROCESSING

45.1 "INT" Instructions

The "INT" instruction is used to create a software trap.
This section describes the operation, time requirements, program counter (PC) values
saved, and other information of the "INT" instruction.

Bl Overview of the "INT" Instruction

The "INT #u8" instruction is used to create a software trap with the interrupt number designated in the
operand.

B "INT" Instruction Operation
When the "INT #u8" instruction is executed, the following operations take place.

@
@)
©)
(4)
®)
(6)

The contents of the program status (PS) are saved to the system stack.

The address of the next instruction is saved to the system stack.

The value of the system stack pointer (SSP) is reduced by 8.

Thevaue "0" iswritten to the "I" flag in the condition code register (CCR) in the "PS".
Thevaue"0" iswrittentothe"S' flag inthe "CCR" in the "PS".

Thevaue"TBR + 3FC —4 x u8" isstored in "PC".

B Time to Start of Trap Processing for "INT" Instructions
The time required to start trap processing is 6 cycles.

B "PC" Values Saved for "INT" Instruction Execution

The "PC" value saved to the system stack represents the address of the next instruction after the "INT"
instruction.

B Precautionary Information for Use of "INT" Instructions

The "INT" instruction should not be used within an "INTE" instruction handler or step trace trap-handler
routine. Thiswill prevent normal operation from resuming after the "RETI" instruction.

45



CHAPTER 4 RESET AND "EIT" PROCESSING

45.2 "INTE" Instruction

The "INTE" instruction is used to create a software trap for debugging.
This section describes the operation, time requirements, program counter (PC) values
saved, and other information of the "INTE" instruction.

Bl Overview of the "INTE" Instruction

The "INTE" instruction is used to create a software trap for debugging. This instruction allows the use of
emulators.

This technique can be utilized by users for systems that have not been debugged by emulators.

B "INTE" Instruction Operation
When the "INTE" instruction is executed, the following operations take place.

)
)
(©)
(4)
©)
(6)

The contents of the program status (PS) are saved to the system stack.

The address of the next instruction is saved to the system stack.

The value of the system stack pointer (SSP) is reduced by 8.

Thevalue "4" iswritten to the interrupt level mask register (ILM) inthe"PS".
Thevaue"0" iswrittentothe"S' flag inthe "CCR" inthe "PS".
Thevaue"TBR + 3D8" isstored in "PC".

B Time to Start of Trap Processing for "INTE" Instructions
Thetime required to start trap processing is 6 cycles.

B "PC" Values Saved for "INTE" Instruction Execution

The "PC" value saved to the system stack represents the address of the next instruction after the "INTE"
instruction.

B Precautionary Information for Use of "INTE" Instructions
The "INTE" instruction cannot be used in user programs involving debugging with an emulator. Also, the
"INTE" instruction should not be used within an "INTE" instruction handler or step trace trap-handler
routine. This will prevent normal operation from resuming after the "RETI" instruction. Note also that no
"EIT" events can be generated by "INTE" instructions during stepwise execution.

46



CHAPTER 4 RESET AND "EIT" PROCESSING

4.5.3 Step Trace Traps

Step trace traps are traps used by debuggers. This type of trap can be created for each

individual instruction in a sequence by setting the "T" flag in the system condition code
register (SCR) in the program status (PS).

This section describes conditions for the generation, operations, program counter (PC)
values saved, and other information of step trace traps.

B Overview of Step Trace Traps
Step trace traps are traps used by debuggers. This type of trap can be created for each individual instruction
in a sequence, by setting the "T" flag in the "SCR" in the "PS".
In the execution of delayed branching instructions, step trace traps are not generated immediately after the
execution of branching. The trap is generated after execution of the instruction(s) in the delay slot.

The step trace trap can be utilized by users for systems that have not been debugged by emulators.

B Conditions for Generation of Step Trace Traps
A step trace trap is generated when the following conditions are met.
e The"T" flaginthe"SCR" inthe"PS" issetto "1".
« The currently executing instruction is not a delayed branching instruction.
e TheCPU isnot processing an "INTE" instruction or a step trace trap processing routine.

B Step Trace Trap Operation
When a step trace trap is generated, the following operations take place.
(1) The contents of the program status (PS) are saved to the system stack.
(2) The address of the next instruction is saved to the system stack.
(3) Thevalue of the system stack pointer (SSP) is reduced by 8.
(4) Thevaue"0" iswritten to the"S" flag in the "CCR" in the "PS".
(5) Thevalue"TBR + 3C44" isstored in "PC".

B "PC" Values Saved for Step Trace Traps
The "PC" value saved to the system stack represents the address of the next instruction after the step trace
trap.

B Relation of Step Trace Traps to "NMI" and External Interrupts
When the"T" flag is set to enable step trace traps, both "NMI" and external interrupts are disabled.

B Precautionary Information for Use of Step Trace Traps

Step trace traps cannot be used in user programs involving debugging with an emulator. Note also that no
"EIT" events can be generated by "INTE" instructions when the step trace trap function is used.

47



CHAPTER 4 RESET AND "EIT" PROCESSING

4.5.4 Coprocessor Not Found Traps

Coprocessor not found traps are generated by executing coprocessor instructions
using coprocessors not found in the system.

This section describes conditions for the generation of coprocessor not found traps, in
addition to operation, program counter (PC) values saved, and other information.

B Overview of Coprocessor Not Found Traps

Coprocessor not found traps are generated by executing coprocessor instructions using coprocessors not
found in the system.

B Conditions for Generation of Coprocessor Not Found Traps
A coprocessor not found trap is generated when the following conditions are met.
» Execution of a"COPOP/COPLD/COPST/COPSV" instruction.
« No coprocessor present in the system corresponds to the operand "#u4" in any of the above instructions.

B Coprocessor Not Found Trap Operation
When a coprocessor not found trap is generated, the following operations take place.
(1) The contents of the program status (PS) are saved to the system stack.
(2) The address of the next instruction is saved to the system stack.
(3) Thevalue of the system stack pointer (SSP) is reduced by 8.
(4) Thevaue"0" iswrittento the"S" flag in the condition code register (CCR) inthe"PS".
(5) Thevalue"TBR + 3EOy" isstored in "PC".

B "PC" Values Saved for Coprocessor Not Present Traps

The "PC" value saved to the system stack represents the address of the next instruction after the
coprocessor instruction that caused the trap.

B General-purpose Registers during Execution of "COPST/COPSV" Instructions
Execution of any "COPST/COPSV" instruction referring to a coprocessor that is not present in the system
will cause undefined values to be transferred to the general-purpose register (RO to R14) designated in the
operand. The coprocessor not found trap will be activated after the designated general-purpose register is
updated.

48



CHAPTER 4 RESET AND "EIT" PROCESSING

4.5.5 Coprocessor Error Trap

A coprocessor error trap is generated when an error has occurred in a coprocessor
operation and the CPU executes another coprocessor instruction involving the same
coprocessotr.

This section describes conditions for the generation, operations, and program counter
(PC) values saved of coprocessor error traps.

B Overview of Coprocessor Error Traps

A coprocessor error trap is generated when an error has occurred in a coprocessor operation and the CPU
executes another coprocessor instruction involving the same coprocessor. Note that no coprocessor error
traps are generated for execution of "COPSV" instructions.

B Conditions for Generation of Coprocessor Error Traps
A coprocessor error trap is generated when the following conditions are met.

« An error has occurred in coprocessor operation.
* A "COPOP/COPLD/COPST" instruction is executed involving the same coprocessor.

B Coprocessor Error Trap Operation
When a coprocessor error trap is generated, the following operations take place.
(1) The contents of the program status (PS) are saved to the system stack.
(2) The address of the next instruction is saved to the system stack.
(3) Thevalue of the system stack pointer (SSP) is reduced by 8.
(4) Thevaue"0" iswrittento the"S" flag in the condition code register (CCR) inthe"PS'.
(5) Thevalue"TBR + 3DCy" isstored in "PC".

B "PC" Values Saved for Coprocessor Error Traps

The "PC" value saved to the system stack represents the address of the next instruction after the
coprocessor instruction that caused the trap.

B Results of Coprocessor Operations after a Coprocessor Error Trap

Despite the occurrence of a coprocessor error trap, the execution of the coprocessor instruction (" COPOP/
COPLD/COPST") remains valid and the results of the instruction are retained. Note that the results of
operations affected by the coprocessor error will not be correct.

49



CHAPTER 4 RESET AND "EIT" PROCESSING

B Saving and Restoring Coprocessor Error Information

When a coprocessor is used in a multi-tasking environment, the internal resources of the coprocessor
become part of the system context. Thus whenever context switching occurs, it is necessary to save or
restore the contents of the coprocessor. Problems arise when there are hidden coprocessor errors remaining
from former tasks at the time of context switching.

In such cases, when the exception is detected in a coprocessor context save instruction by the dispatcher, it
becomes impossible to return the information to the former task. This problem is avoided by executing a
"COPSV" instruction, which does not send notification of coprocessor errors but acts to clear the internal
error. Note that the error information is retained in the status information that is saved. If the saved status
information is returned to the coprocessor at the time of re-dispatching to the former task, the hidden error
condition is cleared and the CPU is notified when the next coprocessor instruction is executed.

Figure 4.5-1 shows an example in which notification to the coprocessor does not succeed, and Figure 4.5-2
illustrates the use of the "COPSV" instruction to save and restore error information.

Figure 4.5-1 Example: Coprocessor Error Notification Not Successful

Hidden error condition
Coprocessor (A ) ... .
CPU(main) Q O Q Q Notification
COPOP
Interrupt
SApp— O000000
COPST

Figure 4.5-2 Use of "COPSV" Instruction to Save and Restore Error Information

Hidden error condition Hidden error condition
Coprocessor (& ) . i J
CPU Q Q X No notification Q Q Q
(main)
COPOP COPST
Interrupt RETI

CPU(dispatcher) O O Q Q """" Q Q O




CHAPTER 4 RESET AND "EIT" PROCESSING

4.6 Priority Levels

When multiple "EIT" requests occur at the same time, priority levels are used to select
one source and execute the corresponding "EIT" sequence. After the "EIT" sequence is
completed, "EIT" request detection is applied again to enable processing of multiple
"EIT" requests.

Acceptance of certain types of "EIT" requests can mask other factors. In such cases the
priority applied by the "EIT" processing handler may not match the priority of the
requests.

B Priority of Simultaneous Occurrences
The FR family uses a hardware function to determine the priority of acceptance of "EIT" requests.

Table 4.6-1 shows the priority levels of "EIT" requests.

Table 4.6-1 Priority of "EIT" Requests

Priority Source Masking of other sources
1 Reset Other sources discarded
2 Undefined instruction exception Other sources disabled
INT instruction I flag=0
3

Coprocessor not found trap

Coprocessor error trap None
4 User interrupt ILM = level of source accepted
5 NMI ILM =15
6 Step trace trap ILM =4
7 INTE instruction ILM =4

51


線
( "External" → "User"), ("INT" → "INTE")



CHAPTER 4 RESET AND "EIT" PROCESSING

B Priority of Multiple Processes

When the acceptance of an "EIT" source results in the masking of other sources, the priority of execution of
simultaneously occurring "EIT" handlersis as shown in Table 4.6-2.

Table 4.6-2 Priority of Execution of "EIT" Handlers

Priority Source Masking of other sources
1 Reset Other sources discarded
2 Undefined instruction exception Other sources disabled
3 Step trace trap ILM=4*
4 INTE instruction ILM =4*
5 NMI ILM =15
6 INT instruction I flag=0
7 User interrupt ILM = level of source accepted
; Copcey

*: When "INTE" instructions are run stepwise, only the step trace "EIT" is generated.
Sources related to the "INTE" instruction will be ignored.

52



CHAPTER 5

PRECAUTIONARY
INFORMATION FOR THE FR
FAMILY CPU

This chapter presents precautionary information related
to the use of the FR family CPU.

5.1 Pipeline Operation
5.2 Pipeline Operation and Interrupt Processing
5.3 Register Hazards

5.4 Delayed Branching Processing

53



CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

5.1

Pipeline Operation

The FR family CPU processes all instructions using a 5-stage pipeline operation. This
makes it possible to process nearly all instructions within one cycle.

B Overview of Pipeline Operation

In a pipeline operation the steps by which the CPU interprets and executes instructions are divided into
severa cycles, so that instructions can be processed simultaneoudly in successive cycles. This enables the
system to appear to execute in one cycle many instructions that would require several cycles in other
methods of processing. The FR family CPU simultaneously executes five types (IF, ID, EX, MA, and WB)
of processing cycles, as shownin Figure 5.1-1. Thisisreferred to as five-stage pipeline processing.

e IF Load instruction

e ID: Interpretinstruction

« EX: Executeinstruction

e MA: Memory access

« WB: Writetoregister

Figure 5.1-1 Example of Pipeline Operation in the FR Family CPU

1 cycle

@ e @ 6 /

' ' ' ' ' H ' B H
Il Lt -t Lt L -t L) -t Lot -
' H ' '

LD @R10, R1 IF ID EX | MA | WB

LD @R11, R2 IF ID EX | MA | WB

ADD R1, R3 IF ID EX | MA | WB

BNE:D TestOK IF ID EX | MA | WB

ST R2, @R12 IF ID EX | MA | WB

54

@ Processes occurring in each 1 cycle in the above example:

(1) Loadinstruction"LD @R10,R1"
(2) Interpret instruction "LD @R10,R1" Load instruction"LD, @R11,R2"

(3) Executeinstruction "LD @R10,R1" Interpret instruction "LD, @R11,R2"
Load instruction, "ADD R1, R3"

(49) Memory accessinstruction "LD @R10,R1" Executeinstruction"LD, @R11,R2"
Interpret instruction, "ADD R1, R3" Load instruction "BNE:D TestOK"

(5) Writeinstruction "LD @R10,R1" to register Memory accessinstruction "LD, @R11,R2"
Executeinstruction, "ADD R1, R3" Interpret instruction, "BNE:D TestOK"
Load instruction "ST R2, @R12"



CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

5.2 Pipeline Operation and Interrupt Processing

The FR family CPU processes all instructions through pipeline operation. Therefore,
particularly for instructions that start hardware events, it is possible for contradictory
conditions to exist before and after an instruction.

B Precautionary Information for Interrupt Processing in Pipeline Operation

Because the FR family CPU operates in pipeline mode, the recognition of an interrupt signal is preceded by
several instructions in respective states of pipeline processing. If one of those instructions being executed in
the pipeline acts to delete the interrupt, the CPU will branch normally to the respective interrupt processing
program but when control is transferred to interrupt processing the interrupt request will no longer be
effective.

Note that this type of condition does not occur in exception or trap processing.

Figure 5.2-1 Example: Interrupt Accepted and Deleted Causing Mismatched Pipeline Conditions

Interrupt request

. None, None, None , None Generated, Deleted  None , None None.

LD @R10, R1 IF ID EX | MA | WB /

ST R2, @R11 IF ID EX MA | WB

ADD R1, R3(cancelled) IF ID -- -- -

BNE TestOK(cancelled) IF - - -- -

EIT sequence execution #1 IF ID EX | MA | WB

--: Canceled stages

B Conditions that Are Actually Generated
The following processing conditions may cause an interrupt to be deleted after acceptance.

« A program that clearsinterrupt sources while in interrupt-enabled mode
« Writing to an interrupt-enable bit in a periphera function while in interrupt-enabled mode

B How to Avoid Mismatched Pipeline Conditions

To avoid deleting interrupts that have already been accepted, programmers should use the "I" flag in the
condition code register (CCR) in the program status (PS) to regulate interrupt sources.

55



CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

5.3

Register Hazards

The FR family CPU executes program steps in the order in which they are written, and is
therefore equipped with a function that detects the occurrence of register hazards and
stops pipeline processing when necessary. This enables programs to be written without
attention to the order in which registers are used

B Overview of Register Hazards

The CPU in pipeline operation may simultaneously process one instruction that involves writing values to a
register, and a subsequent instruction that attempts to refer to the same register before the write process is
completed. Thisiscalled aregister hazard.

In the example in Figure 5.3-1, the program will read the address value at "R1" before the desired value has
been written to "R1" by the previous instruction. As a result, the old value at "R1" will be read instead of
the new value.

Figure 5.3-1 Example of a Register Hazard

ADD RO, R1 IF ID EX | MA| WB : Write cycle to R1

SUB R1, R2 IF ID EX | MA | WB : Read cycle from R1

B Register Bypassing

Even when aregister hazard does occur, it is possible to process instructions without operating delays if the
data intended for the register to be accessed can be extricated from the preceding instruction. This type of
data transfer processing is called register bypassing, and the FR family CPU is equipped with a register
bypass function.

In the example in Figure 5.3-2, instead of reading the "R1" in the "ID" stage of the "SUB" instruction, the
program uses the results of the calculation from the "EX" stage of the "ADD" instruction (before the results
are written to the register) and thus executes the instruction without delay.

Figure 5.3-2 Example of a Register Bypass

ADD RO, R1 IF ID
SUB R1, R2 IF *ID EX | MA | WB : Read cycle from R1

EX | MA | WB : Data calculation cycle to R1

56



CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

B Interlocking

Instructions which are relatively slow in loading data to the CPU may cause register hazards that cannot be
handled by register bypassing.

In the example in Figure 5.3-3, data required for the "ID" stage of the "SUB" instruction must be loaded to
the CPU in the "MA" stage of the "L D" instruction, creating a hazard that cannot be avoided by the bypass
function.

Figure 5.3-3 Example: Register Hazard that Cannot be Avoided by Bypassing

LD @Ro0, R1 IF ID EX | MA | WB : Data read cycle to RO
SUB R1, R2 IF ID | EX | MA | WB : Read cycle from R1

In cases such as this, the FR family CPU executes the instruction correctly by pausing before execution of
the subsequent instruction. This function is called interlocking.

In the example in Figure 5.3-4, the "ID" stage of the "SUB" instruction is delayed until the data is loaded
from the "M A" stage of the "L D" instruction.

Figure 5.3-4 Example of Interlocking

LD @RO0, R1 IF ID EX MA | WB : Data read cycle to RO

SUB R1, R2 IF ID f ID EX | MA | WB | : Read cycle from R1

B Interlocking Produced by Reference to "R15" and General-purpose Registers after
Changing the "S" Flag

The genera-purpose register "R15" is designed to function as either the system stack pointer (SSP) or user
stack pointer (USP). For this reason, the FR family CPU is designed to automatically generate an interlock
whenever a change to the "S" flag in the condition code register (CCR) in the program status (PS) is
followed immediately by an instruction that references the "R15". This interlock enables the CPU to
reference the "SSP' or "USP" values in the order in which they are written in the program. FR family
hardware design similarly generates an interlock whenever a TYPE-A format instruction immediately
follows an instruction that changes the value of the"S" flag.

For information on instruction format types, see Section "6.1 Instruction Formats'.

57



CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

5.4

Delayed Branching Processing

Because the FR family CPU features pipeline operation, branching instructions must
first be loaded before they are executed. Delayed branching processing is the function
to execute the loaded instruction, and allows to accelerate processing speeds.

B Overview of Branching with Non-delayed Branching Instructions

In a pipeline operation, by the time the CPU recognizes an instruction as a branching instruction the next
instruction has aready been loaded. To process the program as written, the instruction following the
branching instruction must be canceled in the middle of execution. Branching instructions that are handled
in this manner are non-delayed branching instructions.

Examples of processing non-delayed branching instructions (both when branching conditions are satisfied
and not satisfied) are described in Section "5.4.1 Processing Non-delayed Branching Instructions”.

B Overview of Branching with Delayed Branching Instructions

An instruction immediately following a branching instruction will already be loaded by the CPU by the
time the branching instruction is executed. This position is called the delay dlot.

A delayed branching instruction is a branching instruction that executes the instruction in the delay slot
regardless of whether the branching conditions are satisfied or not satisfied.

Examples of processing delayed branching instructions (both when branching conditions are satisfied and
not satisfied) are described in Section "5.4.2 Processing Delayed Branching Instructions”.

B Instructions Prohibited in Delay Slots

58

The following instructions may not be used in delayed branching processing by the FR family CPU.
+ LDI:32#i32,Ri LDI:20#i20, Ri

» COPOP #u4, #CC, CRj, CRi
COPLD #u4, #CC, Rj, CRi
COPST #u4, #CC, CRj, Ri
COPSV #u4, #CC, CRj, Ri
« JMP @Ri
CALL label12
CALL @RI
RET
Conditional branching instruction and related delayed branching instructions

o INT #u8
RETI
INTE



CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

- AND Rj,@R
ANDH Rj, @Ri
ANDB  Rj, @Ri
OR Rj, @Ri
ORH  Rj, @Ri
ORB  Rj, @Ri
EOR  Rj, @Ri
EORH Rj, @Ri
EORB  Rj, @Ri

+ BANDH #u4, @Ri
BANDL #u4, @Ri
BORH #u4, @Ri
BORL #u4, @Ri
BEORH #u4, @Ri
BEORL #u4, @Ri
BTSTH #u4, @Ri
BTSTL #u4, @Ri

« MUL R Ri

MULU Rj,Ri
MULH Rj,Ri
MULUH Rj, Ri

. LD @RI15+, PS

e LDMO (reglist)
LDM1  (reglist)
STMO (reglist)
STM1 (reglist)
ENTER #ul0
XCHB @R, Ri

« DMOV @dirl0, @R13+
DMOV  @R13+, @dirl0
DMOV  @dirl0, @-R15
DMOV  @R15+, @dirl0
DMOVH @dir9, @R13+
DMOVH @R13+, @dir9
DMOVB @dir8, @R13+
DMOVB @R13+, @dir8

B Restrictions on Interrupts during Processing of Delayed Branching Instructions

"EIT" processing is not accepted during execution of delayed branching instructions or delayed branching
processing.

59



CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

5.4.1

Processing Non-delayed Branching Instructions

The FR family CPU processes non-delayed branching instructions in the order in which the
program is written, introducing a 1-cycle delay in execution speed if branching takes place.

B Examples of Processing Non-delayed Branching Instructions

Figure 5.4-1 Example: Processing a Non-delayed Branching Instruction (Branching Conditions Satisfied)

Figure 5.4-1 shows an example of processing a non-delayed branching instruction when branching
conditions are satisfied.

In this example, the instruction "ST R2,@R12" (which immediately follows the branching instruction) has
entered the pipeline operation before the fetching of the branch destination instruction, but is canceled
during execution.

As a result, the program is processed in the order in which it is written, and the branching instruction
requires an apparent processing time of two cycles.

LD @R10, R1 IF ID | EX | MA | WB
LD @R11, R2 IF ID | EX | MA | WB
ADD R1, R3 IF ID | EX | MA | WB
BNE TestOK(branching conditions satisfied) IF ID EX | MA | WB
ST R2, @R12(instruction immediately after) IF - -- - --
ST R2, @R13(branch destination instruction) IF ID EX | MA | WB
-- : Canceled stages
: PC change

Figure 5.4-2 Example: Processing a Non-delayed Branching Instruction (Branching Conditions Not Satisfied)

Figure 5.4-2 shows an example of processing a non-delayed branching instruction when branching
conditions are not satisfied.

In this example, the instruction "ST R2,@R12" (which immediately follows the branching instruction) has
entered the pipeline operation before the fetching of the branch destination instruction, and is executed

without being canceled.
Because instructions are executed without branching, the program is processed in the order in which it is
written. The branching instruction requires an apparent processing time of one cycle.

LD @R10, R1 IF ID | EX | MA | WB

LD @R11, R2 IF ID EX | MA | WB

ADD R1, R3 IF ID | EX | MA | WB

BNE TestOK(branching conditions not satisfied) IF ID EX | MA | WB

ST R2, @R12(instruction immediately after) IF ID | EX | MA | WB Not canceled
ADD #4, R12(subsequent instruction) IF ID EX | MA | WB

60



5.4.2 Processing Delayed Branching Instructions

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

The FR family CPU processes delayed branching instructions with an apparent

execution speed of 1 cycle, regardless of whether branching conditions are satisfied or

not satisfied. When branching occurs, this is one cycle faster than using
non-delayed branching instructions.
However, the apparent order of instruction processing is inverted in cases where

branching occurs.

B Examples of Processing Delayed Branching Instructions

Figure 5.4-3 shows an example of processing a delayed branching instruction when branching conditions
are satisfied.

In this example, the branch destination instruction, "ST R2,@R13" is executed after the instruction "ST
R2,@R12" in the delay dlot. As aresult, the branching instruction has an apparent execution speed of one
cycle. However, the instruction "ST R2,@R12" in the delay slot is executed before the branch destination
instruction "ST R2,@R13" and therefore the apparent order of processing isinverted.

Figure 5.4-3 Example: Processing a Delayed Branching Instruction (Branching Condition Satisfied)

LD @R10, R1 IF ID EX | MA | WB
LD @R11, R2 IF ID | EX | MA | WB
ADD R1, R3 IF ID EX | MA | WB
BNE:D TestOK(branching conditions satisfied) IF ID EX | MA | WB
ST R2, @R12(delay slot instruction) IF ID EX | MA | WB Not canceled
ST R2, @R13(branch destination instruction) IF ID EX | MA | WB
: PC change

Figure 5.4-4 shows an example of processing a delayed branching instruction when branching conditions
are not satisfied.

In this example the delay dlot instruction "ST R2,@R12" is executed without being canceled. As a result,
the program is processed in the order in which it is written. The branching instruction requires an apparent
processing time of one cycle.

Figure 5.4-4 Example: Processing a Delayed Branching Instruction (Branching Conditions Not Satisfied)

LD @R10, R1 IF ID | EX | MA | WB

LD @R11, R2 IF ID | EX | MA | WB

ADD R1, R3 IF ID EX | MA | WB

BNE:D TestOK (branching conditions not satisfied) IF ID EX | MA | WB

ST R2, @R12 (delay slot instruction) IF | ID | EX | MA | WB | Notcanceled
ADD #4, R12 IF ID | EX | MA | WB




CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

B Examples of Programing Delayed Branching Instructions
An example of programing a delayed branching instruction is shown below.

LD @R10, R1

LD @R11, R2

ADD R1, R3

BNE:D TestOK

ST R2, @R12

ADD #4, R12 ; not satisfy
TestOK: ; satisfied
ST R2, @R13

62


線
( The position of comment ";not satisfy" is changed. )
( R12 → R13)



CHAPTER 6

INSTRUCTION OVERVIEW

This chapter presents an overview of the instructions
used with the FR family CPU.

All FR family CPU instructions are in 16-bit fixed length
format, except for immediate data transfer instructions
which may exceed 16 bits in length. This format enables
the creation of a compact object code and smoother
pipeline processing.

6.1 Instruction Formats

6.2 Instruction Notation Formats

63



CHAPTER 6 INSTRUCTION OVERVIEW

6.1 Instruction Formats

The FR family CPU uses six types of instruction format, TYPE-A through TYPE-F.

B Instruction Formats

All instructions used by the FR family CPU are written in the six formats shown in Figure 6.1-1.

Figure 6.1-1 Instruction Formats

TYPE-A

TYPE-B

TYPE-C

TYPE-D

TYPE-E

TYPE-F

MSB LSB
| 16bits |
T 8bits —4bits———4bits—
OoP Rj Ri
— 4bits—T 8bits T 4bits—
OP i8/08 Ri
I 8bits ——4bits———4bits—,
oP u4/m4/i4 Ri
I 8bits T 8bits 1
oP u8/rel8/dir/rlist
I 12bits ——4bits—,
OP Ri/Rs
— Sbits — 11bits 1
oP relll

B Relation between Bit Patterns "Ri" and "Rj" and Register Values
Table 6.1-1 shows the relation between general -purpose register numbers and field bit pattern values.

Table 6.1-1 General-purpose Register Numbers and Field Bit Pattern Values

RI/Rj Register Ri/Rj Register Ri/Rj Register Ri/R] Register
0000 RO 0100 R4 1000 R8 1100 R12
0001 R1 0101 RS 1001 R9 1101 R13
0010 R2 0110 R6 1010 R10 1110 R14
0011 R3 0111 R7 1011 R11 1111 R15

64




B Relation between Bit Pattern "Rs" and Register Values
Table 6.1-2 shows the relation between dedicated register numbers and field bit pattern values.

Table 6.1-2 Dedicated Register Numbers and Field Bit Pattern Values

CHAPTER 6 INSTRUCTION OVERVIEW

Rs Register Rs Register Rs Register Rs Register
0000 TBR 0100 MDH 1000 reserved 1100 reserved
0001 RP 0101 MDL 1001 reserved 1101 reserved
0010 SSP 0110 reserved 1010 reserved 1110 reserved
0011 usP 0111 reserved 1011 reserved 1111 reserved

Note: Bit patterns marked "reserved” are reserved for system use. Proper operation isnot assured if these
patterns are used in programming.

65



CHAPTER 6 INSTRUCTION OVERVIEW

6.2 Instruction Notation Formats

FR family CPU instructions are written in the following three notation formats.

» Calculations are designated by a mnemonic placed between operand 1 and operand
2, with the results stored at operand 2.

» Operations are designated by a mnemonic, and use operand 1.

* Operations are designated by a mnemonic.

B Instruction Notation Formats
FR family CPU instructions are written in the following 3 notation formats.

@ Calculations are designated by a mnemonic placed between operand 1 and operand 2, with the results
stored at operand 2.
<Mnemonic> <Operand 1> <Operand 2>
[Example] ADD R1, R2 iR1+R2 --> R2
@ Operations are designated by a mnemonic, and use operand 1.
<Mnemonic> <Operand 1>
[Example] JMP @R1 ;R1 --> PC
@ Operations are designated by a mnemonic.

<Mnemonic>
[Exampl €] NOP ; No operation

66


線
( The position of R2 is changed. )



CHAPTER 7

DETAILED EXECUTION
INSTRUCTIONS

This chapter presents each of the execution instructions

used by the FR family assembler, in reference format.

The execution instructions used by the FR family CPU

are classified as follows.

* Add/Subtract Instructions

e Compare Instructions

* Logical Calculation Instructions

» Bit Operation Instructions

* Multiply/Divide Instructions

* Shift Instructions

* Immediate Data Transfer Instructions

* Memory Load Instructions

* Memory Store Instructions

* Inter-register Transfer Instructions/Dedicated Register
Transfer Instructions

* Non-delayed Branching Instructions

» Delayed Branching Instructions

* Direct Addressing Instructions

* Resource Instructions

» Coprocessor Instructions

» Other Instructions

7.1 ADD (Add Word Data of Source Register to Destination Register)
7.2 ADD (Add 4-bit Immediate Data to Destination Register)
7.3 ADD2 (Add 4-bit Immediate Data to Destination Register)

67



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)
7.5 ADDN (Add Word Data of Source Register to Destination Register)

7.6 ADDN (Add Immediate Data to Destination Register)

7.7 ADDN2 (Add Immediate Data to Destination Register)

7.8 SUB (Subtract Word Data in Source Register from Destination Register)

7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination
Register)

7.10 SUBN (Subtract Word Data in Source Register from Destination Register)
7.11 CMP (Compare Word Data in Source Register and Destination Register)
7.12 CMP (Compare Immediate Data of Source Register and Destination Register)
7.13 CMP2 (Compare Immediate Data and Destination Register)

7.14  AND (And Word Data of Source Register to Destination Register)

7.15 AND (And Word Data of Source Register to Data in Memory)

7.16 ANDH (And Half-word Data of Source Register to Data in Memory)

7.17 ANDB (And Byte Data of Source Register to Data in Memory)

7.18 OR (Or Word Data of Source Register to Destination Register)

7.19 OR (Or Word Data of Source Register to Data in Memory)

7.20 ORH (Or Half-word Data of Source Register to Data in Memory)

7.21 ORB (Or Byte Data of Source Register to Data in Memory)

7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register)
7.23 EOR (Exclusive Or Word Data of Source Register to Data in Memory)

7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)
7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory)

7.26 BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
7.29 BORH (Or 4-bit Inmediate Data to Higher 4 Bits of Byte Data in Memory)
7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
7.31 BEORH (Eor 4-bit Imnmediate Data to Higher 4 Bits of Byte Data in Memory)
7.32 BTSTL (Test Lower 4 Bits of Byte Data in Memory)

7.33 BTSTH (Test Higher 4 Bits of Byte Data in Memory)

7.34  MUL (Multiply Word Data)

7.35 MULU (Multiply Unsigned Word Data)

7.36 MULH (Multiply Half-word Data)

7.37  MULUH (Multiply Unsigned Half-word Data)

7.38 DIVOS (Initial Setting Up for Signed Division)

7.39 DIVOU (Initial Setting Up for Unsigned Division)

68



7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

DIV1 (Main Process of Division)

DIV2 (Correction when Remainder is 0)

DIV3 (Correction when Remainder is 0)

DIV4S (Correction Answer for Signed Division)

LSL (Logical Shift to the Left Direction)

LSL (Logical Shift to the Left Direction)

LSL2 (Logical Shift to the Left Direction)

LSR (Logical Shift to the Right Direction)

LSR (Logical Shift to the Right Direction)

LSR2 (Logical Shift to the Right Direction)

ASR (Arithmetic Shift to the Right Direction)

ASR (Arithmetic Shift to the Right Direction)

ASR?2 (Arithmetic Shift to the Right Direction)

LDI:32 (Load Immediate 32-bit Data to Destination Register)
LDI:20 (Load Immediate 20-bit Data to Destination Register)
LDI:8 (Load Immediate 8-bit Data to Destination Register)
LD (Load Word Data in Memory to Register)

LD (Load Word Data in Memory to Register)

LD (Load Word Data in Memory to Register)

LD (Load Word Data in Memory to Register)

LD (Load Word Data in Memory to Register)

LD (Load Word Data in Memory to Register)

LD (Load Word Data in Memory to Program Status Register)
LDUH (Load Half-word Data in Memory to Register)

LDUH (Load Half-word Data in Memory to Register)

LDUH (Load Half-word Data in Memory to Register)

LDUB (Load Byte Data in Memory to Register)

LDUB (Load Byte Data in Memory to Register)

LDUB (Load Byte Data in Memory to Register)

ST (Store Word Data in Register to Memory)

ST (Store Word Data in Register to Memory)

ST (Store Word Data in Register to Memory)

ST (Store Word Data in Register to Memory)

ST (Store Word Data in Register to Memory)

ST (Store Word Data in Register to Memory)

ST (Store Word Data in Program Status Register to Memory)
STH (Store Half-word Data in Register to Memory)

69



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

70

7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.97
7.98
7.99
7.100
7.101
7.102

7.103

7.104

7.105

7.106
7.107
7.108

7.109

STH (Store Half-word Data in Register to Memory)

STH (Store Half-word Data in Register to Memory)

STB (Store Byte Data in Register to Memory)

STB (Store Byte Data in Register to Memory)

STB (Store Byte Data in Register to Memory)

MOV (Move Word Data in Source Register to Destination Register)
MOV (Move Word Data in Source Register to Destination Register)
MOV (Move Word Data in Program Status Register to Destination Register)
MOV (Move Word Data in Source Register to Destination Register)
MOV (Move Word Data in Source Register to Program Status Register)
JMP (Jump)

CALL (Call Subroutine)

CALL (Call Subroutine)

RET (Return from Subroutine)

INT (Software Interrupt)

INTE (Software Interrupt for Emulator)

RETI (Return from Interrupt)

Bcc (Branch Relative if Condition Satisfied)

JMP:D (Jump)

CALL:D (Call Subroutine)

CALL:D (Call Subroutine)

RET:D (Return from Subroutine)

Bcce:D (Branch Relative if Condition Satisfied)

DMOV (Move Word Data from Direct Address to Register)

DMOV (Move Word Data from Register to Direct Address)

DMOQOV (Move Word Data from Direct Address to Post Increment Register Indirect

Address)

DMOV (Move Word Data from Post Increment Register Indirect Address to Direct

Address)

DMOV (Move Word Data from Direct Address to Pre-decrement Register Indirect

Address)

DMOV (Move Word Data from Post Increment Register Indirect Address to Direct

Address)
DMOVH (Move Half-word Data from Direct Address to Register)
DMOVH (Move Half-word Data from Register to Direct Address)

DMOVH (Move Half-word Data from Direct Address to Post Increment Register

Indirect Address)

DMOVH (Move Half-word Data from Post Increment Register Indirect Address to

Direct Address)



7.110
7.111
7.112

7.113

7.114
7.115
7.116
7.117
7.118
7.119
7.120
7.121
7.122
7.123
7.124
7.125
7.126
7.127
7.128
7.129
7.130
7.131
7.132
7.133
7.134
7.135

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

DMOVB (Move Byte Data from Direct Address to Register)
DMOVB (Move Byte Data from Register to Direct Address)

DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect
Address)

DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct
Address)

LDRES (Load Word Data in Memory to Resource)

STRES (Store Word Data in Resource to Memory)

COPOP (Coprocessor Operation)

COPLD (Load 32-bit Data from Register to Coprocessor Register)
COPST (Store 32-bit Data from Coprocessor Register to Register)
COPSV (Save 32-bit Data from Coprocessor Register to Register)
NOP (No Operation)

ANDCCR (And Condition Code Register and Immediate Data)
ORCCR (Or Condition Code Register and Immediate Data)
STILM (Set Immediate Data to Interrupt Level Mask Register)
ADDSP (Add Stack Pointer and Immediate Data)

EXTSB (Sign Extend from Byte Data to Word Data)

EXTUB (Unsign Extend from Byte Data to Word Data)

EXTSH (Sign Extend from Byte Data to Word Data)

EXTUH (Unsigned Extend from Byte Data to Word Data)

LDMO (Load Multiple Registers)

LDM1 (Load Multiple Registers)

STMO (Store Multiple Registers)

STM1 (Store Multiple Registers)

ENTER (Enter Function)

LEAVE (Leave Function)

XCHB (Exchange Byte Data)

71



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.1 ADD (Add Word Data of Source Register to Destination
Register)

Adds word data in "Rj" to word data in "Ri", stores results to "Ri".

B ADD (Add Word Data of Source Register to Destination Register)
Assembler format: ADD Rj, Ri

Operation: Ri + Rj = Ri

Flag change:

N Z \% C

C C Cc Cc

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".
Z : Setwhenthe operation result is"0", cleared otherwise.
V :  Set when an overflow has occurred as aresult of the operation, cleared otherwise.
C : Setwhen acarry has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
1loft1]o|o]1]1]o0 Rij Ri
| | | | | |
Example: ADD R2, R3
Instruction bit pattern : 1010 0110 0010 0011
R2 1234 5678 R2 1234 5678
R3 8765 4321 R3 9999 9999
NzVC NzVC
CCR 0000 CCR 1000
Before execution After execution

72


線
( "Instruction bit pattern : 1010 0110 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.2 ADD (Add 4-bit Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with zero extension to the
word data in "Ri", stores results to the "Ri".

B ADD (Add 4-bit Immediate Data to Destination Register)
Assembler format: ADD #i4, Ri

Operation: Ri + extu(i4) — Ri

Flag change:

N 4 \Y C

C C C C

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".
Z : Setwhen the operation result is"0", cleared otherwise.
V . Setwhen an overflow has occurred as aresult of the operation, cleared otherwise.
C : Setwhenacarry hasoccurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
|1|o|1|0|0|1|0|0| i4 Ri
Example: ADD #2, R3
Instruction bit pattern : 1010 0100 0010 0011
R3 9999 9997 R3 9999 9999
NzVC NzZVC
CCR 0000 CCR 1000
Before execution After execution

73



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.3 ADD2 (Add 4-bit Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with minus extension to the
word data in "Ri", stores results to "Ri".

The way a "C" flag of this instruction varies is the same as the ADD instruction ; it is
different from that of the SUB instruction.

B ADD2 (Add 4-bit Inmediate Data to Destination Register)
Assembler format: ADD?2 #i4, Ri

Operation: Ri + extn(i4) — Ri

Flag change:

N 4 \% C

C C C C

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".
Z : Setwhen the operation result is"0", cleared otherwise.
V :  Set when an overflow has occurred as aresult of the operation, cleared otherwise.
C : Setwhenacarry has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
1 joft1]o]o|1]o0]1 i4 Ri
Example: ADD2 #-2, R3
Instruction bit pattern : 1010 0101 1110 0011
R3 9999 9999 R3 9999 9997
NzZzVC NzVC
CCR 0000 CCR 1001
Before execution After execution

74



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.4 ADDC (Add Word Data of Source Register and Carry Bit to
Destination Register)

Adds the word data in "Rj" to the word data in "Ri" and carry bit, stores results to "Ri".

B ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)
Assembler format:  ADDC Rj, Ri

Operation: Ri+Rj+C > Ri

Flag change:

N Z \% C

C C C C

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".
Z : Setwhen the operation result is"0", cleared otherwise.
V :  Set when an overflow has occurred as aresult of the operation, cleared otherwise.
C : Setwhen acarry has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
1ot ]lofo| 1] 1]1 Rj Ri
Example: ADDC R2, R3
Instruction bit pattern : 1010 0111 0010 0011
R2 1234 5678 R2 1234 56738
R3 8765 4320 R3 9999 9999
NzVC NzVC
CCR 0001 CCR 1000
Before execution After execution

75


線
( "Instruction bit pattern : 1010 0111 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.5 ADDN (Add Word Data of Source Register to Destination
Register)

Adds the word data in "Rj" and the word data in "Ri", stores results to "Ri" without
changing flag settings.

B ADDN (Add Word Data of Source Register to Destination Register)
Assembler format: ADDN Rj, Ri

Operation: Ri+ Rj > Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB
1]o|1]ojlo|lo0|1]o0 R Ri
Example: ADDN R2, R3
Instruction bit pattern : 1010 0010 0010 0011
R2 1234 5678 R2 1234 5678
R3 8765 4321 R3 9999 9999
NZVC I NZVC
CCR 0000 CCR 0000
Before execution After execution

76



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.6 ADDN (Add Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with zero extension to the
word data in "Ri", stores the results to "Ri" without changing flag settings.

B ADDN (Add Immediate Data to Destination Register)
Assembler format: ADDN #i4, Ri

Operation: Ri + extu(i4) — Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB
i1lo|1]o|o|loOo|oOf|oO i4 Ri
Example: ADDN #2, R3
Instruction bit pattern : 1010 0000 0010 0011
R3 9999 9997 R3 9999 9999
NzZVC NzZzVC
CCR 0000 CCR 0000
Before execution After execution

77



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.7 ADDNZ2 (Add Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with minus extension to
word data in "Ri", stores the results to "Ri" without changing flag settings.

B ADDN2 (Add Immediate Data to Destination Register)
Assembler format: ADDNZ2 #i4, Ri

Operation: Ri + extn(i4) + — Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB
1 jof1]o]oj 0] O] 1 i4 Ri
Example: ADDN2 #-2, R3
Instruction bit pattern :1010 0001 1110 0011
R3 | 9999 9999 R& | 9999 9997|
NzVC NzVC
CCR 0000 CCR 0000
Before execution After execution

78



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.8 SUB (Subtract Word Data in Source Register from

Destination Register)

Subtracts the word data in "Rj" from the word data in "Ri", stores results to "Ri".

B SUB (Subtract Word Data in Source Register from Destination Register)

Assembler format: SUB Rj, RIi

Operation: Ri— Rj — Ri

Flag change:

N Z \% C

C C Cc Cc

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".

Z : Setwhenthe operation result is"0", cleared otherwise.

V :  Set when an overflow has occurred as aresult of the operation, cleared otherwise.

C : Setwhen aborrow has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:

MSB LSB
1joft1]lo|1]1]o0]oO Rij Ri

Example: SUB R2, R3

Instruction bit pattern : 1010 1100 0010 0011

R2 1234 5678
R3 9999 9999

NzVC

Before execution

R2
R3

CCR

1234 5678

8765 4321

NzVC

After execution

79


線
( "Instruction bit pattern : 1010 1100 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.9 SUBC (Subtract Word Data in Source Register and Carry
Bit from Destination Register)

Subtracts the word data in "Rj" and the carry bit from the word data in "Ri", stores
results to "Ri".

B SUBC (Subtract Word Data in Source Register and Carry Bit from Destination
Register)
Assembler format: SUBC Rj, Ri

Operation: Ri-Rj—C —> Ri

Flag change:

N Z \% C

C C c Cc

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".
Z : Setwhenthe operation result is"0", cleared otherwise.
V :  Set when an overflow has occurred as aresult of the operation, cleared otherwise.
C : Setwhen aborrow has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
1 jof[1]o|1]1]o0]1 Rij Ri
Example: SUBC R2, R3
Instruction bit pattern : 1010 1101 0010 0011
R2 1234 5678 R2 1234 5678
R3 9999 9999 R3 8765 4320
NzVC NzZzVC
CCR 0001 CCR 1000
Before execution After execution

80


線
( "Instruction bit pattern : 1010 1101 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.10 SUBN (Subtract Word Data in Source Register from
Destination Register)

Subtracts the word data in "Rj" from the word data in "Ri", stores results to "Ri" without
changing the flag settings.

B SUBN (Subtract Word Data in Source Register from Destination Register)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

SUBN R}, Ri

Ri—-Rj — Ri

N, Z, V, and C: Unchanged

1 cycle

MSB

LSB

SUBN R2, R3

Instruction bit pattern : 1010 1110 0010 0011

R2 1234 5678
R3 9999 9999

NzVC

Before execution

R2
R3

CCR

1234 5678

8765 4321

NzZzVC

After execution

81


線
( "Instruction bit pattern : 1010 1110 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.11 CMP (Compare Word Data in Source Register and

Destination Register)

Subtracts the word data in "Rj" from the word data in "Ri", places results in the

condition code register (CCR).

B CMP (Compare Word Data in Source Register and Destination Register)

Assembler format: CMP Rj, Ri

Operation: Ri — Rj

Flag change:

N 4 \Y C

C C C C

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".

Z : Setwhen the operation result is"0", cleared otherwise.

V . Setwhen an overflow has occurred as aresult of the operation, cleared otherwise.

C : Setwhen aborrow has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:

MSB LSB
1joflt1|lof1|lOo]1]oO R Ri

Example: CMP R2, R3

Instruction bit pattern : 1010 1010 0010 0011

R2 1234 5678
R3 1234 5678

NzZzVC

Before execution

R2
R3

CCR

1234 5678

1234 5678

NzZVC

After execution

82



線
( "Instruction bit pattern : 1010 1010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.12 CMP (Compare Immediate Data of Source Register and
Destination Register)

Subtracts the result of the higher 28 bits of 4-bit immediate data with zero extension
from the word data in "Ri", places results in the condition code register (CCR).

B CMP (Compare Immediate Data of Source Register and Destination Register)
Assembler format: CMP #i4, Ri

Operation: Ri — extu(i4)

Flag change:

N 4 \Y C

C C C C

N : Set whenthe MSB of the operation result is"1", cleared when the MSB is"0".

Z : Setwhen the operation result is"0", cleared otherwise.

V . Setwhen an overflow has occurred as aresult of the operation, cleared otherwise.

C : Setwhenacarry has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:

MSB LSB
1 0 1 0 1 0 0| O i4 Ri

Example: CMP #3, R3

Instruction bit pattern : 1010 1000 0011 0011

R3 0000 0O0O03 R3 0000 0003
NZVC —> NZVC
Before execution After execution

83



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.13 CMP2 (Compare Immediate Data and Destination Register)

Subtracts the result of the higher 28 bits of 4-bit immediate(from -16 to -1) data with
minus extension from the word data in "Ri", places results in the condition code
register (CCR).

B CMP2 (Compare Immediate Data and Destination Register)
Assembler format: CMP2 #i4, Ri

Operation: Ri — extn(i4)

Flag change:

N Z \% C

C C c c

N : Set whenthe MSB of the operation result is"1",cleared when the MSB is"0".
Z . Setwhenthe operation result is"0", cleared otherwise.
V :  Set when an overflow has occurred as aresult of the operation, cleared otherwise.
C : Setwhenacarry has occurred as aresult of the operation, cleared otherwise.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
1 joft1]o|1]o0] 0] i4 Ri
Example: CMP2 #-3, R3
Instruction bit pattern : 1010 1001 1101 0011
R3 FFFFFFFD R3 FFFFFFFD
NzZVC NzZVC
CCR 0000 CCR 0100
Before execution After execution

84



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.14  AND (And Word Data of Source Register to Destination
Register)

Takes the logical AND of the word data in "Rj" and the word data in "Ri", stores the
results to "Ri".

B AND (And Word Data of Source Register to Destination Register)
Assembler format: AND Rj, Ri

Operation: Riand Rj —» Ri

Flag change:

N 4 \% C

C C - -
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB
i1]lo|ojojo|lOo|1]oO Rij Ri
Example: AND R2, R3
Instruction bit pattern : 1000 0010 0010 0011
R2 1111 0000 R2 1111 0000
R3 1010 1010 R3 1010 0000
NZVC NZVC
CCR 0000 CCR 0000
Before execution After execution

85


線
( "Instruction bit pattern : 1000 0010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.15 AND (And Word Data of Source Register to Data in
Memory)

Takes the logical AND of the word data at memory address "Ri" and the word data in
"Rj", stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B AND (And Word Data of Source Register to Data in Memory)
Assembler format:  AND Rj, @Ri

Operation: (Ri) and Rj — (Ri)

Flag change:

N Z \% C

C C - -
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

86



Example:

AND R2, @R3

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

R2

1111 0000

R3

1234 5678

Memory

12345678

1010 1010

1234567C

CCR

NzVC

Before execution

—

Instruction bit pattern : 1000 0100 0010 0011

R2
R3

12345678
1234567C

CCR

1111 0000

1234 5678

Memory

1010 0000

NzVC

After execution

87


線
( "Instruction bit pattern : 1000 0100 0010 0011" is added.)



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.16  ANDH (And Half-word Data of Source Register to Data in
Memory)

Takes the logical AND of the half-word data at memory address "Ri" and the half-word
datain "Rj", stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B ANDH (And Half-word Data of Source Register to Data in Memory)
Assembler format: ANDH Rj, @Ri

Operation: (Ri) and Rj — (Ri)

Flag change:

N Z \% C

C C - -
N: Set when the MSB (bit 15) of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles
Instruction format:

MSB LSB

88



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: ANDH R2, @R3
Instruction bit pattern : 1000 0101 0010 0011

R2 0000 1100 R2 0000 1100

R3 1234 5678 R3 1234 5678

Memory > Memory

12345678 1010 12345678 1000

1234567A 1234567A

NzVEC NZVC

CCR 0000 CCR 0000
Before execution After execution

89


線
( "Instruction bit pattern : 1000 0101 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.17 ANDB (And Byte Data of Source Register to Data in
Memory)

Takes the logical AND of the byte data at memory address "Ri" and the byte datain "Rj",
stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B ANDB (And Byte Data of Source Register to Data in Memory)
Assembler format: ANDB Rj, @Ri

Operation: (Ri) and Rj — (Ri)

Flag change:

N Z \% C

C C - -
N: Set when the MSB (bit 7) of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

90



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: ANDB R2, @R3
Instruction bit pattern : 1000 0110 0010 0011
R2 0000 OO1O R2 0000 OO1O0
R3 1234 5678 R3 1234 5678
Memor Memor
y > y
12345678 11 12345678 10
12345679 12345679
NZVC NZVC
CCR 0000 CCR 0000
Before execution After execution

91


線
( "Instruction bit pattern : 1000 0110 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.18 OR (Or Word Data of Source Register to Destination
Register)

Takes the logical OR of the word data in "Ri" and the word data in "Rj", stores the
results to "Ri".

B OR (Or Word Data of Source Register to Destination Register)
Assembler format: OR Rj, Ri

Operation: Ri or Rj — Ri

Flag change:

N 4 \% C

C C - -

N:
Z:

Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Set when the operation result is"0", cleared otherwise.
V and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: OR R2, R3

Instruction bit pattern : 1001 0010 0010 0011

R2 1111 0000 R2 1111 0000
R3 1010 1010 R3 1111 1010
NZVC

NZVC

Before execution

After execution

92


線
( "Instruction bit pattern : 1001 0010 0010 0011" is added.)



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.19 OR (Or Word Data of Source Register to Data in Memory)

Takes the logical OR of the word data at memory address "Ri" and the word data in "Rj",
stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B OR (Or Word Data of Source Register to Data in Memory)
Assembler format: OR Rj, @Ri

Operation: (Ri) or Rj — (Ri)

Flag change:

N 4 \% C

C C - -
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

93



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

94

OR R2, @R3

Instruction bit pattern : 1001 0100 0010 0011

R2 1111 0000 R2
R3 1234 5678 R3
Memory —»
12345678 1010 1010 12345678
1234567C 1234567C
NZVC

CCR CCR

Before execution

1111 0000

1234 5678

Memory

1111 1010

NzVC

After execution



線
( "Instruction bit pattern : 1001 0100 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.20 ORH (Or Half-word Data of Source Register to Data in
Memory)

Takes the logical OR of the half-word data at memory address "Ri" and the half-word
datain "Rj", stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B ORH (Or Half-word Data of Source Register to Data in Memory)
Assembler format: ORH Rj, @Ri

Operation: (Ri) or Rj — (Ri)

Flag change:

N Z \% C

C C - -
N: Set when the MSB (bit 15) of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

95



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

96

ORH R2, @R3

R2
R3

Instruction bit pattern : 1001 0101 0010 0011

0000 1100

1234 5678

12345678 1010
1234567A

CCR

Memory

NzZVC

Before execution

R2 0000 1100
R3 1234 5678

Memory

12345678 1110

1234567A

NZVC

After execution



線
( "Instruction bit pattern : 1001 0101 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.21  ORB (Or Byte Data of Source Register to Data in Memory)

Takes the logical OR of the byte data at memory address "Ri" and the byte data in "Rj",
stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

Bl ORB (Or Byte Data of Source Register to Data in Memory)
Assembler format: ORB Rj, @RI

Operation: (Ri) or Rj — (Ri)

Flag change:

N 4 \% C

C C - -
N: Set when the MSB (bit 7) of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

97



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

98

ORB R2, @R3

Instruction bit pattern : 1001 0110 0010 0011

R2 0000 0011
R3 1234 5678
Memory — >
12345678 10
12345679
NZVC

Before execution

R2 0000 0011
R3 1234 5678
Memory
12345678 11
12345679
NZVC

After execution



線
( "Instruction bit pattern : 1001 0110 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.22 EOR (Exclusive Or Word Data of Source Register to
Destination Register)

Takes the logical exclusive OR of the word data in "Ri" and the word data in "Rj", stores
the results to "Ri".

B EOR (Exclusive Or Word Data of Source Register to Destination Register)
Assembler format: EOR R}, Ri

Operation: Ri eor Rj — (Ri)

Flag change:

N 4 \% C

C C - -
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB
1 0O |0 |1 1 0|1 0 Rj Ri
Example: EOR R2, R3
Instruction bit pattern : 1001 1010 0010 0011
R2 1111 0000 R2 1111 0000
R3 1010 1010 R3 0101 1010
NZVC I NzZVC
CCR 0000 CCR 0000
Before execution After execution

99


線
( "Instruction bit pattern : 1001 1010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.23 EOR (Exclusive Or Word Data of Source Register to Data in
Memory)

Takes the logical exclusive OR of the word data at memory address "Ri" and the word
datain "Rj", stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B EOR (Exclusive Or Word Data of Source Register to Data in Memory)
Assembler format: EOR Rj, @Ri

Operation: (Ri) eor Rj — (Ri)

Flag change:

N Z \% C

C C - -
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

100



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: EOR R2, @R3

Instruction bit pattern : 1001 1100 0010 0011

R2 1111 0000 R2 1111 0000
R3 1234 5678 R3 1234 5678
Memory —> Memory
12345678 1010 1010 12345678 0101 1010
1234567C 1234567C
NzZVC NzVC

Before execution

After execution

101


線
( "Instruction bit pattern : 1001 1100 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.24 EORH (Exclusive Or Half-word Data of Source Register to
Data in Memory)

Takes the logical exclusive OR of the half-word data at memory address "Ri" and the
half-word data in "Rj", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)
Assembler format: EORH Rj, @Ri

Operation: (Ri) eor Rj — (Ri)

Flag change:

N Z \% C

C C - -
N: Set when the MSB (bit 15) of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

102



Example:

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

EORH R2, @R3

R2
R3

Instruction bit pattern : 1001 1101 0010 0011

0000 1100
1234 5678

Memory )
12345678 1010

1234567A

NzVC

Before execution

R2 0000

1100

R3 1234 5678

12345678
1234567A

CCR

Memory

0110

NzZVC

After execution

103


線
( "Instruction bit pattern : 1001 1101 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.25 EORB (Exclusive Or Byte Data of Source Register to Data
in Memory)

Takes the logical exclusive OR of the byte data at memory address "Ri" and the byte
datain "Rj", stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B EORB (Exclusive Or Byte Data of Source Register to Data in Memory)
Assembler format: EORB Rj, @RI

Operation: (Ri) eor Rj — (Ri)

Flag change:

N Z \% C

C C - -
N: Set when the MSB (bit 7) of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

104



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: EORB R2, @R3

Instruction bit pattern : 1001 1110 0010 0011

R2 0000 0011 R2 0000 O0OT11
R3 1234 5678 R3 1234 5678
Memory — Memory
12345678 10 12345678 01
12345679 12345679
NzVC NzZVC

Before execution

After execution

105


線
( "Instruction bit pattern : 1001 1110 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.26  BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte
Data in Memory)

Takes the logical AND of the 4-bit immediate data and the lower 4 bits of byte data at
memory "Ri", stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B BANDL (And 4-bit Inmediate Data to Lower 4 Bits of Byte Data in Memory)
Assembler format: BANDL #u4, @Ri

Operation: {FOy + u4} and (Ri) — (Ri) [Operation uses lower 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

106



Example:

BANDL #0, @R3

CHAPTER 7

DETAILED EXECUTION INSTRUCTIONS

Instruction bit pattern : 1000 0000 0000 0011

R3 1234 5678
Memory
12345678 11
12345679
NzVC

Before execution

R3 1234 5678

Memory
12345678 10
12345679

NzVC

After execution

107



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte
Data in Memory)

Takes the logical AND of the 4-bit immediate data and the higher 4 bits of byte data at
memory "Ri", stores the results to the memory address corresponding to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
Assembler format: BANDH #u4, @RI

Operation: {ud < <4+ Fy} and (Ri) — (Ri) [Operation uses higher 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

108



Example:

BANDH #0, @R3

CHAPTER 7

DETAILED EXECUTION INSTRUCTIONS

Instruction bit pattern : 1000 0001 0000 0011

R3 1234 5678

12345678
12345679

CCR

Memory

11

NzZVC

Before execution

R3 1234 5678

12345678
12345679

CCR

Memory

01

NzZzVC

After execution

109



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte
Data in Memory)

Takes the logical OR of the 4-bit immediate data and the lower 4 bits of byte data at
memory address "Ri", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
Assembler format: BORL #u4, @Ri

Operation: u4 or (Ri) — (Ri) [Operation uses lower 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB
|1|0|0|1|0|0|0|0| u4 Ri

110



Example:

BORL #1, @R3

CHAPTER 7

DETAILED EXECUTION INSTRUCTIONS

Instruction bit pattern : 1001 0000 0001 0011

R3 1234 5678
Memory
12345678 00
12345679
NzVC

Before execution

R3 1234 5678

12345678
12345679

CCR

Memory

01

NzVC

After execution

111



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.29 BORH (Or 4-bit Immediate Data to Higher 4 Bits of Byte
Data in Memory)

Takes the logical OR of the 4-bit immediate data and the higher 4 bits of byte data at
memory address "Ri", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B BORH (Or 4-bit Inmediate Data to Higher 4 Bits of Byte Data in Memory)
Assembler format: BORH #u4, @RI

Operation: {u4 << 4} or (Ri) - (Ri) [Operation uses higher 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

112



Example:

BORH #1, @R3

CHAPTER 7

DETAILED EXECUTION INSTRUCTIONS

Instruction bit pattern : 1001 0001 0001 0011

R3 1234 5678

12345678
12345679

CCR

Memory

00

NzZzVC

Before execution

R3 1234 5678

Memory
12345678 10
12345679

NzVC

After execution

113



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte
Data in Memory)

Takes the logical exclusive OR of the 4-bit immediate data and the lower 4 bits of byte
data at memory address "Ri", stores the results to the memory address corresponding
to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
Assembler format: BEORL #u4, @RI

Operation: u4 eor (Ri) — (Ri) [Operation uses lower 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

114



Example:

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

BEORL #1, @R3

Instruction bit pattern : 1001 1000 0001 0011

R3 1234 5678

Memory —>
12345678 00
12345679

NzZVC

Before execution

R3 1234 5678
Memory
12345678 01
12345679
NzVC

After execution

115



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.31 BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of Byte
Data in Memory)

Takes the logical exclusive OR of the 4-bit immediate data and the higher 4 bits of byte
data at memory address "Ri", stores the results to the memory address corresponding
to "Ri".

The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

B BEORH (Eor 4-bit Inmediate Data to Higher 4 Bits of Byte Data in Memory)
Assembler format: BEORH #u4, @RI

Operation: {ud << 4} eor (Ri) — (Ri) [Operation uses higher 4 bits only]

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

116



Example:

BEORH #1, @R3

CHAPTER 7

DETAILED EXECUTION INSTRUCTIONS

Instruction bit pattern : 1001 1001 0001 0011

R3

1234 5678

12345678
12345679

CCR

Memory

00

NzZVC

Before execution

R3 1234 5678

Memory
12345678 10
12345679

NzZVC

After execution

117



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.32 BTSTL (Test Lower 4 Bits of Byte Data in Memory)

Takes the logical AND of the 4-bit immediate data and the lower 4 bits of byte data at
memory address "Ri", places the results in the condition code register (CCR).

B BTSTL (Test Lower 4 Bits of Byte Data in Memory)
Assembler format: BTSTL #u4, @RI

Operation: u4 and (Ri) [Test uses lower 4 bits only]

Flag change:

N 4 \Y C

0 C - -
N: Cleared
Z: Set when the operation result is 0", cleared otherwise.

V and C: Unchanged

Execution cycles: 2+a cycles

Instruction format:

MSB LSB
1]l]o|ojo|1|0|0]|O u4 Ri
Example: BTSTL #1, @R3
Instruction bit pattern : 1000 1000 0001 0011
R3 1234 5678 R3 1234 5678
Memory > Memory
12345678 10 12345678 10
12345679 12345679
NzZzVC NzVC
CCR 0000 CCR 0100
Before execution After execution

118



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.33 BTSTH (Test Higher 4 Bits of Byte Data in Memory)

Takes the logical AND of the 4-bit immediate data and the higher 4 bits of byte data at

memory address "Ri", places the results in the condition code register (CCR).

B BTSTH (Test Higher 4 Bits of Byte Data in Memory)
Assembler format: BTSTH #u4, @RI

Operation: {u4 << 4} and (Ri) [Test uses higher 4 bits only]

Flag change:

N 4 \Y C

C C - -
N: Set when the MSB (bit 7) of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is 0", cleared otherwise.

V and C: Unchanged

Execution cycles: 2 + acycles

Instruction format:

MSB

LSB

u4

Example: BTSTH #1, @R3

Instruction bit pattern : 1000 1001 0001 0011

R3 1234 5678

Memory >
12345678 01
12345679

NzVC

Before execution

R3 1234 5678
Memory
12345678 01
12345679
NzZVC

After execution

119



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.34  MUL (Multiply Word Data)

Multiplies the word data in "Rj" by the word data in "Ri" as signed numbers, and stores
the resulting signed 64-bit data with the high word in the multiplication/division register
(MDH), and the low word in the multiplication/division register (MDL).

B MUL (Multiply Word Data)
Assembler format: MUL Rj, RIi

Operation: Rj x Ri - MDH, MDL

Flag change:

N Z \% C

C C C -
N:  Set when the MSB of the"MDL" of the operation result is"1", cleared whenthe MSB is"0".
Z: Setwhen the operation result is"0", cleared otherwise.
V: Cleared when the operation result isin the range -2147483648 to 2147483647, set otherwise.
C: Unchanged
Execution cycles: 5 cycles
Instruction format:
MSB LSB
1T lo (1o |1 | 1]1]1 R Ri

120



Example:

MUL R2, R3

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

R2
R3

MDH
MDL

CCR

0000 0002

8000 0001

XX XX XXXX

XXXX XXXX

NzZVC

Before execution

Instruction bit pattern : 1010 1111 0010 0011

R2
R3

MDH
MDL

CCR

0000 0002

8000 0001

FFFFFFFF

0000 0002

NzZVC

After execution

121


線
( "Instruction bit pattern : 1010 1111 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.35 MULU (Multiply Unsigned Word Data)

Multiplies the word data in "Rj" by the word data in "Ri" as unsignhed numbers, and
stores the resulting unsigned 64-bit data with the high word in the multiplication/
division register (MDH), and the low word in the multiplication/division register (MDL).

B MULU (Multiply Unsigned Word Data)
Assembler format: MULU Rj, Ri

Operation: Rj x Ri - MDH, MDL

Flag change:

N Z \% C

C C C -

N: Set when the MSB of the"MDL" of the operation result is"1", cleared whenthe MSB is"0".

Z: Setwhenthe"MDL" of the operation result is"0", cleared otherwise.

V: Cleared when the operation result isin the range 0 to 4294967295, set otherwise.

C: Unchanged
Execution cycles: 5 cycles
Instruction format:

MSB LSB
10 1[0 |1]O0]| 1|1 R Ri

122



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: MULU R2, R3
Instruction bit pattern : 1010 1011 0010 0011
R2 0000 0002 R2 0000 0002
R3 8000 0001 R3 8000 0001
_>
MDH | X X X X X X X X MDH 0000 OO0O0T1
MDL [ XX XX XXXX MDL 0000 0002
NZVC NZVC
CCR 0000 CCR 0010
Before execution After execution

123


線
( "Instruction bit pattern : 1010 1011 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.36  MULH (Multiply Half-word Data)

Multiplies the half-word data in the lower 16 bits of "Rj" by the half-word data in the
lower 16 bits of "Ri" as signed numbers, and stores the resulting signed 32-bit data in
the multiplication/division register (MDL).

The multiplication/division register (MDH) is undefined.

B MULH (Multiply Half-word Data)
Assembler format: MULH Rj, Ri

Operation: Rj x Ri —» MDL

Flag change:

N 4 \% C

C C - -

N: Set when the MSB of the"MDL" of the operation result is"1", cleared when the MSB is"0".
Z: Setwhenthe"MDL" of the operation result is"0", cleared otherwise.
V: Unchanged
C: Unchanged
Execution cycles: 3 cycles
Instruction format:
MSB LSB

124



Example:

MULH R2, R3

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

R2
R3

MDH
MDL

CCR

FEDCBA9S8

0123 4567

XX XX XXXX

XX XX XXXX

NzVC

Before execution

Instruction bit pattern : 1011 1111 0010 0011

R2
R3

MDH
MDL

CCR

FEDCBA98

0123 4567

XX XX XXXX

ED2F0B28

NzZzVC

After execution

125


線
( "Instruction bit pattern : 1011 1111 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.37  MULUH (Multiply Unsigned Half-word Data)

Multiplies the half-word data in the lower 16 bits of "Rj" by the half-word data in the
lower 16 bits of "Ri" as unsigned numbers, and stores the resulting unsigned 32-bit
data in the multiplication/division register (MDL).

The multiplication/division register (MDH) is undefined.

B MULUH (Multiply Unsigned Half-word Data)
Assembler format: MULUH Rj, Ri

Operation: Rj x Ri —» MDL

Flag change:

N 4 \% C

C C - -

N: Set when the MSB of the"MDL" of the operation result is"1", cleared when the MSB is"0".
Z: Setwhenthe"MDL" of the operation result is"0", cleared otherwise.
V: Unchanged
C: Unchanged
Execution cycles: 3 cycles
Instruction format:
MSB LSB
1T lo 1 (1|10 1] Rij Ri

126



Example:

MULUH R2, R3

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

R2
R3

MDH
MDL

CCR

FEDCBAO9S8

0123 4567

XX XX XXXX

XX XX XXXX

NzVvC

Before execution

Instruction bit pattern : 1011 1011 0010 0011

R2
R3

MDH
MDL

CCR

FEDCBA9S8

0123 4567

XX XX XXXX

3296 0B28

NzVC

After execution

127


線
( "Instruction bit pattern : 1011 1011 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.38  DIVOS (Initial Setting Up for Signed Division)

This command is used for signed division in which the multiplication/division register
(MDL) contains the dividend and the "Ri" the divisor, with the quotient stored in the
"MDL" and the remainder in the multiplication/division register (MDH).

The value of the sign bit in the "MDL" and "Ri" is used to set the "D0" and "D1" flag bits
in the system condition code register (SCR).

* DO: Set when the dividend is negative, cleared when positive.

» D1: Set when the divisor and dividend signs are different, cleared when equal.

The word data in the "MDL" is extended to 64 bits, with the higher word in the "MDH"
and the lower word in the "MDL".

To execute signed division, the following instructions are used in combination.
DIVOS, DIV1x32, DIV2, DIV3, DIV4S

B DIVOS (Initial Setting Up for Signed Division)
Assembler format: DIVOS Ri

Operation: MDL [31] —» DO
MDL [31] eor Ri [31] —» D1
exts (MDL) —- MDH, MDL

Flag change:
N z \Y C
N, Z, V, and C: Unchanged
Execution cycles: 1 cycle

Instruction format:

MSB LSB

128



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: DIVOS R2
Instruction bit pattern : 1001 0111 0100 0010
R2 OFFF FFFF _ R2 OFFF FFFF
MDH | 0000 0000 MDH | FFFF FFFF
MDL | FFFF FFFO MDL | FFFF FFFO
D1DOT D1DOT
SCR SCR
Before execution After execution
Example: Actual use MDL + R2 = MDL (quotient) ... MDH (remainder), signed calculation
DIVOS R2
DIV1I R2
D:IV1 R:Z 32 DIV1sare arranged
DIV1 R2
DIV2 R2
DIV3
DIV4S
R2 0123 4567 — > R2 0123 4567
MDH | x X X X X X X X MDH | FFFF FFFF
MDL |[FEDC BA98 MDL | FFFF FFFF
D1DOT D1DOT
SCR X X 0 SCR
Before execution After execution

129


線
( "Instruction bit pattern : 1001 0111 0100 0010" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.39  DIVOU (Initial Setting Up for Unsigned Division)

This command is used for unsigned division in which the multiplication/division
register (MDL) contains the dividend and the "Ri" the divisor, with the quotient stored in
the "MDL" register and the remainder in the multiplication/division register (MDH).

The "MDH" and bits "D1" and "D0" are cleared to "0".

To execute unsigned division, the instructions are used in combinations such as DIVOU
and DIV1 x 32

B DIVOU (Initial Setting Up for Unsigned Division)
Assembler format: DIVOU Ri

Operation: 0->DO0
0->D1
0 —- MDH
Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

130



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: DIVOU R2
Instruction bit pattern : 1001 0111 0101 0010
R2 OOFF FFFF R2 OOFF FFFF
_>
MDH 0000 OOOO MDH 0000 OOOO
MDL | OFFF FFFO MDL | OFFF FFFO
D1DOT D1DOT
Before execution After execution
Example: Actual use MDL + R2 = MDL (quotient) ... MDH (remainder), unsigned calculation
DIVOU R2
DIV1 R2
DIV1 R2
. . 32 DIV1sare arranged
DIV1 R2
R2 0123 4567 R2 0123 4567
_>
MDH | X x X X X X X X MDH 0000 0078
MDL FEDC BA98 MDL 0000 OOEDO
D1DOT D1DOT
Before execution After execution

131


線
( "Instruction bit pattern : 1001 0111 0101 0010" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.40 DIV1 (Main Process of Division)

This instruction is used in unsigned division. It should be used in combinations such as
DIVOU and DIV1 x 32.

W DIV1 (Main Process of Division)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

132

DIV1Ri

{MDH, MDL} << =1
if(D1==1){
MDH + Ri — temp
}
else {
MDH - Ri — temp
}
if (DO eorDleorC)==0){
temp — MDH
1 —- MDL [0]

}

N Z \% C

- C - C

N and V: Unchanged

Z: Set when the result of step division is "0", cleared otherwise. Set according to remainder of
division results, not according to quotient.

C: Set when the operation result of step division involves a carry operation, cleared otherwise.

d cycle(s)
Normally executed within one cycle. However, a 2-cycle interlock is applied if the instruction
immediately after is one of the following: MOV MDH, Ri / MOV MDL, Ri / ST Rs, @-R15.

Rs: dedicated register (TBR, RP, USP, SSP, MDH, MDL)

MSB LSB




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: DIV1 R2
Instruction bit pattern : 1001 0111 0110 0010
R2 O0OFF FFFF R2 O0OFF FFFF
_>
MDH O0OFF FFFF MDH 0100 00O0O
MDL | 0000 0000 MDL | 0000 0001
D1DOT D1DOT
NzZzVC NzZzVC
CCR 0000 CCR 0000
Before execution After execution

133


線
( "Instruction bit pattern : 1001 0111 0110 0010" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.41 DIV2 (Correction when Remainder is 0)

This instruction is used in signed division. It should be used in combinations such as
DIVOS, DIV1 x 32, DIV2, DIV3 and DIV4S.

W DIV2 (Correction when Remainder is 0)
Assembler format: DIV2 Ri

Operation: if(D1==1){
MDH + Ri — temp
}
else {
MDH - Ri — temp
}
if (Z==1){
0 — MDH
}

Flag change:

N 4 \Y C

- C - C

N and V: Unchanged

Z: Set when the operation result of stepwise division is "0", cleared otherwise. Set according to
remainder of division results, not according to quotient.

C: Set when the result of stepwise division involves a carry or borrow operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

MSB LSB

134



Example:

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

DIV2 R2

Instruction bit pattern : 1001 0111 0111 0010

R2 0O0FF FFFF

—>

MDH | OOFF FFFF

MDL 0000 OO0OF

D1DOT

SCR

NzvVvC

Before execution

R2

MDH
MDL

SCR

CCR

O0FF FFFF

0000 OOO0O

0000 OOOF

D1DOT

NzVC

After execution

135


線
( "Instruction bit pattern : 1001 0111 0111 0010" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.42 DIV3 (Correction when Remainder is 0)

This instruction is used in signed division. It should be used in combinations such as
DIVOS, DIV1 x 32, DIV2, DIV3 and DIV4S.

W DIV3 (Correction when Remainder is 0)
Assembler format: DIV3

Operation: if(Zz==1){
MDL + 1 — MDL
}
Flag change:
N VA \% C
N, Z, V, and C: Unchanged
Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: DIV3
Instruction bit pattern : 1001 1111 0110 0000
R2 O0OFF FFFF R2 O0OFF FFFF
_>

MDH 0000 O0OOOO MDH 0000 OOO0O

MDL 0000 OO0OF MDL 0000 OO010O0
D1DOT D1DOT

NZVC NZVC

CCR 0100 CCR 0100

Before execution After execution

136


線
( "Instruction bit pattern : 1001 1111 0110 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.43  DIV4S (Correction Answer for Signed Division)

This instruction is used in signed division. It should be used in combinations such as
DIVOS, DIV1 x 32, DIV2, DIV3 and DIV4S.

B DIV4S (Correction Answer for Signed Division)
Assembler format: DIv4s

Operation: if(D1==1){
0 - MDL — MDL
}
Flag change:
N Z \% C
N, Z, V, and C: Unchanged
Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: DIv4s
Instruction bit pattern : 1001 1111 0111 0000
R2 O0OFF FFFF R2 OOFF FFFF
—>

MDH | 0000 0000 MDH | 0000 0000

MDL | 0000 00OF MDL | FFFF FFF1
D1DOT D1DOT

NzVC NzVC

CCR 0000 CCR 0000

Before execution After execution

137


線
( "Instruction bit pattern : 1001 1111 0111 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.44  LSL (Logical Shift to the Left Direction)

Makes a logical left shift of the word data in "Ri" by "Rj" bits, stores the result to "Ri".
Only the lower 5 bits of "Rj", which designates the size of the shift, are valid and the
shift range is 0 to 31 bits.

B LSL (Logical Shift to the Left Direction)
Assembler format: LSL Rj, Ri

Operation: Ri << Rj — Ri

Flag change:

N Z \% C

C C - Cc

Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Set when the operation result is"0", cleared otherwise.

Unchanged

Holds the bit value shifted last. Cleared when the shift amount is"0".

Execution cycles: 1 cycle

Instruction format:

MSB LSB
1o 1 |[1]ofl1]1]oO Rj Ri
Example: LSL R2, R3
Instruction bit pattern : 1011 0110 0010 0011
R2 0000 00OS8 > R2 0000 0008
R3 FFFFFFFF R3 FFFFFFO0O
NzZzVC NzVC
CCR 0000 CCR 1001
Before execution After execution

138


線
( "Instruction bit pattern : 1011 0010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.45 LSL (Logical Shift to the Left Direction)

Makes a logical left shift of the word data in "Ri" by "u4" bits, stores the result to "Ri".

B LSL (Logical Shift to the Left Direction)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

LSL #u4, Ri

Ri << u4 — Ri

N 4 \% C

C C - C
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.
V: Unchanged
C: Holdsthe bit value shifted last. Cleared when the shift amount is"0".
1 cycle
MSB LSB
1 o1 |1]o|1]0]oO u4d Ri
LSL #8, R3

Instruction bit pattern : 1011 0100 1000 0011

R3 FFFFFFFF — R3 FFFFFFO0O
NzVvVC NzZzVC
Before execution After execution

139



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.46 LSL2 (Logical Shift to the Left Direction)

Makes a logical left shift of the word data in "Ri" by "{u4 + 16}" bits, stores the results to
"Ri".

B LSL2 (Logical Shift to the Left Direction)
Assembler format: LSL2 #u4, Ri

Operation: Ri << {u4 + 16} — Ri

Flag change:

N 4 \Y C

C C - C
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z:. Set when the operation result is"0", cleared otherwise.
V: Unchanged
C: Holdsthe bit value shifted last.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
ot [1]of1]o]1] ua Ri
Example: LSL2 #8, R3

Instruction bit pattern : 1011 0101 1000 0011

R3 FFFFFFFF — R3 FF000000O
NzZzVC NzZVC
Before execution After execution

140



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.47 LSR (Logical Shift to the Right Direction)

Makes a logical right shift of the word data in "Ri" by "Rj" bits, stores the result to "Ri".

Only the lower 5 bits of "Rj", which designates the size of the shift, are valid and the
shift range is 0 to 31 bits.

B LSR (Logical Shift to the Right Direction)
Assembler format: LSR Rj, Ri

Operation: Ri >> Rj — Ri

Flag change:

N Z \% C

C C - C

N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".

Z: Set when the operation result is"0", cleared otherwise.

V: Unchanged

C: Holdsthe bit value shifted last. Cleared when the shift amount is"0".
Execution cycles: 1 cycle
Instruction format:

MSB LSB
1o 1|1 ]|o]o]|1]|oO R Ri

Example: LSR R2, R3

Instruction bit pattern : 1011 0010 0010 0011

R2 0000 0O0O0S8 > R2 0000 0OO0O0S8

R3 FFFFFFFF R3 O0FF FFFF
NzVC NzVC
Before execution After execution

141


線
( "Instruction bit pattern : 1011 0010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.48 LSR (Logical Shift to the Right Direction)

Makes a logical right shift of the word data in "Ri" by "u4" bits, stores the result to "Ri".

B LSR (Logical Shift to the Right Direction)
Assembler format: LSR #u4, Ri

Operation: Ri>>u4 — Ri

Flag change:

N 4 \% C

C C - C
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.
V: Unchanged
C: Holdsthe hit value shifted last. Cleared when the shift amount is"0".
Execution cycles: 1 cycle
Instruction format:
MSB LSB
1]lo|1]1]olo|0]|oO u4 Ri
Example: LSR #8, R3
Instruction bit pattern : 1011 0000 1000 0011
R3 FFFFFFFF > R3 O0FF FFFF
NzVC NzVC
CCR 0000 CCR 0001
Before execution After execution

142



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.49 LSR2 (Logical Shift to the Right Direction)

Makes a logical right shift of the word data in "Ri" by "{u4 + 16}" bits, stores the result
to "Ri".

B LSR2 (Logical Shift to the Right Direction)
Assembler format: LSR2 #u4, Ri

Operation: Ri >> {u4 + 16} — Ri

Flag change:

N 4 \Y C

0 C - C
N: Cleared
Z:. Set when the operation result is"0", cleared otherwise.
V: Unchanged
C: Holdsthe bit value shifted last.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
|1|0|1|1|o|0|o|1| u4 Ri
Example: LSR2 #8, R3

Instruction bit pattern : 1011 0001 1000 0011

R3 FFFFFFFF — > R3 0000 OOFF
NzVC NzVC
Before execution After execution

143



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.50 ASR (Arithmetic Shift to the Right Direction)

Makes an arithmetic right shift of the word data in "Ri" by "Rj" bits, stores the result to
"Ri".

Only the lower 5 bits of "Rj", which designates the size of the shift, are valid and the
shift range is 0 to 31 bits.

B ASR (Arithmetic Shift to the Right Direction)
Assembler format: ASR Rj, Ri

Operation: Ri >> Rj — Ri

Flag change:

N 4 \% C

C C - C
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z: Set when the operation result is"0", cleared otherwise.
V: Unchanged
C: Holdsthe bit value shifted last. Cleared when the shift amount is"0".
Execution cycles: 1 cycle
Instruction format:
MSB LSB
1o |11 ]|1]o0]1]0 Rij Ri
Example: ASR R2, R3
Instruction bit pattern : 1011 1010 0010 0011
R2 0000 0OOOS8 > R2 0000 0008
R3 FFOF FFFF R3 FFFFOFFF
NzZVC NzZzVC
CCR 0000 CCR 1001
Before execution After execution

144


線
( "Instruction bit pattern : 1011 1010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.51 ASR (Arithmetic Shift to the Right Direction)

Makes an arithmetic right shift of the word data in "Ri" by "u4" bits, stores the result to

"Ri".

B ASR (Arithmetic Shift to the Right Direction)
Assembler format: ASR #u4, Ri

Operation: Ri>>u4 — Ri

Flag change:

N 4 \Y C

C C - C
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z:. Set when the operation result is"0", cleared otherwise.
V: Unchanged
C: Holdsthe bit value shifted last. Cleared when the shift amount is"0".
Execution cycles: 1 cycle
Instruction format:
MSB LSB
iJof1]r]1]o]o] o] ua Ri
Example: ASR #8, R3

Instruction bit pattern : 1011 1000 1000 0011

R3 | FFOF FFFF > R3

NZVC

CCR CCR

Before execution

FFFFOFFF

NzVC

After execution

145



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.52  ASR2 (Arithmetic Shift to the Right Direction)

Makes an arithmetic right shift of the word data in "Ri" by "{u4 + 16}" bits, stores the
result to "Ri".

B ASR2 (Arithmetic Shift to the Right Direction)
Assembler format: ASR2 #u4, Ri

Operation: Ri >> {u4 + 16} — Ri

Flag change:

N 4 \Y C

C C - C
N: Set when the MSB of the operation result is"1", cleared when the MSB is"0".
Z:. Set when the operation result is"0", cleared otherwise.
V: Unchanged
C: Holdsthe bit value shifted last.
Execution cycles: 1 cycle
Instruction format:
MSB LSB
o i1 ]1]o]o] 1] ud Ri
Example: ASR2 #8, R3

Instruction bit pattern : 1011 1001 1000 0011

R3 FOFF FFFF — > R3 FFFFFFFO
NzVC NzVC
Before execution After execution

146



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.53 LDI:32 (Load Immediate 32-bit Data to Destination
Register)

Loads 1 word of immediate data to "Ri".

B LDI:32 (Load Immediate 32-bit Data to Destination Register)
Assembler format: LDI:32 #i32, Ri

Operation: i32 > Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 3 cycles

Instruction format:

MSB LSB
(m+0) |1 |o o |1 1|1 |1]|1]1]O0]O0]|oO Ri
(n+2) i32(higher)
L L L L L L L L L L L L L L
(n+4) i32(lower)
| | | | | | | | | | | | 1 1 1
Example: LDI:32 #87654321H, R3

Instruction bit pattern : 1001 1111 1000 0011
: 1000 0111 0110 0101
:0100 0011 0010 0001

R3 0000 O0O0OO > R3 8765 4321

Before execution After execution

147


線
( "Instruction bit pattern : 1001 1111 1000 0011
: 1000 0111 0110 0101
: 0100 0011 0010 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.54  LDI:20 (Load Immediate 20-bit Data to Destination
Register)

Extends the 20-bit immediate data with 12 zeros in the higher bits, loads to "Ri".

B LDI:20 (Load Immediate 20-bit Data to Destination Register)
Assembler format: LDI:20 #i20, Ri

Operation: extu (i20) — Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

MSB LSB
(n+0) [t O |0 |1 |1]o0O 1] Ii20(h|igherl) Ri
(n+2) i20(lower)
Il Il Il Il Il Il Il Il Il Il Il Il Il
Example: LDI:20 #54321H, R3

Instruction bit pattern : 1001 1011 0101 0011
: 0100 0011 0010 0001

R3 0000 OOOO > R3 0005 4321

Before execution After execution

148


線
( "Instruction bit pattern : 1001 1011 0101 0011
: 0100 0011 0010 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register)

Extends the 8-bit immediate data with 24 zeros in the higher bits, loads to "Ri".

B LDI:8 (Load Immediate 8-bit Data to Destination Register)
Assembler format: LDI:8 #i8, Ri

Operation: extu (i8) — Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: LDI:8 #21H, R3

Instruction bit pattern : 1100 0010 0001 0011

R3 0000 O0OO0O > R3 0000 0021

Before execution After execution

149


線
( "Instruction bit pattern : 1100 0010 0001 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.56

LD (Load Word Data in Memory to Register)

Loads the word data at memory address "Rj" to "Ri".

B LD (Load Word Data in Memory to Register)
LD @R, Ri

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

150

(Rj) = Ri

N, Z, V, and C: Unchanged

b cycle(s)

MSB

LSB

LD @R2, R3

R2
R3

12345678

1234 5678

0000 OOOO

Memory

8765 4321

Before execution

Instruction bit pattern : 0000 0100 0010 0011

>

R2
R3

12345678

1234 5678

8765 4321

Memory

8765 4321

After execution



線
( "Instruction bit pattern : 0000 0100 0010 0011" is added. )



7.57

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

LD (Load Word Data in Memory to Register)

Loads the word data at memory address "(R13 + Rj)" to "Ri".

B LD (Load Word Data in Memory to Register)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

LD @ (R13, Rj), Ri

(R13 + Rj) - Ri

N, Z, V, and C: Unchanged

b cycle(s)

MSB

LSB

LD @ (R13, R2), R3

Instruction bit pattern : 0000 0000 0010 0011

Before execution

R2 0000 0O00O04 R2

R3 XX XX XXXX R3
—

R13 1234 5678 R13

12345678 Memory 12345678

1234567C 8765 4321 1234567C

0000 O0O0OH4

8765 4321

1234 5678

Memory

8765 4321

After execution

151


線
( "Instruction bit pattern : 0000 0000 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.58

LD (Load Word Data in Memory to Register)

Loads the word data at memory address "(R14 + 08 x 4)" to "Ri".
The value "08" is a signed calculation.

B LD (Load Word Data in Memory to Register)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

152

LD @ (R14, disp10), Ri

(R14 + 08 x 4) — Ri

N, Z, V, and C: Unchanged

b cycle(s)

MSB

LSB

LD @ (R14, 4), R3

Instruction bit pattern : 0010 0000 0001 0011

R3 XX XX XXXX R3
_>

R14 1234 5678 R14

12345678 Memory 12345678

1234567C 8765 4321 1234567C

Before execution

8765 4321

1234 5678

Memory

8765 4321

After execution




7.59 LD (Load Word Data in Memory to Register)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Loads the word data at memory address "(R15 + u4 x 4)" to "Ri".
The value "u4" is an unsigned calculation.

B LD (Load Word Data in Memory to Register)
LD @ (R15, udispé), Ri

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

(R15 + u4 x 4) — Ri

N, Z, V, and C: Unchanged

b cycle(s)

MSB

LSB

LD @ (R15, 4), R3

Instruction bit pattern : 0000 0011 0001 0011

R3

XX XX XXXX

R15

1234 5678

12345678

Memory

1234567C

8765 4321

Before execution

R3

R15

12345678
1234567C

8765 4321

1234 5678

Memory

8765 4321

After execution

153


線
( "o4" → "u4" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.60 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "R15" to "Rj", and adds 4 to the value of "R15".
If "R15" is given as parameter "Ri", the value read from the memory will be loaded into
memory address "R15".

B LD (Load Word Data in Memory to Register)
Assembler format: LD @ R15 +, Ri

Operation: (R15) —» Ri
R15 + 4 — R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)
Instruction format:

MSB LSB
ojlo|oflo|o|t1|t1|1]O0o]|]O]|]O|O Ri
Example: LD @ R15 +, R3
Instruction bit pattern : 0000 0111 0000 0011
R3 XXXX XXXX R3 8765 4321
—>
R15 1234 5678 R15 1234 567C
Memory Memory
12345678 8765 4321 12345678 8765 4321
1234567C 1234567C
Before execution After execution

154


線
( "Instruction bit pattern : 0000 0111 0000 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.61 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "R15" to dedicated register "Rs", and adds 4 to
the value of "R15".

If the number of a non-existent register is given as parameter "Rs", the read value "Ri"
will be ignored.

If "Rs" is designated as the system stack pointer (SSP) or user stack pointer (USP), and
that pointer is indicating "R15" [the "S" flag in the condition code register (CCR) is set
to "0" to indicate the "SSP", and to "1" to indicate the "USP"], the last value remaining
in "R15" will be the value read from memory.

B LD (Load Word Data in Memory to Register)
Assembler format: LD @ R15 +, Rs

Operation: (R15) » Rs
R15 + 4 — R15

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB

155



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: LD @ R15 +, MDH
Instruction bit pattern : 0000 0111 1000 0100
R15 ’1234 5674‘ R15 ’1234 5678‘
—>
MDH | X X XX X XXX | MDH [ 8765 4321]
12345670 Memory 12345670 Memory
12345674 8765 4321 12345674 8765 4321
Before execution After execution

156


線
( "Instruction bit pattern : 0000 0111 1000 0100" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.62 LD (Load Word Data in Memory to Program Status Register)

Loads the word data at memory address "R15" to the program status (PS), and adds 4
to the value of "R15".

At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If data in the range O to 15 is loaded from memory, the value 16 will be added to
that data before being transferred to the "ILM". If the original "ILM" value is in the range
0 to 15, then any value from 0 to 31 can be transferred to the "ILM".

B LD (Load Word Data in Memory to Program Status Register)
Assembler format: LD @ R15 +, PS

Operation: (R15) - PS
R15 + 4 — R15

Flag change:

N Z \% C

C C C C

N, Z, V, and C: Datais transferred from "R15".

Execution cycles: 1+a+ccycles
The value of "c" is normally 1 cycle. However, if the next instruction involves read or write access
to memory address "R15", the system stack pointer (SSP) or the user stack pointer (USP), then an
interlock is applied and the value becomes 2 cycles.

Instruction format:

MSB LSB

157


線
( "Ri" → "R15")


CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

158

LD @ R15 +, PS

R15

1234 5674

PS

FFFFF8DS5

12345670

Memory

12345674

FFF8 F8CO

Before execution

>

Instruction bit pattern : 0000 0111 1001 0000

R15

PS

12345670
12345674

1234 5678

FFF8 F8CO

Memory

FFF8 F8CO

After execution



線
( "Instruction bit pattern : 0000 0111 1001 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.63 LDUH (Load Half-word Data in Memory to Register)

Extends with zeros the half-word data at memory address "Rj", loads to "Ri".

B LDUH (Load Half-word Data in Memory to Register)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

LDUH @Rj, Ri

extu ((Rj)) — Ri

N, Z, V, and C: Unchanged

b cycle(s)
MSB LSB
olo|o|lo|o|1]|0O]H Rj Ri
LDUH @R2, R3
Instruction bit pattern : 0000 0101 0010 0011
R2 1234 5678 R2 1234 5678

R3 XX XX XXXX

Memory >
12345678 4321

Before execution

R3 0000 4321

Memory

12345678 4321

After execution

159


線
( "Instruction bit pattern : 0000 0101 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.64 LDUH (Load Half-word Data in Memory to Register)

Extends with zeros the half-word data at memory address "(R13 + Rj)", loads to "Ri".

B LDUH (Load Half-word Data in Memory to Register)
Assembler format: LDUH @(R13, R)), Ri

Operation: extu ((R13 + Rj)) > Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB
olo|o|o|o|O|oO]|1 Rj Ri
Example: LDUH @(R13, R2), R3

Instruction bit pattern : 0000 0001 0010 0011

R2 0000 0004 R2 0000 0004

R3 X XXX XXXX R3 0000 4321

R13 1234 5678 R13 1234 5678

1234567C 4321 1234567C 4321

Before execution After execution

160


線
( "Instruction bit pattern : 0000 0001 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.65 LDUH (Load Half-word Data in Memory to Register)

Extends with zeros the half-word data at memory address "(R14 + 08 x 2)", loads to
"Ri".
The value "08" is a signed calculation.

B LDUH (Load Half-word Data in Memory to Register)
Assembler format: LDUH @(R14, disp9), Ri

Operation: extu ((R14 + 08 x 2)) — Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB
o|1|0]|oO o8 Ri
| | | | 1 1 1 1 1 1
Example: LDUH @(R14, 2), R3

Instruction bit pattern : 0100 0000 0001 0011

R3 XX XX XXXX R3 0000 4321

R14 1234 5678 R14 12834 5678

12345678 Memory ) 12345678 Memory

1234567A 4321 1234567A 4321

Before execution After execution

161



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.66 LDUB (Load Byte Data in Memory to Register)

Extends with zeros the byte data at memory address "Rj", loads to "Ri".

B LDUB (Load Byte Data in Memory to Register)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

162

LDUB @R, Ri

extu ((R))) — Ri

N, Z, V, and C: Unchanged

b cycle(s)

MSB

LSB

LDUB @R2, R3

Instruction bit pattern : 0000 0110 0010 0011

R2
R3

1234 5678

XX XX XXXX

Memory

12345678 21

Before execution

R2
R3

1234 5678

0000 0021

Memory

12345678 21

After execution



線
( "Instruction bit pattern : 0000 0110 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.67 LDUB (Load Byte Data in Memory to Register)

Extends with zeros the byte data at memory address "(R13 + Rj)", loads to "Ri".

B LDUB (Load Byte Data in Memory to Register)
Assembler format: LDUB @ (R13, Rj), Ri

Operation: extu (R13 + Rj)) — Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB
o|lo|lofjo|o|oOo|1]oO Rj Ri
Example: LDUB @(R13, R2), R3
Instruction bit pattern : 0000 0010 0010 0011
R2 0000 0004 R2 0000 0004
R3 XX XX XXXX R3 0000 0021
R13 1234 5678 R13 1234 5678
12345678 Memory > 12345678 Memory
1234567C 21 1234567C 21
Before execution After execution

163


線
( "Instruction bit pattern : 0000 0010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.68 LDUB (Load Byte Data in Memory to Register)

Extends with zeros the byte data at memory address "(R14 + 08)", loads to "Ri".
The value "08" is a signed calculation.

B LDUB (Load Byte Data in Memory to Register)
Assembler format: LDUB @ (R14, disp8), Ri

Operation: extu (R14 + 08)) —» Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB
o1 ]1]o0 08 Ri
| | | | | | | 1 1 1
Example: LDUB @(R14, 1), R3
Instruction bit pattern : 0110 0000 0001 0011
R3 XX XX XXXX R3 0000 0021
R14 1234 5678 R14 1234 5678
12345678 Memory ) 12345678 Memory
12345679 21 12345679 21
Before execution After execution

164



7.69 ST (Store Word Data in Register to Memory)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Loads the word data in "Ri" to memory address "Rj".

B ST (Store Word Data in Register to Memory)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

STRi, @Rj

Ri — (Rj)

N, Z, V, and C: Unchanged

a cycle(s)

MSB

LSB

ST R3, @R2

Instruction bit pattern : 0001 0100 0010 0011

R2 1234 5678
R3 8765 4321

Memory
_>
12345678 X XXX X XXX

Before execution

R2
R3

12345678

1234 5678

8765 4321

Memory

8765 4321

After execution

165


線
( "Instruction bit pattern : 0001 0100 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.70 ST (Store Word Data in Register to Memory)

Loads the word data in "Ri" to memory address "(R13 + Rj)".

B ST (Store Word Data in Register to Memory)
Assembler format: ST Ri, @ (R13, Rj)

Operation: Ri — (R13 + R))

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB

LSB

Example: ST R3, @ (R13, R2)

Instruction bit pattern : 0001 0000 0010 0011

R2 0000 0004 R2
R3 8765 4321 > R3
R13 1234 5678 R13
12345678 Memory 12345678
1234567C X XXX X XXX 1234567C

Before execution

0000 OO0OH4

8765 4321

1234 5678

Memory

8765 4321

After execution

166



線
( "Instruction bit pattern : 0001 0000 0010 0011" is added. )



7.71 ST (Store Word Data in Register to Memory)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Loads the word data in "Ri" to memory address "(R14 + 08 x 4)".
The value "08" is a signed calculation.

B ST (Store Word Data in Register to Memory)
ST Ri,@ (R14, disp10)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

Ri — (R14 + 08

x 4)

N, Z, V, and C: Unchanged

a cycle(s)

MSB

LSB

STR3, @ (R14, 4)

R3

8765 4321

R14

1234 5678

12345678

Memory

1234567C

XX XX XXXX

Before execution

Instruction bit pattern : 0011 0000 0001 0011

>

R3

R14

12345678
1234567C

8765 4321

1234 5678

Memory

8765 4321

After execution

167



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.72 ST (Store Word Data in Register to Memory)

Loads the word data in "Ri" to memory address "(R15 + u4 x 4)".
The value "u4" is an unsigned calculation.

B ST (Store Word Data in Register to Memory)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

168

ST Ri, @ (R15, udisp6)

Ri — (R15 + u4 x 4)

N, Z, V, and C: Unchanged

a cycle(s)

MSB

LSB

u4

STR3, @ (R15, 4)

Instruction bit pattern : 0001 0011 0001 0011

R3

R15

12345678
1234567C

8765 4321

1234 5678

Memory

XX XX XXXX

Before execution

>

R3

R15

12345678
1234567C

8765 4321

1234 5678

Memory

8765 4321

After execution



線
( "o4" → "u4" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.73 ST (Store Word Data in Register to Memory)

Subtracts 4 from the value of "R15", stores the word data in "Ri" to the memory address
indicated by the new value of "R15".

If "R15" is given as the parameter "Ri", the data transfer will use the value of "R15"
before subtraction.

B ST (Store Word Data in Register to Memory)
Assembler format: STRi, @ -R15
Operation: R15-4 — R15

Ri — (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
olo|o|1|o|1|1]1|O0o]O|O]oO Ri
Example: STR3, @ —R15
Instruction bit pattern : 0001 0111 0000 0011
R3 8765 4321 R3 8765 4321
R15 1234 5678 R15 1234 5674
Memory Memory
12345674 XX XX XXXX 12345674 8765 4321
12345678 12345678
Before execution After execution

169


線
( "Instruction bit pattern : 0001 0111 0000 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.74 ST (Store Word Data in Register to Memory)

Subtracts 4 from the value of "R15", stores the word data in dedicated register "Rs" to
the memory address indicated by the new value of "R15".
If a non-existent dedicated register is given as "Rs", undefined data will be transferred.

B ST (Store Word Data in Register to Memory)
Assembler format: STRs, @ — R15

Operation: R15-4 —» R15
Rs — (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
ojlojo|t1|o|1|1]|]1]|1]0|O0]|oO Rs
Example: ST MDH, @ — R15
Instruction bit pattern : 0001 0111 1000 0100
R15 1234 5678 R15 1234 5674
_>

MDH 8765 4321 MDH 8765 4321
12345670 Memory 12345670 Memory
12345674 XX XX XXXX 12345674 8765 4321

Before execution After execution

170


線
( "Instruction bit pattern : 0001 0111 1000 0100" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.75 ST (Store Word Data in Program Status Register to Memory)

Subtracts 4 from the value of "R15", stores the word data in the program status (PS) to
the memory address indicated by the new value of "R15".

B ST (Store Word Data in Program Status Register to Memory)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

ST PS, @ — R15

R15 -4 — R15
PS — (R15)
N|z | Vv |cC

N, Z, V, and C: Unchanged

a cycle(s)

MSB

LSB

STPS, @ —R15

R15

1234 5678

PS

FFF8 F8CO

12345670

Memory

12345674

XX XX X XXX

Before execution

>

Instruction bit pattern : 0001 0111 1001 0000

R15

PS

12345670
12345674

1234 5674

FFF8 F8CO

Memory

FFF8 F8CO

After execution

171


線
( "Instruction bit pattern : 0001 0111 1001 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.76  STH (Store Half-word Data in Register to Memory)

Stores the half-word data in "Ri" to memory address "Rj".

B STH (Store Half-word Data in Register to Memory)

Assembler format: STH Ri, @R]j

Operation: Ri — (Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB

LSB

Example: STH R3, @R2

Instruction bit pattern : 0001 0101 0010 0011

R2 1234 5678

R3 0000 4321

12345678

Memory

X X X X

Before execution

R2
R3

1234 5678

0000 4321

Memory

12345678 4321

After execution

172



線
( "Instruction bit pattern : 0001 0101 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.77  STH (Store Half-word Data in Register to Memory)

Stores the half-word data in "Ri" to memory address "(R13 + Rj)".

B STH (Store Half-word Data in Register to Memory)
Assembler format: STH Ri, @(R13, R))

Operation: Ri —» (R13 + R))
Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
ojlo|o|1]o|0O0]|o0O]H1 Rj Ri
Example: STH R3, @(R13, R2)
Instruction bit pattern : 0001 0001 0010 0011
R2 0000 0004 R2 0000 0004
R3 0000 4321 ' R3 0000 4321
R13 1234 5678 R13 1234 5678
1234567A Memory 1234567A Memory
1234567C X X X X 1234567C 4321
Before execution After execution

173


線
( "Instruction bit pattern : 0001 0001 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.78  STH (Store Half-word Data in Register to Memory)

Stores the half-word data in "Ri" to memory address "(R14 + 08 x 2)".

The value "08" is a signed calcul

ation.

B STH (Store Half-word Data in Register to Memory)
Assembler format: STH Ri, @(R14, disp9)

Operation: Ri — (R14 + 08 x 2)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

LSB

MSB
o|1]o0
Example: STH R3, @(R14, 2)

R3 0000 4321

R14 1234 5678

12345678 Memory
1234567A X X X X
Before execution

Instruction bit pattern : 0101 0000 0001 0011

>

R3

R14

0000 4321

1234 5678

12345678 Memory

1234567A 4321

After execution

174




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.79 STB (Store Byte Data in Register to Memory)

Stores the byte data in "Ri" to memory address "Rj".

B STB (Store Byte Data in Register to Memory)
Assembler format: STB Ri, @R]j

Operation: Ri — (Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
ojojo|l1]o|1]1]oO R Ri
Example: STB R3, @R2
Instruction bit pattern : 0001 0110 0010 0011
R2 1234 5678 R2 1234 5678
R3 0000 0021 R3 0000 0021
Memory Memory
_>
12345678 X X 12345678 21
Before execution After execution

175


線
( "Instruction bit pattern : 0001 0110 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.80

STB (Store Byte Data in Register to Memory)

Stores the byte data in "Ri" to memory address "(R13 + Rj)".

B STB (Store Byte Data in Register to Memory)
STB Ri, @ (R13, R))

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

176

Ri — (R13 + Rj)

N, Z, V, and C: Unchanged

a cycle(s)

MSB

LSB

STB R3, @(R13, R2)

R2
R3

R13

0000 O0O0OH4

0000 0021

1234 5678

1234567B
1234567C X X

Memory

Before execution

Instruction bit pattern : 0001 0010 0010 0011

>

R2 0000

0004

R3 0000

0021

R13 1234

5678

1234567B
1234567C

Memory

21

After execution



線
( "Instruction bit pattern : 0001 0010 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.81 STB (Store Byte Data in Register to Memory)

Stores the byte data in "Ri" to memory address "(R14 + 08)".
The value "08" is a signed calculation.

B STB (Store Byte Data in Register to Memory)
STB Ri, @ (R14, disp8)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

Ri — (R14 + 08)

N, Z, V, and C: Unchanged

a cycle(s)

MSB

LSB

STB R3, @(R14, 1)

R3

R14

0000 0021

1234 5678

12345678 Memory

12345679 X X

Before execution

Instruction bit pattern : 0111 0000 0001 0011

—

R3

R14

0000 0021

1234 5678

12345678
12345679

Memory

21

After execution

177



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.82 MOV (Move Word Data in Source Register to Destination
Register)

Moves the word data in "Rj" to "Ri".

B MOV (Move Word Data in Source Register to Destination Register)
Assembler format: MOV Rj, Ri

Operation: Rj— Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: MOV R2, R3

Instruction bit pattern : 1000 1011 0010 0011

R2 8765 4321 R2 8765 4321
—>

R3 XX XX X XXX R3 8765 4321

Before execution After execution

178


線
( "Instruction bit pattern : 1000 1011 0010 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.83 MOV (Move Word Data in Source Register to Destination
Register)

Moves the word data in dedicated register "Rs" to general-purpose register "Ri".
If the number of a non-existent dedicated register is given as "Rs", undefined data will
be transferred.

B MOV (Move Word Data in Source Register to Destination Register)
Assembler format: MOV Rs, Ri

Operation: Rs — Ri

Flag change:

N, Z,V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: MOV MDL, R3

Instruction bit pattern : 1011 0111 0101 0011

R3 XX XX XXXX R3 8765 4321
_>

MDL 8765 4321 MDL 8765 4321

Before execution After execution

179


線
( "Instruction bit pattern : 1011 0111 0101 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.84 MOV (Move Word Data in Program Status Register to
Destination Register)

Moves the word data in the program status (PS) to general-purpose register "Ri".

B MOV (Move Word Data in Program Status Register to Destination Register)
Assembler format: MOV PS, Ri

Operation: PS - Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: MOV PS, R3

Instruction bit pattern : 0001 0111 0001 0011

R3 X X XX X X X X R3 FFF8 F8CO
PS FFF8 F8CO PS FFF8 F8CO
Before execution After execution

180


線
( "Instruction bit pattern : 0001 0111 0001 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.85 MOV (Move Word Data in Source Register to Destination
Register)

Moves the word data in general-purpose register "Ri" to dedicated register "Rs".
If the number of a non-existent register is given as parameter "Rs", the read value "Ri"
will be ignored.

B MOV (Move Word Data in Source Register to Destination Register)
Assembler format: MOV Ri, Rs

Operation: Ri —» Rs

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: MOV R3, MDL

Instruction bit pattern : 1011 0011 0101 0011

R3 8765 4321 R3 8765 4321
_>

MDL X XXX XXXX MDL 8765 4321

Before execution After execution

181


線
( "Instruction bit pattern : 1011 0011 0101 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.86 MOV (Move Word Data in Source Register to Program
Status Register)

Moves the word data in general-purpose register Ri to the program status (PS).

At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If data in the range 0 to 15 is loaded from "Ri", the value 16 will be added to
that data before being transferred to the "ILM". If the original "ILM" value is in the range
0 to 15, then any value from 0 to 31 can be transferred to the "ILM".

B MOV (Move Word Data in Source Register to Program Status Register)
Assembler format: MOV Ri, PS

Operation: Ri —» PS

Flag change:

N 4 \Y C

C C Cc Cc

N, Z, V, and C: Datais transferred from "Ri".

Execution cycles: c cycle(s)

The number of execution cycles is normally "1". However, if the instruction immediately after
involves read or write access to memory address "R15", the system stack pointer (SSP) or the user
stack pointer (USP), then an interlock is applied and the value becomes 2 cycles.

Instruction format:

MSB LSB

182



Example: MOV R3, PS

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

R3

PS

FFF3 F8D5

XXXX XXXX

Before execution

Instruction bit pattern : 0000 0111 0001 0011

R3

PS

FFF3 F8D5

FFF3 F8D5

After execution

183


線
( "Instruction bit pattern : 0000 0111 0001 0011" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.87  JMP (Jump)

This is a branching instruction with no delay slot.
Branches to the address indicated by "Ri".

B JMP (Jump)
Assembler format: JMP @RI

Operation: Ri —» PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

MSB

LSB

Example: JMP @R1

Instruction bit pattern : 1001 0111 0000 0001

R1 cCo0008000

>

PC FF80 0000

Before execution

R1

PC

0000 OOFF

Co0008000

After execution

184



線
( "Instruction bit pattern : 1001 0111 0000 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.88 CALL (Call Subroutine)

This is a branching instruction with no delay slot.

After storing the address of the next instruction in the return pointer (RP), branch to the
address indicated by "lavel12" relative to the value of the program counter (PC). When
calculating the address, double the value of "rel11" as a signed extension.

B CALL (Call Subroutine)
Assembler format: CALL label12

Operation: PC+2—>RP
PC +2 + exts (rel11 x 2) - PC

Flag change:
N Z \% C
N, Z, V, and C: Unchanged
Execution cycles: 2 cycles

Instruction format:

MSB LSB
111|010 rel11

Example: CALL label

label: ; CALL instruction address + 122

Instruction bit pattern : 1101 0000 1001 0000

PC FF80 0000 PC FF80 0122
—>

RP X XXX XXXX RP FF80 0004

Before execution After execution

185


線
( "extension for use as the branch destination address" → "extension" )


線
( "CALL 120H" →
" CALL label
...
label: ; CALL instruction address + 122H" )


線
( "Instruction bit pattern : 1101 0000 1001 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.89 CALL (Call Subroutine)

This is a branching instruction with no delay slot.
After storing the address of the next instruction in the return pointer (RP), a branch to
the address indicated by "Ri" occurs.

B CALL (Call Subroutine)
Assembler format: CALL @RI

Operation: PC+2 > RP
Ri —» PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

MSB LSB
1 lojo|1]|]o|1|1]1]0] 0] 0] 1 Ri
Example: CALL @R1
Instruction bit pattern : 1001 0111 0001 0001
R1 FFFFF800 R1 FFFFF800
PC 8000 FFFE —> PC FFFF F800O0
RP XX XX X XXX RP 8001 0000O0
Before execution After execution

186


線
( "Instruction bit pattern : 1001 0111 0001 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.90 RET (Return from Subroutine)

This is a branching instruction with no delay slot.

Branches to the address indicated by the return pointer (RP).

B RET (Return from Subroutine)
Assembler format: RET

Operation: RP — PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

MSB

LSB

Example: RET

Instruction bit pattern : 1001 0111 0010 0000

PC FFFO 8820

o

RP 8000 AES8G6

Before execution

PC

RP

8000 AES8G®G6

8000 AES8G®G6

After execution

187


線
( "Instruction bit pattern : 1001 0111 0010 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.91 INT (Software Interrupt)

Stores the values of the program counter (PC) and program status (PS) to the stack
indicated by the system stack pointer (SSP) for interrupt processing. Writes "0" to the
"S" flag in the condition code register (CCR), and uses the "SSP" as the stack pointer
for the following steps. Writes "0" to the "I" flag (interrupt enable flag) in the "CCR" to
disable external interrupts. Reads the vector table for the interrupt vector number "u8"
to determine the branch destination address, and branches.

This instruction has no delay slot.

Vector numbers 9 to 13, 64 and 65 are used by emulators for debugging interrupts and
therefore the corresponding numbers "INT#9" to "INT#13", "INT#64", "INT#65" should
not be used in user programs.

B INT (Software Interrupt)

Assembler format: INT #u8
Operation: SSP -4 — SSP
PS — (SSP)

SSP —4 — SSP
PC + 2 — (SSP)

"0" — | flag
"0" — Sflag
(TBR + 3FC{—u8 x 4) - PC
Flag change:
S I N z Y C
0 0 - - - -

N, Z, V, and C: Unchanged
Sand I: Cleared to "0".

Execution cycles: 3 + 3a cycles

Instruction format:

MSB LSB

188


線
( "INT#9" to "#13", "#64", "#65" → "INT#9" to "INT#13", "INT#64", "INT#65" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: INT #20H
Instruction bit pattern : 0001 1111 0010 0000

R15 4000 0000 R15 7FFF FFF8
SSP 8000 0000 SSP 7FFF FFF8
TBR 0O0O0OF FCOO TBR 0O0O0OF FCOO
UspP 4000 0000O UsP 4000 0000O
PC 8088 8086 PC 6809 6800
PS FFFF F8FO PS FFFF F8CO
SINZVC SINZVC
CCR 110000 CCR 000000

Memory Memory
000FFF7C 6809 6800 000FFF7C 6809 6800
7FFFFFF8 X X XX X XXX 7FFFFFF8 8088 8088
7FFFFFFC | X X X X X X X X 7FFFFFFC | FFFF F8F 0O
80000000 X X X X X XXX 80000000 X X X X XXX X
Before execution After execution

189


線
( "Instruction bit pattern : 0001 1111 0010 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.92 INTE (Software Interrupt for Emulator)

This software interrupt instruction is used for debugging. It stores the values of the
program counter (PC) and program status (PS) to the stack indicated by the system
stack pointer (SSP) for interrupt processing. It writes "0" to the "S" flag in the condition
code register (CCR), and uses the "SSP" as the stack pointer for the following steps.
It determines the branch destination address by reading interrupt vector number "#9"
from the vector table, then branches.

There is no change to the "I" flag in the condition code register (CCR).

The interrupt level mask register (ILM) in the program status (PS) is set to level 4.
This instruction is the software interrupt instruction for debugging.

In step execution, no "EIT" events are generated by the "INTE" instruction.

This instruction has no delay slot.

B INTE (Software Interrupt for Emulator)

Assembler format: INTE
Operation: SSP -4 —» SSP
PS — (SSP)

SSP -4 — SSP

PC + 2 — (SSP)

4 — ILM

"0" — S flag

(TBR + 3D8,) — PC

Flag change:

S I N z \Y, C

0 - - - - -

I,N, Z,V, and C: Unchanged
S Cleared to "0".

Execution cycles: 3 + 3a cycles

Instruction format:

MSB LSB

190



Example:

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

INTE
Instruction bit pattern : 1001 1111 0011 0000
R15 4000 0000 R15 7FFF FFF8
SSP 8000 0000O0 SSP 7FFF FFF8
USP 4000 0000 USspP 4000 0000O0
TBR O0O0OF FCOO TBR 0O00F FCOO
PC 8088 8086 PC 6809 6800
PS FFF5 F8FO PS FFE4 F8DO
ILM 10101 ILM 00100
SINzVC SINzVC
CCR 110000 CCR 010000
Memory Memory
00OFFFD8 6809 6800 000FFFD8 6809 6800
7FFFFFF8 X XXX X XXX 7FFFFFF8 8088 8088
7FFFFFFC X X X X XXX X 7FFFFFFC FFFFF8FO
80000000 X X XX X XXX 80000000 X X XX XXX X

Before execution

After execution

191


線
( "Instruction bit pattern : 1001 1111 0011 0000" ) is added.



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.93 RETI (Return from Interrupt)

Loads data from the stack indicated by "R15" to the program counter (PC) and program
status (PS), and retakes control from the interrupt handler.

This instruction requires the S flag in the register (CCR) to be executed in a state of "0".
Do not manipulate the S flag in the normal interrupt handler; use it in a state of O as it is.
This instruction has no delay slot.

At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If data in the range 0 to 15 is loaded in memory, the value 16 will be added to
that data before being transferred to the "ILM". If the original "ILM" value is in the range
0 to 15, then any value between 0 and 31 can be transferred to the "ILM".

B RETI (Return from Interrupt)

Assembler format: RETI

Operation: (R15) —» PC
R15+4 — R15
(R15) —» PS
R15 + 4 —R15
Flag change:
S I N z Y C

C C C C C C

S I, N, Z,V, and C: Change according to values retrieved from the stack.

Execution cycles: 2 + 2a cycles

Instruction format:

MSB LSB

192


線
( D2, D1, → S, )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: RETI
Instruction bit pattern : 1001 0111 0011 0000

R15 7FFF FFFS8 R15 4000 0000O0
SSP 7FFF FFFS8 SSP 8000 0000O0
USP 4000 00O00O0 USP 4000 0000O0
PC FFOO 90BC —> PC 8088 8088
PS FFFO F8D4 PS FFF3 F8F1
ILM 10000 ILM 10011
SINzVC SINzZzVC
CCR 010100 CCR 110001

Memory Memory
7FFFFFE8 8088 8088 7FFFFFF8 8088 8088
7FFFFFFC | FFF 3 F8 F 1 7FFFFFFC | FFF 3 F 8 F 1
80000000 X X XX XX XX 80000000 X X X X X X X X
Before execution After execution

193


線
( "Instruction bit pattern : 1001 0111 0011 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.94  Bcc (Branch Relative if Condition Satisfied)

This branching instruction has no delay slot.
If the conditions established for each particular instruction are satisfied, branch to the
address indicated by "label9" relative to the value of the program counter (PC). When

calculating the address, double the value of "rel8" as a signed extension.

If conditions are not satisfied, no branching can occur.
Conditions for each instruction are listed in Table 7.94-1.

B Bcc (Branch Relative if Condition Satisfied)

Assembler format: BRA label9 BV label9
BNO label9 BNV label9
BEQ label9 BLT label9
BNE label9 BGE label9
BC label9 BLE label9
BNC label9 BGT label9
BN label9 BLS label9
BP label9 BHI label9
Operation: if (conditions satisfied) {
PC + 2 + exts (rel8 x 2) —» PC
}
Table 7.94-1 Branching Conditions
Mnemonic cc Conditions Mnemonic cc Conditions
BRA 0000 Always satisfied BV 1000 V=1
BNO 0001 Always unsatisfied BNV 1001 V=0
BEQ 0010 Z=1 BLT 1010 VxorN=1
BNE 0011 Z=0 BGE 1011 VxorN=0
BC 0100 c=1 BLE 1100 (VxorN)orz=1
BNC 0101 C=0 BGT 1101 (VxorN)orz=0
BN 0110 N=1 BLS 1110 Corz=1
BP 0111 N=0 BHI 1111 CorZ=0
Flag change:
N Z V C

N, Z, V, and C: Unchanged

194



線
( "extension, for use as the branch destination address." → "extension" )



Execution cycles:

Instruction format:

Example:

Branch:

2 cycles

Not branch: 1 cycle

MSB LSB
1 1 1 0 cc rel8
BHI label
label: ; BHI instruction address + 50y
Instruction bit pattern : 1110 1111 0010 1000
PC | FF80 0000 —» PC | FF800052
NZVC NZVC
CCR 1010 CCR 1010

Z or C = 0 (conditions satisfied)

Before execution

After execution

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

195


線
( "BHI 50H" →
" BHI label
...
label: ; BHI instruction address + 50H" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.95  JMP:D (Jump)

This branching instruction has a delay slot.
Branches to the address indicated by "Ri".

B JMP:D (Jump)
Assembler format: JMP : D @Ri

Operation: Ri —» PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB
1jloflo|1|1|1]|1]1|]o|0o]|0O]|oO Ri
Example: JMP : D @R1

LDl : 8 #0FFH, R1 ; Instruction placed in delay slot

Instruction bit pattern : 1001 1111 0000 0001

R1 coo008000 R1 0000 OOFF
—>

PC FF80 0000 PC C0008000

Before execution of "JMP" instruction After branching

The instruction placed in the delay slot will be executed before execution of the branch destination
instruction.

The value "R1" above will vary according to the specifications of the "L DI:8" instruction placed in
the delay dot.

196


線
( "Instruction bit pattern : 1001 1111 0000 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.96 CALL:D (Call Subroutine)

This is a branching instruction with a delay slot.

After saving the address of the next instruction after the delay slot to the "RP", branch
to the address indicated by "label12" relative to the value of the program counter (PC).
When calculating the address, double the value of "rel11" as a signed extension.

B CALL:D (Call Subroutine)
Assembler format: CALL : D label12

Operation: PC+4 > RP
PC + 2 + exts (rel11 x 2) —» PC

Flag change:
N Z \% C
N, Z, V, and C: Unchanged
Execution cycles: 1 cycle

Instruction format:

MSB LSB

197


線
( "extension for use as the branch destination address" → "extension" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: CALL:D label
LDI: 8 #0, R2 ; Instruction placed in delay slot

label: ; CALL: D instruction address + 122,

Instruction bit pattern : 1101 1000 1001 0000

R2 |XXXX XXXX| R2 |0000 OOOO‘

PC ||=Fsooooo| —> PC |FF800122‘

RP |xxxx xxxx| RP |FF800004‘
Before execution of "CALL" instruction After branching

The instruction placed in the delay slot will be executed before execution of the branch destination
instruction.

The value "R2" above will vary according to the specifications of the "L DI:8" instruction placed in
the delay dot.

198


線
( "CALL : D 120H
LDI : 8 #0, R2 ; Instruction placed in delay slot" →
"CALL:D label
LDI : 8 #0, R2 ; Instruction placed in delay slot
...
label: ; CALL: D instruction address + 122H" )


線
( "Instruction bit pattern : 1101 1000 1001 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.97 CALL:D (Call Subroutine)

This is a branching instruction with a delay slot.
After saving the address of the next instruction after the delay slot to the "RP", it
branches to the address indicated by "Ri".

B CALL:D (Call Subroutine)
Assembler format: CALL : D @Ri

Operation: PC+4 > RP
Ri —» PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

199



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: CALL: D @R1
LDI: 8 #1,R1 ; Instruction placed in delay slot

Instruction bit pattern : 1001 1111 0001 0001

R1 FFFF F800 R1 0000 OO0O 1

PC | 8000 FFFE —> PC | FFFFF800

RP XX XX XXXX RP 8001 0002
Before execution of "CALL" instruction After branching

The instruction placed in the delay slot will be executed before execution of the branch destination
instruction.

The value "R1" above will vary according to the specifications of the "LDI:8" instruction placed in
the delay dot.

200


線
( "Instruction bit pattern : 1001 1111 0001 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.98 RET:D (Return from Subroutine)

This is a branching instruction with a delay slot.
Branches to the address indicated by the "RP".

B RET:D (Return from Subroutine)
Assembler format: RET : D

Operation: RP — PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB

LSB

201



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

202

RET : D
MOV RO, R1 ; Instruction placed in delay slot

Instruction bit pattern : 1001 1111 0010 0000

RO 0011 2233 RO 0011 2233

R1 X X X X X XXX R1 0011 2233

PC |FFF08820 —> PC | 8000 AEB8S6

RP 8000 AES8G RP 8000 AES8G®G6
Before execution of "RET" instruction After branching

The instruction placed in the delay slot will be executed before execution of the branch destination
instruction.

The value "R1" above will vary according to the specifications of the "MOV" instruction placed in
the delay dlot.


線
( "Instruction bit pattern : 1001 1111 0010 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.99 Bcc:D (Branch Relative if Condition Satisfied)

This is a branching instruction with a delay slot.

If the conditions established for each particular instruction are satisfied, branch to the
address indicated by "label9" relative to the value of the program counter (PC). When

calculating the address, double the value of "rel8" as a signed extension.

If conditions are not satisfied, no branching can occur.
Conditions for each instruction are listed in Table 7.99-1.

B Bcc:D (Branch Relative if Condition Satisfied)

Assembler format: BRA :D label9 BV :D label9
BNO :D label9 BNV :D label9
BEQ: D label9 BLT:D label9
BNE : D label9 BGE:D label9
BC:D label9 BLE : D label9
BNC : D label9 BGT:D label9
BN :D label9 BLS:D label9
BP:D label9 BHI: D label9
Operation: if (conditions satisfied) {
PC + 2 + exts (rel8 x 2) —» PC
}
Table 7.99-1 Branching Conditions
Mnemonic cc Conditions Mnemonic cc Conditions
BRA : D 0000g Always satisfied BV :D 10005 V=1
BNO:D 00015 Always unsatisfied BNV : D 1001g V=0
BEQ: D 0010g Z=1 BLT:D 10105 VxorN=1
BNE: D 0011g Z=0 BGE: D 10115 VxorN=0
BC:D 01005 c=1 BLE:D 11005 (VxorN)orz=1
BNC:D 0101g C=0 BGT:D 11015 (VxorN)orZz=0
BN:D 0110g N=1 BLS:D 11105 Corz=1
BP:D 01115 N=0 BHI : D 11115 CorZz=0

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

203


線
( "extension, for use as the branch destination address" → "extension" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Execution cycles: 1 cycle

Instruction format:

MSB LSB
1 1 1 1 cc rel8
Example: BHI:D label
LDI :8 #255, R1 ; Instruction placed in delay slot
label: ; BHI: D instruction address + 50y

Instruction bit pattern : 1111 1111 0010 1000

R1 8947 97AF R1 0000 OOFF
PC FF80 0000 > PC FF80 0052
NzVC NzVC

Z or C =0, conditions satisfied

Before execution After execution

The instruction placed in the delay dot will be executed before execution of the branch destination
instruction.

The value "R1" above will vary according to the specifications of the "LDI:8" instruction placed in
the delay dot.

204


線
( "BHI :D 50H
LDI :8 #255, R1 ; Instruction placed in delay slot" →
"BHI:D label
...
LDI :8 #255, R1 ; Instruction placed in delay slot
label: ; BHI: D instruction address + 50H" )


線
( "Instruction bit pattern : 1111 1111 0010 1000" is changed. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.100 DMOV (Move Word Data from Direct Address to Register)

Transfers, to "R13", the word data at the direct address corresponding to 4 times the
value of "dir8".

B DMOV (Move Word Data from Direct Address to Register)
Assembler format: DMOV @dir10, R13

Operation: (dir8 x 4) —» R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB
olo|lo|o|1]|]o0]o0]|oO dir8
1 1 1 1 1 1 1
Example: DMOV @88H, R13
Instruction bit pattern : 0000 1000 0010 0010
R13 XX XX XXXX R13 0123 4567
Memory —> Memory
84H XX XX X XXX 84H XX XX XXXX
88, 0123 4567 88, 0123 4567
8C,, XX XX XXXX 8C,, XX XX XXXX
Before execution After execution

205



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.101 DMOV (Move Word Data from Register to Direct Address)

Transfers the word data in "R13" to the direct address corresponding to 4 times the
value of "dir8".

B DMOV (Move Word Data from Register to Direct Address)
Assembler format: DMOV R13, @dir10

Operation: R13 — (dir8 x 4)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
o|lo|o|t1t]|1]o0o]O0f|oO dir8
1 1 1 1 1 1 1
Example: DMOV R13, @54H
Instruction bit pattern : 0001 1000 0001 0101

R13 89AB CDEF R13 89AB CDEF

Memory —> Memory
50n XX XX XXXX 50, XX XX XXXX
54, XX XX XXXX 54, 89AB CDEF
58,, XX XX XXXX 58,, XX XX XXXX
Before execution After execution

206



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.102 DMOV (Move Word Data from Direct Address to Post
Increment Register Indirect Address)

Transfers the word data at the direct address corresponding to 4 times the value of
"dir8" to the address indicated in "R13". After the data transfer, it increments the value
of "R13" by 4.

B DMOV (Move Word Data from Direct Address to Post Increment Register Indirect
Address)

Assembler format: DMOV @dir10, @R13+

Operation: (dir8 x 4) —» (R13)
R13 +4 — R13

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

MSB LSB

207



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

208

DMOV @88H, @R13+

Instruction bit pattern : 0000 1100 0010 0010

R13

00000088

FFFF1248
FFFF124C

FFFF 1248

Memory

1414 2135

XX XX XXXX

XX XX XXXX

Before execution

R13
—

00000088

FFFF1248
FFFF124C

FFFF 124C

Memory

1414 2135

1414 2135

XX XX XXXX

After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.103 DMOV (Move Word Data from Post Increment Register
Indirect Address to Direct Address)

Transfers the word data at the address indicated in "R13" to the direct address
corresponding to 4 times the value "dir8". After the data transfer, it increments the
value of "R13" by 4.

B DMOV (Move Word Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOV @R13+, @dir10

Operation: (R13) — (dir8 x 4)
R13 +4 — R13

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

MSB LSB

209



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

210

DMOV @R13+, @54H

Instruction bit pattern : 0001 1100 0001 0101

RI | FFFF 124 8|

—

Memory
00000054 XX XX X XXX

FFFF1248 (8947 91AF

FFFF124C | x X X X X X X X

Before execution

R13

00000054

FFFF1248
FFFF124C

FFFF124C

Memory

8947 91AF

8947 91AF

XX XX X XXX

After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.104 DMOV (Move Word Data from Direct Address to
Pre-decrement Register Indirect Address)

Decrements the value of "R15" by 4, then transfers word data at the direct address
corresponding to 4 times the value of "dir8" to the address indicated in "R15".

B DMOV (Move Word Data from Direct Address to Pre-decrement Register Indirect
Address)

Assembler format: DMOV @dirl0, @ — R15

Operation: R15-4 —» R15
(dir8 x 4) — (R15)

Flag change:
N z \Y C
N, Z, V, and C: Unchanged
Execution cycles: 2a cycles

Instruction format:

MSB LSB
0|0 |O0]O0 |1 0|1 1 dir8
1

211



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

212

DMOV @2CH, @ - R15

R15

0000002C

7FFFFF84
7FFFFF88

7FFF FF88

Memory

82A282A9

Instruction bit pattern : 0000 1011 0000 1011

o

XX XX XXXX

XX XX XXXX

Before execution

R15

0000002C

7FFFFF84
7FFFFF88

7FFF FF84

Memory

82A282A9

82A2 82A9

XX XX XXXX

After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.105 DMOV (Move Word Data from Post Increment Register
Indirect Address to Direct Address)

Transfers the word data at the address indicated in "R15" to the direct address
corresponding to 4 times the value "dir8". After the data transfer, it increments the value
of "R15" by 4.

B DMOV (Move Word Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOV @R15+, @dir10

Operation: (R15) — (dir8 x 4)
R15 + 4 — R15

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

MSB LSB

213



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

214

DMOV @R15+, @38H

R15

00000038

7FFEEE80
7FFEEE84

7FFE EE80|

Memory

XX XX XXXX

8343 834A

XX XX XX XX

Before execution

Instruction bit pattern : 0001 1011 0000 1110

o

R15

00000038

7FFEEE80
7FFEEE84

7FFE EES84

Memory

8343 834A

8343 834A

XX XX X XXX

After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.106 DMOVH (Move Half-word Data from Direct Address to
Register)

Transfers the half-word data at the direct address corresponding to 2 times the value
"dir8" to "R13". Uses zeros to extend the higher 16 bits of data.

B DMOVH (Move Half-word Data from Direct Address to Register)
Assembler format: DMOVH @dir9, R13

Operation: (dir8 x 2) » R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB
olo|o|o|[1]|O0]|oO]|1 dir8
1 1 1 1 1 1 1
Example: DMOVH @88H, R13
Instruction bit pattern : 0000 1001 0100 0100
R13 XX XX XXXX R13 0000 B2B6®6
Memory | Memory
86 X X X X 86 X X X X
88 B2B&6 88 B2B6
8A X X X X 8A X X X X
Before execution After execution

215



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.107 DMOVH (Move Half-word Data from Register to Direct
Address)

Transfers the half-word data from "R13" to the direct address corresponding to 2 times
the value "dir8".

B DMOVH (Move Half-word Data from Register to Direct Address)
Assembler format: DMOVH R13, @dir9

Operation: R13 — (dir8 x 2)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
o|jlofof|1|1]o0|O0]1 dir8
Il Il Il Il Il Il Il
Example: DMOVH R13, @52H
Instruction bit pattern : 0001 1001 0010 1001
R13 FFFF AE86 R13 FFFF AE86
_>
Memory Memory
50 X X X X 50 X X X X
52 X X X X 52 AES8S®6
54 X X X X 54 X X X X
Before execution After execution

216



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.108 DMOVH (Move Half-word Data from Direct Address to Post
Increment Register Indirect Address)

Transfers the half-word data at the direct address corresponding to 2 times the value
"dir8" to the address indicated by "R13". After the data transfer, it increments the value
of "R13" by 2.

B DMOVH (Move Half-word Data from Direct Address to Post Increment Register Indirect
Address)

Assembler format: DMOVH @dir9, @R13+

Operation: (dir8 x 2) —» (R13)
R13 +2 — R13

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

MSB LSB
0|0 O |0 |1 1101 dir8
1

217



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

218

DMOVH @88H, @R13+

Instruction bit pattern : 0000 1101 0100 0100

R13 FF000052|

Memory
00000088 1374

FF000052 X X X X
FF000054 X X X X

Before execution

R13

FFOO 0054

Memory

00000088 1374

FF000052 1374

FF000054 X X X X

After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.109 DMOVH (Move Half-word Data from Post Increment
Register Indirect Address to Direct Address)

Transfers the half-word data at the address indicated by "R13" to the direct address
corresponding to 2 times the value "dir8". After the data transfer, it increments the value
of "R13" by 2.

B DMOVH (Move Half-word Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOVH @R13+, @dir9

Operation: (R13) — (dir8 x 2)
R13 +2 — R13

Flag change:

N 4 \Y C

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

MSB LSB
0|0 |0 |1 1 1101 dir8
1

219



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: DMOVH @R13+, @52H

Instruction bit pattern : 0001 1101 0010 1001

R13 FF801220| R13 FF80 1222
_>

Memory Memory
00000052 X X X X 00000052 8933
FF801220 89383 FF801220 8933
FF801222 X X X X FF801222 X X X X
Before execution After execution

220



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.110 DMOVB (Move Byte Data from Direct Address to Register)

Transfers the byte data at the address indicated by the value "dir8" to "R13". Uses zeros
to extend the higher 24 bits of data.

B DMOVB (Move Byte Data from Direct Address to Register)
Assembler format: DMOVB @dir8, R13

Operation: (dir8) - R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

MSB LSB
o|jlof|lofo|t1]|]oOo|1]oO dir8
Il Il Il Il L L L
Example: DMOVB @91H, R13
Instruction bit pattern : 0000 1010 1001 0001
R13 XX XX XXXX R13 0000 0032
_>
Memory Memory
90 X X 90 X X
91 392 91 32
92 X X 92 X X
Before execution After execution

221



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.111 DMOVB (Move Byte Data from Register to Direct Address)

Transfers the byte data from "R13" to the direct address indicated by the value "dir8".

B DMOVB (Move Byte Data from Register to Direct Address)
Assembler format: DMOVB R13, @dir8

Operation: R13 — (dir8)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
ojofo |1t |1]o]1]oO dir8
Il Il Il 1 Il Il Il
Example: DMOVB R13, @53H
Instruction bit pattern : 0001 1010 0101 0011
R13 FFFF FFFE R13 FFFF FFFE
_>
Memory Memory
52 X X 52 X X
53 X X 53 FE
54 X X 54 X X
Before execution After execution

222



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.112 DMOVB (Move Byte Data from Direct Address to Post
Increment Register Indirect Address)

Moves the byte data at the direct address indicated by the value "dir8" to the address
indicated by "R13". After the data transfer, it increments the value of "R13" by 1.

B DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect
Address)

Assembler format: DMOVB @dir8, @R13+

Operation: (dir8) — (R13)
R13+1 —> R13

Flag change:
N z \Y, C
N, Z, V, and C: Unchanged
Execution cycles: 2a cycles

Instruction format:

MSB LSB

223



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: DMOVB @71H, @R13+

Instruction bit pattern : 0000 1110 0111 0001

R13 8800 1234 R13 8800 1235
—>
Memory Memory
00000071 99 00000071 99

88001234 X X 88001234 99
88001235 X X 88001235 X X
Before execution After execution

224



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.113 DMOVB (Move Byte Data from Post Increment Register
Indirect Address to Direct Address)

Transfers the byte data at the address indicated by "R13" to the direct address indicated
by the value "dir8". After the data transfer, it increments the value of "R13" by 1.

B DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOVB @R13+, @dir8

Operation: (R13) — (dir8)
R13+1 — R13

Flag change:
N z \Y, C
N, Z, V, and C: Unchanged
Execution cycles: 2a cycles

Instruction format:

MSB LSB

225



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

226

DMOVB @R13+, @57H

Instruction bit pattern : 0001 1110 0101 0111

R13 FF80 1220
Memory —>
00000057 X X
FF801220 55
FF801221 X X

Before execution

R13

FF80 1221

Memory

55

55

After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.114 LDRES (Load Word Data in Memory to Resource)

Transfers the word data at the address indicated by "Ri" to the resource on channel "u4".
Increments the value of "Ri" by 4.

B LDRES (Load Word Data in Memory to Resource)
Assembler format: LDRES @Ri+, #u4

Operation: (Ri) —» Resource on channel u4
Ri+4 > Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

MSB LSB
1o |1 |1 |1|]1]|]0]oO ud Ri
Example: LDRES @R2+, #8
Instruction bit pattern : 1011 1100 1000 0010
R2 1234 5678| R2 1234 567C
Memory | Memory

ch.8 Resource XX XX X XXX ch.8 Resource 8765 4321
12345678 8765 4321 12345678 8765 4321

1234567C 1234567C

Before execution After execution

227


線
( "Instruction bit pattern : 1011 1100 1000 0010" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.115 STRES (Store Word Data in Resource to Memory)

Transfers the word data at the resource on channel "u4" to the address indicated by "Ri".
Increments the value of "Ri" by 4.

B STRES (Store Word Data in Resource to Memory)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

228

STRES #u4, @Ri+

Resource on channel u4 — (Ri)
Ri+4 > Ri

N, Z, V, and C: Unchanged

a cycle(s)

MSB

LSB

STRES #8, @R2+

Instruction bit pattern : 1011 1101 1000 0010

R2 1234 5678 R2

b

Memory

ch.8 Resource 8765 4321 ch.8 Resource

12345678 12345678

1234567C

XX XX XXXX

1234567C

Before execution

1234 567C

Memory

8765 4321

8765 4321

After execution



線
( "Instruction bit pattern : 1011 1101 1000 0010" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.116 COPOP (Coprocessor Operation)

Transfers the 16-bit data consisting of parameters "CC", "CRj", "CRi" to the
coprocessor indicated by channel number "u4".

Basically, this operation is a calculation between registers within the coprocessor. The
calculation process indicated by the value "CC" is carried out between coprocessor
registers "CRj" and "CRi". Note that the actual interpretation of the fields "CC", "CRj",
and "CRIi" is done by the coprocessor so that the detailed operation is determined by
the specifications of the coprocessor.

If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.

If the coprocessor designated by the value "u4" has generated an error in a previous
operation, a "coprocessor error” trap is generated.

B COPOP (Coprocessor Operation)
Assembler format: COPOP #u4, #CC, CRj, CRi

Operation: CC, CRj, CRi — Coprocessor on channel u4

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2+ acycles

Instruction format:

MSB LSB
(n+0) | 1 0O (0|1 1 1 1 1 1 1 0| O u4 |

(n+2) | . cC CRj CRi |
1 1

229


線
( "Resource" → "Coprocessor" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: COPORP #15, #1, CR3, CR4
16-bit datais transferred through the bus to the coprocessor indicated by channel number 15.

Assuming that the coprocessor indicated by channel 15 isasingle-precision
floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.116-1
will have the following effect on coprocessor operation.

Table 7.116-1 Conditions for Coprocessor Command "CC" (COPOP)

CC Calculation
00 Addition CRi + CRj — CRi
01 Subtraction CRi — CRj — CRi
02 Multiplication CRi x CRj — CRi
03 Division CRi + CRj — CRIi
Other No operation
(Coprocessor register) (Coprocessor register)
CR3 cCo0000O0O0 —> CR3 coooo0000O
(-1x20)
CR4 4080 0000 —> CR4 40C00000
(2x2%) (3 x2%)
Before execution After execution

230



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.117 COPLD (Load 32-bit Data from Register to Coprocessor
Register)

Transfers the 16-bit data consisting of parameters "CC", "Rj", "CRi" to the coprocessor
indicated by channel number "u4", then on the next cycle transfers the contents of CPU
general-purpose register "Rj" to that coprocessor.

Basically, this operation transfers data to a register within the coprocessor. The 32-bit
data stored in CPU general-purpose register "Rj" is transferred to coprocessor register
"CRi". Note that the actual interpretation of the fields "CC", "Rj", "CRi" is done by the
coprocessor so that the detailed actual operation is determined by the specifications of
the coprocessor.

If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.

If the coprocessor designated by the value "u4" has generated an error in a previous
operation, a "coprocessor error” trap is generated.

B COPLD (Load 32-bit Data from Register to Coprocessor Register)
Assembler format: COPLD #u4, #CC, Rj, CRi

Operation: CC, Rj, CRi — Coprocessor on channel u4
Rj — CRi

Flag change:

N, Z,V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB
(n+0) 1 0|0 |1 1 1 1 1 1 1 0| 1 u4

(n+2) cc Ri CRi
1

231


線
( "Resource" → "Coprocessor" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

232

COPLD #15, #4, R8, CR1
16-bit data is transferred through the bus to the coprocessor indicated by channel number 15. Next,
the contents of general-purpose register "R8" are transferred through the bus to that coprocessor.

Assuming that the coprocessor indicated by channel 15 isasingle-precision
floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.117-1
will have the following effect on coprocessor operation.

Table 7.117-1 Conditions for Coprocessor Command "CC" (COPLD)

CcC Calculation

00 Addition CRi + CRj — CRi

01 Subtraction CRi — CRj — CRi

02 Multiplication CRi x CRj — CRi

03 Division CRi + CRj — CRi
Other No calculation

(CPU register) (CPU register)
R8 3F80 0000 —> R8 3F80 0000
(Coprocessor register) (Coprocessor register)
CR1 XX XX XXXX —p CR1 3F80 0000
Before execution After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.118 COPST (Store 32-bit Data from Coprocessor Register to
Register)

Transfers the 16-bit data consisting of parameters "CC", "CRj", "Ri" to the coprocessor
indicated by channel number "u4", then on the next cycle loads the data output by the
coprocessor into CPU general-purpose register "Ri".

Basically, this operation transfers data from a register within the coprocessor. The
32-bit data stored in coprocessor register "CRj" is transferred to CPU general-purpose
register "Ri". Note that the actual interpretation of the fields "CC", "CRj", "Ri" is done
by the coprocessor so that the detailed actual operation is determined by the
specifications of the coprocessor.

If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.

If the coprocessor designated by the value "u4" has generated an error in a previous
operation, a "coprocessor error” trap is generated.

B COPST (Store 32-bit Data from Coprocessor Register to Register)
Assembler format: COPST #u4, #CC, CRj, Ri

Operation: CC, CRj, Ri — Coprocessor on channel u4
CRj —Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB
(n+0) 1 0|0 |1 1 1 1 1 1 1 1 0 u4

(n+2) cc CRij Ri

233


線
( "Resource" → "Coprocessor" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

234

COPST #15, #4, CR2, R4
16-bit data is transferred through the bus to the coprocessor indicated by channel number 15. Next,
the output data of the coprocessor are transferred through the bus to that coprocessor.

Assuming that the coprocessor indicated by channel 15 isasingle-precision
floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.118-1

will have the following effect on coprocessor operation.

Table 7.118-1 Conditions for Coprocessor Command "CC" (COPST)

Before execution

CcC Calculation

00 Addition CRi + CRj — CRi

01 Subtraction CRi — CRj — CRi

02 Multiplication CRi x CRj — CRi

03 Division CRi + CRj — CRIi
Other No calculation

(CPU register) (CPU register)
R4 XX XX XXXX —> R4 BF800000O
(Coprocessor register) (Coprocessor register)

CR2 BF80000O —> CR2 BF80000O

After execution




CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.119 COPSV (Save 32-bit Data from Coprocessor Register to
Register)

Transfers the 16-bit data consisting of parameters "CC", "CRj", "Ri" to the coprocessor
indicated by channel number u4, then on the next cycle loads the data output by the
coprocessor to CPU general-purpose register "Ri".

Basically, this operation transfers data from a register within the coprocessor. The
32-bit data stored in coprocessor register "CRj" is transferred to CPU general-purpose
register "Ri". Note that the actual interpretation of the fields "CC", "CRj", "Ri" is done
by the coprocessor so that the detailed actual operation is determined by the
specifications of the coprocessor.

If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.

However, no "coprocessor error"” trap will be generated even if the coprocessor
designated by the value "u4" has generated an error in a previous operation.

The operation of this instruction is basically identical to "COPST", except for the above
difference in the operation of the error trap.

B COPSV (Save 32-bit Data from Coprocessor Register to Register)
Assembler format: COPSV #u4, #CC, CRj, Ri

Operation: CC,CRj,Ri — Coprocessor on channel u4
CRj —»Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

MSB LSB

(n+0) 1 0|0 1 1 1 1 1 1 1 1 1 u4

(n+2) cc CRj Ri

235


線
( "Resource" → "Coprocessor" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example:

236

COPSV #15, #4, CR2, R4
16-bit data is transferred through the bus to the coprocessor indicated by channel number 15. Next,
the data output by the coprocessor is loaded into the CPU through the data bus. Note that no
"coprocessor error” trap will be generated even if the coprocessor designated by the value "u4" has
generated an error in a previous operation.

Assuming that the coprocessor indicated by channel 15 isasingle-precision
floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.119-1

will have the following effect on coprocessor operation.

Table 7.119-1 Conditions for Coprocessor Command "CC" (COPSV)

CC Calculation
00 Addition CRi + CRj — CRi
01 Subtraction CRi — CRj — CRi
02 Multiplication CRi x CRj — CRi
03 Division CRi + CRj — CRi
Other No calculation
(CPU register) (CPU register)
R4 XX XX XXX X —> R4 4000 0000
Coprocessor register) Coprocessor register)
CR2 4000 OOOO| —> CR2 4000 OOOO‘
Before execution After execution




7.120 NOP (No Operation)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

This instruction performs no operation.

B NOP (No Operation)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

NOP

This instruction performs no operation.

N, Z, V, and C: Unchanged

1 cycle

MSB

LSB

NOP

PC 8343 834A

Before execution

Instruction bit pattern : 1001 1111 1010 0000

>

PC

8343 834C

After execution

237


線
( "Instruction bit pattern : 1001 1111 1010 0000" is addded. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.121 ANDCCR (And Condition Code Register and Immediate
Data)

Takes the logical AND of the byte data in the condition code register (CCR) and the
immediate data, and returns the results into the "CCR".

B ANDCCR (And Condition Code Register and Immediate Data)
Assembler format: ANDCCR #u8

Operation: CCR and u8 —» CCR

Flag change:

S I N Z \% C

C C C C C C

S I, N, Z,V, and C: Varies according to results of calculation.

Execution cycles: c cycle(s)

The number of execution cycles is normally "1". However, if the instruction immediately after
involves read or write access to memory address "R15", the system stack pointer (SSP) or the user
stack pointer (USP), then an interlock is applied and the value becomes 2 cycles.

Instruction format:

MSB LSB
11000 [0] 0| 1|1 u8
| | | 1 1 1 1
Example: ANDCCR #0FEH

Instruction bit pattern : 1000 0011 1111 1110

SINZVC SINZVC
CCR 01010 1 —> CCR 010100
Before execution After execution

238


線
( "Instruction bit pattern : 1000 0011 1111 1110" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.122 ORCCR (Or Condition Code Register and Immediate Data)

Takes the logical OR of the byte data in the condition code register (CCR) and the
immediate data, and returns the results into the "CCR".

B ORCCR (Or Condition Code Register and Immediate Data)
Assembler format: ORCCR #u8

Operation: CCRoru8 —» CCR

Flag change:

S I N z \Y, C

C C C C C C

S, I, N, Z,V, and C: Varies according to results of calculation.

Execution cycles: c cycle(s)

The number of execution cycles is normally "1". However, if the instruction immediately after
involves read or write access to memory address "R15", the system stack pointer (SSP) or the user
stack pointer (USP), then an interlock is applied and the value becomes 2 cycles.

Instruction format:

MSB LSB

Example: ORCCR #10H

Instruction bit pattern : 1001 0011 0001 0000

SINZVC SINzZzVC
CCR 000101 —> CCR 010101
Before execution After execution

239


線
( "Instruction bit pattern : 1001 0011 0001 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.123 STILM (Set Immediate Data to Interrupt Level Mask
Register)

Transfers the immediate data to the interrupt level mask register (ILM) in the program
status (PS).

Only the lower 5 bits (bit4 to bit0) of the immediate data are valid.

At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If the value "u8" is in the range 0 to 15, the value 16 will be added to that data
before being transferred to the "ILM". If the original "ILM" value is in the range 0 to 15,
then any value between 0 and 31 can be transferred to the "ILM".

B STILM (Set Immediate Data to Interrupt Level Mask Register)
Assembler format: STILM #u8

Operation: ug — ILM

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: STILM #14H

Instruction bit pattern : 1000 0111 0001 0100

ILM 11111 —> ILM 10100

Before execution After execution

240


線
( "Instruction bit pattern : 1000 0111 0001 0100" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.124 ADDSP (Add Stack Pointer and Immediate Data)

Adds 4 times the immediate data as a signed extended value, to the value in "R15".

B ADDSP (Add Stack Pointer and Immediate Data)
Assembler format: ADDSP #s10

Operation: R15 + exts (s8 x 4) —» R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: ADDSP # -4

Instruction bit pattern : 1010 0011 1111 1111

R15 | 8000 0000| —> RI5 | 7FFF FFFC

Before execution After execution

241



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.125 EXTSB (Sign Extend from Byte Data to Word Data)

Extends the byte data indicated by "Ri" to word data as a signed binary value.

B EXTSB (Sign Extend from Byte Data to Word Data)
Assembler format: EXTSB Ri

Operation: exts (Ri) —» Ri (byte — word)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: EXTSB R1

Instruction bit pattern : 1001 0111 1000 0001

R1 0000 0O0OAB —> R1 FFFF FFAB

Before execution After execution

242


線
( "Instruction bit pattern : 1001 0111 1000 0001" is added. )



7.126 EXTUB (Unsign Extend from Byte Data to Word Data)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Extends the byte data indicated by "Ri" to word data as an unsigned binary value.

B EXTUB (Unsign Extend from Byte Data to Word Data)

Assembler format:

Operation:

Flag change:

Execution cycles:

Instruction format:

Example:

EXTUB Ri

extu (Ri) » Ri (byte — word)

N, Z, V, and C: Unchanged

1 cycle

MSB

LSB

EXTUB R1

Instruction bit pattern : 1001 0111 1001 0001

R FFFFFFFF —> R1

Before execution

0000 OOFF

After execution

243


線
( "Instruction bit pattern : 1001 0111 1001 0001" is changed. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.127 EXTSH (Sign Extend from Byte Data to Word Data)

Extends the half-word data indicated by "Ri" to word data as a sighed binary value.

B EXTSH (Sign Extend from Byte Data to Word Data)
Assembler format: EXTSH Ri

Operation: exts (Ri) —» Ri (half-word — word)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: EXTSH R1

Instruction bit pattern : 1001 0111 1010 0001

R1 0000 ABCD —> R1 FFFFABCD

Before execution After execution

244


線
( "Instruction bit pattern : 1001 0111 1010 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.128 EXTUH (Unsigned Extend from Byte Data to Word Data)

Extends the half-word data indicated by "Ri" to word data as an unsigned binary value.

B EXTUH (Unsigned Extend from Byte Data to Word Data)
Assembler format: EXTUH Ri

Operation: extu (Ri) —» Ri (half-word — word)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

MSB LSB

Example: EXTUH R1

Instruction bit pattern : 1001 0111 1011 0001

R1 FFFFFFFF| —> R1 0000 FFFF

Before execution After execution

245


線
( "Instruction bit pattern : 1001 0111 1011 0001" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.129 LDMO (Load Multiple Registers)

The "LDMOQ" instruction accepts registers in the range RO to R7 as members of the
parameter "reglist”. (See Table 7.129-1.)
Registers are processed in ascending numerical order.

B LDMO (Load Multiple Registers)
Assembler format: LDMO (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".
(R15) — Ri
R15+4 — R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist”, the execution cycles
required are as follows.

If n=0: 1cycle
For other valuesof n: a(n—1) + b + 1 cycles

Instruction format:

MSB LSB
1 0|0 |0 |1 1 0|0 reglist
1

Table 7.129-1 Bit Values and Register Numbers for "reglist" (LDMO)

Bit Register Bit Register
7 R7 3 R3

6 R6 2 R2

5 R5 1 R1

4 R4 0 RO

246



Example:

LDMO (R3, R4)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Instruction bit pattern : 1000 1100 0001 1000

R3

XX XX X XXX

R4

XX XX XX XX

R15

7FFF FFCO

Memory

7FFFFFCO

90BC 9363

7FFFFFC4

8343 834A

7FFFFFC8

XX XX X XXX

Before execution

R3
R4

R15
_>

7FFFFFCO
7FFFFFC4
7FFFFFC8

90BC 9363

8343 834A

7FFF FFC8

Memory

90BC 9363

8343 834A

XX XX X XXX

After execution

247



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.130 LDM1 (Load Multiple Registers)

The LDM1 instruction accepts registers in the range R8 to R15 as members of the
parameter "reglist” (See Table 7.130-1.).

Registers are processed in ascending numerical order.

If "R15" is specified in the parameter "reglist”, the final contents of "R15" will be read
from memory.

B LDM1 (Load Multiple Registers)
Assembler format: LDML1 (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".
(R15) —» Ri
R15+4 — R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist”, the execution cycles
required are as follows.

If n=0: 1 cycle

For other valuesof n; a(n—1) + b + 1 cycles

Instruction format:

MSB LSB
1 0O |0 |0 |1 1 0| 1 reglist
1 Il

248



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Table 7.130-1 Bit Values and Register Numbers for "reglist" (LDM1)

Bit Register Bit Register
7 R15 3 R11
6 R14 2 R10
5 R13 1 R9
4 R12 0 R8
Example: LDM1 (R10, R11, R12)
Instruction bit pattern : 1000 1101 0001 1100
R10 X XXX X XXX R10 8FE3 9ES8A
R11 X XX X XXX X R11 90BC 9363
R12 XX XX X X X X R12 8DF7 88E4
R15 7FFF FFCO R15 7FFF FFCC
_>
Memory Memory
7FFFFFCO | 8 FE3 9 E 8 A 7FFFFFCO | 8 FE3 9 E8 A
7FFFFFC4 90BC 9363 7FFFFFC4 90BC9363
7FFFFFCS8 8DF7 88E4 7FFFFFCS8 8DF7 88E4
7FFFFFCC XX XX X XXX 7FFFFFCC X XXX X XXX
Before execution After execution

249



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.131 STMO (Store Multiple Registers)

The "STMO" instruction accepts registers in the range R0 to R7 as members of the
parameter "reglist” (See Table 7.131-1.) .
Registers are processed in descending numerical order.

B STMO (Store Multiple Registers)
Assembler format: STMO (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".
R15-4 — R15
Ri — (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist”, the execution cycles
required are as follows.

axn+1lcycle

Instruction format:

MSB LSB
1 0O|0|O 1 1 1 0 reglist
1 1

Table 7.131-1 Bit Values and Register Numbers for "reglist" (STMO)

Bit Register Bit Register
7 RO 3 R4

6 R1 2 R5

5 R2 1 R6

4 R3 0 R7

250



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: STMO (R2, R3)

Instruction bit pattern : 1000 1110 0011 0000

R2 90BC 9363 R2 90BC 9363

R3 8343 834A R3 8343 834A

R15 7FFF FFCS8 R15 7FFF FFCO
—>

Memory Memory

7FFFFFCO | x X X X X X X X 7FFFFFCO 90BC9363

7FFFFFC4 X XXX XXX X 7FFFFFC4 8343 834A

7FFFFFC8 | X X X X X X X X 7FFFFFC8 | X X X X X X X X

Before execution After execution

251



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.132 STM1 (Store Multiple Registers)

The "STM1" instruction accepts registers in the range R8 to R15 as members of the
parameter "reglist” (See Table 7.132-1.).

Registers are processed in descending numerical order.

If "R15" is specified in the parameter "reglist”, the contents of "R15" retained before the
instruction is executed will be written to memory.

B STM1 (Store Multiple Registers)
Assembler format: STM1 (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".
R15-4 —» R15
Ri — (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist”, the execution cycles
required are as follows.

axn+ 1lcycles

Instruction format:

MSB LSB
1 0|0 (|01 1 1 1 reglist
1

Table 7.132-1 Bit Values and Register Numbers for "reglist" (STM1)

Bit Register Bit Register
7 R8 3 R12

6 R9 2 R13

5 R10 1 R14

4 R11 0 R15

252



Example:

STM1 (R10, R11, R12)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

R10
R11
R12

R15

7FFFFFCO
7FFFFFC4
7FFFFFC8

7FFFFFCC

Instruction bit pattern : 1000 1111 0011 1000

8FE3 9ES8A

R10

90BC 9363

R11

8DF7 88EA4

R12

7FFFFFCC

R15

Memory

XX XX XX XX

7FFFFFCO

XX XX XX XX

7FFFFFC4

XX XX XX XX

7FFFFFC8

XX XX XX XX

7FFFFFCC

Before execution

8FE3 9ES8A

90BC 9363

8DF7 88E4

7FFF FFCO

Memory

8FE3 9EB8A

90BC9363

8DF7 88E*4

XX XX XX XX

After execution

253



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.133 ENTER (Enter Function)

This instruction is used for stack frame generation processing for high level languages.
The value "u8" is calculated as an unsigned value.

B ENTER (Enter Function)
Assembler format: ENTER #ul0

Operation: R14 — (R15-4)
R15-4 —» R14
R15 — extu (u8 x 4) - R15

Flag change:
N z \Y C
N, Z, V, and C: Unchanged
Execution cycles: 1+ acycles

Instruction format:

MSB LSB

254



Example:

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

ENTER #0CH

Instruction bit pattern : 0000 1111 0000 0011

Before execution

R14 8000 0000 R14
R15 7FFF FFF8 R15
Memory
7FFFFFEC XXXX XXXX —)> 7FFFFFEC
7FFFFFFO X XXX XXXX 7FFFFFFO
7FFFFFF4 XX XX XXXX 7FFFFFF4
7FFFFFF8 XX XX X XXX 7FFFFFF8
7FFFFFFC X XXX XXXX 7FFFFFFC
80000000 X XXX XXXX 80000000

7FFF FFF4

7FFFFFEC

Memory

XX XX XXXX

XX XX XXXX

8000 0000

XX XX XXXX

XX XX XXXX

XX XX XXXX

After execution

255


線
( "XXXX XXXX 0000 0011" → "0000 1111 0000 0011" )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.134 LEAVE (Leave Function)

This instruction is used for stack frame release processing for high level languages.

B LEAVE (Leave Function)
Assembler format: LEAVE

Operation: R14 + 4 — R15
(R15-4) > R14

Flag change:
N Z V C
N, Z, V, and C: Unchanged
Execution cycles: b cycle(s)

Instruction format:

MSB LSB

256



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

Example: LEAVE
Instruction bit pattern : 1001 1111 1001 0000
R14 7FFF FFF4 R14 8000 00O00O
_>
R15 7FFF FFEC R15 7FFF FFFS8
Memory Memory
7FFFFFEC XX XX XXXX 7FFFFFEC XX XX XXXX
7FFFFFFO XX XX XXXX 7FFFFFFO XX XX XXXX
7FFFFFF4 8000 0000 7FFFFFF4 8000 00O0O
7FFFFFF8 X XXX XXXX 7FFFFFF8 XXX X XXXX
7FFFFFFC XX XX XXXX 7FFFFFFC XX XX XXXX
80000000 XX XX XXXX 80000000 XX XX XXXX
Before execution After execution

257


線
( "Instruction bit pattern : 1001 1111 1001 0000" is addded. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

7.135 XCHB (Exchange Byte Data)

Exchanges the contents of the byte address indicated by "Rj" and those indicated by
"Ri".

The lower 8 bits of data originally at "Ri" are transferred to the byte address indicated
by "Rj", and the data originally at "Rj" is extended with zeros and transferred to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this instruction.

B XCHB (Exchange Byte Data)
Assembler format: XCHB @Rj, Ri

Operation: Ri— TEMP
extu ((R))) » Ri
TEMP - (Rj)
Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

MSB LSB

258


線
( "extu (Rj) → Ri" → "extu ((Rj)) → Ri" )



Example:

XCHB @R1, RO

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

RO
R1

Instruction bit pattern : 1000 1010 0001 0000

0000 0078
8000 0002
Memory —>
80000001 X X
80000002 F D
80000003 X X

Before execution

RO 0000 OOFD

R1 8000 0002

80000001
80000002

80000003

Memory

X X

78

X X

After execution

259


線
( "Instruction bit pattern : 1000 1010 0001 0000" is added. )



CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

260



APPENDIX

The appendix section includes lists of CPU instructions
used in the FR family, as well as instruction map
diagrams.

APPENDIX A Instruction Lists
APPENDIX B Instruction Maps

261



APPENDIX A Instruction Lists

APPENDIX A Instruction Lists

Appendix A includes a description of symbols used in instruction lists, plus the
instruction lists.

A.1 Symbols Used in Instruction Lists

A.2 Instruction Lists

262



APPENDIX A Instruction Lists

A.1 Symbols Used in Instruction Lists

This section describes symbols used in the FR family instruction lists.

B Symbols Used in Instruction Lists

@ Symbols in Mnemonic and Operation Columns

[ 4-bit immediate data, range O to 15 with zero extension, and —16 to —1 with minus extension
[F= J— unsigned 8-bit immediate data, range 0 to 255

i20........... unsigned 20-bit immediate data, range 00000y to FFFFF

132 e unsigned 32-bit immediate data, range 000000004 to FFFFFFFF

S8 signed 8-bit immediate data, range —128 to 127

s10........... signed 10-bit immediate data, range —512 to 508 (in multiples of 4)

Ul unsigned 4-bit immediate data, range 0 to 15

us.......... unsigned 8-bit immediate data, range 0 to 255

ulo.......... unsigned 10-bit immediate data, range 0 to 1020 (multiples of 4)

udisp6...... unsigned 6-bit address values, range 0 to 60 (multiples of 4)

disp8........ signed 8-bit address values, range —-0x80 to Ox7F

digp9........ signed 9-bit address values, range —0x100 to OXFE (multiples of 2)

displ0...... signed 10-bit address values, range —-0x200 to Ox1FC (multiples of 4)

dir8.......... unsigned 8-bit address values, range 0 to OxFF

dir9.......... unsigned 9-bit address values, range 0 to Ox1FE (multiples of 2)

dirl0........ unsigned 10-bit address values, range 0 to Ox3FC(multiples of 4)

label9....... signed 9-bit branch address, range —-0x100 to OxFE (multiples of 2) for the value of PC
label12..... signed 12-bit branch address, range —0x800 to Ox7FE (multiples of 2) for the value of PC
Ri,Rj....... indicates a general -purpose register (R00 to R15)

RS..ccoveee. indicates a dedicated register (TBR, RP, USP, SSP, MDH, MDL)

@ Symbols in Operation Column

extu()....... indicates a zero extension operation, in which values lacking higher bits are complemented
by adding the value "0" as necessary.

extn()....... indicates a minus extension operation, in which values lacking higher bits are complemented
by adding the value "1" as necessary.

exts() ....... indicates a sign extension operation in which a zero extension is performed for the data
within () in which the MSB is 0 and a minus extension is performed for the data in which the
MSB is 1.

[ F—— indicates indirect addressing, which values reading or loading from/to the memory address

where the registers within () or the formulaindicate.
{}o indicates the calculation priority; () is used for specifying indirect address

263


線
( "128 to 255" → "0 to 255" )

線
( "0x80000H to 0xFFFFFH" → "00000H to FFFFFH" )

線
( "0x80000000H to 0xFFFFFFFFH" → "00000000H to FFFFFFFFH" )


線
( "• Ri" → "• Ri, Rj" )


線
( "• ( )............. indicates indirect addressing, which values reading or loading from/to the memory address
where the registers within ( ) or the formula indicate.
• { }............ indicates the calculation priority; ( ) is used for specifying indiiirect address" is added. )



APPENDIX A Instruction Lists

@® Format Column

AtoF ... format TY PE-A through F as described in Section "6.1 Instruction Formats'.

@® OP Column

"OP" codes have the following significance according to the format type listed in the format column.

Format types A, C, D.....2-digit hexadecimal value represents 8-bit "OP" code.

Format type B ................ 2-digit hexadecimal value represents higher 4 bits of "OP" code, lower 4 bits
"0".

Format typeE ................ 4-digit hexadecimal value with higher 2 digits representing higher 8-bits of
"OP" code, next digit representing 4-bit "SUB-OP" code, last digit "0".

Format type F................. 2-digit hexadecimal code representing higher 5 bits of "OP" code, remainder
"0".

@ Cycle (CYC) Column

Numerical values represent machine cycles, variables "a" through "d" have a minimum value of 1.

- TR Memory access cycles, may be increased by "Ready" function.

Do Memory access cycles, may be increased by "Ready" function. Note that if the next
instruction references a register involved in a "LD" operation an interlock will be applied,
increasing the number of execution cyclesfrom 1 cycleto 2 cycles.

Coveererrereens If the instruction immediately after is a read or write operation involving register "R15", or
the "SSP" or "USP" pointers, or the instruction format is TYPE-A, an interlock will be
applied, increasing the number of execution cyclesfrom 1 cycleto 2 cycles.

Lo [T If the instruction immediately after references the "MDH/MDL" register, interlock will be
applied, increasing the number of execution cyclesfrom 1 cycleto 2 cycles.
When dedicated register such as TBR, RP, USP, SSP, MDH, and MDL is accessed with ST
Rs, @-R15 command just after DIV1 command, an interlock is always brought, increasing
the number of execution cyclesfrom 1 cycleto 2 cycles.

@ FLAG Column

264

Corrreeeenn, varies according to results of operation.
— e no change

0o value becomes "0".

i value becomes "1".


線
( "special" → "dedicated" )



APPENDIX A Instruction Lists

A.2 Instruction Lists

The full instruction set of the FR family CPU is 165 instructions, consisting of the following

sixteen types. These instructions are listed in Table A.2-1 through Table A.2-16.

* Add/Subtract Instructions (10 Instructions)

e Compare Instructions (3 Instructions)

» Logical Calculation Instructions (12 Instructions)

» Bit Operation Instructions (8 Instructions)

e Multiply/Divide Instructions (10 Instructions)

» Shift Instructions (9 Instructions)

* Immediate Data Transfer Instructions (3 Instructions)

* Memory Load Instructions (13 Instructions)

* Memory Store Instructions (13 Instructions)

* Inter-register Transfer Instructions / Dedicated Register Transfer Instructions
(5 Instructions)

* Non-delayed Branching Instructions (23 Instructions)

» Delayed Branching Instructions (20 Instructions)

» Direct Addressing Instructions (14 Instructions)

* Resource Instructions (2 Instructions)

* Coprocessor Instructions (4 Instructions)

e Other Instructions (16 Instructions)

B Instruction Lists

Table A.2-1 Add/Subtract Instructions (10 Instructions)

. FLAG .

Mnemonic Format OoP CYC NZVC Operation Remarks
ADD Rj,Ri A A6 1 CCCC |Ri+Rj—Ri
ADD #i4,Ri C A4 1 CCCC |Ri +extu(i4) — Ri Zero extension
ADD2 #i4,Ri C A5 1 CCCC |Ri +extn(i4) — Ri Minus extension
ADDC Rj,Ri A A7 1 CCCC |Ri+Rj+c—Ri Add with carry
ADDN Rj,Ri A A2 1 ———— |Ri+Rj— Ri
ADDN #i4,Ri C A0 1 ———— |Ri +extu(i4) — Ri Zero extension
ADDNZ2 #i4, Ri C Al 1 ———— |Ri +extn(i4) — Ri Minus extension
SUB Rj,Ri A AC 1 CCCC |Ri—-Rj—>Ri
SUBC Rj,Ri A AD 1 CCCC |[Ri-Rj—-c—Ri Subtract with carry
SUBN Rj, Ri A AE 1 ———— |Ri-Rj—>Ri

265



APPENDIX A Instruction Lists

Table A.2-2 Compare Instructions (3 Instructions)

. FLAG .
Mnemonic Format OoP cYc NZVC Operation Remarks
CMP Rj,Ri A AA 1 Cccc Ri —Rj
CMP #i4, Ri C A8 1 CCccc Ri — extu(i4) Zero extension
CMP2 #i4, Ri C A9 1 CCccc Ri — extn(i4) Minus extension
Table A.2-3 Logical Calculation Instructions (12 Instructions)
. FLAG .
Mnemonic Format OP CcYC Operation RMW Remarks
NzVvC
AND Rj,Ri A 82 1 CC-- |Ri &=Rj - Word
AND Rj, @Ri A 84 1+2a | CC—-- |(R)&=Rj O [Word
ANDH Rj, @Ri A 85 1+2a | CC—-- |(R)&=Rj O |Haf-word
ANDB Rj, @Ri A 86 1+2a | CC-- |(Ri) &=Rj O |Byte
OR Rj,Ri A 92 1 CC-- |Ri |FRj - Word
OR Rj, @Ri A 94 1+2a | CC-- |(R)|=Rj O |Word
ORH Rj, @Ri A 95 1+2a | CC—-— |(R) |FRi O |Half-word
ORB Rj, @Ri A 96 1+2a | CC-- |(R)|=Rj O |Byte
EOR Rj,Ri A 9A 1 CC-- |Ri "=Rj - Word
EOR Rj, @QRi A 9C 1+2a | CC—-- |(R)"=Rj O |Word
EORH Rj, @RI A 9D 1+2a | CC—-- |(R)"=Rj O |Haf-word
EORB Rj, @Ri A 9E 1+2a | CC—-- |(R)"=Rj O |Byte
Table A.2-4 Bit Operation Instructions (8 Instructions)
. FLAG .
Mnemonic Format| OP | CYC Operation RMW Remarks
NzVvC
| BANDL #u4, @Ri (u4: 0 to OF) C 80 | 1+2a | ———— |(Ri)&={ FO+u4} O |Lower 4-bit operation
| |BANDH #u4, @Ri (u4: 0 to OF) C 8l | 1+2za | ———— (RV&={{W<<d}+Fr} | O Higher 4-bit operation
BORL #u4, @Ri (u4: 0to OFy) C N | 1+2a| ———— [(Ri) |=u4d O |Lower 4-hit operation
| BORH #u4, @Ri (u4: 0 to OF) C 91 | 1+2a | ———— [(Ri) | ={ud<<4} O [Higher 4-bit operation
BEORL #u4, @Ri (u4: 0 to OF) C 98 | 1+2a| ———— |(Ri)"=u4d O |Lower 4-hit operation
| [BEORH #u4, @Ri (u4: 0 to OF) C 99 | 1+2a | ———— [(Ri) " = {ud<<4} O |Higher 4-bit operation
BTSTL #u4, @Ri (u4: 0to OFy) C 88 | 2+a | OC—- [(Ri) & u4 - |Lower 4-bit test
| BTSTH #u4, @Ri (u4: 0 to OF) C 89 | 2+a | CC—— [(Ri) & {ud<<4} - |Higher 4-bit test

266



線
( "(Ri)&=(F0H+u4)" → "(Ri)&={F0H+u4}" )


線
( "(Ri)&=((u4<<4)+FH)" → "(Ri)&={{u4<<4}+FH}" )


線
( "(Ri) | = (u4<<4)" → "(Ri) | = {u4<<4}" )


線
( "(Ri) ^ = (u4<<4)" → "(Ri) ^ = {u4<<4}" )


線
( "(Ri) & (u4<<4)" → "(Ri) & {u4<<4}" )



Table A.2-5 Multiply/Divide Instructions (10 Instructions)

APPENDIX A Instruction Lists

. FLAG .
Mnemonic Format oP cYc NZVC Operation Remarks
MUL Rj,Ri A AF 5 CCC- |RjxRi — MDH,MDL |32bits x 32bits=64bits
MULU Rj,Ri A AB 5 CCC- |RjxRi — MDH,MDL |Unsigned
MULH Rj,Ri A BF 3 CC-- |RjxRi » MDL 16bhits x 16bits=32bits
MULUH Rj,Ri A BB 3 CC-- |RjxRi - MDL Unsigned
DIVOS Ri E 97-4 1 - Step operation
DIVOU Ri E 97-5 1 —_———— 32bits/32bits=32bits
DIV1 Ri E 97-6 d -C-C
DIV2 Ri E 97-7 1 -C-C
DIV3 E 9F-6 1 -
DIV4S E 9F-7 1 -
Table A.2-6 Shift Instructions (9 Instructions)
. FLAG .
Mnemonic Format OoP CYC NZVC Operation Remarks
LSL Rj,Ri A B6 1 CC-C |Ri<<Rj—Ri Logical shift
LSL #u4, Ri C B4 1 CC-C |Ri<cu4—Ri
LSL2 #u4, Ri C B5 1 CC-C |Ri <<{u4+16} — Ri
LSR Rj,Ri A B2 1 CC-C |Ri>>Rj—Ri Logical shift
LSR #u4, Ri C BO 1 CC-C |[Ri>>u4—Ri
LSR2 #u4, Ri C B1 1 CC-C [Ri>>{u4+16} — Ri
ASR R}, Ri A BA 1 CC-C |Ri>>Rj—Ri Arithmetic shift
ASR #u4, Ri C B8 1 CC-C |[Ri>>u4—>Ri
ASR2 #u4, Ri C B9 1 CC-C |Ri>>{u4+16} — Ri

Table A.2-7 Immediate Data Transfer Instructions (Immediate Transfer Instructions for Immediate Value
Set or 16-bit or 32-bit Values) (3 Instructions)

: FLAG .
Mnemonic Format OoP CYC NZVC Operation Remarks
LDI:32 #32, Ri E 9F-8 3 ———— |iI2>Ri
LDI:20 #i20, Ri C 9B 2 ———— |i20>Ri Higher 12 bits are zeros
LDI:8 #8 Ri B Cco 1 ———— |i8>Ri Higher 24 bits are zeros

267


線
( "Ri <<(u4+16) → Ri" → "Ri <<{u4+16} → Ri" )
( "Ri >>(u4+16) → Ri" → "Ri >>{u4+16} → Ri" )
( "Ri >>(u4+16) → Ri" → "Ri >>{u4+16} → Ri" )



APPENDIX A Instruction Lists

Table A.2-8 Memory Load Instructions (13 Instructions)

Mnemonic Format OoP cYcC ;;C(é Operation Remarks
LD @R}, Ri A 04 b ——— |(R)—>Ri
LD @(R13,R)),Ri A 00 b ———— |(R13+R)) —» Ri
LD @(R14,displ0), Ri B 20 b ———— |(R14+displ0) — Ri
LD @(R15,udisp6), Ri C 03 b ———— |(R15+udisp6) — Ri
LD @R15+, Ri E 07-0 b ———— |(R15) - Ri,R15+=4
LD @R15+ Rs E 07-8 b ———— |(R15) > Rs, R15+=4 |Rs: dedicated register
LD @R15+,PS E 079 | 1+atb | CCCC |(R15) — PS, R15+=4
LDUH @Rj, Ri A 05 b ———— |(R)—~>Ri Zero extension
LDUH @(R13R)), Ri A 01 b ———— |(R13+Rj) > Ri Zero extension
LDUH @(R14,disp9), Ri B 40 b ———— |(R14+disp9) — R; Zero extension
LDUB @Rj, Ri A 06 b ———— |(R)—~>Ri Zero extension
LDUB @(R13,R)), Ri A 02 b ———— |(R13+R)) > Ri Zero extension
LDUB @(R14,disp8), Ri B 60 b ———— |(R14+disp8) — Ri Zero extension

Note:

The field "08" in the TYPE-B instruction format and the field "u4" in the TYPE-C format have the

following relation to the values "disp8" to "disp10" in assembly notation.
e disp8 — 08=disp8

e disp9 — 08=disp9 >> 1
e displ0 — 08=disp10 >> 2
e udisp6 — ud=udisp6 >> 2

268



Table A.2-9 Memory Store Instructions (13 Instructions)

APPENDIX A Instruction Lists

. FLAG .

Mnemonic Format OP |CYC NZVC Operation Remarks
ST Ri, @R A 14 a —-——— [Ri=> (R)) Word
ST Ri, @(R13,R)) A 10 a ———— |Ri = (R13+Rj) Word
ST Ri, @(R14,displ10) B 30 a ———— |Ri = (R14+disp10) Word
ST Ri, @(R15,udisp6) C 13 a ———— |Ri = (R15+udisp6)
ST Ri, @-R15 E 17-0 a ———— |R15—=4,Ri — (R15)
ST Rs, @-R15 E 17-8 a ———— |R15=4,Rs— (R15) Rs: dedicated register
ST PS, @-R15 E 17-9 a ———— |R15—=4, PS — (R15)
STH Ri, @R] A 15 a | ———- |Ri—>(Rj) Half-word
STH Ri, @(R13,R)) A 11 a | ———- |Ri - (R13+R)) Half-word
STH Ri, @(R14,disp9) B 50 a | ———- |Ri = (R14+disp9) Half-word
STB Ri, @Rj A 16 a ———— |[Ri=> (R)) Byte
STB Ri, @(R13,R)) A 12 a ———— |Ri = (R13+Rj) Byte
STB Ri, @(R14,disp8) B 70 a ———— |Ri = (R14+disp8) Byte
Note:

The field "08" in the TYPE-B instruction format and the field "u4" in the TYPE-C format have the

following relation to the values "disp8" to "disp10" in assembly notation.
e disp8 — 08=disp8

e disp9 — 08=disp9 >> 1

e displ0 — 08=disp10 >> 2
e udisp6 — ud=udisp6 >> 2

Table A.2-10 Inter-register Transfer Instructions / Dedicated Register Transfer Instructions (5 Instructions)

Mnemonic Format OP |CYC ll\:lli'\A/(CB: Operation Remarks
MOV Rj, Ri A 8B 1| -——=|Ri—>Ri Transfer between general-purpose registers
MOV Rs, Ri A B7 1| -——=|Rs—>Ri Rs: dedicated register
MOV Ri, Rs A B3 1| -—-|Ri—>Rs Rs: dedicated register
MOV PS, Ri E 17-1 1 | -———-|PS>Ri
MOV Ri, PS E 07-1 c | CCCC |Ri —»PS




APPENDIX A Instruction Lists

Table A.2-11 Non-delayed Branching Instructions (23 Instructions)

. FLAG .
Mnemonic Format OP | CYC NZVC Operation Remarks

JMP @RI E 97-0 2 —-——— |Ri>PC

CALL label12 F DO 2 ———— |PC+2 - RP ,PC+2+rel11x2 — PC

CALL @Ri E 97-1 2 ———— |PC+2—= RP,Ri — PC

RET E 97-2 2 -——— |RP> PC Return

INT #u8 D 1F 3+3a | ———— |SSP—=4,PS — (SSP),SSP—=4,PC+2 — (SSP),
0— 1| flag, 0 —» Sflag,
(TBR+3FC-u8x4) — PC

INTE E 9F-3 | 3+3a | ———— |SSP—=4,PS — (SSP),SSP—=4,PC+2 — (SSP),
0— Sflag, 4 - ILM,
(TBR+3D8-u8x4) — PC

RETI E 97-3 | 2+2a | CCCC |[(R15) — PC,R15+=4,(R15) — PS,R15+=4

BNO label9 D El 1 ———— [No branch

BRA label9 D EO 2 ———— |PC+2+rel8x2 — PC

BEQ label9 D E2 2/11 ———— |PC+2+rel8x2 — PCif Z==1

BNE label9 D E3 2/11 ———— |PC+2+rel8x2 — PCif Z==0

BC label9 D E4 2/11 ———— |PC+2+rel8x2 — PCif C==1

BNC label9 D E5 2/11 ———— |PC+2+rel8x2 — PCif C==

BN label9 D E6 2/11 ———— |PC+2+rel8x2 — PCif N==1

BP label9 D E7 2/11 ———— |PC+2+rel8x2 — PC if N==0

BV label9 D E8 2/11 ———— |PC+2+rel8x2 — PCif V==1

BNV label9 D E9 2/11 ———— |PC+2+rel8x2 — PCif V==0

BLT label9 D EA 2/11 ———— |PC+2+rel8x2 — PCif V xor N==1

BGE label9 D EB 2/11 ———— |PC+2+rel8x2 — PCif V xor N==0

BLE label9 D EC 2/11 ———— |PC+2+rel8x2 — PCif (V xor N) or Z==1

BGT label9 D ED 2/11 ———— |PC+2+rel8x2 — PCif (V xor N) or Z==0

BLS label9 D EE 2/11 ———— |PC+2+rel8x2 — PCif Cor Z==1

BHI label9 D EF 2/11 ———— |PC+2+rel8x2 — PCif C or Z==

Notes:

e The field "rel8" in the TYPE-D instruction format and the field "rel11" in the TYPE-F format have
the following relation to the values "label9" and "label12" in assembly notation.

label9 — rel8=(label9 — PC — 2)/2

label12 — rel11=(labell2 — PC — 2)/2
e The value "2/1" in the cycle(CYC) column indicates "2" cycles if branching, "1" if not branching.
« Itis necessary to set the S flag to "0" for RETI execution.

270



APPENDIX A Instruction Lists

Table A.2-12 Delayed Branching Instructions (20 Instructions)

Mnemonic Format OoP cYc E;'\A/(é Operation Remarks
JMP.D @RI E 9F-0 1 -——— |Ri»>PC
CALL:D label12 F D8 1 ———— |PC+4 — RP ,PC+2+rel11x2 — PC
CALL:D @Ri E 9F-1 1 ———— |PC+4—> RP Ri — PC
RET:D E 9F-2 1 —-——— |RP>PC Return
BNO:D label9 D F1 1 ———— |Nobranch
BRA:D label9 D FO 1 ———— |PC+2+rel8x2 — PC
BEQ:D label9 D F2 1 ———— |PC+2+rel8x2 — PCif Z==1
BNE:D label9 D F3 1 ———— |PC+2+rel8x2 — PCif Z==
BC.D label9 D F4 1 ———— |PC+2+rel8x2 — PCif C==1
BNC:D label9 D F5 1 ———— |PC+2+rel8x2 — PCif C==
BN:D  label9 D F6 1 ———— |PC+2+rel8x2 — PCif N==1
BP.D label9 D F7 1 ———— |PC+2+rel8x2 — PCif N==
BV:D label9 D F8 1 ———— |PC+2+rel8x2 — PCif V==1
BNV:D label9 D F9 1 ———— |PC+2+rel8x2 — PCif V==
BLT:D label9 D FA 1 ———— |PC+2+rel8x2 — PCif V xor N==1
BGE:D label9 D FB 1 ———— |PC+2+rel8x2 — PCif V xor N==
BLE:D label9 D FC 1 ———— |PC+2+rel8x2 — PCiif (V xor N) or Z==1
BGT:D label9 D FD 1 ———— |PC+2+rel8x2 — PCIif (V xor N) or Z==
BLS:D label9 D FE 1 ———— |PC+2+rel8x2 — PCif Cor Z==1
BHI:D label9 D FF 1 ———— |PC+2+rel8x2 — PCif Cor Z==
Notes:

e The field "rel8" in the TYPE-D instruction format and the field "rel11" in the TYPE-F format have
the following relation to the values "label9" and "label12" in assembly notation.

label9 — rel8=(label9 — PC — 2)/2
labell2 — rell1=(labell2 — PC - 2)/2
« Delayed branching instructions are always executed after the following instruction (the delay slot).

< In order to occupy a delay slot, an instruction must satisfy either of the following conditions. Any
other instructions used in this position may not be executed according to definition.

- Instructions other than branching instructions, with the cycle (CYC) column showing the value
ny

- Instructions with the cycle (CYC) column showing the value "a", "b", "c", or "d".

271



APPENDIX A Instruction Lists

Table A.2-13 Direct Addressing Instructions (14 Instructions)

Mnemonic Format OP |CYC ll\:lli'\A/(CB: Operation Remarks
DMOV @dirl0, R13 D 08 b ———— |[(dir10) -» R13 Word
DMOV R13, @dirl0 D 18 a | ———— | R13— (dir10) Word
DMOV @dirl0, @R13+ D oC 2a | ———— |(dir1l0) —» (R13),R13+=4 |Word
DMOV @R13+, @dirl0 D 1C 2a | ———— [(R13) — (dir10),R13+=4 |Word
DMOV @dirl0, @-R15 D 0B 2a | ———— |R15=4,(dir10) - (R15) |Word
DMOV @R15+, @dirl0 D 1B 2a | ———— |[(R15) — (dir10),R15+=4 |Word
DMOVH @dir9, R13 D 09 b ———— [(dir9) - R13 Half-word
DMOVH R13, @dir9 D 19 a | ———— | R13— (dir9) Half-word
DMOVH @dir9, @R13+ D 0D 2a | ———— |(dir9) —» (R13),R13+=2 Half-word
DMOVH @R13+, @dir9 D 1D 2a | ———— |(R13) — (dir9),R13+=2 Half-word
DMOVB @dir8, R13 D 0A b ———— |(dir8) -» R13 Byte
DMOVB R13, @dir8 D 1A a | ———— | R13— (dir8) Byte
DMOVB @dir8, @R13+ D OE 2a | ———— |(dir8) —» (R13),R13++ Byte
DMOVB @R13+, @dir8 D 1E 2a | ———— [(R13) — (dir8),R13++ Byte

Note:

The field "dir* in the TYPE-D instruction format has the following relation to the values "dir8" to
"dir10" in assembly notation.

e dir8 — dir=dir8

e dir9 — dir=dir9 >> 1

e dirl0 — dir=dirl0 >> 2

Table A.2-14 Resource Instructions (2 Instructions)

. FLAG .
Mnemonic Format OoP CYC NZVC Operation Remarks

LDRES @Ri+, #u4 C BC a ————|(Ri) - resource u4 ud: Channel number
Ri +=4

STRES #u4, @Ri+ C BD a ———— |Resource u4 — (Ri) u4: Channel number
Ri +=4

Table A.2-15 Coprocessor Instructions (4 Instructions)

. FLAG .
Mnemonic Format OP | CYC NZVC Operation Remarks

COPOP #u4, #CC, CRj, CRi E 9F-C | 2+a | ———— |Designates operation

COPLD #u4, #CC, R}, CRi E 9F-D | 1+2a | ———— |Rj > CRi

COPST #u4, #CC, CRj, Ri E 9FE | 1+2a | ———— |[CRj > Ri

COPSV #u4, #CC, CRj, Ri E OF-F | 1+2a| ————- |[CRj > Ri No error trap generated

272


線
("disp8" → "dir8"), ("disp9" → "dir9"), ("disp10" → "dir10")



Table A.2-16 Other Instructions (16 Instructions)

APPENDIX A Instruction Lists

Mnemonic Format| OP | CYC FLAG Operation RMW Remarks
NzVvC

NOP E 9F-A 1 ———— |No change -

ANDCCR #u8 D 83 c CCCC |CCRandu8 — CCR -

ORCCR #u8 D 93 c CCCC |CCRor u8 — CCR -

STILM #u8 D 87 1 ———— |u8 = ILM - Sets"ILM" immediate

value

ADDSP #s10 D A3 1 ———— |R15+=510 - "ADD SP" instruction

EXTSB Ri E 97-8 1 ———— |Sign extension 8 — 32bit -

EXTUB Ri E 97-9 1 ———— |Zero extension 8 — 32bit -

EXTSH Ri E 97-A 1 ———— |Sign extension 16 — 32bit -

EXTUH Ri E 97-B 1 ———— |Zero extension 16 — 32bit -

LDMO (reglist) D 8C |[See ———— |(R15) - regligt, - Load multiple RO to R7

notes increment R15

LDM1 (reglist) D 8D |below.| ———— [(R15) — reglist, - Load multiple R8 to R15
increment R15

STMO (reglist) D 8E |See ———— |Decrement R15 - Store multiple RO to R7

notes reglist —» (R15)

STM1 (reglist) D 8F |below.| ———— |Decrement R15 - Store multiple R8 to R15
reglist —» (R15)

ENTER #ul0 D OF 1+a | ———— |R14 — (R15-4), - Function entry processing
R15-4 — R14,
R15-ul0 — R15

LEAVE E 9F-9 b ———— |R14+ 4 — R15, - Function exit processing
(R15-4) » R14

XCHB @Rj, Ri A 8A 2a | ———— |Ri> TEMP O Byte datafor semaphore
(Rj) = Ri processing
TEMP - (Rj)

Notes:

In the "ADD SP" instruction, the field "s8" in the TYPE-D instruction format has the following
relation to the value "s10" in assembly notation.

s10 —» s8=s10>> 2

In the "ENTER" instruction, the field "u8" in the TYPE-D instruction format has the following
relation to the value "ul0" in assembly notation.

ulO — u8=ul0 >>2

The number of execution cycles for the "LDMO" (reglist) and "LDM1" (reglist) instructions is:
ax (n-1)+b+1cycles, where "n" is the number of registers designated.

The number of execution cycles for the "STMO0" (reglist) and "STM1" (reglist) instructions is:

a x n+1 cycles, where "n" is the number of registers designated.

273


線
("i8" → "u8")


APPENDIX B Instruction Maps

APPENDIX B Instruction Maps

This appendix presents FR family instruction map and "E" format.

B.1 Instruction Map
B.2 "E" Format

274



APPENDIX B Instruction Maps

Table B.1-1 Instruction Map

Instruction Map

This section shows instruction maps for FR family CPU.

B Instruction Map

B.1

6loqe| (1s11681)
Q:iHg| 6leqel IHE HHHINW| Ty INN| ewioy 3 LNLS 8n# INI| OLn#HILINI
6leqe] Ho'™ (1s11601) 8P® +€1H®| +€1HD '8P®
Q:s79| 6lege| S18 15'Td NENS 8403 ONLS 9AONa 8AONa
6leqe| +HHO YN Ho' (1s11601) 6PD +EIHD +€1HO
Q:19d| 69| 1Dg S3HLS| W'H 08NS HHO3 LNa1 HAOWQ| ‘6P® HAOWA
619ge| P +HE® (1s11601) OlP®+ELH® | +ELH®0LPD
a:37d| 6edeI 38| zjeqe S34A1| W ans|HeH Ho3 oNal AOWA AOWA
6loqe| @Tv0 Ty 15021 0IP@+SIH® | SHH-®'0LP®
a:39d| 6lege| 394 HNINW | 19" NN 0z:a71| '™H'" AOW AOWA AOWA
HHe 8p® ‘€iY €1y
6leqe| 4:118|  6leqel 119 W'Y "SY| " dWO| WY HO3 gHOX 9AONd| ‘8P® GAONA
6loqe| 1y HOPN| " v# 6P® ‘cid ey
Q:ANE| 619Gel ANg 2HSY | v 2dND HYO39 HLSLg HAOWA| ‘6P® HAOWA
61ege| HO'vN#|  HO'vN# . . OlP@'eld|  €ld'0LP®
ang|  eleqel Ag 1Y% HSY| Y4 dWO|  THO3g qusig| | (8dsie | g(gdsip | - (pdsip | 1d'(edsip (o1dsip | (o1dsip AOWa AOWA
vIH)® ‘1 rid)e | vidod rid)® v | Ve an
6leqe| . . aLs anail HLS HNa1 | @Y 1S
Q:da|  6lege| dg d'sH AOW| 1dld 0aav|  vewsoy 3| gn# WIILS w0} 3 Jew.o} 3
6leqe| Ho'ly
a:Ng|  6leqel Ng Hfd 1S7| 1™y aav|ige Y a"o 9aNY lHo'id g1s| 4o anal
6leqe| Ho' Ho'lY
Q:ONg| 61298 ONE IH'yN# 21S7| 1W pi# 2aav HHO HANY H® 1" HLS| W' lH® HNa1
6loqe|
a:08| 6IRGeI 08|  z|jeqe IH'pN#1S7| WY AaY| MO TH HO | M@ Ty ANV Ho'" 1s| Mo ai
6loqe| TIvo ols# 8ni gni (9Pn'siH)® 114*(gdsipn
a:3aNg| 6legel aNg SHH AOW dsaav HOOHO| HOOANY ‘Y 1S| ‘Si)® a1
6loqe| (ly'erw)o | 1 (W'etd)®
q:03d| 6leqe| 03g W'H ¥s1| WY Naav| " "O| ™" anv ‘Id 918 anan
6loqe| WP HOYNE| M vn# (lger)o | 1 (W'etd)®
Q:ONg| 6loge| ONg H'yN# 2HST ZNaay Hdog HaNve ‘4 HLS HNA1
6loqe] HO 'vh# HO ‘vn# (H'erd)@ 5]
Q:vdg| 6logel vdg IH'pN# US| P NaQY 508 T1aNvE 1y 18| (W'ery)® a1
4 3 a g v 6 8 L 9 S ¥ € 4 L 0
siq 7 JoybiH

275

Lower 4 bits




APPENDIX B Instruction Maps

B.2 "E" Format

This section shows "E" format for FR family CPU.

W "E" Format
Table B.2-1 "E" Format
Higher 8 bits
07 17 97 9F
0 LD @R15+,Ri ST Ri,@-R15 JMP @Ri JMP:D @Ri
1 MOV Ri,PS MOV PSR CALL @RI CALL:D @Ri
2 - - RET RET:D
3 - - RETI INTE
4 — - DIVOS Ri -
5 - - DIVOU Ri -
6 - - DIVl Ri DIV3
7 — - DIV2 Ri DIV4S
% 8 LD @R15+,Rs ST Rs,@-R15 EXTSB Ri LDI:32 #32,Ri
Z;r) 9 LD @R15+,PS ST PS,@-R15 EXTUB Ri LEAVE
2 A - _ EXTSH Ri NOP
B - - EXTUH Ri -
c ~ ~ ~ COPOP #ué,
#CC,CR|,CRi
b ~ ~ ~ COPLD #u4,
#CC,R},CRi
E ~ ~ ~ COPST #u4,
#CC,CR},Ri
. ~ ~ ~ COPSV #u4,
#CC,CR},Ri
-: Undefined

276



線
"- : Undefined" is added.



INDEX

INDEX

The index follows on the next page.
This is listed in alphabetical order.

277



INDEX

Index
A
ADD
ADD (Add 4-bit Immediate Data to Destination
REGISIEN) ..o 73
ADD (Add Word Data of Source Register to
Destination Register) .......ccccveevvvveeeennee. 72
ADD2 (Add 4-bit Immediate Data to Destination
REGISLEN) ..o 74

Add Stack Pointer
ADDSP (Add Stack Pointer and Immediate Data)

.......................................................... 241
Add Word Data
ADD (Add Word Data of Source Register to
Destination Register) ........ooovevvvvieieeennn. 72
ADDC (Add Word Dataof Source Register and Carry
Bit to Destination Register) .............cc..... 75
ADDN (Add Word Data of Source Register to
Destination Register) ........ooovevvvvieeeeenenn. 76
ADDC
ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register) .................... 75
ADDN
ADDN (Add Immediate Data to Destination Register)
............................................................ 77
ADDN (Add Word Data of Source Register to
Destination Register) .......uvvveeiiiiieinnnnnnn. 76
ADDN2 (Add Immediate Data to Destination
REQISIEN ..o 78
ADDSP
ADDSP (Add Stack Pointer and Immediate Data)
.......................................................... 241
Alignment
Data Restrictions on Word Alignment................... 11
Program Restrictions on Word Alignment ............ 11
AND
AND (And Word Data of Source Register to Datain
VK= 10] V) 86
AND (And Word Data of Source Register to
Destination Register) .......uvvveviceiininnnnnnn. 85

And Byte Data
ANDB (And Byte Data of Source Register to Datain
MEMOIY) .ot 20
And Condition Code
ANDCCR (And Condition Code Register and
Immediate Data)...........cccovevvvvvveerennnnn. 238
And Half-word Data
ANDH (And Half-word Data of Source Register to
Datain Memory).........eeveeeiieiiiieieieeeenn. 88

278

And Word Data
AND (And Word Data of Source Register to Datain

MEMONY) .. 86
AND (And Word Data of Source Register to
Destination Register) ........ooeevviiiveeinnnne. 85
ANDB
ANDB (And Byte Data of Source Register to Datain
MEMOIY) ..cceeeee e 90
ANDCCR
ANDCCR (And Condition Code Register and
Immediate Data) ..........ccoevvvvuvvvirieennn. 238
ANDH
ANDH (And Half-word Data of Source Register to
Datain Memory) ......coovcvveeeevniiieneenninne, 88

Arithmetic Shift
ASR (Arithmetic Shift to the Right Direction)
................................................. 144, 145
ASR2 (Arithmetic Shift to the Right Direction)

......................................................... 146
ASR
ASR (Arithmetic Shift to the Right Direction)
................................................. 144, 145
ASR2 (Arithmetic Shift to the Right Direction)
......................................................... 146
B
BANDH
BANDH (And 4-bit Immediate Data to Higher 4 Bits
of Byte Datain Memory)..................... 108
BANDL
BANDL (And4-bit Immediate Datato Lower 4 Bits of
Byte Datain Memory).........cccccvvvvvnnnnn 106
Bcc
Bcc (Branch Relative if Condition Satisfied) ...... 194
Bce:D (Branch Relative if Condition Satisfied)
......................................................... 203
BEORH
BEORH (Eor 4-bit Immediate Datato Higher 4 Bits of
Byte Datain Memory).......ccccoccvveeeennnns 116
BEORL
BEORL (Eor 4-bit Immediate Datato L ower 4 Bits of
Byte Datain Memory).........ccccvvvvvnnnnn. 114
Bit Order
Bit Order and Byte Order .........ccceveeeeiniiiiiniiinnen. 10

Bit Pattern
Relation between Bit Pattern "Rs" and Register Values
........................................................................ 65



Bit Patterns
Relation between Bit Patterns "Ri" and "Rj" and
Register Values.........cceveeeiiiiiiiiieeen. 64
BORH
BORH (Or 4-bit Immediate Data to Higher 4 Bits of
Byte Datain Memory)........cccevvvveeeenne 112
BORL
BORL (Or 4-bit Immediate Datato Lower 4 Bits of
Byte Datain Memory) .......cccceeeeeeeeennn.. 110
Branch Relative
Bcc (Branch Relative if Condition Satisfied) ...... 194
Bce:D (Branch Relative if Condition Satisfied)

.......................................................... 203
BTSTH
BTSTH (Test Higher 4 Bits of Byte Datain Memory)
.......................................................... 119
BTSTL
BTSTL (Test Lower 4 Bits of Byte Datain Memory)
.......................................................... 118
Bypassing
Register Bypassing.........cooooiiiiiiiieeiiiieee s 56
Byte Order
Bit Order and Byte Order ..........cccvveeviviineninnen, 10
C
CALL
CALL (Cdl Subrouting) ..........ccccvvveennnen. 185, 186
CALL:D (Call Subrouting)............cceeeennee. 197, 199
Carry Bit
ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register) .................... 75

SUBC (Subtract Word Data in Source Register and
Carry Bit from Destination Register)....... 80

CCR
Condition Code Register (CCR: Bit 07 to bit 00)

CMP
CMP (Compare Immediate Data of Source Register
and Destination Register)...........ccoevveeees 83
CMP (Compare Word Datain Source Register and
Destination Register) .......ceeveeveeeieieeennn. 82
CMP2 (Compare Immediate Data and Destination
(RS 0[S = ) [ 84

Compare Immediate Data
CMP (Compare Immediate Data of Source Register

and Destination Register) .........ccccveeeennn. 83
CMP2 (Compare Immediate Data and Destination
REGIStE) .o 84

Compare Word Data
CMP (Compare Word Datain Source Register and
Destination Register) ........cccovvvevvvvvennnnn. 82

Condition Code Register
Condition Code Register (CCR: Bit 07 to bit 00)

INDEX

COPLD
COPLD (Load 32-bit Data from Register to
Coprocessor RegiSter) .......vveevieeeeeennnnnee 231
COPOP
COPOP (Coprocessor Operation)...........c.ceeene.. 229
Coprocessor
"PC" Values Saved for Coprocessor Error Traps
............................................................ 49
"PC" Vaues Saved for Coprocessor Not Present Traps
............................................................ 48
Conditions for Generation of Coprocessor Error Traps
............................................................ 49
Conditions for Generation of Coprocessor Not Found
TrAPS . ettt 48
COPLD (Load 32-bit Data from Register to
Coprocessor Register) .......ocoeveeeeeeenenn.. 231
COPOP (Coprocessor Operation).............cccc...... 229
Coprocessor Error Trap Operation........................ 49
Coprocessor Not Found Trap Operation................ 48
COPST (Store 32-bit Datafrom Coprocessor Register
toRegister) .ooooeeiiiiii 233
COPSV (Save 32-hit Datafrom Coprocessor Register
toRegister) .ooooeeiiiiii, 235
Overview of Coprocessor Error Traps................... 49
Overview of Coprocessor Not Found Traps........... 48
Results of Coprocessor Operationsafter aCoprocessor
Error Trap...ccoovv e 49
Saving and Restoring Coprocessor Error Information
............................................................ 50
COPST
COPST (Store 32-bit Datafrom Coprocessor Register
O REGISIEN) e 233
General-purpose Registers during Execution of
"COPST/COPSV" Ingtructions................ 48
COPSV
COPSV (Save 32-bit Datafrom Coprocessor Register
O REQISEN) .evveieiiiiiieee e 235
General-purpose Registers during Execution of
"COPST/COPSV" Ingtructions................ 48
CPU
Features of the FR Family CPU Core...................... 2
Initialization of CPU Internal Register Vaues at Reset
............................................................ 33
Sample Configuration of the FR Family CPU.......... 4
D
Dedicated Registers
Dedicated REQISIErS ....ccooeiiiiiiiiiiiieeee e 17
Delay Slots
Instructions Prohibited in Delay Slots................... 58

Undefined Instructions Placed in Delay Slots......... 43

Delayed Branching Instructions
Examples of Processing Delayed Branching
INSEFUCLIONS ... 61

279



INDEX

Examples of Programing Delayed Branching

INSLFUCIONS....ceeiiiiieiic e 62
Overview of Branching with Delayed Branching

INSLFUCHIONS....ceeiiiiieeie e 58
Restrictions on Interrupts during Processing of

Delayed Branching Instructions.............. 59

Destination Register
ADD (Add 4-bit Immediate Data to Destination

REGISLEN) ..o 73
ADD (Add Word Data of Source Register to
Destination Register) .......cccceeevvvveeeennen. 72
ADD2 (Add 4-bit Immediate Data to Destination
REGISIEN) ..o 74
ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register) .................... 75
ADDN (Add Immediate Data to Destination Register)
............................................................ 77
ADDN (Add Word Data of Source Register to
Destination Register) .......cccceeevvvvereennnee. 76
ADDNZ2 (Add Immediate Data to Destination
REGISLEN) ..o 78
AND (And Word Data of Source Register to
Destination Register) .......ccccveevvvveeeennnne. 85
CMP (Compare Immediate Data of Source Register
and Destination Register) ........covcvveeeenne 83
CMP (Compare Word Datain Source Register and
Destination Register) .......cccceeevvvvereennne. 82
CMP2 (Compare Immediate Data and Destination
REGISIEN) ..o 84
EOR (Exclusive Or Word Data of Source Register to
Destination Register) .......cccceeevvvveeeennee. 99
LDI:20 (Load Immediate 20-bit Data to Destination
REGISIEN) ..o 148
LDI:32 (Load Immediate 32-bit Data to Destination
REGISIEN) ..o 147
LDI:8 (Load Immediate 8-bit Data to Destination
REGISIEN) oo 149
MOV (MoveWord Datain Program Status Register to
Destination Register) ........c.ceeevviiveeeeenns 180
MOV (Move Word Datain Source Register to
Destination Register) ........... 178,179, 181
OR (Or Word Data of Source Register to Destination
REGISIEN) ..o 92
SUB (Subtract Word Data in Source Register from
Destination Register) .......ccccveevvvveeeennee. 79
SUBN (Subtract Word Datain Source Register from
Destination Register) .......ccccveevvvveeeennnee. 81
Direct Address
Direct AddreSS Ar€a.........vvvveeiiiieeieiiieeeee e 7

DMOQV (Move Word Datafrom Direct Address to
Post Increment Register Indirect Address)

DMOQV (MoveWord Datafrom Direct Addressto Pre-
decrement Register Indirect Address)

280

DMOV (Move Word Data from Direct Address to

REGISLE) .o, 205
DMOV (Move Word Data from Register to Direct
AdAress) ....eveveieiieieeiiieeee e 206

DMOVB (Move Byte Data from Direct Address to

Post Increment Register Indirect Address)
......................................................... 223

DMOVB (Move Byte Data from Direct Address to
REGISE) .o 221

DMOVB (Move Byte Data from Register to Direct
AdAress) ....veeeeieieeieeiiieiieeee e 222
DMOVH (MoveHalf-word Datafrom Direct Address
to Post Increment Register Indirect Address)

......................................................... 217
DMOVH (MoveHalf-word Datafrom Direct Address
O REGISIEN) ., 215
DMOVH (Move Half-word Data from Register to
Direct Address)....cccveveeeeniiiiiiiiiieeeenn. 216
DIV
DIVOS (Initia Setting Up for Signed Division)
......................................................... 128
DIVOU (Initial Setting Up for Unsigned Division)
......................................................... 130
DIV1 (Main Process of DiviSion) ..........cccceueee. 132
DIV2 (Correction when Remainder isQ) ............ 134
DIV 3 (Correction when Remainder isQ) ............ 136
DIV4S (Correction Answer for Signed Division)
......................................................... 137
Division
DIVOS (Initial Setting Up for Signed Division)
......................................................... 128
DIVOU (Initial Setting Up for Unsigned Division)
......................................................... 130
DIV1 (Main Process of Division) ................eee.. 132

DMOV
DMOV (Move Word Data from Direct Address to
Post Increment Register Indirect Address)
......................................................... 207
DMOV (Move Word Datafrom Direct Addressto Pre-
decrement Register Indirect Address).... 211
DMOV (Move Word Data from Direct Address to
REGISLE) .o, 205
DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)

................................................. 209, 213
DMOV (Move Word Data from Register to Direct
AdAress) ....eveeeeeeieieeiiieiieee e 206

DMOVB
DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)

......................................................... 223
DMOVB (Move Byte Data from Direct Addressto
REGISE) .o 221

DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
......................................................... 225



DMOVB (Move Byte Data from Register to Direct
AdAress).....coooiiiiiiiiiiieeee s 222
DMOVH
DMOVH (MoveHaf-word Datafrom Direct Address
to Post Increment Register Indirect Address)

.......................................................... 217
DMOVH (MoveHaf-word Datafrom Direct Address
t0 REQISIEN) e 215

DMOVH (Move Half-word Datafrom Post | ncrement
Register Indirect Addressto Direct Address)

.......................................................... 219
DMOVH (Move Haf-word Data from Register to
Direct Address)..........coeevvvvveeenniinenenn. 216
E
E Format
"B FOMMAE vuveveeeeieie e 276
EIT
Basic Operationsin "EIT" Processing .................. 34
EIT handler
Recovery from EIT handler..........cccceeeeennnnee 28, 36
Emulator
INTE (Software Interrupt for Emulator) ............. 190
ENTER
ENTER (Enter FUNction) ..........ccuvvveeeieieeeninnn. 254
Enter Function
ENTER (Enter FUNCLION) .......ccvvviiiiieiiieeee e 254
EOR
EOR (Exclusive Or Word Data of Source Register to
Datain Memory).......cccccvevceiiininiennnn. 100
EOR (Exclusive Or Word Data of Source Register to
Destination Register) .......cceeveeveieieieeeeenn. 99
EORB
EORB (Exclusive Or Byte Data of Source Register to
Datain Memory).......cccceeeveeeeiiiiivnnen. 104
EORH
EORH (Exclusive Or Half-word Data of Source
Register to Datain Memory) ................ 102

Error Information
Saving and Restoring Coprocessor Error Information

............................................................ 50
Error Trap
"PC" Values Saved for Coprocessor Error Traps
............................................................ 49
Conditions for Generation of Coprocessor Error Traps
............................................................ 49
Coprocessor Error Trap Operation................eee.... 49
Overview of Coprocessor Error Traps.................. 49
Resultsof Coprocessor Operations after aCoprocessor
Error Trap ...oooeeeeeeeiiiieeee e 49
Exception
"PC" Values Saved for Undefined Instruction
EXCEPLioNS......cccvvvvvieeeeeeee e 43
Factors Causing Exception Processing ................. 42

INDEX

How to Use Undefined Instruction Exceptions....... 43
Operations of Undefined Instruction Exceptions....43
Overview of Exception Processing.........cccccceeenee 42
Overview of Undefined Instruction Exceptions......43
Timeto Start of Undefined Instruction Exception

Processing........cccvveeeeeeeieeeeieniiiiieeeeen 43
Exchange Byte Data
XCHB (Exchange Byte Data) ............cccovvvvveeennns 258

Exclusive Or Byte Data
EORB (Exclusive Or Byte Data of Source Register to
Datain Memory) ........vvveveeeiiiieneinennn. 104
Exclusive Or Half-word Data
EORH (Exclusive Or Half-word Data of Source
Register to Datain Memory)................. 102

Exclusive Or Word Data
EOR (Exclusive Or Word Data of Source Register to

Datain Memory) ........cccovvoveeeeniniieeeenns 100
EOR (Exclusive Or Word Data of Source Register to
Destination Register)........covvvevvvvvinennnnnn. 99
Execution
"PC" Vaues Saved for "INT" Instruction Execution
............................................................ 45
"PC" Values Saved for "INTE" Instruction Execution
............................................................ 46

External Interrupts
Relation of Step Trace Trapsto "NMI" and External

INtErmuUPtS ... 47
EXTSB
EXTSB (Sign Extend from Byte Datato Word Data)
.......................................................... 242
EXTSH
EXTSH (Sign Extend from Byte Data to Word Data)
.......................................................... 244
EXTUB
EXTUB (Unsign Extend from Byte Data to Word
Dat@) ..ocvveeeeeeee it 243
EXTUH
EXTUH (Unsigned Extend from Byte Datato Word
(DL v>) R 245
F
Format
"E" FOMMEL.....coi et 276
FR Family
Features of the FR Family CPU Core...................... 2
FR Family Register Configuration........................ 14
Sample Configuration of an FR Family Device........ 3
Sample Configuration of the FR Family CPU.......... 4
G

General-purpose Registers
General-purpose Registers during Execution of
"COPST/COPSV" Ingtructions................ 48
Initial Vaue of General-purpose Registers............ 16



INDEX

Interlocking Produced by Reference to "R15" and
General-purpose Registers after Changing

the"S" Flag ....covveiiieeiiiii e 57
Overview of General-purpose Registers................ 15
Specia Uses of General-purpose Registers........... 15
H
Hazards
Overview of Register Hazards..........ccccccvveeeeinnnns 56
I
ILM
Interrupt Level Mask Register (ILM: Bit 20 to bit 16)
............................................................ 19

ADDSP (Add Stack Pointer and Immediate Data) 241
ANDCCR (And Condition Code Register and
Immediate Data)...........cooevevvvvieeeeeennnn. 238
BANDH (And 4-bit Immediate Datato Higher 4 Bits
of Byte Datain Memory) ..............o...... 108
BANDL (And 4-bit Immediate Datato L ower 4 Bitsof
Byte Datain Memory) ...........ccccuvveeee. 106
BEORH (Eor 4-bit Immediate Datato Higher 4 Bits of
Byte Datain Memory) ...........ccccuvveeee. 116
BEORL (Eor 4-bit Immediate Datato L ower 4 Bits of
Byte Datain Memory) ...........ccccuvvneee. 114
BORH (Or 4-bit Immediate Data to Higher 4 Bits of
Byte Datain Memory) ...........ccccuvveeee. 112
BORL (Or 4-bit Immediate Datato Lower 4 Bits of
Byte Datain Memory) ...........ccccuvveeee. 110
ORCCR (Or Condition Code Register and Immediate

Indirect Address
DMOV (Move Word Datafrom Post Increment
Register Indirect Addressto Direct Address)
.................................................. 209, 213
DMOVB (Move Byte Data from Post | ncrement
Register Indirect Addressto Direct Address)

DMOVH (Move Half-word Datafrom Post | ncrement
Register Indirect Addressto Direct Address)

.......................................................... 219
Instruction
"INT" Instruction Operation.............ccceeeeeeeeeeenene. 45
"INTE" Instruction Operation..............cccceeevereene. 46
"PC" Values Saved for "INT" Instruction Execution
............................................................ 45

282

"PC" Vaues Saved for "INTE" Instruction Execution

........................................................... 46
"PC" Values Saved for Undefined Instruction
EXCEPLIONS ... 43
Examples of Processing Delayed Branching
INSEFUCHIONS ..o 61
Examples of Processing Non-delayed Branching
INSEFUCHIONS ..o 60
Examples of Programing Delayed Branching
INSEFUCHIONS ..o 62
General-purpose Registers during Execution of
"COPST/COPSV" Instructions............... 48
How to Use Undefined Instruction Exceptions...... 43
INStruction FOrMALS.........ccvveiriieeieeiiiieeee e 64
INSErUCEION LiStS....vvveeiiiiiiiie i 265
Instruction Notation FOrmats.............cccvvernvvneren. 66
Instructions Prohibited in Delay Slots................... 58
Operations of Undefined Instruction Exceptions
........................................................... 43
Overview of Branching with Delayed Branching
INSEFUCHIONS ..o 58
Overview of Branching with Non-delayed Branching
INSEFUCHIONS ..o 58
Overview of the"INT" Instruction....................... 45
Overview of the"INTE" Instruction..................... 46
Overview of Undefined Instruction Exceptions..... 43
Precautionary Information for Use of "INT"
INSEFUCHIONS ..o 45
Precautionary Information for Use of "INTE"
INSEFUCHIONS ..o 46
Restrictions on Interrupts during Processing of
Delayed Branching Instructions.............. 59
Symbols Used in Instruction ListS .........ccceeeeee... 263
Timeto Start of Trap Processing for "INT"
INSEFUCHIONS ..o 45
Timeto Start of Trap Processing for "INTE"
INSEFUCHIONS ..o 46
Time to Start of Undefined Instruction Exception
ProCcessing........ceeeeevieeeiiiiiiiiiiiiiieeeeeeeenn 43
Undefined Instructions Placed in Delay Slots........ 43
Use of Operand Information Contained in Instructions
............................................................. 7

Instruction Execution
"PC" Vaues Saved for "INT" Instruction Execution

........................................................... 45
"PC" Values Saved for "INTE" Instruction Execution
........................................................... 46
Instruction Map
Instruction Map ........ccooveevviiiiiieeeeen 275
INT
"INT" Instruction Operation............ccceeeeeeeeeeennnn. 45
"PC" Values Saved for "INT" Instruction Execution
........................................................... 45
INT (Software Interrupt)...........eeeeeeeeeeenninininnnns 188
Overview of the"INT" Instruction.............cc........ 45



Precautionary Information for Use of "INT"

INSLFUCLIONS. ... 45
Timeto Start of Trap Processing for "INT"
INSLFUCLIONS. ... 45
INTE
"INTE" Instruction Operation............ccccovcuveeeeenns 46
"PC" Values Saved for "INTE" Instruction Execution
............................................................ 46
INTE (Software Interrupt for Emulator) ............. 190
Overview of the"INTE" Ingtruction..................... 46
Precautionary Information for Use of "INTE"
INSEFUCLIONS.......eeiiiiieeiee e 46
Timeto Start of Trap Processing for "INTE"
INSEFUCLIONS. ... 46
Interlocking
INtEXOCKING .....cceeeeeie e 57

Interlocking Produced by Reference to "R15" and
General-purpose Registers after Changing

the"S " Flag.......ocoveeiie e 57
Interrupt
"PC" Values Saved for Interrupts...........cccvveeeeen. 39
"PC" Values Saved for Non-maskable Interrupts
............................................................ 41
Conditionsfor Acceptance of Non-maskable Interrupt
REQUESES......coiiiieeiiiiii e 40
Conditions for Acceptance of User Interrupt Requests
............................................................ 38
How to Use Non-maskable Interrupts................... 41
How to Use User INterrupts.........cceeeeeeeeeneeeneeeenn. 39
INT (Software Interrupt) ..........eeveeeeeeeeeeiiniiiinens 188
INTE (Software Interrupt for Emulator) ............. 190
Interrupts during Execution of Stepwise Division
Programs.........cceueveviiiiiiiiiiiineee e 37
Operation Following Acceptance of a Non-maskable
INEEITUPE ..o 40
Operation Following Acceptance of an User Interrupt
............................................................ 38
Overview of Interrupt Processing ..........ccccuvveeeeen. 37
Overview of Non-maskable Interrupts.................. 40
Overview of User Interrupts..........coooovevvvvivieenenn. 38
Precautionary Information for Interrupt Processing in
Pipeline Operation ............cooovcivvieeneen. 55
Relation of Step Trace Trapsto "NMI" and External
INEEITUPES. ..o 47
Restrictions on Interrupts during Processing of
Delayed Branching Instructions.............. 59
RETI (Return from INterrupt) ..........eceeveeeeennennne 192
Sources Of INEErTUPLS .......vvveeeeieiieeeeee e, 37
Timeto Start of Interrupt Processing.................... 39
Timeto Start of Non-maskable Interrupt Processing
............................................................ 40

Interrupt Level Mask Register
Interrupt Level Mask Register (ILM: Bit 20 to bit 16)

............................................................ 19
STILM (Set Immediate Data to Interrupt Level Mask
REGISLE) oo 240

INDEX

J
JMP
JMP (JUMP) oo 184
JMP:D (JUMP) e 196
Jump
IMP (JUMP) et 184
L
LD
LD (Load Word Datain Memory to Program Status
REQISIE) oo 157
LD (Load Word Datain Memory to Register)
................. 150, 151, 152, 153, 154, 155
LDI
LDI:20 (Load Immediate 20-bit Data to Destination
REGISEN) oo 148
LDI:32 (Load Immediate 32-bit Data to Destination
REGISEN) .o 147
LDI:8 (Load Immediate 8-bit Data to Destination
REGISEN) .o 149
LDM
LDMO (Load Multiple RegiSters) .........ccvveeeennee. 246
LDM1 (Load Multiple RegiSters) .........ccvveeeennee. 248
LDRES
LDRES (Load Word Datain Memory to Resource)
.......................................................... 227
LDUB
LDUB (Load Byte Datain Memory to Register)
.......................................... 162, 163, 164
LDUH
LDUH (Load Half-word Datain Memory to Register)
.......................................... 159, 160, 161
LEAVE
LEAVE (Leave FUNCLION).......cceeieieieieieeeeeeeee, 256
Leave Function
LEAVE (Leave FUNCLION)........ccuvviiieeiieeaeeeie 256

Left Direction
LSL (Logical Shift to the Left Direction) ....138, 139

LSL2 (Logical Shift to the Left Direction) .......... 140
Load
COPLD (Load 32-bit Data from Register to
Coprocessor Register) .......ocoeveeeeeeeeeen. 231

Load Byte Data
LDUB (Load Byte Datain Memory to Register)
.......................................... 162, 163, 164
Load Half-word Data
LDUH (Load Half-word Datain Memory to Register)
.......................................... 159, 160, 161
Load Immediate
LDI:20 (Load Immediate 20-bit Data to Destination

REQISIE) oo 148
LDI:32 (Load Immediate 32-bit Data to Destination
REQISIE) oo 147

283



INDEX

REGISEN) ..o 149

Load Multiple Registers
LDMO (Load Multiple Registers)........cccveeeeenneee. 246
LDM1 (Load Multiple Registers)........cccuveeeenneee. 248

Load Word Data
LD (Load Word Datain Memory to Program Status

LD (Load Word Datain Memory to Register)

.................. 150, 151, 152, 153, 154, 155
LDRES (Load Word Datain Memory to Resource)

Logical Shift
LSL (Logica Shift to the Left Direction)

LSL2 (Logical Shift to the Left Direction).......... 140
LSR (Logical Shift to the Right Direction)

LSL

M
MD
Configuration of the "MD" Register..................... 30
Memory Space
MEMOrY SPaCE........cccvvviiiiiiiiiiiiiire e 6
MOV
MOV (MoveWord Datain Program Status Register to
Destination Register) ........vvveeciieieinnnnn. 180
MOV (Move Word Datain Source Register to
Destination Register) ........... 178, 179, 181
MOV (Move Word Datain Source Register to
Program Status Register).........cccoeeennn.. 182

Move Byte Data
DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)

.......................................................... 223
DMOVB (Move Byte Data from Direct Address to
REGISEN) ..o 221

DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)

.......................................................... 225
DMOVB (Move Byte Data from Register to Direct
AdAress) .....cceeveeeeiiieieeeeeee 222

Move Half-word Data
DMOVH (Move Half-word Datafrom Direct Address
to Post Increment Register Indirect Address)

284

DMOVH (MoveHalf-word Datafrom Direct Address
O REGISIEN) .., 215
DMOVH (Move Half-word Datafrom Post | ncrement
Register Indirect Addressto Direct Address)

......................................................... 219
DMOVH (Move Half-word Data from Register to
Direct AdAress)....cceveveeeeniiiiiciiiiieeeeen. 216

Move Word Data
DMOV (Move Word Data from Direct Address to
Post Increment Register Indirect Address)
......................................................... 207
DMOV (MoveWord Datafrom Direct Addressto Pre-
decrement Register Indirect Address).... 211
DMOV (Move Word Data from Direct Address to
REGISLEN) ...t 205
DMOV (Move Word Data from Post Increment
Register Indirect Addressto Direct Address)

................................................. 209, 213
DMOV (Move Word Data from Register to Direct
AAAreSS) ..oovveiiiiiiie 206
MOV (MoveWord Datain Program Status Register to
Destination Register) ........evvevvivveeeennns 180
MOV (Move Word Datain Source Register to
Destination Register)........... 178,179, 181
MOV (Move Word Datain Source Register to
Program Status Register) .........cccceeeennee 182
MUL
MUL (Multiply Word Data)..........cccoeeerverernnnnn. 120
MULH
MULH (Multiply Half-word Data) .................... 124
Multiple Processes
Priority of Multiple Processes ...........cccccvevvvvneen. 52
Multiple Registers
LDMO (Load Multiple Registers) ..........cvvvuennnee. 246
LDM1 (Load Multiple Registers) ..........cvvvuennnee. 248
STMO (Store Multiple Registers)...........oovveveenes 250
STM1 (Store Multiple Registers)..........coovveeeeens 252

Multiplication/Division Register
Overview of the Multiplication/Division Register

Multiply Half-word Data

MULH (Multiply Half-word Data) .................... 124
Multiply Unsigned Half-word Data

MULUH (Multiply Unsigned Half-word Data)

......................................................... 126
Multiply Unsigned Word Data
MULU (Multiply Unsigned Word Dat@) ............ 122
Multiply Word Data
MUL (Multiply Word Data)............cccvveeernninnen. 120
MULU
MULU (Multiply Unsigned Word Data) ............ 122
MULUH
MULUH (Multiply Unsigned Half-word Data)
......................................................... 126



N
NMI
Relation of Step Trace Trapsto "NMI" and External
INEEITUPES. .. 47
No Operation
NOP (NO Operation) ..........ceeeerivreeeerniiieneeenn 237

Non-delayed Branching Instructions
Examples of Processing Non-delayed Branching

INSLFUCLIONS......cevvevviiieiiiree e 60
Overview of Branching with Non-delayed Branching
INSLFUCLIONS......cevveveiiiiiiiree e 58

Non-maskable Interrupt
Conditionsfor Acceptance of Non-maskable Interrupt
REQUESES......coeiiieieiiiiiii e 40
Operation Following Acceptance of a Non-maskable
INEEITUPE ..o 40
Timeto Start of Non-maskable Interrupt Processing
............................................................ 40

Non-maskable Interrupts
"PC" Values Saved for Non-maskable Interrupts

............................................................ 41
How to Use Non-maskable Interrupts................... 41
Overview of Non-maskable Interrupts.................. 40
NOP
NOP (NO Operation) .........cceevrereeeennnrnenesnnnnnns 237
O
Operand
Use of Operand Information Contained in Instructions
.............................................................. 7
OR
OR (Or Word Data of Source Register to Datain
MEMONY) ..ottt 93
OR (Or Word Data of Source Register to Destination
REGISLEN) .o 92

Or Byte Data
ORB (Or Byte Data of Source Register to Datain
1Y T= 010 10] ) P 97
Or Condition Code
ORCCR (Or Condition Code Register and Immediate
DL - | PRSP 239
Or Half-word Data
ORH (Or Half-word Data of Source Register to Data
INMEMONY) ..oeeeeiieiiiiieeeee e 95
Or Word Data
OR (Or Word Data of Source Register to Datain
1= 010 10] ) I 93
OR (Or Word Data of Source Register to Destination
REGISIEr) .o 92
ORB
ORB (Or Byte Data of Source Register to Datain
MEMOIY) ..ot 97

INDEX

ORCCR
ORCCR (Or Condition Code Register and Immediate
DL 7 | PSRRI 239
ORH
ORH (Or Half-word Data of Source Register to Data
INMEMONY) ..o 95
P
PC
"PC" Values Saved for "INT" Instruction Execution
............................................................ 45
"PC" Values Saved for "INTE" Instruction Execution
............................................................ 46
"PC" Vaues Saved for Coprocessor Error Traps
............................................................ 49
"PC" Vaues Saved for Coprocessor Not Present Traps
............................................................ 48
"PC" Values Saved for Interrupts................cc... 39
"PC" Vaues Saved for Non-maskable Interrupts
............................................................ 41
"PC" Values Saved for Step Trace Traps............... 47
"PC" Values Saved for Undefined Instruction
EXCEPLioNS......cceeviiiieeeeeeee e 43
Pipeline
How to Avoid Mismatched Pipeline Conditions ....55
Overview of Pipeline Operation..........cccccceeeeeennnne 54
Precautionary Information for Interrupt Processing in
Pipeline Operation ..........ccccoovevcivvvienneen. 55
Priority
Priority of Multiple Processes..........ccocvveveerniineen. 52
Priority of Simultaneous Occurrences................... 51
Reset Priority Level ..., 33
Program Counter
Overview of the Program Counter ........................ 18
Program Counter FUNCLIONS ........ccooevviiiiiiiieeeeeen. 18

Program Status Register
LD (Load Word Datain Memory to Program Status

REGISEN) ..o 157
MOV (MoveWord Datain Program Status Register to
Destination Register).......ccooevvviiiiinnnen. 180
MOV (Move Word Datain Source Register to
Program Status Register) ............c......... 182
Overview of Program Status Register ................... 19
Program Status Register Configuration................. 19
ST (Store Word Data in Program Status Register to
MEMONY)...cceiiiiiiiiiiiieeee e 171
Unused Bitsin the Program Status Register ........... 19
PS Register
Note ON PS REGISIES ...ooooiiiiiiieiiie e, 22
R
Register
Configuration of the "MD" Register ..................... 30

285



INDEX

Interrupt Level Mask Register (ILM: Bit 20 to bit 16)

............................................................ 19
LD (Load Word Datain Memory to Program Status
REGISEN) ..o 157
NoOte 0N PS REGISLEN ......ccoi it 22
Overview of the Multiplication/Division Register
............................................................ 29
Overview of the Table Base Register.................... 23
Precautions Related to the Table Base Register .....24
STILM (Set Immediate Datato Interrupt Level Mask
REGISEN) ..o e 240
System Condition Code Register (SCR: Bit 10 to
DIt 08) ..o 20
Table Base Register Configuration....................... 24
Table Base Register Functions............ccccuvveeeeeeeen. 24
Register Bypassing
Register Bypassing.........ccvvveeeinivieieeiiiieeee e 56
Register Hazards
Overview of Register Hazards........................... 56
Remainder
DIV2 (Correction when Remainder is0)............. 134
DIV 3 (Correction when Remainder is0)............. 136
Reset
Initialization of CPU Internal Register Values at Reset
............................................................ 33
Reset Operations..........oocvveeeeeiiiieeee i 33
Reset Priority Level ........ccvvveiiiiieiiee e, 33
Restoring
Saving and Restoring Coprocessor Error Information
............................................................ 50
Restrictions
Data Restrictions on Word Alignment .................. 11
Program Restrictions on Word Alignment ............ 11
Restrictions on Interrupts during Processing of
Delayed Branching Instructions.............. 59
RET
RET (Return from Subrouting) .............cccceeeneee. 187
RET:D (Return from Subrouting)....................... 201
RETI
RETI (Return from Interrupt) .........cccceeeveeinennnnn. 192
Return Pointer
Overview of the Return Pointer ...........ccccccoeeeenie 25
Return Pointer Configuration............cccccoeeeeevneee. 26
Return Pointer FUNCLIONS.............evviiiiiiiiiiiiiiiae 26
Right Direction
ASR (Arithmetic Shift to the Right Direction)
.................................................. 144, 145
ASR2 (Arithmetic Shift to the Right Direction)
.......................................................... 146
LSR (Logical Shift to the Right Direction)
.................................................. 141, 142
LSR2 (Logical Shift to the Right Direction)........ 143

286

S
Sample
Sample Configuration of an FR Family Device....... 3
Sample Configuration of the FR Family CPU ......... 4
Save
COPSV (Save 32-bit Datafrom Coprocessor Register
tO REGISIEN) oo, 235
Saving
Saving and Restoring Coprocessor Error Information
........................................................... 50
SCR
System Condition Code Register (SCR: Bit 10 to
DIt 08) ....eeeiiiieiiiie e 20

Set Immediate Data
STILM (Set Immediate Datato Interrupt Level Mask
REGISLEN) ...t 240

Sign Extend
EXTSB (Sign Extend from Byte Datato Word Data)

......................................................... 242
EXTSH (Sign Extend from Byte Data to Word Data)
......................................................... 244
Signed Division
DIVOS (Initia Setting Up for Signed Division)
......................................................... 128
DIV4S (Correction Answer for Signed Division)
......................................................... 137
Simultaneous Occurrences
Priority of Simultaneous Occurrences.................. 51
Software Interrupt
INT (Software Interrupt)...........cevvvevvvvevvvnnnnnnnnn. 188
INTE (Software Interrupt for Emulator) ............. 190
Source Register
ADD (Add Word Data of Source Register to
Destination Register)........cccvvveeeeeeeeennn. 72
ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register).........ccc........ 75
ADDN (Add Word Data of Source Register to
Destination Register)........cccvvveeeeeeeeannn. 76
AND (And Word Data of Source Register to Datain
MEMOIY) .t 86
AND (And Word Data of Source Register to
Destination Register)........cccvvveeeeeeeeaennn. 85
ANDB (And Byte Data of Source Register to Datain
MEMOIY) .t 90
ANDH (And Half-word Data of Source Register to
Datain Memory) .......ccooovevviiiieeeneeeennn. 88
CMP (Compare Immediate Data of Source Register
and Destination Register)..........ccoeeenneee 83
CMP (Compare Word Data in Source Register and
Destination Register)........cccouvveveeeeeenenn. 82
EOR (Exclusive Or Word Data of Source Register to
Datain Memory) ......cccccoevevviiviiieenenn. 100
EOR (Exclusive Or Word Data of Source Register to
Destination Register)........cccvvveeeeeeeennnn. 99



EORB (Exclusive Or Byte Data of Source Register to

Datain Memory).......cccceeeeeeeiiiiiinnnn. 104
EORH (Exclusive Or Half-word Data of Source
Register to Datain Memory) ................ 102
MOV (Move Word Data in Source Register to
Destination Registey)............ 178,179, 181
MOV (Move Word Datain Source Register to
Program Status Register) ..................... 182
OR (Or Word Data of Source Register to Datain
MEMOIY) ..ottt 93
OR (Or Word Data of Source Register to Destination
REGIStE) .o, 92
ORB (Or Byte Data of Source Register to Datain
MEMOIY) ..ottt 97
ORH (Or Half-word Data of Source Register to Data
INMEMONY) ..cooeiiiiiiiiiieeee e 95
SUB (Subtract Word Data in Source Register from
Destination Register) ........cooovvviviiienneen. 79

SUBC (Subtract Word Data in Source Register and
Carry Bit from Destination Register)....... 80
SUBN (Subtract Word Datain Source Register from
Destination Register) ........ccoovvviiiviennenn. 81
SSP
System Stack Pointer (SSP),User Stack Pointer (USP)
............................................................ 27
ST
ST (Store Word Datain Program Status Register to
1Y 1= 1010] ) 171
ST (Store Word Data in Register to Memory)
.................. 165, 166, 167, 168, 169, 170
Stack Pointer
Functions of the System Stack Pointer and User Stack

POINTES .o 28
Relation between "R15" and Stack Pointer ........... 16
Stack Pointer Configuration ................ccccuvvveeeee.n. 28
System Stack Pointer (SSP),User Stack Pointer (USP)
............................................................ 27

STB
STB (Store Byte Datain Register to Memory)
.......................................... 175, 176, 177

Step Trace
"PC" Values Saved for Step Trace Traps.............. 47
Conditions for Generation of Step Trace Traps..... 47
Overview of Step Trace Traps......cccvvvvvvvvevevnnnnnnn. 47
Precautionary Information for Use of Step Trace Traps
............................................................ 47
Relation of Step Trace Trapsto "NMI" and External
INEEITUPLS. ..o 47
Step Trace Trap Operation...........ceeevvvvvvvevnennnnnnn. 47
Stepwise Division Programs
Interrupts during Execution of Stepwise Division
Programs.........cceueeeiiiiiiiiiiiiieeee e 37

STH
STH (Store Half-word Data in Register to Memory)
.......................................... 172,173,174

INDEX

STILM
STILM (Set Immediate Data to Interrupt Level Mask
REGISLEN) .o 240
STM
STMO (Store Multiple Registers) ..........ccceeeenneee. 250
STM1 (Store Multiple Registers) .........cccceeeenneee. 252
Store
COPST (Store 32-bit Datafrom Coprocessor Register
TOREQISIEN) oo, 233

Store Byte Data
STB (Store Byte Data in Register to Memory)
.......................................... 175, 176, 177
Store Half-word Data
STH (Store Half-word Datain Register to Memory)
.......................................... 172,173, 174
Store Multiple Registers
STMO (Store Multiple Registers) .........coeee... 250
STM1 (Store Multiple Registers) ..........ccooee.. 252
Store Word Data
ST (Store Word Data in Program Status Register to

ST (Store Word Datain Register to Memory)
.................. 165, 166, 167, 168, 169, 170
STRES (Store Word Data in Resource to Memory)

STRES
STRES (Store Word Datain Resource to Memory)

SUB
SUB (Subtract Word Datain Source Register from
Destination RegiSter).......uuvuviiiiiieieenennn. 79
SUBC
SUBC (Subtract Word Data in Source Register and
Carry Bit from Destination Register) ....... 80

SUBN
SUBN (Subtract Word Datain Source Register from
Destination Register)........coovvevvviveneennnnn. 81
Subroutine
CALL (Call Subrouting).............ccccvvvveneeen. 185, 186
CALL:D (Cal Subrouting) ...........cccvveneen. 197, 199
RET (Return from Subrouting)........................... 187
RET:D (Return from Subrouting) ....................... 201

Subtract Word Data
SUB (Subtract Word Datain Source Register from
Destination Register)........coovveiviviieeeennn. 79
SUBC (Subtract Word Data in Source Register and
Carry Bit from Destination Register) ....... 80
SUBN (Subtract Word Data in Source Register from
Destination Register)........coooveivviiieeeenenn. 81

System Condition Code Register
System Condition Code Register (SCR: Bit 10 to

287



INDEX

System Stack Pointer
Functions of the System Stack Pointer and User Stack

POINTEN e 28
System Stack Pointer (SSP),User Stack Pointer (USP)
............................................................ 27
T
Table Base Register
Overview of the Table Base Register.................... 23
Precautions Related to the Table Base Register ..... 24
Table Base Register Configuration....................... 24
Table Base Register Functions.............ccccveeeennee. 24
Test
BTSTH (Test Higher 4 Bits of Byte Datain Memory)
.......................................................... 119
BTSTL (Test Lower 4 Bits of Byte Datain Memory)
.......................................................... 118
Trap
"PC" Values Saved for Coprocessor Error Traps
............................................................ 49
"PC" Values Saved for Coprocessor Not Present Traps
............................................................ 48
"PC" Values Saved for Step Trace Traps.............. a7
Conditions for Generation of Coprocessor Error Traps
............................................................ 49
Conditions for Generation of Coprocessor Not Found
TrADS. . 48
Conditions for Generation of Step Trace Traps......47
Coprocessor Error Trap Operation .........cccccceeenee 49
Coprocessor Not Found Trap Operation ............... 48
Overview of Coprocessor Error Traps.................. 49
Overview of Coprocessor Not Found Traps.......... 48
Overview of Step Trace TrapS.........evveeeeeeeeernennns a7
Overview Of Traps.......ccevieeeeeiiiiiciiiieieee e 44
Precautionary Information for Use of Step Trace Traps
............................................................ 47
Relation of Step Trace Trapsto "NMI" and External
INtErmUPES. ..o 47
Resultsof Coprocessor Operationsafter aCoprocessor
Error Trap......cooveveeeeiiiiiiee e 49
SOUFCES Of TraPS ...evvveeeeeiieeee e et e e e e 44
Step Trace Trap Operation ..........cccuvveeeeeeeeeennennne a7
Timeto Start of Trap Processing for "INT"
INSLFUCIONS. ...ceeiiiiieece e 45
Timeto Start of Trap Processing for "INTE"
INSLIUCIONS. ...ceeiiiiieiic e 46
U
Undefined Instruction Exception
"PC" Vaues Saved for Undefined Instruction
[S(= o)1 o] = T 43

288

How to Use Undefined Instruction Exceptions...... 43

Operations of Undefined Instruction Exceptions
........................................................... 43

Overview of Undefined Instruction Exceptions..... 43

Time to Start of Undefined Instruction Exception
ProCessing........ceeeeeveeeeiniiiiiiiiiiieeeeeeenn 43

Undefined Instructions
Undefined Instructions Placed in Delay Slots........ 43

Unsign Extend
EXTUB (Unsign Extend from Byte Datato Word
(DL - | RSP 243

Unsigned Division
DIVOU (Initial Setting Up for Unsigned Division)
......................................................... 130
Unsigned Extend
EXTUH (Unsigned Extend from Byte Datato Word
DF: 7>\ [T 245

User Interrupt
Conditions for Acceptance of User Interrupt Requests

........................................................... 38
How to Use User Interrupts........ccooevevvevviinieeinennnes 39
Operation Following Acceptance of an User Interrupt
........................................................... 38
Overview of User Interrupts..........ccooeevvvvvviviennnns 38

User Stack Pointer
Functions of the System Stack Pointer and User Stack

POINLEN ... 28
System Stack Pointer (SSP),User Stack Pointer (USP)
........................................................... 27
USP
System Stack Pointer (SSP),User Stack Pointer (USP)
........................................................... 27
Y
Vector Table
Contents of Vector Table Areas..........cccceveeeiinnnnne 9
Overview of Vector Table Areas.........ccccceeeeeviennee 8
Unused Vector Table Area.........ccevveeeeeiieeiinniinins 6
Vector Table Arealnitial Value............cccceeeeeeeeennn. 9
Vector Table Configuration ...............cvvvvvvevnennnnn. 35
w
Word Alignment
Data Restrictions on Word Alignment.................. 11
Program Restrictions on Word Alignment ............ 11
X
XCHB
XCHB (Exchange Byte Dat)..........cccccvvveeeeennnn. 258



CM71-00101-5E

FUJITSU SEMICONDUCTOR « CONTROLLER MANUAL
FR Family

32-BIT MICROCONTROLLER

INSTRUCTION MANUAL

December 2007 the fifth edition

Published FUJITSU LIMITED Electronic Devices

Edited Strategic Business Development Dept







	CHAPTER 1 FR FAMILY OVERVIEW
	1.1 Features of the FR Family CPU Core
	1.2 Sample Configuration of an FR Family Device
	1.3 Sample Configuration of the FR Family CPU

	CHAPTER 2 MEMORY ARCHITECTURE
	2.1 FR Family Memory Space
	2.1.1 Direct Address Area
	2.1.2 Vector Table Area

	2.2 Bit Order and Byte Order
	2.3 Word Alignment

	CHAPTER 3 REGISTER DESCRIPTIONS
	3.1 FR Family Register Configuration
	3.2 General-purpose Registers
	3.3 Dedicated Registers
	3.3.1 Program Counter (PC)
	3.3.2 Program Status (PS)
	3.3.3 Table Base Register (TBR)
	3.3.4 Return Pointer (RP)
	3.3.5 System Stack Pointer (SSP), User Stack Pointer (USP)
	3.3.6 Multiplication/Division Register (MD)


	CHAPTER 4 RESET AND "EIT" PROCESSING
	4.1 Reset Processing
	4.2 Basic Operations in "EIT" Processing
	4.3 Interrupts
	4.3.1 User Interrupts
	4.3.2 Non-maskable Interrupts (NMI)

	4.4 Exception Processing
	4.4.1 Undefined Instruction Exceptions

	4.5 Traps
	4.5.1 "INT" Instructions
	4.5.2 "INTE" Instruction
	4.5.3 Step Trace Traps
	4.5.4 Coprocessor Not Found Traps
	4.5.5 Coprocessor Error Trap

	4.6 Priority Levels

	CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
	5.1 Pipeline Operation
	5.2 Pipeline Operation and Interrupt Processing
	5.3 Register Hazards
	5.4 Delayed Branching Processing
	5.4.1 Processing Non-delayed Branching Instructions
	5.4.2 Processing Delayed Branching Instructions


	CHAPTER 6 INSTRUCTION OVERVIEW
	6.1 Instruction Formats
	6.2 Instruction Notation Formats

	CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
	7.1 ADD (Add Word Data of Source Register to Destination Register)
	7.2 ADD (Add 4-bit Immediate Data to Destination Register)
	7.3 ADD2 (Add 4-bit Immediate Data to Destination Register)
	7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)
	7.5 ADDN (Add Word Data of Source Register to Destination Register)
	7.6 ADDN (Add Immediate Data to Destination Register)
	7.7 ADDN2 (Add Immediate Data to Destination Register)
	7.8 SUB (Subtract Word Data in Source Register from Destination Register)
	7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination Register)
	7.10 SUBN (Subtract Word Data in Source Register from Destination Register)
	7.11 CMP (Compare Word Data in Source Register and Destination Register)
	7.12 CMP (Compare Immediate Data of Source Register and Destination Register)
	7.13 CMP2 (Compare Immediate Data and Destination Register)
	7.14 AND (And Word Data of Source Register to Destination Register)
	7.15 AND (And Word Data of Source Register to Data in Memory)
	7.16 ANDH (And Half-word Data of Source Register to Data in Memory)
	7.17 ANDB (And Byte Data of Source Register to Data in Memory)
	7.18 OR (Or Word Data of Source Register to Destination Register)
	7.19 OR (Or Word Data of Source Register to Data in Memory)
	7.20 ORH (Or Half-word Data of Source Register to Data in Memory)
	7.21 ORB (Or Byte Data of Source Register to Data in Memory)
	7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register)
	7.23 EOR (Exclusive Or Word Data of Source Register to Data in Memory)
	7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)
	7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory)
	7.26 BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
	7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
	7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
	7.29 BORH (Or 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
	7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
	7.31 BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
	7.32 BTSTL (Test Lower 4 Bits of Byte Data in Memory)
	7.33 BTSTH (Test Higher 4 Bits of Byte Data in Memory)
	7.34 MUL (Multiply Word Data)
	7.35 MULU (Multiply Unsigned Word Data)
	7.36 MULH (Multiply Half-word Data)
	7.37 MULUH (Multiply Unsigned Half-word Data)
	7.38 DIV0S (Initial Setting Up for Signed Division)
	7.39 DIV0U (Initial Setting Up for Unsigned Division)
	7.40 DIV1 (Main Process of Division)
	7.41 DIV2 (Correction when Remainder is 0)
	7.42 DIV3 (Correction when Remainder is 0)
	7.43 DIV4S (Correction Answer for Signed Division)
	7.44 LSL (Logical Shift to the Left Direction)
	7.45 LSL (Logical Shift to the Left Direction)
	7.46 LSL2 (Logical Shift to the Left Direction)
	7.47 LSR (Logical Shift to the Right Direction)
	7.48 LSR (Logical Shift to the Right Direction)
	7.49 LSR2 (Logical Shift to the Right Direction)
	7.50 ASR (Arithmetic Shift to the Right Direction)
	7.51 ASR (Arithmetic Shift to the Right Direction)
	7.52 ASR2 (Arithmetic Shift to the Right Direction)
	7.53 LDI:32 (Load Immediate 32-bit Data to Destination Register)
	7.54 LDI:20 (Load Immediate 20-bit Data to Destination Register)
	7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register)
	7.56 LD (Load Word Data in Memory to Register)
	7.57 LD (Load Word Data in Memory to Register)
	7.58 LD (Load Word Data in Memory to Register)
	7.59 LD (Load Word Data in Memory to Register)
	7.60 LD (Load Word Data in Memory to Register)
	7.61 LD (Load Word Data in Memory to Register)
	7.62 LD (Load Word Data in Memory to Program Status Register)
	7.63 LDUH (Load Half-word Data in Memory to Register)
	7.64 LDUH (Load Half-word Data in Memory to Register)
	7.65 LDUH (Load Half-word Data in Memory to Register)
	7.66 LDUB (Load Byte Data in Memory to Register)
	7.67 LDUB (Load Byte Data in Memory to Register)
	7.68 LDUB (Load Byte Data in Memory to Register)
	7.69 ST (Store Word Data in Register to Memory)
	7.70 ST (Store Word Data in Register to Memory)
	7.71 ST (Store Word Data in Register to Memory)
	7.72 ST (Store Word Data in Register to Memory)
	7.73 ST (Store Word Data in Register to Memory)
	7.74 ST (Store Word Data in Register to Memory)
	7.75 ST (Store Word Data in Program Status Register to Memory)
	7.76 STH (Store Half-word Data in Register to Memory)
	7.77 STH (Store Half-word Data in Register to Memory)
	7.78 STH (Store Half-word Data in Register to Memory)
	7.79 STB (Store Byte Data in Register to Memory)
	7.80 STB (Store Byte Data in Register to Memory)
	7.81 STB (Store Byte Data in Register to Memory)
	7.82 MOV (Move Word Data in Source Register to Destination Register)
	7.83 MOV (Move Word Data in Source Register to Destination Register)
	7.84 MOV (Move Word Data in Program Status Register to Destination Register)
	7.85 MOV (Move Word Data in Source Register to Destination Register)
	7.86 MOV (Move Word Data in Source Register to Program Status Register)
	7.87 JMP (Jump)
	7.88 CALL (Call Subroutine)
	7.89 CALL (Call Subroutine)
	7.90 RET (Return from Subroutine)
	7.91 INT (Software Interrupt)
	7.92 INTE (Software Interrupt for Emulator)
	7.93 RETI (Return from Interrupt)
	7.94 Bcc (Branch Relative if Condition Satisfied)
	7.95 JMP:D (Jump)
	7.96 CALL:D (Call Subroutine)
	7.97 CALL:D (Call Subroutine)
	7.98 RET:D (Return from Subroutine)
	7.99 Bcc:D (Branch Relative if Condition Satisfied)
	7.100 DMOV (Move Word Data from Direct Address to Register)
	7.101 DMOV (Move Word Data from Register to Direct Address)
	7.102 DMOV (Move Word Data from Direct Address to Post Increment Register Indirect Address)
	7.103 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
	7.104 DMOV (Move Word Data from Direct Address to Pre-decrement Register Indirect Address)
	7.105 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
	7.106 DMOVH (Move Half-word Data from Direct Address to Register)
	7.107 DMOVH (Move Half-word Data from Register to Direct Address)
	7.108 DMOVH (Move Half-word Data from Direct Address to Post Increment Register Indirect Address)
	7.109 DMOVH (Move Half-word Data from Post Increment Register Indirect Address to Direct Address)
	7.110 DMOVB (Move Byte Data from Direct Address to Register)
	7.111 DMOVB (Move Byte Data from Register to Direct Address)
	7.112 DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect Address)
	7.113 DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct Address)
	7.114 LDRES (Load Word Data in Memory to Resource)
	7.115 STRES (Store Word Data in Resource to Memory)
	7.116 COPOP (Coprocessor Operation)
	7.117 COPLD (Load 32-bit Data from Register to Coprocessor Register)
	7.118 COPST (Store 32-bit Data from Coprocessor Register to Register)
	7.119 COPSV (Save 32-bit Data from Coprocessor Register to Register)
	7.120 NOP (No Operation)
	7.121 ANDCCR (And Condition Code Register and Immediate Data)
	7.122 ORCCR (Or Condition Code Register and Immediate Data)
	7.123 STILM (Set Immediate Data to Interrupt Level Mask Register)
	7.124 ADDSP (Add Stack Pointer and Immediate Data)
	7.125 EXTSB (Sign Extend from Byte Data to Word Data)
	7.126 EXTUB (Unsign Extend from Byte Data to Word Data)
	7.127 EXTSH (Sign Extend from Byte Data to Word Data)
	7.128 EXTUH (Unsigned Extend from Byte Data to Word Data)
	7.129 LDM0 (Load Multiple Registers)
	7.130 LDM1 (Load Multiple Registers)
	7.131 STM0 (Store Multiple Registers)
	7.132 STM1 (Store Multiple Registers)
	7.133 ENTER (Enter Function)
	7.134 LEAVE (Leave Function)
	7.135 XCHB (Exchange Byte Data)

	APPENDIX
	APPENDIX A Instruction Lists
	A.1 Symbols Used in Instruction Lists
	A.2 Instruction Lists

	APPENDIX B Instruction Maps
	B.1 Instruction Map
	B.2 "E" Format


	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X


