
FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL

FR Family
32-BIT MICROCONTROLLER

INSTRUCTION MANUAL

CM71-00101-5E

FUJITSU LIMITED

FR Family
32-BIT MICROCONTROLLER

INSTRUCTION MANUAL

PREFACE

■ Objectives and intended reader
The FR* family CPU core features proprietary Fujitsu architecture and is designed for controller

applications using 32-bit RISC based computing. The architecture is optimized for use in microcontroller

CPU cores for built-in control applications where high-speed control is required.

This manual is written for engineers involved in the development of products using the FR family of

microcontrollers. It is designed specifically for programmers working in assembly language for use with

FR family assemblers, and describes the various instructions used with FR family. Be sure to read the entire

manual carefully.

Note* that the use or non-use of coprocessors, as well as coprocessor specifications depends on the

functions of individual FR family products.

For information about coprocessor specifications, users should consult the coprocessor section of the

product documentation. Also, for the rules of assembly language grammar and the use of assembler

programs, refer to the "FR Family Assembler Manual".

* : FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited.

■ Trademark
The company names and brand names herein are the trademarks or registered trademarks of their respective

owners.
i

線
("FR" → "FR*")

線
(" *: " is added.)

線
("■ Trademark" is added.)

線
("The company names and brand names herein are the trademarks or registered trademarks of their
respective owners." is added.)

■ Organization of this manual
This manual consists of the following 7 chapters and 1 appendix:

CHAPTER 1 FR FAMILY OVERVIEW

This chapter describes the features of the FR FAMILY CPU core, and provides sample configurations.

CHAPTER 2 MEMORY ARCHITECTURE

This chapter describes memory space in the FR family CPU.

CHAPTER 3 REGISTER DESCRIPTIONS

This chapter describes the registers used in the FR family CPU.

CHAPTER 4 RESET AND "EIT" PROCESSING

This chapter describes reset and "EIT" processing in the FR family CPU.

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU

This chapter presents precautionary information related to the use of the FR family CPU.

CHAPTER 6 INSTRUCTION OVERVIEW

This chapter presents an overview of the instructions used with the FR family CPU.

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS

This chapter presents each of the execution instructions used by the FR family assembler, in reference
format.

APPENDIX

The appendix section includes lists of CPU instructions used in the FR family, as well as instruction map
diagrams.
ii

Copyright ©1997-2007 FUJITSU LIMITED All rights reserved.

• The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

• The information, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJITSU semiconductor device; FUJITSU does not warrant
proper operation of the device with respect to use based on such information. When you develop equipment incorporating the
device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU
assumes no liability for any damages whatsoever arising out of the use of the information.

• Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU or any
third party or does FUJITSU warrant non-infringement of any third-party's intellectual property right or other right by using such
information. FUJITSU assumes no liability for any infringement of the intellectual property rights or other rights of third parties
which would result from the use of information contained herein.

• The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).
Please note that FUJITSU will not be liable against you and/or any third party for any claims or damages arising in connection
with above-mentioned uses of the products.

• Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

• Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

• The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
iii

iv

CONTENTS

CHAPTER 1 FR FAMILY OVERVIEW .. 1
1.1 Features of the FR Family CPU Core ... 2
1.2 Sample Configuration of an FR Family Device ... 3
1.3 Sample Configuration of the FR Family CPU ... 4

CHAPTER 2 MEMORY ARCHITECTURE .. 5
2.1 FR Family Memory Space .. 6

2.1.1 Direct Address Area .. 7
2.1.2 Vector Table Area .. 8

2.2 Bit Order and Byte Order .. 10
2.3 Word Alignment .. 11

CHAPTER 3 REGISTER DESCRIPTIONS .. 13
3.1 FR Family Register Configuration ... 14
3.2 General-purpose Registers ... 15
3.3 Dedicated Registers ... 17

3.3.1 Program Counter (PC) ... 18
3.3.2 Program Status (PS) ... 19
3.3.3 Table Base Register (TBR) ... 23
3.3.4 Return Pointer (RP) ... 25
3.3.5 System Stack Pointer (SSP), User Stack Pointer (USP) ... 27
3.3.6 Multiplication/Division Register (MD) ... 29

CHAPTER 4 RESET AND "EIT" PROCESSING .. 31
4.1 Reset Processing .. 33
4.2 Basic Operations in "EIT" Processing ... 34
4.3 Interrupts ... 37

4.3.1 User Interrupts ... 38
4.3.2 Non-maskable Interrupts (NMI) ... 40

4.4 Exception Processing ... 42
4.4.1 Undefined Instruction Exceptions .. 43

4.5 Traps ... 44
4.5.1 "INT" Instructions ... 45
4.5.2 "INTE" Instruction .. 46
4.5.3 Step Trace Traps ... 47
4.5.4 Coprocessor Not Found Traps .. 48
4.5.5 Coprocessor Error Trap ... 49

4.6 Priority Levels ... 51
v

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU 53
5.1 Pipeline Operation .. 54
5.2 Pipeline Operation and Interrupt Processing .. 55
5.3 Register Hazards .. 56
5.4 Delayed Branching Processing ... 58

5.4.1 Processing Non-delayed Branching Instructions ... 60
5.4.2 Processing Delayed Branching Instructions .. 61

CHAPTER 6 INSTRUCTION OVERVIEW ... 63
6.1 Instruction Formats ... 64
6.2 Instruction Notation Formats ... 66

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS .. 67
7.1 ADD (Add Word Data of Source Register to Destination Register) .. 72
7.2 ADD (Add 4-bit Immediate Data to Destination Register) ... 73
7.3 ADD2 (Add 4-bit Immediate Data to Destination Register) ... 74
7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register) 75
7.5 ADDN (Add Word Data of Source Register to Destination Register) ... 76
7.6 ADDN (Add Immediate Data to Destination Register) .. 77
7.7 ADDN2 (Add Immediate Data to Destination Register) .. 78
7.8 SUB (Subtract Word Data in Source Register from Destination Register) 79
7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination Register) 80
7.10 SUBN (Subtract Word Data in Source Register from Destination Register) 81
7.11 CMP (Compare Word Data in Source Register and Destination Register) 82
7.12 CMP (Compare Immediate Data of Source Register and Destination Register) 83
7.13 CMP2 (Compare Immediate Data and Destination Register) ... 84
7.14 AND (And Word Data of Source Register to Destination Register) .. 85
7.15 AND (And Word Data of Source Register to Data in Memory) ... 86
7.16 ANDH (And Half-word Data of Source Register to Data in Memory) .. 88
7.17 ANDB (And Byte Data of Source Register to Data in Memory) .. 90
7.18 OR (Or Word Data of Source Register to Destination Register) ... 92
7.19 OR (Or Word Data of Source Register to Data in Memory) .. 93
7.20 ORH (Or Half-word Data of Source Register to Data in Memory) .. 95
7.21 ORB (Or Byte Data of Source Register to Data in Memory) ... 97
7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register) 99
7.23 EOR (Exclusive Or Word Data of Source Register to Data in Memory) ... 100
7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in Memory) 102
7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory) .. 104
7.26 BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory) 106
7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory) 108
7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory) 110
7.29 BORH (Or 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory) 112
7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory) 114
7.31 BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory) 116
7.32 BTSTL (Test Lower 4 Bits of Byte Data in Memory) ... 118
7.33 BTSTH (Test Higher 4 Bits of Byte Data in Memory) ... 119
7.34 MUL (Multiply Word Data) .. 120
vi

7.35 MULU (Multiply Unsigned Word Data) .. 122
7.36 MULH (Multiply Half-word Data) ... 124
7.37 MULUH (Multiply Unsigned Half-word Data) .. 126
7.38 DIV0S (Initial Setting Up for Signed Division) ... 128
7.39 DIV0U (Initial Setting Up for Unsigned Division) ... 130
7.40 DIV1 (Main Process of Division) ... 132
7.41 DIV2 (Correction when Remainder is 0) ... 134
7.42 DIV3 (Correction when Remainder is 0) ... 136
7.43 DIV4S (Correction Answer for Signed Division) ... 137
7.44 LSL (Logical Shift to the Left Direction) .. 138
7.45 LSL (Logical Shift to the Left Direction) .. 139
7.46 LSL2 (Logical Shift to the Left Direction) .. 140
7.47 LSR (Logical Shift to the Right Direction) ... 141
7.48 LSR (Logical Shift to the Right Direction) ... 142
7.49 LSR2 (Logical Shift to the Right Direction) ... 143
7.50 ASR (Arithmetic Shift to the Right Direction) .. 144
7.51 ASR (Arithmetic Shift to the Right Direction) .. 145
7.52 ASR2 (Arithmetic Shift to the Right Direction) .. 146
7.53 LDI:32 (Load Immediate 32-bit Data to Destination Register) .. 147
7.54 LDI:20 (Load Immediate 20-bit Data to Destination Register) .. 148
7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register) .. 149
7.56 LD (Load Word Data in Memory to Register) ... 150
7.57 LD (Load Word Data in Memory to Register) ... 151
7.58 LD (Load Word Data in Memory to Register) ... 152
7.59 LD (Load Word Data in Memory to Register) ... 153
7.60 LD (Load Word Data in Memory to Register) ... 154
7.61 LD (Load Word Data in Memory to Register) ... 155
7.62 LD (Load Word Data in Memory to Program Status Register) ... 157
7.63 LDUH (Load Half-word Data in Memory to Register) ... 159
7.64 LDUH (Load Half-word Data in Memory to Register) ... 160
7.65 LDUH (Load Half-word Data in Memory to Register) ... 161
7.66 LDUB (Load Byte Data in Memory to Register) .. 162
7.67 LDUB (Load Byte Data in Memory to Register) .. 163
7.68 LDUB (Load Byte Data in Memory to Register) .. 164
7.69 ST (Store Word Data in Register to Memory) ... 165
7.70 ST (Store Word Data in Register to Memory) ... 166
7.71 ST (Store Word Data in Register to Memory) ... 167
7.72 ST (Store Word Data in Register to Memory) ... 168
7.73 ST (Store Word Data in Register to Memory) ... 169
7.74 ST (Store Word Data in Register to Memory) ... 170
7.75 ST (Store Word Data in Program Status Register to Memory) ... 171
7.76 STH (Store Half-word Data in Register to Memory) ... 172
7.77 STH (Store Half-word Data in Register to Memory) ... 173
7.78 STH (Store Half-word Data in Register to Memory) ... 174
7.79 STB (Store Byte Data in Register to Memory) .. 175
7.80 STB (Store Byte Data in Register to Memory) .. 176
7.81 STB (Store Byte Data in Register to Memory) .. 177
vii

7.82 MOV (Move Word Data in Source Register to Destination Register) ... 178
7.83 MOV (Move Word Data in Source Register to Destination Register) ... 179
7.84 MOV (Move Word Data in Program Status Register to Destination Register) 180
7.85 MOV (Move Word Data in Source Register to Destination Register) ... 181
7.86 MOV (Move Word Data in Source Register to Program Status Register) 182
7.87 JMP (Jump) .. 184
7.88 CALL (Call Subroutine) ... 185
7.89 CALL (Call Subroutine) ... 186
7.90 RET (Return from Subroutine) .. 187
7.91 INT (Software Interrupt) .. 188
7.92 INTE (Software Interrupt for Emulator) ... 190
7.93 RETI (Return from Interrupt) ... 192
7.94 Bcc (Branch Relative if Condition Satisfied) ... 194
7.95 JMP:D (Jump) ... 196
7.96 CALL:D (Call Subroutine) ... 197
7.97 CALL:D (Call Subroutine) ... 199
7.98 RET:D (Return from Subroutine) .. 201
7.99 Bcc:D (Branch Relative if Condition Satisfied) .. 203
7.100 DMOV (Move Word Data from Direct Address to Register) ... 205
7.101 DMOV (Move Word Data from Register to Direct Address) ... 206
7.102 DMOV (Move Word Data from Direct Address to Post Increment Register Indirect Address)

... 207
7.103 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)

... 209
7.104 DMOV (Move Word Data from Direct Address to Pre-decrement Register Indirect Address)

... 211
7.105 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)

... 213
7.106 DMOVH (Move Half-word Data from Direct Address to Register) .. 215
7.107 DMOVH (Move Half-word Data from Register to Direct Address) .. 216
7.108 DMOVH (Move Half-word Data from Direct Address to Post Increment Register Indirect Address)

... 217
7.109 DMOVH (Move Half-word Data from Post Increment Register Indirect Address to Direct Address)

... 219
7.110 DMOVB (Move Byte Data from Direct Address to Register) .. 221
7.111 DMOVB (Move Byte Data from Register to Direct Address) .. 222
7.112 DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect Address)

... 223
7.113 DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct Address)

... 225
7.114 LDRES (Load Word Data in Memory to Resource) .. 227
7.115 STRES (Store Word Data in Resource to Memory) ... 228
7.116 COPOP (Coprocessor Operation) .. 229
7.117 COPLD (Load 32-bit Data from Register to Coprocessor Register) ... 231
7.118 COPST (Store 32-bit Data from Coprocessor Register to Register) .. 233
7.119 COPSV (Save 32-bit Data from Coprocessor Register to Register) ... 235
7.120 NOP (No Operation) ... 237
7.121 ANDCCR (And Condition Code Register and Immediate Data) ... 238
7.122 ORCCR (Or Condition Code Register and Immediate Data) .. 239
viii

7.123 STILM (Set Immediate Data to Interrupt Level Mask Register) .. 240
7.124 ADDSP (Add Stack Pointer and Immediate Data) .. 241
7.125 EXTSB (Sign Extend from Byte Data to Word Data) .. 242
7.126 EXTUB (Unsign Extend from Byte Data to Word Data) .. 243
7.127 EXTSH (Sign Extend from Byte Data to Word Data) .. 244
7.128 EXTUH (Unsigned Extend from Byte Data to Word Data) .. 245
7.129 LDM0 (Load Multiple Registers) ... 246
7.130 LDM1 (Load Multiple Registers) ... 248
7.131 STM0 (Store Multiple Registers) ... 250
7.132 STM1 (Store Multiple Registers) ... 252
7.133 ENTER (Enter Function) ... 254
7.134 LEAVE (Leave Function) .. 256
7.135 XCHB (Exchange Byte Data) .. 258

APPENDIX ... 261
APPENDIX A Instruction Lists .. 262

A.1 Symbols Used in Instruction Lists .. 263
A.2 Instruction Lists ... 265

APPENDIX B Instruction Maps ... 274
B.1 Instruction Map ... 275
B.2 "E" Format .. 276

INDEX... 277
ix

x

Main changes in this edition

Page Changes (For details, refer to main body.)

- Be sure to refer to the "Check Sheet" for the latest cautions on development. is changed.
("Check Sheet" is seen at the following support page... is deleted.)

i

"■ Objectives and intended reader" is changed.

("FR" → "FR*")

"■ Objectives and intended reader" is changed.
(" *: " is added.)

"PREFACE" is changed.
("■ Trademark" is added.)

"PREFACE" is changed.
("The company names and brand names herein are the trademarks or registered trademarks of their
respective owners." is added.)

9
"Table 2.1-1 Structure of a Vector Table Area" is changed.

For 3F8H, ("No" → "Yes")

18
"● Lowest Bit Value of Program Counter" is changed.

("incremented by one, and therefore" → "incremented and therefore")

20
"Figure 3.3-4 "ILM" Register Functions" is changed.
(A line from ILM to COMP is added.)

23
"Figure 3.3-7 Sample of Table Base Register (TBR) Operation" is changed.

("31" → "bit31")

27

"■ System Stack Pointer (SSP), User Stack Pointer (USP)" is changed.

("ST R13", "@-R15" → "ST R13, @-R15")

The title of "Figure 3.3-12 Example of Stack Pointer Operation in Execution of Instruction "ST R13", "@-
R15" when "S" Flag = 0" is changed.

("ST R13", "@-R15" → "ST R13, @-R15")

28

The title of "Figure 3.3-13 Example of Stack Pointer Operation in Execution of Instruction "ST R13", "@-
R15" when "S" Flag = 1" is changed.

("ST R13", "@-R15" → "ST R13, @-R15")

28

"■ Recovery from EIT handler" is changed.

("4.2 Basic Operations in "EIT" Processing ■ Recovery from EIT handler" →
 "■ Recovery from EIT handler"of "4.2 Basic Operations in "EIT" Processing")

37

"4.3 Interrupts" is changed.

("External" → "User")

"■ Sources of Interrupts" is changed.

("External" → "User")
xi

38

"4.3.1 User Interrupts" is changed.

("External" → "User"), ("external" → "user")

"■ Overview of User Interrupts" is changed.

("External" → "User")

"■ Overview of User Interrupts" is changed.
("Interrupts are referred to as "external" when they originate outside the CPU." is deleted.)

"■ Conditions for Acceptance of User Interrupt Requests" is changed.

("External" → "User")

"■ Conditions for Acceptance of User Interrupt Requests" is changed.

("The CPU accepts interrupts" → "The CPU accepts user interrupts")

"■ Operation Following Acceptance of an User Interrupt" is changed.

("External" → "User"), ("external" → "user")

39

"■ How to Use User Interrupts" is changed.

("External" → "User"), ("external" → "user")

"Figure 4.3-1 How to Use User Interrupts" is changed.

("External" → "User")

51
"Table 4.6-1 Priority of "EIT" Requests" is changed.

("External" → "User"), ("INT" → "INTE")

62

"■ Examples of Programing Delayed Branching Instructions" is changed.
(The position of comment ";not satisfy" is changed.)

(R12 → R13)

66
"● Calculations are designated by a mnemonic placed between operand 1 and operand 2, with the results
stored at operand 2" is changed.
(The position of R2 is changed.)

72
"7.1 ADD (Add Word Data of Source Register to Destination Register)" is changed.
("Instruction bit pattern : 1010 0110 0010 0011" is added.)

75
"7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)" is changed.
("Instruction bit pattern : 1010 0111 0010 0011" is added.)

79
"7.8 SUB (Subtract Word Data in Source Register from Destination Register)" is changed.
("Instruction bit pattern : 1010 1100 0010 0011" is added.)

80
"7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination Register)" is changed.
("Instruction bit pattern : 1010 1101 0010 0011" is added.)

81
"7.10 SUBN (Subtract Word Data in Source Register from Destination Register)" is changed.
("Instruction bit pattern : 1010 1110 0010 0011" is added.)

82
"7.11 CMP (Compare Word Data in Source Register and Destination Register)" is changed.
("Instruction bit pattern : 1010 1010 0010 0011" is added.)

85
"7.14 AND (And Word Data of Source Register to Destination Register)" is changed.
("Instruction bit pattern : 1000 0010 0010 0011" is added.)

Page Changes (For details, refer to main body.)
xii

87
"7.15 AND (And Word Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1000 0100 0010 0011" is added.)

89
"7.16 ANDH (And Half-word Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1000 0101 0010 0011" is added.)

91
"7.17 ANDB (And Byte Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1000 0110 0010 0011" is added.)

92
"7.18 OR (Or Word Data of Source Register to Destination Register)" is changed.
("Instruction bit pattern : 1001 0010 0010 0011" is added.)

94
"7.19 OR (Or Word Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1001 0100 0010 0011" is added.)

96
"7.20 ORH (Or Half-word Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1001 0101 0010 0011" is added.)

98
"7.21 ORB (Or Byte Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1001 0110 0010 0011" is added.)

99
"7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register)" is changed.
("Instruction bit pattern : 1001 1010 0010 0011" is added.)

101
"7.23 EOR (Exclusive Or Word Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1001 1100 0010 0011" is added.)

103
"7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1001 1101 0010 0011" is added.)

105
"7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory)" is changed.
("Instruction bit pattern : 1001 1110 0010 0011" is added.)

121
"7.34 MUL (Multiply Word Data)" is changed.
("Instruction bit pattern : 1010 1111 0010 0011" is added.)

123
"7.35 MULU (Multiply Unsigned Word Data)" is changed.
("Instruction bit pattern : 1010 1011 0010 0011" is added.)

125
"7.36 MULH (Multiply Half-word Data)" is changed.
("Instruction bit pattern : 1011 1111 0010 0011" is added.)

127
"7.37 MULUH (Multiply Unsigned Half-word Data)" is changed.
("Instruction bit pattern : 1011 1011 0010 0011" is added.)

129
"7.38 DIV0S (Initial Setting Up for Signed Division)" is changed.
("Instruction bit pattern : 1001 0111 0100 0010" is added.)

131
"7.39 DIV0U (Initial Setting Up for Unsigned Division)147/308" is changed.
("Instruction bit pattern : 1001 0111 0101 0010" is added.)

133
"7.40 DIV1 (Main Process of Division)" is changed.
("Instruction bit pattern : 1001 0111 0110 0010" is added.)

135
"7.41 DIV2 (Correction when Remainder is 0)" is changed.
("Instruction bit pattern : 1001 0111 0111 0010" is added.)

Page Changes (For details, refer to main body.)
xiii

136
"7.42 DIV3 (Correction when Remainder is 0)" is changed.
("Instruction bit pattern : 1001 1111 0110 0000" is added.)

137
"7.43 DIV4S (Correction Answer for Signed Division)" is changed.
("Instruction bit pattern : 1001 1111 0111 0000" is added.)

138
"7.44 LSL (Logical Shift to the Left Direction)" is changed.
("Instruction bit pattern : 1011 0110 0010 0011" is added.)

141
"7.47 LSR (Logical Shift to the Right Direction)" is changed.
("Instruction bit pattern : 1011 0010 0010 0011" is added.)

144
"7.50 ASR (Arithmetic Shift to the Right Direction)" is changed.
("Instruction bit pattern : 1011 1010 0010 0011" is added.)

147

"7.53 LDI:32 (Load Immediate 32-bit Data to Destination Register)" is changed.
("Instruction bit pattern : 1001 1111 1000 0011

: 1000 0111 0110 0101
: 0100 0011 0010 0001" is added.)

148
"7.54 LDI:20 (Load Immediate 20-bit Data to Destination Register)" is changed.
("Instruction bit pattern : 1001 1011 0101 0011

: 0100 0011 0010 0001" is added.)

149
"7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register)" is changed.
("Instruction bit pattern : 1100 0010 0001 0011" is added.)

150
"7.56 LD (Load Word Data in Memory to Register)"is changed.
("Instruction bit pattern : 0000 0100 0010 0011" is added.)

151
"7.57 LD (Load Word Data in Memory to Register)" is changed.
("Instruction bit pattern : 0000 0000 0010 0011" is added.)

153
"7.59 LD (Load Word Data in Memory to Register)" is changed.

("o4" → "u4")

154
"7.60 LD (Load Word Data in Memory to Register)" is changed.
("Instruction bit pattern : 0000 0111 0000 0011" is added.)

156
"7.61 LD (Load Word Data in Memory to Register)" is changed.
("Instruction bit pattern : 0000 0111 1000 0100" is added.)

157
"7.62 LD (Load Word Data in Memory to Program Status Register)" is changed.

Flag change: ("Ri" → "R15")

158
"7.62 LD (Load Word Data in Memory to Program Status Register)" is changed.
("Instruction bit pattern : 0000 0111 1001 0000" is added.)

159
"7.63 LDUH (Load Half-word Data in Memory to Register)" is changed.
("Instruction bit pattern : 0000 0101 0010 0011" is added.)

160
"7.64 LDUH (Load Half-word Data in Memory to Register)" is changed.
("Instruction bit pattern : 0000 0001 0010 0011" is added.)

162
"7.66 LDUB (Load Byte Data in Memory to Register)" is changed.
("Instruction bit pattern : 0000 0110 0010 0011" is added.)

Page Changes (For details, refer to main body.)
xiv

163
"7.67 LDUB (Load Byte Data in Memory to Register)" is changed.
("Instruction bit pattern : 0000 0010 0010 0011" is added.)

165
"7.69 ST (Store Word Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0100 0010 0011" is added.)

166
"7.70 ST (Store Word Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0000 0010 0011" is added.)

168
"7.72 ST (Store Word Data in Register to Memory)" is changed.

("o4" → "u4")

169
"7.73 ST (Store Word Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0111 0000 0011" is added.)

170
"7.74 ST (Store Word Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0111 1000 0100" is added.)

171
"7.75 ST (Store Word Data in Program Status Register to Memory)" is changed.
("Instruction bit pattern : 0001 0111 1001 0000" is added.)

172
"7.76 STH (Store Half-word Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0101 0010 0011" is added.)

173
"7.77 STH (Store Half-word Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0001 0010 0011" is added.)

175
"7.79 STB (Store Byte Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0110 0010 0011" is added.)

176
"7.80 STB (Store Byte Data in Register to Memory)" is changed.
("Instruction bit pattern : 0001 0010 0010 0011" is added.)

178
"7.82 MOV (Move Word Data in Source Register to Destination Register)" is changed.
("Instruction bit pattern : 1000 1011 0010 0011" is added.)

179
"7.83 MOV (Move Word Data in Source Register to Destination Register)" is changed.
("Instruction bit pattern : 1011 0111 0101 0011" is added.)

180
"7.84 MOV (Move Word Data in Program Status Register to Destination Register)" is changed.
("Instruction bit pattern : 0001 0111 0001 0011" is added.)

181
"7.85 MOV (Move Word Data in Source Register to Destination Register)" is changed.
("Instruction bit pattern : 1011 0011 0101 0011" is added.)

183
"7.86 MOV (Move Word Data in Source Register to Program Status Register)" is changed.
("Instruction bit pattern : 0000 0111 0001 0011" is added.)

184
"7.87 JMP (Jump)" is changed.
("Instruction bit pattern : 1001 0111 0000 0001" is added.)

Page Changes (For details, refer to main body.)
xv

185

"7.88 CALL (Call Subroutine)" is changed.

("extension for use as the branch destination address" → "extension")

"7.88 CALL (Call Subroutine)" is changed.

("CALL 120H" →
 " CALL label
 ...
 label: ; CALL instruction address + 122H")

"7.88 CALL (Call Subroutine)" is changed.
("Instruction bit pattern : 1101 0000 1001 0000" is added.)

186
"7.89 CALL (Call Subroutine)" is changed.
("Instruction bit pattern : 1001 0111 0001 0001" is added.)

187
"7.90 RET (Return from Subroutine)" is changed.
("Instruction bit pattern : 1001 0111 0010 0000" is added.)

188
"7.91 INT (Software Interrupt)" is changed.

("INT#9" to "#13", "#64", "#65" → "INT#9" to "INT#13", "INT#64", "INT#65")

189
"7.91 INT (Software Interrupt)" is changed.
("Instruction bit pattern : 0001 1111 0010 0000" is added.)

191
"7.92 INTE (Software Interrupt for Emulator)" is changed.
("Instruction bit pattern : 1001 1111 0011 0000") is added.

192
"7.93 RETI (Return from Interrupt)" is changed.

(D2, D1, → S,)

193
"7.93 RETI (Return from Interrupt)" is changed.
("Instruction bit pattern : 1001 0111 0011 0000" is added.)

194
"7.94 Bcc (Branch Relative if Condition Satisfied)" is changed.

("extension, for use as the branch destination address." → "extension")

195

"7.94 Bcc (Branch Relative if Condition Satisfied)" is changed.

("BHI 50H" →

 " BHI label
 ...
 label: ; BHI instruction address + 50H")

196
"7.95 JMP:D (Jump)" is changed.
("Instruction bit pattern : 1001 1111 0000 0001" is added.)

197
"7.96 CALL:D (Call Subroutine)" is changed.

("extension for use as the branch destination address" → "extension")

Page Changes (For details, refer to main body.)
xvi

198

"7.96 CALL:D (Call Subroutine)" is changed.
("CALL : D 120H

 LDI : 8 #0, R2 ; Instruction placed in delay slot" →
 "CALL:D label
 LDI : 8 #0, R2 ; Instruction placed in delay slot
 ...
 label: ; CALL: D instruction address + 122H")

"7.96 CALL:D (Call Subroutine)" is changed.
("Instruction bit pattern : 1101 1000 1001 0000" is added.)

200
"7.97 CALL:D (Call Subroutine)" is changed.
("Instruction bit pattern : 1001 1111 0001 0001" is added.)

202
"7.98 RET:D (Return from Subroutine)" is changed.
("Instruction bit pattern : 1001 1111 0010 0000" is added.)

203
"7.99 Bcc:D (Branch Relative if Condition Satisfied)" is changed.

("extension, for use as the branch destination address" → "extension")

204

"7.99 Bcc:D (Branch Relative if Condition Satisfied)" is changed.
("BHI :D 50H

 LDI :8 #255, R1 ; Instruction placed in delay slot" →

 "BHI:D label
...
 LDI :8 #255, R1 ; Instruction placed in delay slot
 label: ; BHI: D instruction address + 50H")

"7.99 Bcc:D (Branch Relative if Condition Satisfied)" is changed.
("Instruction bit pattern : 1111 1111 0010 1000" is changed.)

227
"7.114 LDRES (Load Word Data in Memory to Resource)" is changed.
("Instruction bit pattern : 1011 1100 1000 0010" is added.)

228
"7.115 STRES (Store Word Data in Resource to Memory)" is changed.
("Instruction bit pattern : 1011 1101 1000 0010" is added.)

229
"7.116 COPOP (Coprocessor Operation)" is changed.

("Resource" → "Coprocessor")

231
"7.117 COPLD (Load 32-bit Data from Register to Coprocessor Register)" is changed.

("Resource" → "Coprocessor")

233
"7.118 COPST (Store 32-bit Data from Coprocessor Register to Register)" is changed.

("Resource" → "Coprocessor")

235
"7.119 COPSV (Save 32-bit Data from Coprocessor Register to Register)" is changed.

("Resource" → "Coprocessor")

237
"7.120 NOP (No Operation)" is changed.
("Instruction bit pattern : 1001 1111 1010 0000" is addded.)

Page Changes (For details, refer to main body.)
xvii

238
"7.121 ANDCCR (And Condition Code Register and Immediate Data)" is changed.
("Instruction bit pattern : 1000 0011 1111 1110" is added.)

239
"7.122 ORCCR (Or Condition Code Register and Immediate Data)" is changed.
("Instruction bit pattern : 1001 0011 0001 0000" is added.)

240
"7.123 STILM (Set Immediate Data to Interrupt Level Mask Register)" is changed.
("Instruction bit pattern : 1000 0111 0001 0100" is added.)

242
"7.125 EXTSB (Sign Extend from Byte Data to Word Data)" is changed.
("Instruction bit pattern : 1001 0111 1000 0001" is added.)

243
"7.126 EXTUB (Unsign Extend from Byte Data to Word Data)" is changed.
("Instruction bit pattern : 1001 0111 1001 0001" is changed.)

244
"7.127 EXTSH (Sign Extend from Byte Data to Word Data)" is changed.
("Instruction bit pattern : 1001 0111 1010 0001" is added.)

245
"7.128 EXTUH (Unsigned Extend from Byte Data to Word Data)" is changed.
("Instruction bit pattern : 1001 0111 1011 0001" is added.)

255
"7.133 ENTER (Enter Function)" is changed.

("XXXX XXXX 0000 0011" → "0000 1111 0000 0011")

257
"7.134 LEAVE (Leave Function)" is changed.
("Instruction bit pattern : 1001 1111 1001 0000" is addded.)

258
"7.135 XCHB (Exchange Byte Data)" is chenged.

("extu (Rj) → Ri" → "extu ((Rj)) → Ri")

259
"7.135 XCHB (Exchange Byte Data)" is chenged.
("Instruction bit pattern : 1000 1010 0001 0000" is added.)

Page Changes (For details, refer to main body.)
xviii

263

"A.1 Symbols Used in Instruction Lists" is chenged.
● Symbols in Mnemonic and Operation Columns is changed.

i8("128 to 255" → "0 to 255")

"A.1 Symbols Used in Instruction Lists" is chenged.
● Symbols in Mnemonic and Operation Columns is changed.
("Note: Data from -128 to -1 is handled as data from 128 to 255." is deleted.)

"A.1 Symbols Used in Instruction Lists" is chenged.
● Symbols in Mnemonic and Operation Columns is changed.

i20("0x80000H to 0xFFFFFH" → "00000H to FFFFFH")

"A.1 Symbols Used in Instruction Lists" is chenged.
● Symbols in Mnemonic and Operation Columns is changed.
("Note: Data from -0x80000H to -1 is handled as data from 0x80000H to 0xFFFFFH." is deleted.)

"A.1 Symbols Used in Instruction Lists" is chenged.
● Symbols in Mnemonic and Operation Columns is changed.

i32("0x80000000H to 0xFFFFFFFFH" → "00000000H to FFFFFFFFH")

"A.1 Symbols Used in Instruction Lists" is chenged.
● Symbols in Mnemonic and Operation Columns is changed.
("Note: Data from -0x80000000H to -1 is handled as data from 0x80000000H to 0xFFFFFFFFH." is deleted.)

263

"A.1 Symbols Used in Instruction Lists" is changed.
● Symbols in Mnemonic and Operation Columns is changed.

("• Ri" → "• Ri, Rj")

"● Symbols in Operation Column" is changed.
("• ()............. indicates indirect addressing, which values reading or loading from/to the memory address

where the registers within () or the formula indicate.
• { }............ indicates the calculation priority; () is used for specifying indiiirect address" is added.)

264
"● Cycle (CYC) Column" is changed.

("special" → "dedicated")

266

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.

("(Ri)&=(F0H+u4)" → "(Ri)&={F0H+u4}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.

("(Ri)&=((u4<<4)+FH)" → "(Ri)&={{u4<<4}+FH}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.

("(Ri) | = (u4<<4)" → "(Ri) | = {u4<<4}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.

("(Ri) ^ = (u4<<4)" → "(Ri) ^ = {u4<<4}")

"Table A.2-4 Bit Operation Instructions (8 Instructions)" is changed.

("(Ri) & (u4<<4)" → "(Ri) & {u4<<4}")

Page Changes (For details, refer to main body.)
xix

267

"Table A.2-6 Shift Instructions (9 Instructions)" is changed.

("Ri <<(u4+16) → Ri" → "Ri <<{u4+16} → Ri")

("Ri >>(u4+16) → Ri" → "Ri >>{u4+16} → Ri")

("Ri >>(u4+16) → Ri" → "Ri >>{u4+16} → Ri")

272
"Table A.2-13 Direct Addressing Instructions (14 Instructions)" is changed.

("disp8" → "dir8"), ("disp9" → "dir9"), ("disp10" → "dir10")

273
"Table A.2-16 Other Instructions (16 Instructions)" is changed.

("i8" → "u8")

276
"Table B.2-1 "E" Format" is changed.
("- : Undefined" is added.)

Page Changes (For details, refer to main body.)
xx

CHAPTER 1
FR FAMILY OVERVIEW

This chapter describes the features of the FR FAMILY
CPU core, and provides sample configurations.

1.1 Features of the FR Family CPU Core

1.2 Sample Configuration of an FR Family Device

1.3 Sample Configuration of the FR Family CPU
1

CHAPTER 1 FR FAMILY OVERVIEW
1.1 Features of the FR Family CPU Core

The FR family CPU core features proprietary Fujitsu architecture and is designed for
controller applications using 32-bit "RISC" based computing. The architecture is
optimized for use in microcontroller CPU cores for built-in control applications where
high-speed control is required.

■ Features of the FR Family CPU Core
• General-purpose register architecture

• Linear space for 32-bit (4 Gbytes) addressing

• 16-bit fixed instruction length (excluding immediate data, coprocessor instructions)

• 5-stage pipeline configuration for basic instructions, one-instruction one-cycle execution

• 32-bit by 32-bit computation enables completion of multiplication instructions within five cycles

• Stepwise division instructions enable 32-bit/ 32-bit division

• Direct addressing instructions for peripheral circuit access

• Coprocessor instructions for direct designation of peripheral accelerator

• High speed interrupt processing complete within 6 cycles
2

CHAPTER 1 FR FAMILY OVERVIEW
1.2 Sample Configuration of an FR Family Device

FR family devices have block configuration with bus connections between individual
modules. This enables module connections to be altered as necessary to accommodate
a wide variety of functional configurations.
Figure 1.2-1 shows an example of the configuration of an FR family device.

■ Sample Configuration of an FR Family Device

Figure 1.2-1 Sample Configuration of an FR Family Device

FR family CPU
Low speed
peripherals

Low speed
peripherals

Low speed
peripherals

Low speed
peripherals

Internal bus interface

Integrated bus

User bus interface General-purpose port

Mandatory: Standard in all models

Option: Not included in some models

P
er

ip
he

ra
l b

us

In
st

ru
ct

io
n

bu
s

In
st

ru
ct

io
n

ca
ch

e

D
at

a
bu

s

High speed
peripherals

Data cache

ROM

DMAC

RAM
3

CHAPTER 1 FR FAMILY OVERVIEW
1.3 Sample Configuration of the FR Family CPU

The FR family CPU core features a block configuration organized around general-
purpose registers, with dedicated registers, "ALU" units, multipliers and other features
included for each specific application.
Figure 1.3-1 shows a sample configuration of an FR family CPU.

■ Sample Configuration of the FR Family CPU

Figure 1.3-1 Sample Configuration of the FR Family CPU

Instruction
data

Instruction
sequencer

In
st

ru
ct

io
n

de
co

de
r

Bypass
interlock

Wait cancel
control

Exception
processing

Interrupt
NMI

Wait bus
control

Internal bus
Internal bus

Internal bus

Data

Data address
Instruction
address

Multiplier
32 x 8
 bits

ALU

Barrel
shifter

Bypass
Register
file

PC
adder
/inc

PC

Pipeline
control
4

CHAPTER 2
MEMORY ARCHITECTURE

This chapter describes memory space in the FR family
CPU.
Memory architecture includes the allocation of memory
space as well as methods used to access memory.

2.1 FR Family Memory Space

2.2 Bit Order and Byte Order

2.3 Word Alignment
5

CHAPTER 2 MEMORY ARCHITECTURE
2.1 FR Family Memory Space

The FR family controls memory space in byte units, and provides linear designation of
32-bit spaces. Also, to enhance instruction efficiency, specific areas of memory are
allocated for use as direct address areas and vector table areas.

■ Memory Space
Figure 2.1-1 illustrates memory space in the FR family.

For a detailed description of the direct address area, see Section "2.1.1 Direct Address Area", and for the

vector table area, see Section "2.1.2 Vector Table Area".

Figure 2.1-1 FR Family Memory Space

■ Unused Vector Table Area
Unused vector table area is available for use as program or data area.

0000 0000H

0000 0100H

0000 0200H

0000 0400H

000F FC00H

0010 0000H

FFFF FFFFH

Byte data

Half-word data

Word data

Vector table
initial area

Program or data area

000F FC00H TBR

TBR initial value

Direct address area

General addressing
6

CHAPTER 2 MEMORY ARCHITECTURE
2.1.1 Direct Address Area

The lower portion of the address space is used for the direct address area. Instructions
that specify direct addresses allow you to access this area without the use of general-
purpose registers, using only the operand information in the instruction itself. The size
of the address area that can be specified by direct addressing varies according to the
length of the data being transferred.

■ Direct Address Area
The size of the address area that can be specified by direct addressing varies according to the length of the

data being transferred, as follows:

• Transfer of byte data: 0000 0000H to 0000 00FFH

• Transfer of half-word data: 0000 0000H to 0000 01FFH

• Transfer of word data: 0000 0000H to 0000 03FFH

■ Use of Operand Information Contained in Instructions
The 8-bit address information contained in the instruction has the following significance.

• In byte data: Value represents the lower 8 bits of the address.

• In half-word data: Value is doubled and used as the lower 9 bits of the address.

• In word data: Value is multiplied by 4 and used as the lower 10 bits of the address.

Figure 2.1-2 shows the relationship between the length of the data that designates the direct address, and

the actual address in memory.

Figure 2.1-2 Relation between Direct Address Data and Memory Address Value

[Example 1] Byte data: DMOVB R13,@58H

[Example 2] Half-word data: DMOVH R13,@58H

[Example 3] Word data: DMOV R13,@58H

Object code:1A58H

0000 0058HR13 12345678

0000 0058HR13 12345678

0000 0058HR13 12345678

Right 1-bit shift

Right 2-bit shift

Memory space

Memory space

Memory space

78

5678

1345678

58HNo data shift

Object code:192CH 58HLeft 1-bit shift

Object code:1816H 58HLeft 2-bit shift
7

CHAPTER 2 MEMORY ARCHITECTURE
2.1.2 Vector Table Area

An area of 1 Kbyte beginning with the address shown in the table base register (TBR) is
used to store "EIT" vector addresses.

■ Overview of Vector Table Areas
An area of 1 Kbyte beginning with the address shown in the table base register (TBR) is used to store "EIT"

vector addresses. Data written to this area includes entry addresses for exception processing, interrupt

processing and trap processing.

The table base register (TBR) can be rewritten to allocate this area to any desired location within word

alignment limitations.

Figure 2.1-3 Relation between Table Base Register (TBR) and Vector Table Addresses

0000 0000H

FFFF FFFFH

TBR

1 Kbyte

Number
 Offset
from TBR EIT source

FFH

FEH

FDH

FCH

00H

000H

004H

008H

00CH

3FCH

Entry address for INT instruction

Entry address for INT instruction

Entry address for INT instruction

Entry address for INT instruction

Entry address for reset processing

Memory space

Vector
table
area
8

CHAPTER 2 MEMORY ARCHITECTURE
■ Contents of Vector Table Areas
A vector table is composed of entry addresses for each of the "EIT" processing programs. Each table

contains some values whose use is fixed according to the CPU architecture, and some that vary according

to the types of built-in peripheral circuits present. Table 2.1-1 shows the structure of a vector table area.

 *: Even when the "TBR" value is changed, the reset vector remains the fixed address "000FFFFCH".

■ Vector Table Area Initial Value
After a reset, the value of the table base register (TBR) is initialized to "000FFC00H", so that the vector

table area is between addresses "000FFC00H" and "000FFFFFH".

Table 2.1-1 Structure of a Vector Table Area

Offset from
TBR

Number
(hex)

Model-
dependent

EIT value description Remarks

000H FFH No INT #0FFH

004H FEH No INT #0FEH

2F8H 41H No System reserved
Do not use

2FCH 40H No System reserved

33CH 30H No INT #030H

340H 2FH Yes INT #02FH or IR31 Values will increase
towards higher limits
when using over 32-
source extension.
Refer to User’s Manual
for each model.

344H 2EH Yes INT #02EH or IR30

3BCH 10H Yes INT #010H or IR00
3C0H 0FH No INT #00FH or NMI

3C4H 0EH No Undefined instruction exception

3C8H 0DH No Emulator exception

3CCH 0CH No Step trace break trap

3D0H 0BH No Operand break trap

3D4H 0AH No Instruction break trap

3D8H 09H No Emulator exception

3DCH 08H No INT #008H or coprocessor error trap

3E0H 07H No
INT #007H or coprocessor not-found
trap

3E4H 06H No System reserved
Do not use

3F8H 01H Yes System reserved or Mode Vector
Refer to User’s Manual for
each model.

3FCH 00H No Reset *

⎨
⎧

⎩

~ ~ ~ ~ ~ ~

⎨
⎪
⎧

⎩
⎪

~ ~ ~ ~ ~ ~

⎨
⎧

⎩

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
9

線
("No" → "Yes")

CHAPTER 2 MEMORY ARCHITECTURE
2.2 Bit Order and Byte Order

This section describes the order in which three types of data, 8, 16, and 32 bits, are
placed in the memory in the FR family.
In the FR family, the bit number increases approaching the MSB, and the byte number
increases approaching the lowest address value.

■ Bit Order and Byte Order
Bit order in the general-purpose register is that the larger numbers are placed in the vicinity of the MSB

while the smaller numbers are near the LSB. Byte order configuration requires the upper data to be placed

in the smaller address memory, while the lower data are placed in the larger address memory.

Figure 2.2-1 illustrates the bit order and byte order in the FR family.

Figure 2.2-1 Bit Order and Byte Order

Bit order

Memory space

12H

34H

56H

78H

0000 0000H

1234 5678H

1234 5679H

1234 567AH

1234 567BH

FFFF FFFFH

R10 12345678H

LD @R10,R0

31 2423 1615 8 7 0
R0 12H 34H 56H 78H
10

CHAPTER 2 MEMORY ARCHITECTURE
2.3 Word Alignment

In the FR family, the type of data length used determines restrictions on the
designation of memory addresses (word alignment).

■ Program Restrictions on Word Alignment
When using half-word instruction length, memory addresses must be accessed in multiples of two. With

branching instructions and other instructions that may result in attempting to store odd numbered values to

the "PC", the lowest value in the "PC" will be read as "0". Thus an even numbered address will always be

generated by fetching a branching instruction.

■ Data Restrictions on Word Alignment

● Word data

Data must be assigned to addresses that are multiples of 4. Even if the operand value is not a multiple of 4,

the lower two bits of the memory address will explicitly be read as "0".

● Half-word data

Data must be assigned to addresses that are multiples of 2. Even if the operand value is not a multiple of 2,

the lowest bit of the memory address will explicitly be read as "0".

● Byte data

There are no restrictions on addresses.

The forced setting of some bits to "0" during memory access for word data and half-word data is applied

after the computation of the execution address, not at the source of the address information.

Figure 2.3-1 shows an example of the program-word boundary and data-word boundary.

Figure 2.3-1 Example of Program-word Boundary and Data-word Boundary

CDEFH

89ABH

CDEFH

ST R13,@(R14,4)

STH R13,@R2

STB R13,@R1

EFH

0000 0000H

1234 5678H12345678H

1234 567AH
43215679H

1234 567CH

4321 567AH

4321 567CH

4321 567EH

4321 5678H

4321567BH

FFFF FFFFH

R10 12345679H

JMP @R10 : Bit 0 = 0

as it is

Bit 0 = 0

PC

R1

R2

4321567BH

89ABCDEFH

R14

R13

4321567BH

00000004H

4321567FH

4321567CH

Bits 1, 0 = 0

+

Memory space
11

CHAPTER 2 MEMORY ARCHITECTURE
12

CHAPTER 3
REGISTER DESCRIPTIONS

This chapter describes the registers used in the FR
family CPU.

3.1 FR Family Register Configuration

3.2 General-purpose Registers

3.3 Dedicated Registers
13

CHAPTER 3 REGISTER DESCRIPTIONS
3.1 FR Family Register Configuration

FR family devices use two types of registers, general-purpose registers and dedicated
registers.
• General-purpose registers: Store computation data and address information
• Dedicated registers: Store information for specific applications
Figure 3.1-1 shows the configuration of registers in FR family devices.

■ FR Family Register Configuration

Figure 3.1-1 FR Family Register Configuration

64 bits

32 bits
Initial value

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

General-purpose registers

Dedicated registers

MD

R0

R1

R2

R3

R12

R13

R14

R15

PC

PS

TBR

RP

SSP

USP

Accumulator(AC)

Frame pointer(FP)

SSP or USP

- -ILM SCR CCR

00000000H

00000000H

000FFC00H

Reset entry address

ILM=01111B
SCR=XX0B
CCR=XX00XXXXB
14

CHAPTER 3 REGISTER DESCRIPTIONS
3.2 General-purpose Registers

The FR family CPU uses general-purpose registers to hold the results of various
calculations, as well as information about addresses to be used as pointers for memory
access. These registers also have special functions with certain types of instructions.

■ Overview of General-purpose Registers
The FR family CPU has sixteen (16) general-purpose registers each 32 bits in length. Normal instructions

can use any of these sixteen registers without distinction.

Figure 3.2-1 shows the configuration of a general-purpose register.

Figure 3.2-1 General-purpose Register Configuration

■ Special Uses of General-purpose Registers
In addition to functioning as general-purpose registers, "R13", "R14", and "R15" have the following special

uses with certain types of instructions.

● R13 (Accumulator: AC)

• Base address register for load/store to memory instructions
[Example: LD @(R13, Rj), Ri]

• Accumulator for direct address designation
[Example: DMOV @dir10,R13]

• Memory pointer for direct address designation
[Example: DMOV @dir10, @R13+]

32 bits

R0

R1

R2

R3

R12

R13

R14

R15 00000000H

Initial value

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Accumulator(AC)

Frame pointer(FP)

SSP or USP
15

CHAPTER 3 REGISTER DESCRIPTIONS
● R14 (Frame Pointer: FP)

• Index register for load/store to memory instructions
[Example: LD @(R14, disp10), Ri]

• Frame pointer for reserve/release of dynamic memory area
[Example: ENTER #u10]

● R15 (Stack Pointer: SP)

• Index register for load/store to memory instructions
[Example: LD @(R15, udisp6), Ri]

• Stack pointer
[Example: LD @R15+, Ri]

• Stack pointer for reserve/release of dynamic memory area
[Example: ENTER #u10]

■ Relation between "R15" and Stack Pointer
The "R15" functions physically as either the system stack pointer (SSP) or user stack pointer (USP) for the

general-purpose registers. When the notation "R15" is used in an instruction, this register will function as

the "USP" if the "S" flag in the condition code register (CCR) section of the program status register (PS) is

set to "1". The R15 register will function as the "SSP" if the "S" flag is set to "0".

Ensure that the S flag value is set to "0" when R15 is recovered from the EIT handler with the RETI

instruction.

■ Initial Value of General-purpose Registers
After a reset, the value of registers "R00" through "R14" are undefined, and the value of "R15" is

"00000000H".
16

CHAPTER 3 REGISTER DESCRIPTIONS
3.3 Dedicated Registers

The FR family has six 32-bit registers reserved for various special purposes, plus one
64-bit dedicated register for multiplication and division operations.

■ Dedicated Registers
The following seven dedicated registers are provided. For details, see the descriptions in Sections "3.3.1

Program Counter (PC)" through "3.3.6 Multiplication/Division Register (MD)".

● 32-bit Dedicated Registers

• Program counter (PC)

• Program status (PS)

• Table base register (TBR)

• Return pointer (RP)

• System stack pointer (SSP)

• User stack pointer (USP)

● 64-bit Dedicated Register

• Multiplication/Division Register (MD)

Figure 3.3-1 shows the configuration of the dedicated registers.

Figure 3.3-1 Dedicated Register Configuration

64 bits

Undefined

Undefined

UndefinedMD

PC

PS

TBR

RP

SSP

USP

- -ILM SCR CCR

00000000H

000FFC00H

Reset entry address

ILM=01111B
SCR=XX0B
CCR=XX00XXXXB
17

CHAPTER 3 REGISTER DESCRIPTIONS
3.3.1 Program Counter (PC)

This register indicates the address containing the instruction that is currently
executing. Following a reset, the contents of the PC are set to the reset entry address
contained in the vector table.

■ Overview of the Program Counter
This register indicates the address containing the instruction that is currently executing. The value of the

lowest bit is always read as "0", and therefore all instructions must be written to addresses that are

multiples of 2.

■ Program Counter Functions

● Lowest Bit Value of Program Counter

The value of the lowest bit in the program counter is read as "0" by the internal circuits in the FR family

device. Even if "1" is written to this bit, it will be treated as "0" for addressing purposes. A physical cell

does exist for this bit, however, the lowest bit value remains "0" even when the program address value is

incremented and therefore the value of this bit is always "0" except following a branching operation.

Because the internal circuits in the FR family device are designed to read the value of the lowest bit as "0",

all instructions must be written to addresses that are multiples of 2.

● Program Counter Initial Value

Following a reset, the contents of the PC are set to the reset entry address contained in the vector table.

Because initialization is applied first to the table base register (TBR), the value of the reset vector address

will be "000FFFFCH".
18

線
("incremented by one, and therefore" → "incremented and therefore")

CHAPTER 3 REGISTER DESCRIPTIONS
3.3.2 Program Status (PS)

The program status (PS) indicates the status of program execution, and consists of the
following three parts:
• Interrupt level mask register (ILM)
• System condition code register (SCR)
• Condition code register (CCR)

■ Overview of Program Status Register
The program status register consists of sections that set the interrupt enable level, control the program trace

break function in the CPU, and indicate the status of instruction execution.

■ Program Status Register Configuration
Figure 3.3-2 shows the configuration of the program status register.

Figure 3.3-2 Program Status Register Configuration

■ Unused Bits in the Program Status Register
Unused bits are all reserved for future system expansion. Write values should always be "0". The read

value of these bits is always "0".

■ Interrupt Level Mask Register (ILM: Bit 20 to bit 16)

● Bit Configuration of the ILM Register

Figure 3.3-3 Bit Configuration of the ILM Register

● ILM Functions

The "ILM" determines the level of interrupt that will be accepted. Whenever the "I" flag in the "CCR"

register is "1", the contents of this register are compared to the level of the current interrupt request. If the

value of this register is greater than the level of the request, interrupt processing is activated. Interrupt

levels are higher in priority at value approaching "0", and lower in priority at increasing values up to "31".

Note that bit "ILM4" differs from the other bits in the register, in that setting values for this bit are

restricted.

Figure 3.3-4 shows the functions of the "ILM".

PS Unused UnusedILM SCR CCR

Bit no. 31 2120 1615 1110 0807 00

20 19 18 17 16

ILM ILM4 ILM3 ILM2 ILM1 ILM0 Initial value: 01111B
19

CHAPTER 3 REGISTER DESCRIPTIONS
Figure 3.3-4 "ILM" Register Functions

● Range of ILM Program Setting Values

If the original value of the register is in the range 16 to 31, the new value may be set in the range 16 to 31.

If an instruction attempts to set a value between 0 and 15, that value will be converted to "setting value +

16" and then transferred.

If the original value is in the range 0 to 15, any new value from 0 to 31 may be set.

● Initialization of the ILM at Reset

The reset value is "01111B".

■ System Condition Code Register (SCR: Bit 10 to bit 08)

● Bit Configuration of the SCR

Figure 3.3-5 Bit Configuration of the SCR

● SCR Functions

• Bits D1, D0
Bits "D1", "D0" are used for intermediate data in stepwise division calculations. This register is used to
assure resumption of division calculations when the stepwise division program is interrupted during
processing. If changes are made to the contents of this register during division processing, the results of
the division are not assured.

• T-bit
The T-bit is a step trace trap flag. When this bit is set to "1", step trace trap operation is enabled.
Note: Step trace trap processing routines cannot be debugged using emulators.

● Initialization of the SCR at Reset

The values of bits "D1", "D0" are undefined, and the T-bit is set to "0".

Interrupt controller

Interrupt activated

Peripheral Interrupt
request Activation OK

ICR

25

ILM

29

Comp
29>25

1

I flag

FR family CPU

A
N

D

10 09 08

SCR D1 D0 T Initial value: XX0B
20

線
(A line from ILM to COMP is added.)

CHAPTER 3 REGISTER DESCRIPTIONS
■ Condition Code Register (CCR: Bit 07 to bit 00)

● Bit Configuration of the "CCR"

Figure 3.3-6 Bit Configuration of the "CCR"

● "CCR" Functions

• "S" Flag
This flag selects the stack pointer to be used. The value "0" selects the system stack pointer (SSP), and
"1" selects the user stack pointer (USP).
RETI instruction is executable only when the S flag is "0".

• "I" Flag
This flag is used to enable/disable system interrupts. The value "0" disables, and "1" enables interrupts.

• "N" Flag
This flag is used to indicate positive or negative values when the results of a calculation are expressed in
two’s complement form. The value "0" indicates positive, and "1" indicates negative.

• "Z" Flag
This flag indicates whether the results of a calculations are zero. The value "0" indicates a non-zero
value, and "1" indicates a zero value.

• "V" Flag
This flag indicates that an overflow occurred when the results of a calculation are expressed in two’s
complement form. The value "0" indicates no overflow, and "1" indicates an overflow.

• "C" Flag
This flag indicates whether a carry or borrow condition has occurred in the highest bit of the results of a
calculation. The value "0" indicates no carry or borrow, and "1" indicates a carry or borrow condition.
This bit is also used with shift instructions, and contains the value of the last bit that is "shifted out".

● Initialization of the "CCR" at Reset

Following a reset, the "S" and "I" flags are set to "0" and the "N", "Z", "V" and "C" flags are undefined.

CCR - - S I N Z V C

07 06 05 04 03 02 01 00

Initial value: --00XXXXB
21

CHAPTER 3 REGISTER DESCRIPTIONS
■ Note on PS Register
Because of prior processing of the PS register by some commands, a break may be brought in an interrupt

processing subroutine during the use of a debugger or flag display content in the PS register may be

changed with the following exceptional operations. In both cases, right re-processing is designed to

execute after returning from the EIT. So, operations before and after EIT are performed conforming to the

specifications.

● When a) a user interrupt or NMI is executed, b) step execution is implemented, or c) a break occurs in a

data event or emulator menu due to a command just before DIV0U/DIV0S commands, the following
operation may be implemented.

(1) D0 and D1 flags are changed first.

(2) EIT process routine (user interrupt, NMI or emulator) is executed.

(3) Returning from EIT, DIV0U/DIV0S commands are executed and D0 and D1 flags are set to the same
value in "(1)".

● When a user interrupt or NMI factor exists, and a command such as ORCCR/STILM/

MOV Ri,PS is executed to allow an interruption, the following operation is executed:

(1) PS register is changed first.

(2) EIT process routine (user interrupt, NMI) is executed.

(3) Returning from EIT, any above command is executed and PS register is set to the same value in "(1)".
22

CHAPTER 3 REGISTER DESCRIPTIONS
3.3.3 Table Base Register (TBR)

The Table Base Register (TBR) designates the table containing the entry address for
"EIT" operations.

■ Overview of the Table Base Register
The Table Base Register (TBR) designates the table containing the entry address for "EIT" operations.

When an "EIT" condition occurs, the address of the vector reference is determined by the sum of the

contents of this register and the vector offset corresponding to the "EIT" operation.

Figure 3.3-7 shows an example of the operation of the table base register.

Figure 3.3-7 Sample of Table Base Register (TBR) Operation

Vector correspondence table

Vector no. Vector offset

Timer
interrupt 11H 3B8H

bit31 0

EAddr0 EAddr1 EAddr2 EAddr3

EAddr0 EAddr1 EAddr2 EAddr3

PC

TBR87654123H

Adder

Vector table

+0 +1 +2 +387654123H+000003B8H

876544DBH

876544D8H

The process of referencing a vector table involves application of address alignment rules
for word access.

Note:
23

線
("31" → "bit31")

CHAPTER 3 REGISTER DESCRIPTIONS
■ Table Base Register Configuration
Figure 3.3-8 shows the bit configuration of the table base register.

Figure 3.3-8 Table Base Register Bit Configuration

■ Table Base Register Functions

● Vector Table Reference Addresses

Addresses for vector reference are generated by adding the contents of the "TBR" register and the vector

offset value, which is determined by the type of interrupt used. Because vector access is in word units, the

lower two bits of the resulting address value are explicitly read as "0".

● Vector Table Layout

Vector table layout can be realized in word (32 bits) units.

● Initial Values in Table Base Register

After a reset, the initial value is "000FFC00H".

■ Precautions Related to the Table Base Register
The "TBR" should not be assigned values greater than "FFFFFC00H". If values higher than this are placed

in the register, the operation may result in an overflow when summed with the offset value. An overflow

condition will result in vector access to the area "00000000H" to "000003FFH", which can cause program

runaway.

Bit no.

TBR

31 00
24

CHAPTER 3 REGISTER DESCRIPTIONS
3.3.4 Return Pointer (RP)

The return pointer (RP) is a register used to contain the program counter (PC) value
during execution of call instructions, in order to assure return to the correct address
after the call instruction has executed.

■ Overview of the Return Pointer
The contents of the return pointer (RP) depend on the type of instruction. For a call instruction with a delay

slot, the value is the address stored +4, and for a call instruction with no delay slot, the value is the address

stored +2. The save data is returned from the "RP" pointer to the "PC" counter by execution of a "RET"

instruction.

Figure 3.3-9 shows a sample operation of the "RP" pointer in the execution of a "CALL" instruction with

no delay slot, and Figure 3.3-10 shows a sample operation of the "RP" pointer in the execution of a "RET"

instruction.

Figure 3.3-9 Sample Operation of "RP" in Execution of a "CALL" Instruction with No Delay Slot

Figure 3.3-10 Sample Operation of "RP" in Execution of a "RET" Instruction

Memory space

CALL SUB1

RET

Before execution

12345678H

????????H

PC

RP

Memory space

CALL SUB1

RET

After execution

SUB1

1234567AH

PC

RP

SUB1SUB1

Memory space

CALL:D SUB

RET

After execution

1234567AH

1234567AH

PC

RP

Memory space

CALL SUB1

RET

Before execution

SUB1

1234567AH

PC

RP

SUB1 SUB1

ADD #1,R00 ADD #1,R00
25

CHAPTER 3 REGISTER DESCRIPTIONS
■ Return Pointer Configuration
Figure 3.3-11 shows the bit configuration of the return pointer.

Figure 3.3-11 Return Pointer Bit Configuration

■ Return Pointer Functions

● Return Pointer in Multiple "CALL" Instructions

Because the "RP" does not have a stack configuration, it is necessary to first execute a save when calling

one subroutine from another subroutine.

● Initial Value of Return Pointer

The initial value is undefined.

Bit no.

RP

31 00
26

CHAPTER 3 REGISTER DESCRIPTIONS
3.3.5 System Stack Pointer (SSP), User Stack Pointer (USP)

The system stack pointer (SSP) and user stack pointer (USP) are registers that refer to
the stack area. The "S" flag in the "CCR" determines whether the "SSP" or "USP" is
used. Also, when an "EIT" event occurs, the program counter (PC) and program status
(PS) values are saved to the stack area designated by the "SSP", regardless of the value
of the "S" flag at that time.

■ System Stack Pointer (SSP), User Stack Pointer (USP)
The system stack pointer (SSP) and user stack pointer (USP) are pointers that refer to the stack area. The

stack area is accessed by instructions that use general-purpose register "R15" as an indirect register, as well

as register multi-transfer instructions. "R15" is used as an indirect register by the "SSP" when the "S" flag

in the condition code register (CCR) is "0" and the "USP" when the "S" flag is "1". Also, when an "EIT"

event occurs, the program counter (PC) and program status (PS) values are saved to the stack area

designated by the "SSP", regardless of the value of the "S" flag at that time.

Figure 3.3-12 shows an example of stack pointer operation in executing the instruction "ST R13, @-R15"

when the "S" flag is set to "0". Figure 3.3-13 shows an example of the same operation when the "S" flag is

set to "1".

Figure 3.3-12 Example of Stack Pointer Operation in Execution of Instruction "ST R13, @-R15"
when "S" Flag = 0

Memory space

????????

????????

Before execution of ST R13,@-R15

12345678H

76543210H

SSP

USP

17263540H

0

R13

CCR

FFFFFFFFH

After execution of ST R13,@-R15

12345674H

76543210H

SSP

USP

17263540H

17263540H

0

R13

CCR

S S

00000000H

Memory space

????????

FFFFFFFFH

00000000H
27

線
("ST R13", "@-R15" → "ST R13, @-R15")

線
("ST R13", "@-R15" → "ST R13, @-R15")

CHAPTER 3 REGISTER DESCRIPTIONS
Figure 3.3-13 Example of Stack Pointer Operation in Execution of Instruction "ST R13, @-R15"
when "S" Flag = 1

■ Stack Pointer Configuration
Figure 3.3-14 shows the bit configuration of the stack pointer.

Figure 3.3-14 Bit Configuration of the Stack Pointers

■ Functions of the System Stack Pointer and User Stack Pointer

● Automatic increment/decrement of stack pointer

The stack pointer uses automatic pre-decrement/post-increment counting.

● Stack Pointer Initial Value

The "SSP" has the initial value "00000000H". The "USP" initial value is undefined.

■ Recovery from EIT handler
When RETI instruction is used for recovery from an EIT handler, it is necessary to set the "S" flag to "0"

and select the system stack. For further details, see "■ Recovery from EIT handler" of "4.2 Basic

Operations in "EIT" Processing".

Memory space

????????

????????

Before execution of ST R13,@-R15

12345678H

76543210H

SSP

USP

17263540H

1

R13

CCR

FFFFFFFFH

After execution of ST R13,@-R15

12345678H

7654320CH

SSP

USP

17263540H

17263540H

1

R13

CCR

S S

00000000H

Memory space

FFFFFFFFH

00000000H

Bit no.

SSP

USP

31 00
28

線
("ST R13", "@-R15" → "ST R13, @-R15")

線
("4.2 Basic Operations in "EIT" Processing ■ Recovery from EIT handler" →
"■ Recovery from EIT handler"of "4.2 Basic Operations in "EIT" Processing")

CHAPTER 3 REGISTER DESCRIPTIONS
3.3.6 Multiplication/Division Register (MD)

The multiplication/division register (MD) is a 64-bit register used to contain the result of
multiplication operations, as well as the dividend and result of division operations.

■ Overview of the Multiplication/Division Register
The multiplication/division register (MD) is a register used to contain the result of multiplication

operations, as well as the dividend and result of division operations. The products of multiplication are

stored in the "MD" in 64-bit format. In division operations, the dividend must first be placed in the lower

32 bits of the "MD" beforehand. Then as the division process is executed, the remainder is placed in the

higher 32 bits of the "MD", and the quotient in the lower 32 bits.

Figure 3.3-15 shows an example of the use of the "MD" in multiplication, and Figure 3.3-16 shows an

example of division.

Figure 3.3-15 Sample Operation of "MD" in Multiplication

Figure 3.3-16 Sample Operation of "MD" in Division

Before execution of instruction MUL R00,R01

12345678H

76543210H

R00

R01

????????????????HMD

After execution of instruction MUL R00,R01

12345678H

76543210H

R00

R01

086A1C970B88D780HMD

Before execution of stepwise division

12345678H

Using R00

R00

????????76543210HMD

After execution of stepwise division

12345678HR00

091A264000000006HMD
29

CHAPTER 3 REGISTER DESCRIPTIONS
■ Configuration of the "MD" Register
Figure 3.3-17 shows the bit configuration of the "MD".

Figure 3.3-17 Bit Configuration of the "MD"

■ Functions of the "MD"

● Storing Results of Multiplication and Division

The results of multiplication operations are stored in the "MDH" (higher 32 bits) and "MDL" (lower 32

bits) registers.

The results of division are stored as follows: quotients in the 32-bit "MDL" register, and remainders in the

32-bit "MDH" register.

● Initial Value of the "MD"

The initial value is undefined.

Bit no.

MDH

MDL

31 00
30

CHAPTER 4
RESET AND "EIT"

PROCESSING

This chapter describes reset and "EIT" processing in the
FR family CPU.
A reset is a means of forcibly terminating the currently
executing process, initializing the entire device, and
restarting the program from the beginning. "EIT"
processing, in contrast, terminates the currently
executing process and saves restart information to the
memory, then transfers control to a predetermined
processing program. "EIT" processing programs can
return to the prior program by use of the "RETI"
instruction.
"EIT" processing operates in essentially the same
manner for exceptions, interrupts and traps, with the
following minor differences.
• Interrupts originate independently of the instruction

sequence. Processing is designed to resume from the
instruction immediately following the acceptance of
the interrupt.

• Exceptions are related to the instruction sequence,
and processing is designed to resume from the
instruction in which the exception occurred.

• Traps are also related to the instruction sequence,
and processing is designed to resume from the
instruction immediately following the instruction in
which the trap occurred.
31

CHAPTER 4 RESET AND "EIT" PROCESSING
4.1 Reset Processing

4.2 Basic Operations in "EIT" Processing

4.3 Interrupts

4.4 Exception Processing

4.5 Traps

4.6 Priority Levels
32

CHAPTER 4 RESET AND "EIT" PROCESSING
4.1 Reset Processing

A reset is a means of forcibly terminating the currently executing process, initializing
the entire device, and restarting the program from the beginning. Resets are used to
start the LSI operating from its initial state, as well as to recover from error conditions.

■ Reset Operations
When a reset is applied, the CPU terminates processing of the instruction executing at that time and goes

into inactive status until the reset is canceled. When the reset is canceled, the CPU initializes all internal

registers and starts execution beginning with the program indicated by the new value of the program

counter (PC).

■ Initialization of CPU Internal Register Values at Reset
When a reset is applied, the FR family CPU initializes internal registers to the following values.

• PC: Word data stored at address "000FFFFCH"

• ILM: "01111B"

• T Flag: "0" (trace OFF)

• I Flag: "0" (interrupt disabled)

• S Flag: "0" (use SSP pointer)

• TBR: "000FFC00H"

• SSP: "00000000H"

• R00 to R14: Undefined

• R15: SSP

For a description of built-in functions following a reset, refer to the Hardware Manual provided with each

FR family device.

■ Reset Priority Level
Resets have a higher priority than all "EIT" operations.
33

CHAPTER 4 RESET AND "EIT" PROCESSING
4.2 Basic Operations in "EIT" Processing

Interrupts, exceptions and traps are similar operations applied under partially differing
conditions. Each "EIT" event involves terminating the execution of instructions, saving
information for restarting, and branching to a designated processing program.

■ Basic Operations in "EIT" Processing
The FR family device processes "EIT" events as follows.

(1) The vector table indicated by the table base register (TBR) and the number corresponding to the
particular "EIT" event are used to determine the entry address for the processing program for the
"EIT".

(2) For restarting purposes, the contents of the old program counter (PC) and the old program status (PS)
are saved to the stack area designated by the system stack pointer (SSP).

(3) After the processing flow is completed, the presence of new "EIT" sources is determined.

Figure 4.2-1 shows the operations in the "EIT" processing sequence.

Figure 4.2-1 "EIT" Processing Sequence

Note:

For a description of pipeline operations, see Section "5.1 Pipeline Operation".

Instruction at which EIT event is detected
Canceled instruction

EIT sequence

(1) Vector address calculation and new PC setting

(2) SSP update and PS save

(3) SSP update and PC save
(4) Detection of new EIT event

First instruction in EIT handler sequence (branching instruction)

Canceled instruction

IF ID EX MA WB

IF ID EX MA PC

ID(1) EX(1) MA(1) WB(1)

IF ID xxxx xxxx xxxx

IF xxxxxxxx xxxx xxxx

ID(2) EX(2) MA(2) WB(2)

ID(3) EX(3) MA(3) WB(3)

ID(4) EX(4) MA(4) WB(4)
34

CHAPTER 4 RESET AND "EIT" PROCESSING
■ Vector Table Configuration
Vector tables are located in the main memory, occupying an area of 1 Kbyte beginning with the address

shown in the TBR. These areas are intended for use as a table of entry addresses for "EIT" processing,

however in applications where vector tables are not required, this area can be used as a normal instruction

or data area.

Figure 4.2-2 shows the structure of the vector table. (Example of 32-source)

Figure 4.2-2 Vector Table Configuration

TBR

00000000H

FFFFFFFFH

1 Kbyte

Memory space

Offset Vector no. Description

000H

004H

008H

33CH

340H

344H

3BCH

3C0H

3C4H

3C8H

3CCH

3D0H

3F8H

3FCH

FFH

FEH

FDH

30H

2FH

2EH

10H

0FH

0EH

0DH

0CH

0BH

01H

00H

INT #0FFH

INT #0FEH

INT #0FDH

INT #030H

INT #02FH or IR31

INT #02EH or IR30

INT #010H or IR00

INT #00FH or NMI

Undefined instruction exception

Emulator exception

Step trace trap

Operand break trap

System reserved or Mode Vector

Reset
35

CHAPTER 4 RESET AND "EIT" PROCESSING
■ Saved Registers
Except in the case of reset processing, the values of the "PS" and "PC" are saved to the stack as designated

by the "SSP", regardless of the value of the "S" flag in the "CCR". No save operation is used in reset

processing.

Figure 4.2-3 illustrates the saving of the values of the "PC" and "PS" in "EIT" processing.

Figure 4.2-3 Saving "PC" and "PS" Values in "EIT" Processing

■ Recovery from EIT handler
RETI instruction is used for recovery from the EIT handler.

To insure the program execution results after recovery, it is required that all the contents of the CPU

register are saved.

Ensure that the PC and PS values in the stack are not overwritten unless necessary because those values,

saved in the stack at the occurrence of EIT, are recovered from the stack during the recovery sequence

using the RETI instruction. Be sure to set the "S" flag to "0" when the RETI instruction is executed.

Memory space

Immediately before interrupt

80000000H

000FFC00H

SSP

TBR

12345678H

000C0010H

PC

PS

FFFFFFFFH

00000000H

7FFFFFF8H

7FFFFFFCH

offset: 000003B8H

Interrupt

IL=9

56781234H

Memory space

Immediately after interrupt

000FFC00H

SSP

TBR

56781234H

00090010H

PC

PS

FFFFFFFFH

00000000H

80000000H

7FFFFFFCH

7FFFFFF8H

offset: 000003B8H
56781234H

12345678H

000C0010H
36

CHAPTER 4 RESET AND "EIT" PROCESSING
4.3 Interrupts

Interrupts originate independently of the instruction sequence. They are processed by
saving the necessary information to resume the currently executing instruction
sequence, and then starting the processing routine corresponding to the type of
interrupt that has occurred.
There are two types of interrupt sources.
• User interrupts
• Non-maskable interrupts (NMI)

■ Overview of Interrupt Processing
Interrupts originate independently of the instruction sequence. They are processed by saving the necessary

information to resume the currently executing instruction sequence, and then starting the processing routine

corresponding to the type of interrupt that has occurred.

Instructions loaded and executing in the CPU before the interrupt will be executed to completion, however,

any instructions loaded in the pipeline after the interrupt will be canceled. After completion of interrupt

processing, therefore, execution will return to the next instruction following the generation of the interrupt

signal.

■ Sources of Interrupts
There are two types of interrupt sources.

• User interrupts (See Section "4.3.1 User Interrupts")

• Non-maskable interrupts (NMI) (See Section "4.3.2 Non-maskable Interrupts (NMI)")

■ Interrupts during Execution of Stepwise Division Programs
To enable resumption of processing when interrupts occur during stepwise division programs, intermediate

data is placed in the program status (PS), and saved to the stack. Therefore, if the interrupt processing

program overwrites the contents of the "PS" data in the stack, the processor will resume executing the

stepwise division instruction following the completion of interrupt processing, however the results of the

division calculation will be incorrect.
37

線
("External" → "User")

線
("External" → "User")

CHAPTER 4 RESET AND "EIT" PROCESSING
4.3.1 User Interrupts

User interrupts originate as requests from peripheral circuits. Each interrupt request is
assigned an interrupt level, and it is possible to mask requests according to their level
values.
This section describes conditions for acceptance of user interrupts, as well as their
operation and uses.

■ Overview of User Interrupts
User interrupts originate as requests from peripheral circuits.

Each interrupt request is assigned an interrupt level, and it is possible to mask requests according to their

level values. Also, it is possible to disable all interrupts by using the I flag in the condition code register

(CCR) in the program status (PS).

It is possible to enter an interrupt signal through a signal pin, but in virtually all cases the interrupt

originates from the peripheral circuits contained on the FR family microcontroller chip itself.

■ Conditions for Acceptance of User Interrupt Requests
The CPU accepts user interrupts when the following conditions are met:

• The peripheral circuit is operating and generates an interrupt request.

• The interrupt enable bit in the peripheral circuit’s control register is set to "enable".

• The value of the interrupt request (ICR*1) is lower than the value of the ILM*2 setting.

• The "I" flag is set to "1".

*1: ICR = Interrupt Control Register ...a register on the microcontroller that controls interrupts

*2: ILM = Interrupt Level Mask Register ... a register in the CPU’s program status (PS)

■ Operation Following Acceptance of a User Interrupt
The following operating sequence takes place after a user interrupt is accepted.

• The contents of the program status (PS) are saved to the system stack.

• The address of the next instruction is saved to the system stack.

• The value of the system stack pointer (SSP) is reduced by 8.

• The value (level) of the accepted interrupt is stored in the "ILM".

• The value "0" is written to the "S" flag in the condition code register (CCR) in the program status (PS).

• The vector address of the accepted interrupt is stored in the program counter (PC).
38

線
("External" → "User")

線
("The CPU accepts interrupts" → "The CPU accepts user interrupts")

線
("External" → "User"), ("external" → "user")

線
("External" → "User"), ("external" → "user")

線
("External" → "User")

CHAPTER 4 RESET AND "EIT" PROCESSING
■ Time to Start of Interrupt Processing
The time required to start interrupt processing can be expressed as a maximum of "n + 6" cycles from the

start of the instruction currently executing when the interrupt was received, where "n" represents the

number of execution cycles in the instruction.

If the instruction includes memory access, or insufficient instructions are present, the corresponding

number of wait cycles must be added.

■ "PC" Values Saved for Interrupts
When an interrupt is accepted by the processor, those instructions in the pipeline that cannot be interrupted

in time will be executed. The remainder of the instructions will be canceled, and will not be processed after

the interrupt. The "EIT" processing sequence saves "PC" values to the system stack representing the

addresses of canceled instructions.

■ How to Use User Interrupts
The following programming steps must be set up to enable the use of user interrupts.

Figure 4.3-1 illustrates the use of user interrupts.

Figure 4.3-1 How to Use User Interrupts

(1) Enter values in the interrupt vector table (defined as data).

(2) Set up the "SSP" values.

(3) Set up the table base register (TBR) values.

(4) Within the interrupt controller, enter the appropriate level for the "ICR" corresponding to interrupts
from the peripheral from which the interrupt will originate.

(5) Initialize the peripheral function that requests the occurrence of the interrupt, and enable its interrupt
function.

(6) Set up the appropriate value in the "ILM" field in the "PS".

(7) Set the "I" flag to "1".

FR family CPU SSP USP

PS I ILM S

INT
 OK AND Comparator

Interrupt
controller

Peripheral
device

ICR#n Interrupt
enable bit

Internal bus

(5)(4)

(2)

(2)(6)(7)
39

線
("External" → "User"), ("external" → "user")

線
("External" → "User")

CHAPTER 4 RESET AND "EIT" PROCESSING
4.3.2 Non-maskable Interrupts (NMI)

Non-maskable interrupts (NMI) are interrupts that cannot be masked. "NMI" requests
can be produced when "NMI" external signal pin input to the microcontroller is active.
This section describes conditions for the acceptance of "NMI" interrupts, as well as
their operation and uses.

■ Overview of Non-maskable Interrupts
Non-maskable interrupts (NMI) are interrupts that cannot be masked. "NMI" requests can be produced

when "NMI" external signal pin input to the microcontroller is active.

Non-maskable interrupts cannot be disabled by the "I" flag in the condition code register (CCR) in the

program status (PS).

The masking function of the interrupt level mask register (ILM) in the "PS" is valid for "NMI". However, it

is not possible to use the software input to set "ILM" values for masking of "NMI", so that these interrupts

cannot be masked by programming.

■ Conditions for Acceptance of Non-maskable Interrupt Requests
The FR family CPU will accept an "NMI" request when the following conditions are met:

● If "NMI" Pin Input is Active:

• In normal operation: Detection of a negative signal edge

• In stop mode: Detection of an "L" level signal

● If the "ILM" Value is Greater than 15.

■ Operation Following Acceptance of a Non-maskable Interrupt
When an "NMI" is accepted, the following operations take place:

(1) The contents of the "PS" are saved to the system stack.

(2) The address of the next instruction is saved to the system stack.

(3) The value of the system stack pointer (SSP) is reduced by 8.

(4) The value "15" is written to the "ILM".

(5) The value "0" is written to the "S" flag in "CCR" in the "PS".

(6) The value "TBR + 3C0H" is stored in the program counter (PC).

■ Time to Start of Non-maskable Interrupt Processing
The time required to start processing of an "NMI" can be expressed as a maximum of "n + 6" cycles from

the start of the instruction currently executing when the interrupt was received, where "n" represents the

number of execution cycles in the instruction.

If the instruction includes memory access, or insufficient instructions are present, the corresponding

number of wait cycles must be added.
40

CHAPTER 4 RESET AND "EIT" PROCESSING
■ "PC" Values Saved for Non-maskable Interrupts
When an "NMI" is accepted by the processor, those instructions in the pipeline that cannot be interrupted in

time will be executed. The remainder of the instructions will be canceled, and will not be processed after

the interrupt. The "EIT" processing sequence saves "PC" values to the system stack representing the

addresses of canceled instructions.

■ How to Use Non-maskable Interrupts
The following programming steps must be set up to enable the use of "NMI".

(1) Enter values in the interrupt vector table (defined as data).

(2) Set up the "SSP" values.

(3) Set up "TBR" values.

(4) Set up the appropriate value in the "ILM" field in the "PS".
41

CHAPTER 4 RESET AND "EIT" PROCESSING
4.4 Exception Processing

Exceptions originate from within the instruction sequence. Exceptions are processed
by first saving the necessary information to resume the currently executing instruction,
and then starting the processing routine corresponding to the type of exception that
has occurred.

■ Overview of Exception Processing
Exceptions originate from within the instruction sequence. Exceptions are processed by first saving the

necessary information to resume the currently executing instruction, and then starting the processing

routine corresponding to the type of exception that has occurred.

Branching to the exception processing routine takes place before execution of the instruction that has

caused the exception.

The address of the instruction in which the exception occurs becomes the program counter (PC) value that

is saved to the stack.

■ Factors Causing Exception Processing
The factor which causes the exception processing is the undefined-instruction exception (For details, see

"4.4.1 Undefined Instruction Exceptions").
42

CHAPTER 4 RESET AND "EIT" PROCESSING
4.4.1 Undefined Instruction Exceptions

Undefined instruction exceptions are caused by attempts to execute instruction codes
that are not defined.
This section describes the operation, time requirements and uses of undefined-
instruction exceptions.

■ Overview of Undefined Instruction Exceptions
Undefined instruction exceptions are caused by attempts to execute instruction codes that are not defined.

■ Operations of Undefined Instruction Exceptions
The following operating sequence takes place when an undefined instruction exception occurs.

(1) The contents of the program status (PS) are saved to the system stack.

(2) The address of the instruction that caused the undefined-instruction exception is saved to the system
stack.

(3) The value of the system stack pointer (SSP) is reduced by 8.

(4) The value "0" is written to the "S" flag in the condition code register (CCR) in the "PS".

(5) The value "TBR + 3C4H" is stored in the program counter (PC).

■ Time to Start of Undefined Instruction Exception Processing
The time required to start exception processing is 7 cycles.

■ "PC" Values Saved for Undefined Instruction Exceptions
The address saved to the system stack as a "PC" value represents the instruction itself that caused the

undefined instruction exception. When a RETI instruction is executed, the contents of the system stack

should be rewritten with the exception processing routine so that execution will either resume from the

address of the next instruction after the instruction that caused the exception, or branch to the appropriate

processing routine.

■ How to Use Undefined Instruction Exceptions
The following programming steps must be set up to enable the use of undefined instruction exceptions.

(1) Enter values in the interrupt vector table (defined as data).

(2) Set up the "SSP" value.

(3) Set up "TBR" value.

■ Undefined Instructions Placed in Delay Slots
Undefined instructions placed in delay slots do not generate undefined instruction exceptions. In such

cases, undefined instructions have the same operation as "NOP" instructions.
43

CHAPTER 4 RESET AND "EIT" PROCESSING
4.5 Traps

Traps originate from within the instruction sequence. Traps are processed by first
saving the necessary information to resume processing from the next instruction in the
sequence, and then starting the processing routine corresponding to the type of trap
that has occurred.
Sources of traps include the following:
• "INT" instructions
• "INTE" instructions
• Step trace traps
• Coprocessor not found traps
• Coprocessor error traps

■ Overview of Traps
Traps originate from within the instruction sequence. Traps are processed by first saving the necessary

information to resume processing from the next instruction in the sequence, and then starting the processing

routine corresponding to the type of trap that has occurred.

Branching to the exception processing routine takes place after execution of the instruction that has caused

the exception.

The address of the instruction in which the exception occurs becomes the program counter (PC) value that

is saved to the stack.

■ Sources of Traps
Sources of traps include the following:

• INT instructions (For details, see Section "4.5.1 "INT" Instructions")

• INTE instructions (For details, see Section "4.5.2 "INTE" Instruction")

• Step trace traps (For details, see Section "4.5.3 Step Trace Traps")

• Coprocessor not found traps (For details, see Section "4.5.4 Coprocessor Not Found Traps")

• Coprocessor error traps (For details, see Section "4.5.5 Coprocessor Error Trap")
44

CHAPTER 4 RESET AND "EIT" PROCESSING
4.5.1 "INT" Instructions

The "INT" instruction is used to create a software trap.
This section describes the operation, time requirements, program counter (PC) values
saved, and other information of the "INT" instruction.

■ Overview of the "INT" Instruction
The "INT #u8" instruction is used to create a software trap with the interrupt number designated in the

operand.

■ "INT" Instruction Operation
When the "INT #u8" instruction is executed, the following operations take place.

(1) The contents of the program status (PS) are saved to the system stack.

(2) The address of the next instruction is saved to the system stack.

(3) The value of the system stack pointer (SSP) is reduced by 8.

(4) The value "0" is written to the "I" flag in the condition code register (CCR) in the "PS".

(5) The value "0" is written to the "S" flag in the "CCR" in the "PS".

(6) The value "TBR + 3FCH – 4 × u8" is stored in "PC".

■ Time to Start of Trap Processing for "INT" Instructions
The time required to start trap processing is 6 cycles.

■ "PC" Values Saved for "INT" Instruction Execution
The "PC" value saved to the system stack represents the address of the next instruction after the "INT"

instruction.

■ Precautionary Information for Use of "INT" Instructions
The "INT" instruction should not be used within an "INTE" instruction handler or step trace trap-handler

routine. This will prevent normal operation from resuming after the "RETI" instruction.
45

CHAPTER 4 RESET AND "EIT" PROCESSING
4.5.2 "INTE" Instruction

The "INTE" instruction is used to create a software trap for debugging.
This section describes the operation, time requirements, program counter (PC) values
saved, and other information of the "INTE" instruction.

■ Overview of the "INTE" Instruction
The "INTE" instruction is used to create a software trap for debugging. This instruction allows the use of

emulators.

This technique can be utilized by users for systems that have not been debugged by emulators.

■ "INTE" Instruction Operation
When the "INTE" instruction is executed, the following operations take place.

(1) The contents of the program status (PS) are saved to the system stack.

(2) The address of the next instruction is saved to the system stack.

(3) The value of the system stack pointer (SSP) is reduced by 8.

(4) The value "4" is written to the interrupt level mask register (ILM) in the "PS".

(5) The value "0" is written to the "S" flag in the "CCR" in the "PS".

(6) The value "TBR + 3D8H" is stored in "PC".

■ Time to Start of Trap Processing for "INTE" Instructions
The time required to start trap processing is 6 cycles.

■ "PC" Values Saved for "INTE" Instruction Execution
The "PC" value saved to the system stack represents the address of the next instruction after the "INTE"

instruction.

■ Precautionary Information for Use of "INTE" Instructions
The "INTE" instruction cannot be used in user programs involving debugging with an emulator. Also, the

"INTE" instruction should not be used within an "INTE" instruction handler or step trace trap-handler

routine. This will prevent normal operation from resuming after the "RETI" instruction. Note also that no

"EIT" events can be generated by "INTE" instructions during stepwise execution.
46

CHAPTER 4 RESET AND "EIT" PROCESSING
4.5.3 Step Trace Traps

Step trace traps are traps used by debuggers. This type of trap can be created for each
individual instruction in a sequence by setting the "T" flag in the system condition code
register (SCR) in the program status (PS).
This section describes conditions for the generation, operations, program counter (PC)
values saved, and other information of step trace traps.

■ Overview of Step Trace Traps
Step trace traps are traps used by debuggers. This type of trap can be created for each individual instruction

in a sequence, by setting the "T" flag in the "SCR" in the "PS".

In the execution of delayed branching instructions, step trace traps are not generated immediately after the

execution of branching. The trap is generated after execution of the instruction(s) in the delay slot.

The step trace trap can be utilized by users for systems that have not been debugged by emulators.

■ Conditions for Generation of Step Trace Traps
A step trace trap is generated when the following conditions are met.

• The "T" flag in the "SCR" in the "PS" is set to "1".

• The currently executing instruction is not a delayed branching instruction.

• The CPU is not processing an "INTE" instruction or a step trace trap processing routine.

■ Step Trace Trap Operation
When a step trace trap is generated, the following operations take place.

(1) The contents of the program status (PS) are saved to the system stack.

(2) The address of the next instruction is saved to the system stack.

(3) The value of the system stack pointer (SSP) is reduced by 8.

(4) The value "0" is written to the "S" flag in the "CCR" in the "PS".

(5) The value "TBR + 3C4H" is stored in "PC".

■ "PC" Values Saved for Step Trace Traps
The "PC" value saved to the system stack represents the address of the next instruction after the step trace

trap.

■ Relation of Step Trace Traps to "NMI" and External Interrupts
When the "T" flag is set to enable step trace traps, both "NMI" and external interrupts are disabled.

■ Precautionary Information for Use of Step Trace Traps
Step trace traps cannot be used in user programs involving debugging with an emulator. Note also that no

"EIT" events can be generated by "INTE" instructions when the step trace trap function is used.
47

CHAPTER 4 RESET AND "EIT" PROCESSING
4.5.4 Coprocessor Not Found Traps

Coprocessor not found traps are generated by executing coprocessor instructions
using coprocessors not found in the system.
This section describes conditions for the generation of coprocessor not found traps, in
addition to operation, program counter (PC) values saved, and other information.

■ Overview of Coprocessor Not Found Traps
Coprocessor not found traps are generated by executing coprocessor instructions using coprocessors not

found in the system.

■ Conditions for Generation of Coprocessor Not Found Traps
A coprocessor not found trap is generated when the following conditions are met.

• Execution of a "COPOP/COPLD/COPST/COPSV" instruction.

• No coprocessor present in the system corresponds to the operand "#u4" in any of the above instructions.

■ Coprocessor Not Found Trap Operation
When a coprocessor not found trap is generated, the following operations take place.

(1) The contents of the program status (PS) are saved to the system stack.

(2) The address of the next instruction is saved to the system stack.

(3) The value of the system stack pointer (SSP) is reduced by 8.

(4) The value "0" is written to the "S" flag in the condition code register (CCR) in the "PS".

(5) The value "TBR + 3E0H" is stored in "PC".

■ "PC" Values Saved for Coprocessor Not Present Traps
The "PC" value saved to the system stack represents the address of the next instruction after the

coprocessor instruction that caused the trap.

■ General-purpose Registers during Execution of "COPST/COPSV" Instructions
Execution of any "COPST/COPSV" instruction referring to a coprocessor that is not present in the system

will cause undefined values to be transferred to the general-purpose register (R0 to R14) designated in the

operand. The coprocessor not found trap will be activated after the designated general-purpose register is

updated.
48

CHAPTER 4 RESET AND "EIT" PROCESSING
4.5.5 Coprocessor Error Trap

A coprocessor error trap is generated when an error has occurred in a coprocessor
operation and the CPU executes another coprocessor instruction involving the same
coprocessor.
This section describes conditions for the generation, operations, and program counter
(PC) values saved of coprocessor error traps.

■ Overview of Coprocessor Error Traps
A coprocessor error trap is generated when an error has occurred in a coprocessor operation and the CPU

executes another coprocessor instruction involving the same coprocessor. Note that no coprocessor error

traps are generated for execution of "COPSV" instructions.

■ Conditions for Generation of Coprocessor Error Traps
A coprocessor error trap is generated when the following conditions are met.

• An error has occurred in coprocessor operation.

• A "COPOP/COPLD/COPST" instruction is executed involving the same coprocessor.

■ Coprocessor Error Trap Operation
When a coprocessor error trap is generated, the following operations take place.

(1) The contents of the program status (PS) are saved to the system stack.

(2) The address of the next instruction is saved to the system stack.

(3) The value of the system stack pointer (SSP) is reduced by 8.

(4) The value "0" is written to the "S" flag in the condition code register (CCR) in the "PS".

(5) The value "TBR + 3DCH" is stored in "PC".

■ "PC" Values Saved for Coprocessor Error Traps
The "PC" value saved to the system stack represents the address of the next instruction after the

coprocessor instruction that caused the trap.

■ Results of Coprocessor Operations after a Coprocessor Error Trap
Despite the occurrence of a coprocessor error trap, the execution of the coprocessor instruction ("COPOP/

COPLD/COPST") remains valid and the results of the instruction are retained. Note that the results of

operations affected by the coprocessor error will not be correct.
49

CHAPTER 4 RESET AND "EIT" PROCESSING
■ Saving and Restoring Coprocessor Error Information

When a coprocessor is used in a multi-tasking environment, the internal resources of the coprocessor

become part of the system context. Thus whenever context switching occurs, it is necessary to save or

restore the contents of the coprocessor. Problems arise when there are hidden coprocessor errors remaining

from former tasks at the time of context switching.

In such cases, when the exception is detected in a coprocessor context save instruction by the dispatcher, it

becomes impossible to return the information to the former task. This problem is avoided by executing a

"COPSV" instruction, which does not send notification of coprocessor errors but acts to clear the internal

error. Note that the error information is retained in the status information that is saved. If the saved status

information is returned to the coprocessor at the time of re-dispatching to the former task, the hidden error

condition is cleared and the CPU is notified when the next coprocessor instruction is executed.

Figure 4.5-1 shows an example in which notification to the coprocessor does not succeed, and Figure 4.5-2

illustrates the use of the "COPSV" instruction to save and restore error information.

Figure 4.5-1 Example: Coprocessor Error Notification Not Successful

Figure 4.5-2 Use of "COPSV" Instruction to Save and Restore Error Information

Coprocessor

CPU(main)

CPU(dispatcher)

Hidden error condition

Notification

Interrupt

COPST

COPOP

Coprocessor

CPU
(main)

CPU(dispatcher)

Hidden error condition Hidden error condition

No notification

Interrupt

COPSV COPLD

COPOP
RETI

COPST
50

CHAPTER 4 RESET AND "EIT" PROCESSING
4.6 Priority Levels

When multiple "EIT" requests occur at the same time, priority levels are used to select
one source and execute the corresponding "EIT" sequence. After the "EIT" sequence is
completed, "EIT" request detection is applied again to enable processing of multiple
"EIT" requests.
Acceptance of certain types of "EIT" requests can mask other factors. In such cases the
priority applied by the "EIT" processing handler may not match the priority of the
requests.

■ Priority of Simultaneous Occurrences
The FR family uses a hardware function to determine the priority of acceptance of "EIT" requests.

Table 4.6-1 shows the priority levels of "EIT" requests.

Table 4.6-1 Priority of "EIT" Requests

Priority Source Masking of other sources

1 Reset Other sources discarded

2 Undefined instruction exception Other sources disabled

3

INT instruction I flag = 0

Coprocessor not found trap
Coprocessor error trap

None

4 User interrupt ILM = level of source accepted

5 NMI ILM = 15

6 Step trace trap ILM = 4

7 INTE instruction ILM = 4
51

線
("External" → "User"), ("INT" → "INTE")

CHAPTER 4 RESET AND "EIT" PROCESSING
■ Priority of Multiple Processes
When the acceptance of an "EIT" source results in the masking of other sources, the priority of execution of

simultaneously occurring "EIT" handlers is as shown in Table 4.6-2.

*: When "INTE" instructions are run stepwise, only the step trace "EIT" is generated.

Sources related to the "INTE" instruction will be ignored.

Table 4.6-2 Priority of Execution of "EIT" Handlers

Priority Source Masking of other sources

1 Reset Other sources discarded

2 Undefined instruction exception Other sources disabled

3 Step trace trap ILM = 4 *

4 INTE instruction ILM = 4 *

5 NMI ILM = 15

6 INT instruction I flag = 0

7 User interrupt ILM = level of source accepted

8
Coprocessor not found trap

Coprocessor error trap
None
52

CHAPTER 5
PRECAUTIONARY

INFORMATION FOR THE FR
FAMILY CPU

This chapter presents precautionary information related
to the use of the FR family CPU.

5.1 Pipeline Operation

5.2 Pipeline Operation and Interrupt Processing

5.3 Register Hazards

5.4 Delayed Branching Processing
53

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
5.1 Pipeline Operation

The FR family CPU processes all instructions using a 5-stage pipeline operation. This
makes it possible to process nearly all instructions within one cycle.

■ Overview of Pipeline Operation
In a pipeline operation the steps by which the CPU interprets and executes instructions are divided into

several cycles, so that instructions can be processed simultaneously in successive cycles. This enables the

system to appear to execute in one cycle many instructions that would require several cycles in other

methods of processing. The FR family CPU simultaneously executes five types (IF, ID, EX, MA, and WB)

of processing cycles, as shown in Figure 5.1-1. This is referred to as five-stage pipeline processing.

• IF: Load instruction

• ID: Interpret instruction

• EX: Execute instruction

• MA: Memory access

• WB: Write to register

Figure 5.1-1 Example of Pipeline Operation in the FR Family CPU

● Processes occurring in each 1 cycle in the above example:

(1) Load instruction "LD @R10,R1"

(2) Interpret instruction "LD @R10,R1" Load instruction "LD, @R11,R2"

(3) Execute instruction "LD @R10,R1" Interpret instruction "LD, @R11,R2"
Load instruction, "ADD R1, R3"

(4) Memory access instruction "LD @R10,R1" Execute instruction "LD, @R11,R2"
Interpret instruction, "ADD R1, R3" Load instruction "BNE:D TestOK"

(5) Write instruction "LD @R10,R1" to register Memory access instruction "LD, @R11,R2"
Execute instruction, "ADD R1, R3" Interpret instruction, "BNE:D TestOK"
Load instruction "ST R2,@R12"

(1) (2) (3) (4) (5)

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

1 cycle

LD @R10, R1

LD @R11, R2

ADD R1, R3

BNE:D TestOK

ST R2, @R12
54

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
5.2 Pipeline Operation and Interrupt Processing

The FR family CPU processes all instructions through pipeline operation. Therefore,
particularly for instructions that start hardware events, it is possible for contradictory
conditions to exist before and after an instruction.

■ Precautionary Information for Interrupt Processing in Pipeline Operation
Because the FR family CPU operates in pipeline mode, the recognition of an interrupt signal is preceded by

several instructions in respective states of pipeline processing. If one of those instructions being executed in

the pipeline acts to delete the interrupt, the CPU will branch normally to the respective interrupt processing

program but when control is transferred to interrupt processing the interrupt request will no longer be

effective.

Note that this type of condition does not occur in exception or trap processing.

Figure 5.2-1 Example: Interrupt Accepted and Deleted Causing Mismatched Pipeline Conditions

■ Conditions that Are Actually Generated
The following processing conditions may cause an interrupt to be deleted after acceptance.

• A program that clears interrupt sources while in interrupt-enabled mode

• Writing to an interrupt-enable bit in a peripheral function while in interrupt-enabled mode

■ How to Avoid Mismatched Pipeline Conditions
To avoid deleting interrupts that have already been accepted, programmers should use the "I" flag in the

condition code register (CCR) in the program status (PS) to regulate interrupt sources.

IF ID EX MA WB

IF ID EX MA WB

IF ID --

--: Canceled stages

-- --

-- -- -- --IF

IF ID EX MA WB

LD @R10, R1

Interrupt request

ADD R1, R3(cancelled)

BNE TestOK(cancelled)

EIT sequence execution #1

ST R2, @R11

None None None None None None NoneGenerated Deleted
55

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
5.3 Register Hazards

The FR family CPU executes program steps in the order in which they are written, and is
therefore equipped with a function that detects the occurrence of register hazards and
stops pipeline processing when necessary. This enables programs to be written without
attention to the order in which registers are used

■ Overview of Register Hazards
The CPU in pipeline operation may simultaneously process one instruction that involves writing values to a

register, and a subsequent instruction that attempts to refer to the same register before the write process is

completed. This is called a register hazard.

In the example in Figure 5.3-1, the program will read the address value at "R1" before the desired value has

been written to "R1" by the previous instruction. As a result, the old value at "R1" will be read instead of

the new value.

Figure 5.3-1 Example of a Register Hazard

■ Register Bypassing
Even when a register hazard does occur, it is possible to process instructions without operating delays if the

data intended for the register to be accessed can be extricated from the preceding instruction. This type of

data transfer processing is called register bypassing, and the FR family CPU is equipped with a register

bypass function.

In the example in Figure 5.3-2, instead of reading the "R1" in the "ID" stage of the "SUB" instruction, the

program uses the results of the calculation from the "EX" stage of the "ADD" instruction (before the results

are written to the register) and thus executes the instruction without delay.

Figure 5.3-2 Example of a Register Bypass

IF ID EX MA WB : Write cycle to R1

: Read cycle from R1IF ID EX MA WBSUB R1, R2

ADD R0, R1

IF ID EX MA WB : Data calculation cycle to R1

: Read cycle from R1IF ID EX MA WBSUB R1, R2

ADD R0, R1
56

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
■ Interlocking

Instructions which are relatively slow in loading data to the CPU may cause register hazards that cannot be

handled by register bypassing.

In the example in Figure 5.3-3, data required for the "ID" stage of the "SUB" instruction must be loaded to

the CPU in the "MA" stage of the "LD" instruction, creating a hazard that cannot be avoided by the bypass

function.

Figure 5.3-3 Example: Register Hazard that Cannot be Avoided by Bypassing

In cases such as this, the FR family CPU executes the instruction correctly by pausing before execution of

the subsequent instruction. This function is called interlocking.

In the example in Figure 5.3-4, the "ID" stage of the "SUB" instruction is delayed until the data is loaded

from the "MA" stage of the "LD" instruction.

Figure 5.3-4 Example of Interlocking

■ Interlocking Produced by Reference to "R15" and General-purpose Registers after
Changing the "S" Flag

The general-purpose register "R15" is designed to function as either the system stack pointer (SSP) or user

stack pointer (USP). For this reason, the FR family CPU is designed to automatically generate an interlock

whenever a change to the "S" flag in the condition code register (CCR) in the program status (PS) is

followed immediately by an instruction that references the "R15". This interlock enables the CPU to

reference the "SSP" or "USP" values in the order in which they are written in the program. FR family

hardware design similarly generates an interlock whenever a TYPE-A format instruction immediately

follows an instruction that changes the value of the "S" flag.

For information on instruction format types, see Section "6.1 Instruction Formats".

IF ID EX MA WB : Data read cycle to R0

: Read cycle from R1IF ID EX MA WBSUB R1, R2

LD @R0, R1

IF ID EX MA WB : Data read cycle to R0

: Read cycle from R1IF ID ID MAEX WBSUB R1, R2

LD @R0, R1
57

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
5.4 Delayed Branching Processing

Because the FR family CPU features pipeline operation, branching instructions must
first be loaded before they are executed. Delayed branching processing is the function
to execute the loaded instruction, and allows to accelerate processing speeds.

■ Overview of Branching with Non-delayed Branching Instructions
In a pipeline operation, by the time the CPU recognizes an instruction as a branching instruction the next

instruction has already been loaded. To process the program as written, the instruction following the

branching instruction must be canceled in the middle of execution. Branching instructions that are handled

in this manner are non-delayed branching instructions.

Examples of processing non-delayed branching instructions (both when branching conditions are satisfied

and not satisfied) are described in Section "5.4.1 Processing Non-delayed Branching Instructions".

■ Overview of Branching with Delayed Branching Instructions
An instruction immediately following a branching instruction will already be loaded by the CPU by the

time the branching instruction is executed. This position is called the delay slot.

A delayed branching instruction is a branching instruction that executes the instruction in the delay slot

regardless of whether the branching conditions are satisfied or not satisfied.

Examples of processing delayed branching instructions (both when branching conditions are satisfied and

not satisfied) are described in Section "5.4.2 Processing Delayed Branching Instructions".

■ Instructions Prohibited in Delay Slots
The following instructions may not be used in delayed branching processing by the FR family CPU.

• LDI:32 #i32, Ri LDI:20 #i20, Ri

• COPOP #u4, #CC, CRj, CRi
COPLD #u4, #CC, Rj, CRi
COPST #u4, #CC, CRj, Ri
COPSV #u4, #CC, CRj, Ri

• JMP @Ri
CALL label12
CALL @Ri
RET
Conditional branching instruction and related delayed branching instructions

• INT #u8
RETI
INTE
58

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
• AND Rj, @Ri
ANDH Rj, @Ri
ANDB Rj, @Ri
OR Rj, @Ri
ORH Rj, @Ri
ORB Rj, @Ri
EOR Rj, @Ri
EORH Rj, @Ri
EORB Rj, @Ri

• BANDH #u4, @Ri
BANDL #u4, @Ri
BORH #u4, @Ri
BORL #u4, @Ri
BEORH #u4, @Ri
BEORL #u4, @Ri
BTSTH #u4, @Ri
BTSTL #u4, @Ri

• MUL Rj, Ri
MULU Rj, Ri
MULH Rj, Ri
MULUH Rj, Ri

• LD @R15+, PS

• LDM0 (reglist)
LDM1 (reglist)
STM0 (reglist)
STM1 (reglist)
ENTER #u10
XCHB @Rj, Ri

• DMOV @dir10, @R13+
DMOV @R13+, @dir10
DMOV @dir10, @-R15
DMOV @R15+, @dir10
DMOVH @dir9, @R13+
DMOVH @R13+, @dir9
DMOVB @dir8, @R13+
DMOVB @R13+, @dir8

■ Restrictions on Interrupts during Processing of Delayed Branching Instructions
"EIT" processing is not accepted during execution of delayed branching instructions or delayed branching

processing.
59

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
5.4.1 Processing Non-delayed Branching Instructions

The FR family CPU processes non-delayed branching instructions in the order in which the
program is written, introducing a 1-cycle delay in execution speed if branching takes place.

■ Examples of Processing Non-delayed Branching Instructions
Figure 5.4-1 shows an example of processing a non-delayed branching instruction when branching

conditions are satisfied.

In this example, the instruction "ST R2,@R12" (which immediately follows the branching instruction) has

entered the pipeline operation before the fetching of the branch destination instruction, but is canceled

during execution.

As a result, the program is processed in the order in which it is written, and the branching instruction

requires an apparent processing time of two cycles.

Figure 5.4-1 Example: Processing a Non-delayed Branching Instruction (Branching Conditions Satisfied)

Figure 5.4-2 shows an example of processing a non-delayed branching instruction when branching

conditions are not satisfied.

In this example, the instruction "ST R2,@R12" (which immediately follows the branching instruction) has

entered the pipeline operation before the fetching of the branch destination instruction, and is executed

without being canceled.

Because instructions are executed without branching, the program is processed in the order in which it is

written. The branching instruction requires an apparent processing time of one cycle.

Figure 5.4-2 Example: Processing a Non-delayed Branching Instruction (Branching Conditions Not Satisfied)

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF -- -- -- --

-- : Canceled stages

: PC change

IF ID EX MA WB

LD @R10, R1

LD @R11, R2

ADD R1, R3

BNE TestOK(branching conditions satisfied)

ST R2, @R12(instruction immediately after)

ST R2, @R13(branch destination instruction)

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Not canceled

IF ID EX MA WB

LD @R10, R1

LD @R11, R2

ADD R1, R3

BNE TestOK(branching conditions not satisfied)

ST R2, @R12(instruction immediately after)

ADD #4, R12(subsequent instruction)
60

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
5.4.2 Processing Delayed Branching Instructions

The FR family CPU processes delayed branching instructions with an apparent
execution speed of 1 cycle, regardless of whether branching conditions are satisfied or
not satisfied. When branching occurs, this is one cycle faster than using
non-delayed branching instructions.
However, the apparent order of instruction processing is inverted in cases where
branching occurs.

■ Examples of Processing Delayed Branching Instructions
Figure 5.4-3 shows an example of processing a delayed branching instruction when branching conditions

are satisfied.

In this example, the branch destination instruction, "ST R2,@R13" is executed after the instruction "ST

R2,@R12" in the delay slot. As a result, the branching instruction has an apparent execution speed of one

cycle. However, the instruction "ST R2,@R12" in the delay slot is executed before the branch destination

instruction "ST R2,@R13" and therefore the apparent order of processing is inverted.

Figure 5.4-3 Example: Processing a Delayed Branching Instruction (Branching Condition Satisfied)

Figure 5.4-4 shows an example of processing a delayed branching instruction when branching conditions

are not satisfied.

In this example the delay slot instruction "ST R2,@R12" is executed without being canceled. As a result,

the program is processed in the order in which it is written. The branching instruction requires an apparent

processing time of one cycle.

Figure 5.4-4 Example: Processing a Delayed Branching Instruction (Branching Conditions Not Satisfied)

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Not canceled

IF ID EX MA WB

LD @R10, R1

LD @R11, R2

ADD R1, R3

BNE:D TestOK(branching conditions satisfied)

ST R2, @R12(delay slot instruction)

ST R2, @R13(branch destination instruction)

: PC change

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

LD @R10, R1

LD @R11, R2

ADD R1, R3

BNE:D TestOK (branching conditions not satisfied)

ST R2, @R12 (delay slot instruction)

ADD #4, R12

Not canceled
61

CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
■ Examples of Programing Delayed Branching Instructions
An example of programing a delayed branching instruction is shown below.

 .

 .

LD @R10, R1

LD @R11, R2

ADD R1, R3

BNE:D TestOK

ST R2, @R12

ADD #4, R12 ; not satisfy

 .

 .

 .

TestOK: ; satisfied

ST R2, @R13

 .

 .
62

線
(The position of comment ";not satisfy" is changed.)
(R12 → R13)

CHAPTER 6
INSTRUCTION OVERVIEW

This chapter presents an overview of the instructions
used with the FR family CPU.
All FR family CPU instructions are in 16-bit fixed length
format, except for immediate data transfer instructions
which may exceed 16 bits in length. This format enables
the creation of a compact object code and smoother
pipeline processing.

6.1 Instruction Formats

6.2 Instruction Notation Formats
63

CHAPTER 6 INSTRUCTION OVERVIEW
6.1 Instruction Formats

The FR family CPU uses six types of instruction format, TYPE-A through TYPE-F.

■ Instruction Formats
All instructions used by the FR family CPU are written in the six formats shown in Figure 6.1-1.

Figure 6.1-1 Instruction Formats

■ Relation between Bit Patterns "Ri" and "Rj" and Register Values
Table 6.1-1 shows the relation between general-purpose register numbers and field bit pattern values.

MSB LSB
16bits

8bits

8bits

4bits

4bits

4bits

4bits

OP

OP

Rj Ri

8bits 4bits 4bits

OP u4/m4/i4 Ri

8bits 8bits

OP u8/rel8/dir/rlist

12bits 4bits

OP Ri/Rs

5bits 11bits

OP rel11

Rii8/o8

TYPE-A

TYPE-B

TYPE-C

TYPE-D

TYPE-F

TYPE-E

Table 6.1-1 General-purpose Register Numbers and Field Bit Pattern Values

Ri/Rj Register Ri/Rj Register Ri/Rj Register Ri/Rj Register

0000 R0 0100 R4 1000 R8 1100 R12

0001 R1 0101 R5 1001 R9 1101 R13

0010 R2 0110 R6 1010 R10 1110 R14

0011 R3 0111 R7 1011 R11 1111 R15
64

CHAPTER 6 INSTRUCTION OVERVIEW
■ Relation between Bit Pattern "Rs" and Register Values
Table 6.1-2 shows the relation between dedicated register numbers and field bit pattern values.

Table 6.1-2 Dedicated Register Numbers and Field Bit Pattern Values

Rs Register Rs Register Rs Register Rs Register

0000 TBR 0100 MDH 1000 reserved 1100 reserved

0001 RP 0101 MDL 1001 reserved 1101 reserved

0010 SSP 0110 reserved 1010 reserved 1110 reserved

0011 USP 0111 reserved 1011 reserved 1111 reserved

Note: Bit patterns marked "reserved" are reserved for system use. Proper operation is not assured if these
patterns are used in programming.
65

CHAPTER 6 INSTRUCTION OVERVIEW
6.2 Instruction Notation Formats

FR family CPU instructions are written in the following three notation formats.
• Calculations are designated by a mnemonic placed between operand 1 and operand

2, with the results stored at operand 2.
• Operations are designated by a mnemonic, and use operand 1.
• Operations are designated by a mnemonic.

■ Instruction Notation Formats
FR family CPU instructions are written in the following 3 notation formats.

● Calculations are designated by a mnemonic placed between operand 1 and operand 2, with the results

stored at operand 2.

<Mnemonic> <Operand 1> <Operand 2>

[Example] ADD R1, R2 ; R1 + R2 --> R2

● Operations are designated by a mnemonic, and use operand 1.

<Mnemonic> <Operand 1>

[Example] JMP @R1 ; R1 --> PC

● Operations are designated by a mnemonic.

<Mnemonic>

[Example] NOP ; No operation
66

線
(The position of R2 is changed.)

CHAPTER 7
DETAILED EXECUTION

INSTRUCTIONS

This chapter presents each of the execution instructions
used by the FR family assembler, in reference format.
The execution instructions used by the FR family CPU
are classified as follows.
• Add/Subtract Instructions
• Compare Instructions
• Logical Calculation Instructions
• Bit Operation Instructions
• Multiply/Divide Instructions
• Shift Instructions
• Immediate Data Transfer Instructions
• Memory Load Instructions
• Memory Store Instructions
• Inter-register Transfer Instructions/Dedicated Register

Transfer Instructions
• Non-delayed Branching Instructions
• Delayed Branching Instructions
• Direct Addressing Instructions
• Resource Instructions
• Coprocessor Instructions
• Other Instructions

7.1 ADD (Add Word Data of Source Register to Destination Register)

7.2 ADD (Add 4-bit Immediate Data to Destination Register)

7.3 ADD2 (Add 4-bit Immediate Data to Destination Register)
67

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)

7.5 ADDN (Add Word Data of Source Register to Destination Register)

7.6 ADDN (Add Immediate Data to Destination Register)

7.7 ADDN2 (Add Immediate Data to Destination Register)

7.8 SUB (Subtract Word Data in Source Register from Destination Register)

7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination
Register)

7.10 SUBN (Subtract Word Data in Source Register from Destination Register)

7.11 CMP (Compare Word Data in Source Register and Destination Register)

7.12 CMP (Compare Immediate Data of Source Register and Destination Register)

7.13 CMP2 (Compare Immediate Data and Destination Register)

7.14 AND (And Word Data of Source Register to Destination Register)

7.15 AND (And Word Data of Source Register to Data in Memory)

7.16 ANDH (And Half-word Data of Source Register to Data in Memory)

7.17 ANDB (And Byte Data of Source Register to Data in Memory)

7.18 OR (Or Word Data of Source Register to Destination Register)

7.19 OR (Or Word Data of Source Register to Data in Memory)

7.20 ORH (Or Half-word Data of Source Register to Data in Memory)

7.21 ORB (Or Byte Data of Source Register to Data in Memory)

7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register)

7.23 EOR (Exclusive Or Word Data of Source Register to Data in Memory)

7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)

7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory)

7.26 BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)

7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)

7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)

7.29 BORH (Or 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)

7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)

7.31 BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)

7.32 BTSTL (Test Lower 4 Bits of Byte Data in Memory)

7.33 BTSTH (Test Higher 4 Bits of Byte Data in Memory)

7.34 MUL (Multiply Word Data)

7.35 MULU (Multiply Unsigned Word Data)

7.36 MULH (Multiply Half-word Data)

7.37 MULUH (Multiply Unsigned Half-word Data)

7.38 DIV0S (Initial Setting Up for Signed Division)

7.39 DIV0U (Initial Setting Up for Unsigned Division)
68

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.40 DIV1 (Main Process of Division)

7.41 DIV2 (Correction when Remainder is 0)

7.42 DIV3 (Correction when Remainder is 0)

7.43 DIV4S (Correction Answer for Signed Division)

7.44 LSL (Logical Shift to the Left Direction)

7.45 LSL (Logical Shift to the Left Direction)

7.46 LSL2 (Logical Shift to the Left Direction)

7.47 LSR (Logical Shift to the Right Direction)

7.48 LSR (Logical Shift to the Right Direction)

7.49 LSR2 (Logical Shift to the Right Direction)

7.50 ASR (Arithmetic Shift to the Right Direction)

7.51 ASR (Arithmetic Shift to the Right Direction)

7.52 ASR2 (Arithmetic Shift to the Right Direction)

7.53 LDI:32 (Load Immediate 32-bit Data to Destination Register)

7.54 LDI:20 (Load Immediate 20-bit Data to Destination Register)

7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register)

7.56 LD (Load Word Data in Memory to Register)

7.57 LD (Load Word Data in Memory to Register)

7.58 LD (Load Word Data in Memory to Register)

7.59 LD (Load Word Data in Memory to Register)

7.60 LD (Load Word Data in Memory to Register)

7.61 LD (Load Word Data in Memory to Register)

7.62 LD (Load Word Data in Memory to Program Status Register)

7.63 LDUH (Load Half-word Data in Memory to Register)

7.64 LDUH (Load Half-word Data in Memory to Register)

7.65 LDUH (Load Half-word Data in Memory to Register)

7.66 LDUB (Load Byte Data in Memory to Register)

7.67 LDUB (Load Byte Data in Memory to Register)

7.68 LDUB (Load Byte Data in Memory to Register)

7.69 ST (Store Word Data in Register to Memory)

7.70 ST (Store Word Data in Register to Memory)

7.71 ST (Store Word Data in Register to Memory)

7.72 ST (Store Word Data in Register to Memory)

7.73 ST (Store Word Data in Register to Memory)

7.74 ST (Store Word Data in Register to Memory)

7.75 ST (Store Word Data in Program Status Register to Memory)

7.76 STH (Store Half-word Data in Register to Memory)
69

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.77 STH (Store Half-word Data in Register to Memory)

7.78 STH (Store Half-word Data in Register to Memory)

7.79 STB (Store Byte Data in Register to Memory)

7.80 STB (Store Byte Data in Register to Memory)

7.81 STB (Store Byte Data in Register to Memory)

7.82 MOV (Move Word Data in Source Register to Destination Register)

7.83 MOV (Move Word Data in Source Register to Destination Register)

7.84 MOV (Move Word Data in Program Status Register to Destination Register)

7.85 MOV (Move Word Data in Source Register to Destination Register)

7.86 MOV (Move Word Data in Source Register to Program Status Register)

7.87 JMP (Jump)

7.88 CALL (Call Subroutine)

7.89 CALL (Call Subroutine)

7.90 RET (Return from Subroutine)

7.91 INT (Software Interrupt)

7.92 INTE (Software Interrupt for Emulator)

7.93 RETI (Return from Interrupt)

7.94 Bcc (Branch Relative if Condition Satisfied)

7.95 JMP:D (Jump)

7.96 CALL:D (Call Subroutine)

7.97 CALL:D (Call Subroutine)

7.98 RET:D (Return from Subroutine)

7.99 Bcc:D (Branch Relative if Condition Satisfied)

7.100 DMOV (Move Word Data from Direct Address to Register)

7.101 DMOV (Move Word Data from Register to Direct Address)

7.102 DMOV (Move Word Data from Direct Address to Post Increment Register Indirect
Address)

7.103 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct
Address)

7.104 DMOV (Move Word Data from Direct Address to Pre-decrement Register Indirect
Address)

7.105 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct
Address)

7.106 DMOVH (Move Half-word Data from Direct Address to Register)

7.107 DMOVH (Move Half-word Data from Register to Direct Address)

7.108 DMOVH (Move Half-word Data from Direct Address to Post Increment Register
Indirect Address)

7.109 DMOVH (Move Half-word Data from Post Increment Register Indirect Address to
Direct Address)
70

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.110 DMOVB (Move Byte Data from Direct Address to Register)

7.111 DMOVB (Move Byte Data from Register to Direct Address)

7.112 DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect
Address)

7.113 DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct
Address)

7.114 LDRES (Load Word Data in Memory to Resource)

7.115 STRES (Store Word Data in Resource to Memory)

7.116 COPOP (Coprocessor Operation)

7.117 COPLD (Load 32-bit Data from Register to Coprocessor Register)

7.118 COPST (Store 32-bit Data from Coprocessor Register to Register)

7.119 COPSV (Save 32-bit Data from Coprocessor Register to Register)

7.120 NOP (No Operation)

7.121 ANDCCR (And Condition Code Register and Immediate Data)

7.122 ORCCR (Or Condition Code Register and Immediate Data)

7.123 STILM (Set Immediate Data to Interrupt Level Mask Register)

7.124 ADDSP (Add Stack Pointer and Immediate Data)

7.125 EXTSB (Sign Extend from Byte Data to Word Data)

7.126 EXTUB (Unsign Extend from Byte Data to Word Data)

7.127 EXTSH (Sign Extend from Byte Data to Word Data)

7.128 EXTUH (Unsigned Extend from Byte Data to Word Data)

7.129 LDM0 (Load Multiple Registers)

7.130 LDM1 (Load Multiple Registers)

7.131 STM0 (Store Multiple Registers)

7.132 STM1 (Store Multiple Registers)

7.133 ENTER (Enter Function)

7.134 LEAVE (Leave Function)

7.135 XCHB (Exchange Byte Data)
71

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.1 ADD (Add Word Data of Source Register to Destination
Register)

Adds word data in "Rj" to word data in "Ri", stores results to "Ri".

■ ADD (Add Word Data of Source Register to Destination Register)
Assembler format: ADD Rj, Ri

Operation: Ri + Rj → Ri

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a carry has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: ADD R2, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 0 1 1 0 Rj Ri

R2

R3

 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

1 0 0 0

9 9 9 9 9 9 9 9

1 2 3 4 5 6 7 8

Before execution After execution

Instruction bit pattern : 1010 0110 0010 0011
72

線
("Instruction bit pattern : 1010 0110 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.2 ADD (Add 4-bit Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with zero extension to the
word data in "Ri", stores results to the "Ri".

■ ADD (Add 4-bit Immediate Data to Destination Register)
Assembler format: ADD #i4, Ri

Operation: Ri + extu(i4) → Ri

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a carry has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: ADD #2, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 0 1 0 0 i4 Ri

 R3 9 9 9 9 9 9 9 7

N Z V C

CCR

R3

CCR0 0 0 0

N Z V C

1 0 0 0

9 9 9 9 9 9 9 9

Instruction bit pattern : 1010 0100 0010 0011

Before execution After execution
73

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.3 ADD2 (Add 4-bit Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with minus extension to the
word data in "Ri", stores results to "Ri".
The way a "C" flag of this instruction varies is the same as the ADD instruction ; it is
different from that of the SUB instruction.

■ ADD2 (Add 4-bit Immediate Data to Destination Register)
Assembler format: ADD2 #i4, Ri

Operation: Ri + extn(i4) → Ri

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a carry has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: ADD2 #–2, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 0 1 0 1 i4 Ri

 R3 9 9 9 9 9 9 9 9

N Z V C

CCR

R3

CCR0 0 0 0

N Z V C

1 0 0 1

9 9 9 9 9 9 9 7

Instruction bit pattern : 1010 0101 1110 0011

Before execution After execution
74

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.4 ADDC (Add Word Data of Source Register and Carry Bit to
Destination Register)

Adds the word data in "Rj" to the word data in "Ri" and carry bit, stores results to "Ri".

■ ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)
Assembler format: ADDC Rj, Ri

Operation: Ri + Rj + C → Ri

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a carry has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: ADDC R2, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 0 1 1 1 Rj Ri

R2

R3

 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 0

N Z V C

CCR

R2

R3

CCR0 0 0 1

N Z V C

1 0 0 0

9 9 9 9 9 9 9 9

1 2 3 4 5 6 7 8

Before execution After execution

Instruction bit pattern : 1010 0111 0010 0011
75

線
("Instruction bit pattern : 1010 0111 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.5 ADDN (Add Word Data of Source Register to Destination
Register)

Adds the word data in "Rj" and the word data in "Ri", stores results to "Ri" without
changing flag settings.

■ ADDN (Add Word Data of Source Register to Destination Register)
Assembler format: ADDN Rj, Ri

Operation: Ri + Rj → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: ADDN R2, R3

N Z V C

– – – –

MSB LSB

1 0 1 0 0 0 1 0 Rj Ri

R2

R3

 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

0 0 0 0

9 9 9 9 9 9 9 9

1 2 3 4 5 6 7 8

Before execution After execution

Instruction bit pattern : 1010 0010 0010 0011
76

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.6 ADDN (Add Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with zero extension to the
word data in "Ri", stores the results to "Ri" without changing flag settings.

■ ADDN (Add Immediate Data to Destination Register)
Assembler format: ADDN #i4, Ri

Operation: Ri + extu(i4) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: ADDN #2, R3

N Z V C

– – – –

MSB LSB

1 0 1 0 0 0 0 0 i4 Ri

 R3 9 9 9 9 9 9 9 7

N Z V C

CCR

R3

CCR0 0 0 0

N Z V C

0 0 0 0

9 9 9 9 9 9 9 9

Instruction bit pattern : 1010 0000 0010 0011

Before execution After execution
77

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.7 ADDN2 (Add Immediate Data to Destination Register)

Adds the result of the higher 28 bits of 4-bit immediate data with minus extension to
word data in "Ri", stores the results to "Ri" without changing flag settings.

■ ADDN2 (Add Immediate Data to Destination Register)
Assembler format: ADDN2 #i4, Ri

Operation: Ri + extn(i4) + → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: ADDN2 #–2, R3

N Z V C

– – – –

MSB LSB

1 0 1 0 0 0 0 1 i4 Ri

 R3 9 9 9 9 9 9 9 9

N Z V C

CCR

R3

CCR0 0 0 0

N Z V C

0 0 0 0

9 9 9 9 9 9 9 7

Instruction bit pattern :1010 0001 1110 0011

Before execution After execution
78

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.8 SUB (Subtract Word Data in Source Register from
Destination Register)

Subtracts the word data in "Rj" from the word data in "Ri", stores results to "Ri".

■ SUB (Subtract Word Data in Source Register from Destination Register)
Assembler format: SUB Rj, Ri

Operation: Ri – Rj → Ri

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a borrow has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: SUB R2, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 1 1 0 0 Rj Ri

R2

R3

 1 2 3 4 5 6 7 8

9 9 9 9 9 9 9 9

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

1 0 0 0

8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

Before execution After execution

Instruction bit pattern : 1010 1100 0010 0011
79

線
("Instruction bit pattern : 1010 1100 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.9 SUBC (Subtract Word Data in Source Register and Carry
Bit from Destination Register)

Subtracts the word data in "Rj" and the carry bit from the word data in "Ri", stores
results to "Ri".

■ SUBC (Subtract Word Data in Source Register and Carry Bit from Destination
Register)

Assembler format: SUBC Rj, Ri

Operation: Ri – Rj – C → Ri

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a borrow has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: SUBC R2, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 1 1 0 1 Rj Ri

R2

R3

 1 2 3 4 5 6 7 8

9 9 9 9 9 9 9 9

N Z V C

CCR

R2

R3

CCR0 0 0 1

N Z V C

1 0 0 0

8 7 6 5 4 3 2 0

1 2 3 4 5 6 7 8

Before execution After execution

Instruction bit pattern : 1010 1101 0010 0011
80

線
("Instruction bit pattern : 1010 1101 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.10 SUBN (Subtract Word Data in Source Register from
Destination Register)

Subtracts the word data in "Rj" from the word data in "Ri", stores results to "Ri" without
changing the flag settings.

■ SUBN (Subtract Word Data in Source Register from Destination Register)
Assembler format: SUBN Rj, Ri

Operation: Ri – Rj → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: SUBN R2, R3

N Z V C

– – – –

MSB LSB

1 0 1 0 1 1 1 0 Rj Ri

R2

R3

 1 2 3 4 5 6 7 8

9 9 9 9 9 9 9 9

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

0 0 0 0

8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

Before execution After execution

Instruction bit pattern : 1010 1110 0010 0011
81

線
("Instruction bit pattern : 1010 1110 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.11 CMP (Compare Word Data in Source Register and
Destination Register)

Subtracts the word data in "Rj" from the word data in "Ri", places results in the
condition code register (CCR).

■ CMP (Compare Word Data in Source Register and Destination Register)
Assembler format: CMP Rj, Ri

Operation: Ri – Rj

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a borrow has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: CMP R2, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 1 0 1 0 Rj Ri

R2

R3

 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

0 1 0 0

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Before execution After execution

Instruction bit pattern : 1010 1010 0010 0011
82

線
("Instruction bit pattern : 1010 1010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.12 CMP (Compare Immediate Data of Source Register and
Destination Register)

Subtracts the result of the higher 28 bits of 4-bit immediate data with zero extension
from the word data in "Ri", places results in the condition code register (CCR).

■ CMP (Compare Immediate Data of Source Register and Destination Register)
Assembler format: CMP #i4, Ri

Operation: Ri – extu(i4)

Flag change:

N : Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a carry has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: CMP #3, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 1 0 0 0 i4 Ri

 R3 0 0 0 0 0 0 0 3

N Z V C

CCR

R3

CCR0 0 0 0

N Z V C

0 1 0 0

0 0 0 0 0 0 0 3

Instruction bit pattern : 1010 1000 0011 0011

Before execution After execution
83

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.13 CMP2 (Compare Immediate Data and Destination Register)

Subtracts the result of the higher 28 bits of 4-bit immediate(from -16 to -1) data with
minus extension from the word data in "Ri", places results in the condition code
register (CCR).

■ CMP2 (Compare Immediate Data and Destination Register)
Assembler format: CMP2 #i4, Ri

Operation: Ri – extn(i4)

Flag change:

N : Set when the MSB of the operation result is "1",cleared when the MSB is "0".

Z : Set when the operation result is "0", cleared otherwise.

V : Set when an overflow has occurred as a result of the operation, cleared otherwise.

C : Set when a carry has occurred as a result of the operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

Example: CMP2 #–3, R3

N Z V C

C C C C

MSB LSB

1 0 1 0 1 0 0 1 i4 Ri

 R3 F F F F F F F D

N Z V C

CCR

R3

CCR0 0 0 0

N Z V C

0 1 0 0

F F F F F F F D

Instruction bit pattern : 1010 1001 1101 0011

Before execution After execution
84

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.14 AND (And Word Data of Source Register to Destination
Register)

Takes the logical AND of the word data in "Rj" and the word data in "Ri", stores the
results to "Ri".

■ AND (And Word Data of Source Register to Destination Register)
Assembler format: AND Rj, Ri

Operation: Ri and Rj → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: AND R2, R3

N Z V C

C C – –

MSB LSB

1 0 0 0 0 0 1 0 Rj Ri

R2

R3

 1 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

Before execution After execution

Instruction bit pattern : 1000 0010 0010 0011
85

線
("Instruction bit pattern : 1000 0010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.15 AND (And Word Data of Source Register to Data in
Memory)

Takes the logical AND of the word data at memory address "Ri" and the word data in
"Rj", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ AND (And Word Data of Source Register to Data in Memory)
Assembler format: AND Rj, @Ri

Operation: (Ri) and Rj → (Ri)

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 0 0 1 0 0 Rj Ri
86

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: AND R2, @R3

R2

12345678

1234567C

 1 1 1 1 0 0 0 0

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0 1 0 1 0 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

1 1 1 1 0 0 0 0

Memory

12345678

1234567C

 1 0 1 0 0 0 0 0

Memory

Before execution After execution

Instruction bit pattern : 1000 0100 0010 0011
87

線
("Instruction bit pattern : 1000 0100 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.16 ANDH (And Half-word Data of Source Register to Data in
Memory)

Takes the logical AND of the half-word data at memory address "Ri" and the half-word
data in "Rj", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ ANDH (And Half-word Data of Source Register to Data in Memory)
Assembler format: ANDH Rj, @Ri

Operation: (Ri) and Rj → (Ri)

Flag change:

N: Set when the MSB (bit 15) of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 0 0 1 0 1 Rj Ri
88

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: ANDH R2, @R3

R2

12345678

1234567A

 0 0 0 0 1 1 0 0

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

0 0 0 0 1 1 0 0

Memory

12345678

1234567A

 1 0 0 0

Memory

Before execution After execution

Instruction bit pattern : 1000 0101 0010 0011
89

線
("Instruction bit pattern : 1000 0101 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.17 ANDB (And Byte Data of Source Register to Data in
Memory)

Takes the logical AND of the byte data at memory address "Ri" and the byte data in "Rj",
stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ ANDB (And Byte Data of Source Register to Data in Memory)
Assembler format: ANDB Rj, @Ri

Operation: (Ri) and Rj → (Ri)

Flag change:

N: Set when the MSB (bit 7) of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 0 0 1 1 0 Rj Ri
90

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: ANDB R2, @R3

R2

12345678

12345679

 0 0 0 0 0 0 1 0

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 1

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

0 0 0 0 0 0 1 0

12345678

12345679

 1 0

Before execution After execution

Memory Memory

Instruction bit pattern : 1000 0110 0010 0011
91

線
("Instruction bit pattern : 1000 0110 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.18 OR (Or Word Data of Source Register to Destination
Register)

Takes the logical OR of the word data in "Ri" and the word data in "Rj", stores the
results to "Ri".

■ OR (Or Word Data of Source Register to Destination Register)
Assembler format: OR Rj, Ri

Operation: Ri or Rj → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: OR R2, R3

N Z V C

C C – –

MSB LSB

1 0 0 1 0 0 1 0 Rj Ri

R2

R3

 1 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

0 0 0 0

1 1 1 1 1 0 1 0

1 1 1 1 0 0 0 0

Before execution After execution

Instruction bit pattern : 1001 0010 0010 0011
92

線
("Instruction bit pattern : 1001 0010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.19 OR (Or Word Data of Source Register to Data in Memory)

Takes the logical OR of the word data at memory address "Ri" and the word data in "Rj",
stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ OR (Or Word Data of Source Register to Data in Memory)
Assembler format: OR Rj, @Ri

Operation: (Ri) or Rj → (Ri)

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 1 0 1 0 0 Rj Ri
93

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: OR R2, @R3

R2

12345678

1234567C

 1 1 1 1 0 0 0 0

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0 1 0 1 0 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

1 1 1 1 0 0 0 0

Memory

12345678

1234567C

 1 1 1 1 1 0 1 0

Memory

Before execution After execution

Instruction bit pattern : 1001 0100 0010 0011
94

線
("Instruction bit pattern : 1001 0100 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.20 ORH (Or Half-word Data of Source Register to Data in
Memory)

Takes the logical OR of the half-word data at memory address "Ri" and the half-word
data in "Rj", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ ORH (Or Half-word Data of Source Register to Data in Memory)
Assembler format: ORH Rj, @Ri

Operation: (Ri) or Rj → (Ri)

Flag change:

N: Set when the MSB (bit 15) of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 1 0 1 0 1 Rj Ri
95

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: ORH R2, @R3

R2

12345678

1234567A

 0 0 0 0 1 1 0 0

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

0 0 0 0 1 1 0 0

12345678

1234567A

 1 1 1 0

Memory Memory

Before execution After execution

Instruction bit pattern : 1001 0101 0010 0011
96

線
("Instruction bit pattern : 1001 0101 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.21 ORB (Or Byte Data of Source Register to Data in Memory)

Takes the logical OR of the byte data at memory address "Ri" and the byte data in "Rj",
stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ ORB (Or Byte Data of Source Register to Data in Memory)
Assembler format: ORB Rj, @Ri

Operation: (Ri) or Rj → (Ri)

Flag change:

N: Set when the MSB (bit 7) of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 1 0 1 1 0 Rj Ri
97

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: ORB R2, @R3

R2

12345678

12345679

 0 0 0 0 0 0 1 1

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

0 0 0 0 0 0 1 1

12345678

12345679

 1 1

Memory Memory

Before execution After execution

Instruction bit pattern : 1001 0110 0010 0011
98

線
("Instruction bit pattern : 1001 0110 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.22 EOR (Exclusive Or Word Data of Source Register to
Destination Register)

Takes the logical exclusive OR of the word data in "Ri" and the word data in "Rj", stores
the results to "Ri".

■ EOR (Exclusive Or Word Data of Source Register to Destination Register)
Assembler format: EOR Rj, Ri

Operation: Ri eor Rj → (Ri)

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: EOR R2, R3

N Z V C

C C – –

MSB LSB

1 0 0 1 1 0 1 0 Rj Ri

R2

R3

 1 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0

N Z V C

CCR

R2

R3

CCR0 0 0 0

N Z V C

0 0 0 0

0 1 0 1 1 0 1 0

1 1 1 1 0 0 0 0

Before execution After execution

Instruction bit pattern : 1001 1010 0010 0011
99

線
("Instruction bit pattern : 1001 1010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.23 EOR (Exclusive Or Word Data of Source Register to Data in
Memory)

Takes the logical exclusive OR of the word data at memory address "Ri" and the word
data in "Rj", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ EOR (Exclusive Or Word Data of Source Register to Data in Memory)
Assembler format: EOR Rj, @Ri

Operation: (Ri) eor Rj → (Ri)

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 1 1 1 0 0 Rj Ri
100

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: EOR R2, @R3

R2

12345678

1234567C

 1 1 1 1 0 0 0 0

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0 1 0 1 0 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

1 1 1 1 0 0 0 0

Memory

12345678

1234567C

 0 1 0 1 1 0 1 0

Memory

Before execution After execution

Instruction bit pattern : 1001 1100 0010 0011
101

線
("Instruction bit pattern : 1001 1100 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.24 EORH (Exclusive Or Half-word Data of Source Register to
Data in Memory)

Takes the logical exclusive OR of the half-word data at memory address "Ri" and the
half-word data in "Rj", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)
Assembler format: EORH Rj, @Ri

Operation: (Ri) eor Rj → (Ri)

Flag change:

N: Set when the MSB (bit 15) of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 1 1 1 0 1 Rj Ri
102

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: EORH R2, @R3

R2

12345678

1234567A

 0 0 0 0 1 1 0 0

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

0 0 0 0 1 1 0 0

12345678

1234567A

 0 1 1 0

Memory Memory

Before execution After execution

Instruction bit pattern : 1001 1101 0010 0011
103

線
("Instruction bit pattern : 1001 1101 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.25 EORB (Exclusive Or Byte Data of Source Register to Data
in Memory)

Takes the logical exclusive OR of the byte data at memory address "Ri" and the byte
data in "Rj", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ EORB (Exclusive Or Byte Data of Source Register to Data in Memory)
Assembler format: EORB Rj, @Ri

Operation: (Ri) eor Rj → (Ri)

Flag change:

N: Set when the MSB (bit 7) of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 0 1 1 1 1 0 Rj Ri
104

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: EORB R2, @R3

R2

12345678

12345679

 0 0 0 0 0 0 1 1

1 2 3 4 5 6 7 8

N Z V C

CCR

R2

R3R3

CCR0 0 0 0

 1 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

0 0 0 0 0 0 1 1

12345678

12345679

 0 1

Memory Memory

Before execution After execution

Instruction bit pattern : 1001 1110 0010 0011
105

線
("Instruction bit pattern : 1001 1110 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.26 BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte
Data in Memory)

Takes the logical AND of the 4-bit immediate data and the lower 4 bits of byte data at
memory "Ri", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
Assembler format: BANDL #u4, @Ri

Operation: {F0H + u4} and (Ri) → (Ri) [Operation uses lower 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 0 0 0 0 0 u4 Ri
106

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: BANDL #0, @R3

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 1 1

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

Memory

12345678

12345679

 1 0

Memory

Instruction bit pattern : 1000 0000 0000 0011

Before execution After execution
107

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte
Data in Memory)

Takes the logical AND of the 4-bit immediate data and the higher 4 bits of byte data at
memory "Ri", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
Assembler format: BANDH #u4, @Ri

Operation: {u4 < < 4 + FH} and (Ri) → (Ri) [Operation uses higher 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 0 0 0 0 1 u4 Ri
108

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: BANDH #0, @R3

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 1 1

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

Memory

12345678

12345679

 0 1

Memory

Instruction bit pattern : 1000 0001 0000 0011

Before execution After execution
109

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte
Data in Memory)

Takes the logical OR of the 4-bit immediate data and the lower 4 bits of byte data at
memory address "Ri", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
Assembler format: BORL #u4, @Ri

Operation: u4 or (Ri) → (Ri) [Operation uses lower 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 0 0 0 0 u4 Ri
110

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: BORL #1, @R3

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 0 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

12345678

12345679

 0 1

Instruction bit pattern : 1001 0000 0001 0011

Before execution After execution

Memory Memory
111

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.29 BORH (Or 4-bit Immediate Data to Higher 4 Bits of Byte
Data in Memory)

Takes the logical OR of the 4-bit immediate data and the higher 4 bits of byte data at
memory address "Ri", stores the results to the memory address corresponding to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ BORH (Or 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
Assembler format: BORH #u4, @Ri

Operation: {u4 < < 4} or (Ri) → (Ri) [Operation uses higher 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 0 0 0 1 u4 Ri
112

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: BORH #1, @R3

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 0 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

12345678

12345679

 1 0

Instruction bit pattern : 1001 0001 0001 0011

Before execution After execution

Memory Memory
113

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte
Data in Memory)

Takes the logical exclusive OR of the 4-bit immediate data and the lower 4 bits of byte
data at memory address "Ri", stores the results to the memory address corresponding
to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
Assembler format: BEORL #u4, @Ri

Operation: u4 eor (Ri) → (Ri) [Operation uses lower 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 0 0 0 u4 Ri
114

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: BEORL #1, @R3

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 0 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

Memory

12345678

12345679

 0 1

Memory

Instruction bit pattern : 1001 1000 0001 0011

Before execution After execution
115

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.31 BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of Byte
Data in Memory)

Takes the logical exclusive OR of the 4-bit immediate data and the higher 4 bits of byte
data at memory address "Ri", stores the results to the memory address corresponding
to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this request.

■ BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
Assembler format: BEORH #u4, @Ri

Operation: {u4 < < 4} eor (Ri) → (Ri) [Operation uses higher 4 bits only]

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 0 0 1 u4 Ri
116

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: BEORH #1, @R3

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 0 0

N Z V C

0 0 0 0

1 2 3 4 5 6 7 8

Memory

12345678

12345679

 1 0

Memory

Instruction bit pattern : 1001 1001 0001 0011

Before execution After execution
117

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.32 BTSTL (Test Lower 4 Bits of Byte Data in Memory)

Takes the logical AND of the 4-bit immediate data and the lower 4 bits of byte data at
memory address "Ri", places the results in the condition code register (CCR).

■ BTSTL (Test Lower 4 Bits of Byte Data in Memory)
Assembler format: BTSTL #u4, @Ri

Operation: u4 and (Ri) [Test uses lower 4 bits only]

Flag change:

N: Cleared

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 2+a cycles

Instruction format:

Example: BTSTL #1, @R3

N Z V C

0 C – –

MSB LSB

1 0 0 0 1 0 0 0 u4 Ri

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 1 0

N Z V C

0 1 0 0

1 2 3 4 5 6 7 8

12345678

12345679

 1 0

Instruction bit pattern : 1000 1000 0001 0011

Before execution After execution

Memory Memory
118

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.33 BTSTH (Test Higher 4 Bits of Byte Data in Memory)

Takes the logical AND of the 4-bit immediate data and the higher 4 bits of byte data at
memory address "Ri", places the results in the condition code register (CCR).

■ BTSTH (Test Higher 4 Bits of Byte Data in Memory)
Assembler format: BTSTH #u4, @Ri

Operation: {u4 < < 4} and (Ri) [Test uses higher 4 bits only]

Flag change:

N: Set when the MSB (bit 7) of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V and C: Unchanged

Execution cycles: 2 + a cycles

Instruction format:

Example: BTSTH #1, @R3

N Z V C

C C – –

MSB LSB

1 0 0 0 1 0 0 1 u4 Ri

12345678

12345679

1 2 3 4 5 6 7 8

N Z V C

CCR

R3R3

CCR0 0 0 0

 0 1

N Z V C

0 1 0 0

1 2 3 4 5 6 7 8

12345678

12345679

 0 1

Instruction bit pattern : 1000 1001 0001 0011

Before execution After execution

Memory Memory
119

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.34 MUL (Multiply Word Data)

Multiplies the word data in "Rj" by the word data in "Ri" as signed numbers, and stores
the resulting signed 64-bit data with the high word in the multiplication/division register
(MDH), and the low word in the multiplication/division register (MDL).

■ MUL (Multiply Word Data)
Assembler format: MUL Rj, Ri

Operation: Rj × Ri → MDH, MDL

Flag change:

N: Set when the MSB of the "MDL" of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Cleared when the operation result is in the range -2147483648 to 2147483647, set otherwise.

C: Unchanged

Execution cycles: 5 cycles

Instruction format:

N Z V C

C C C –

MSB LSB

1 0 1 0 1 1 1 1 Rj Ri
120

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: MUL R2, R3

MDH

MDL

N Z V C

CCR CCR0 0 0 0

N Z V C

0 0 1 0

R2

R3

 0 0 0 0 0 0 0 2

8 0 0 0 0 0 0 1

MDH

MDL

R2

R3

 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 2

8 0 0 0 0 0 0 1

F F F F F F F F

x x x x x x x x

x x x x x x x x

Before execution After execution

Instruction bit pattern : 1010 1111 0010 0011
121

線
("Instruction bit pattern : 1010 1111 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.35 MULU (Multiply Unsigned Word Data)

Multiplies the word data in "Rj" by the word data in "Ri" as unsigned numbers, and
stores the resulting unsigned 64-bit data with the high word in the multiplication/
division register (MDH), and the low word in the multiplication/division register (MDL).

■ MULU (Multiply Unsigned Word Data)
Assembler format: MULU Rj, Ri

Operation: Rj × Ri → MDH, MDL

Flag change:

N: Set when the MSB of the "MDL" of the operation result is "1", cleared when the MSB is "0".

Z: Set when the "MDL" of the operation result is "0", cleared otherwise.

V: Cleared when the operation result is in the range 0 to 4294967295, set otherwise.

C: Unchanged

Execution cycles: 5 cycles

Instruction format:

N Z V C

C C C –

MSB LSB

1 0 1 0 1 0 1 1 Rj Ri
122

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: MULU R2, R3

MDH

MDL

N Z V C

CCR CCR0 0 0 0

N Z V C

0 0 1 0

R2

R3

 0 0 0 0 0 0 0 2

8 0 0 0 0 0 0 1

MDH

MDL

R2

R3

 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 2

8 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

x x x x x x x x

x x x x x x x x

Before execution After execution

Instruction bit pattern : 1010 1011 0010 0011
123

線
("Instruction bit pattern : 1010 1011 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.36 MULH (Multiply Half-word Data)

Multiplies the half-word data in the lower 16 bits of "Rj" by the half-word data in the
lower 16 bits of "Ri" as signed numbers, and stores the resulting signed 32-bit data in
the multiplication/division register (MDL).
The multiplication/division register (MDH) is undefined.

■ MULH (Multiply Half-word Data)
Assembler format: MULH Rj, Ri

Operation: Rj × Ri → MDL

Flag change:

N: Set when the MSB of the "MDL" of the operation result is "1", cleared when the MSB is "0".

Z: Set when the "MDL" of the operation result is "0", cleared otherwise.

V: Unchanged

C: Unchanged

Execution cycles: 3 cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 1 1 1 1 1 1 Rj Ri
124

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: MULH R2, R3

MDH

MDL

N Z V C

CCR CCR0 0 0 0

N Z V C

1 0 0 0

R2

R3

 F E D C B A 9 8

0 1 2 3 4 5 6 7

MDH

MDL

R2

R3

 F E D C B A 9 8

E D 2 F 0 B 2 8

0 1 2 3 4 5 6 7

x x x x x x x x

x x x x x x x x x x x x x x x x

Before execution After execution

Instruction bit pattern : 1011 1111 0010 0011
125

線
("Instruction bit pattern : 1011 1111 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.37 MULUH (Multiply Unsigned Half-word Data)

Multiplies the half-word data in the lower 16 bits of "Rj" by the half-word data in the
lower 16 bits of "Ri" as unsigned numbers, and stores the resulting unsigned 32-bit
data in the multiplication/division register (MDL).
The multiplication/division register (MDH) is undefined.

■ MULUH (Multiply Unsigned Half-word Data)
Assembler format: MULUH Rj, Ri

Operation: Rj × Ri → MDL

Flag change:

N: Set when the MSB of the "MDL" of the operation result is "1", cleared when the MSB is "0".

Z: Set when the "MDL" of the operation result is "0", cleared otherwise.

V: Unchanged

C: Unchanged

Execution cycles: 3 cycles

Instruction format:

N Z V C

C C – –

MSB LSB

1 0 1 1 1 0 1 1 Rj Ri
126

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: MULUH R2, R3

MDH

MDL

N Z V C

CCR CCR0 0 0 0

N Z V C

0 0 0 0

R2

R3

 F E D C B A 9 8

0 1 2 3 4 5 6 7

MDH

MDL

R2

R3

 F E D C B A 9 8

3 2 9 6 0 B 2 8

0 1 2 3 4 5 6 7

x x x x x x x x

x x x x x x x x x x x x x x x x

Before execution After execution

Instruction bit pattern : 1011 1011 0010 0011
127

線
("Instruction bit pattern : 1011 1011 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.38 DIV0S (Initial Setting Up for Signed Division)

This command is used for signed division in which the multiplication/division register
(MDL) contains the dividend and the "Ri" the divisor, with the quotient stored in the
"MDL" and the remainder in the multiplication/division register (MDH).
The value of the sign bit in the "MDL" and "Ri" is used to set the "D0" and "D1" flag bits
in the system condition code register (SCR).
• D0: Set when the dividend is negative, cleared when positive.
• D1: Set when the divisor and dividend signs are different, cleared when equal.
The word data in the "MDL" is extended to 64 bits, with the higher word in the "MDH"
and the lower word in the "MDL".
To execute signed division, the following instructions are used in combination.
DIV0S, DIV1×32, DIV2, DIV3, DIV4S

■ DIV0S (Initial Setting Up for Signed Division)
Assembler format: DIV0S Ri

Operation: MDL [31] → D0
MDL [31] eor Ri [31] → D1
exts (MDL) → MDH, MDL

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 0 1 0 0 Ri
128

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DIV0S R2

Example: Actual use MDL ÷ R2 = MDL (quotient) ... MDH (remainder), signed calculation

MDH

MDL

D1 D0 T

SCR SCRx x 0

D1 D0 T

1 1 0

R2 0 F F F F F F F

MDH

MDL

R2

F F F F F F F 0

F F F F F F F F

F F F F F F F 0

0 0 0 0 0 0 0 0

0 F F F F F F F

Before execution After execution

Instruction bit pattern : 1001 0111 0100 0010

DIV0S R2

DIV1 R2

32 DIV1s are arranged
DIV1 R2

 ..
.

 ..
.

DIV1 R2

DIV2 R2

DIV3

DIV4S

MDH

MDL

D1 D0 T

SCR SCRx x 0

D1 D0 T

1 1 0

R2 0 1 2 3 4 5 6 7

MDH

MDL

R2

F F F F F F F F

F F F F F F F F

F E D C B A 9 8

x x x x x x x x

0 1 2 3 4 5 6 7

Before execution After execution
129

線
("Instruction bit pattern : 1001 0111 0100 0010" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.39 DIV0U (Initial Setting Up for Unsigned Division)

This command is used for unsigned division in which the multiplication/division
register (MDL) contains the dividend and the "Ri" the divisor, with the quotient stored in
the "MDL" register and the remainder in the multiplication/division register (MDH).
The "MDH" and bits "D1" and "D0" are cleared to "0".
To execute unsigned division, the instructions are used in combinations such as DIV0U
and DIV1 x 32

■ DIV0U (Initial Setting Up for Unsigned Division)
Assembler format: DIV0U Ri

Operation: 0 → D0
0 → D1
0 → MDH

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 0 1 0 1 Ri
130

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DIV0U R2

Example: Actual use MDL ÷ R2 = MDL (quotient) ... MDH (remainder), unsigned calculation

MDH

MDL

D1 D0 T

SCR SCRx x 0

D1 D0 T

0 0 0

R2 0 0 F F F F F F

MDH

MDL

R2

0 F F F F F F 0

0 0 0 0 0 0 0 0

0 F F F F F F 0

0 0 0 0 0 0 0 0

0 0 F F F F F F

Before execution After execution

Instruction bit pattern : 1001 0111 0101 0010

DIV0U R2

DIV1 R2

32 DIV1s are arranged
DIV1 R2

 ..
.

 ..
.

DIV1 R2

MDH

MDL

D1 D0 T

SCR SCRx x 0

D1 D0 T

0 0 0

R2 0 1 2 3 4 5 6 7

MDH

MDL

R2

0 0 0 0 0 0 E 0

0 0 0 0 0 0 7 8

F E D C B A 9 8

x x x x x x x x

0 1 2 3 4 5 6 7

Before execution After execution
131

線
("Instruction bit pattern : 1001 0111 0101 0010" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.40 DIV1 (Main Process of Division)

This instruction is used in unsigned division. It should be used in combinations such as
DIV0U and DIV1 x 32.

■ DIV1 (Main Process of Division)
Assembler format: DIV1 Ri

Operation: {MDH, MDL} < < = 1
if (D1 = = 1) {

MDH + Ri → temp
}
else {

MDH – Ri → temp
}
if ((D0 eor D1 eor C) = = 0) {

temp → MDH
1 → MDL [0]

}

Flag change:

N and V: Unchanged

Z: Set when the result of step division is "0", cleared otherwise. Set according to remainder of

division results, not according to quotient.

C: Set when the operation result of step division involves a carry operation, cleared otherwise.

Execution cycles: d cycle(s)

Normally executed within one cycle. However, a 2-cycle interlock is applied if the instruction

immediately after is one of the following: MOV MDH, Ri / MOV MDL, Ri / ST Rs, @-R15.

Rs : dedicated register (TBR, RP, USP, SSP, MDH, MDL)

Instruction format:

N Z V C

– C – C

MSB LSB

1 0 0 1 0 1 1 1 0 1 1 0 Ri
132

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DIV1 R2

MDH

MDL

D1 D0 T

SCR SCR

D1 D0 T

0 0 00 0 0

R2 0 0 F F F F F F

MDH

MDL

R2

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 F F F F F F

0 0 F F F F F F

N Z V C

CCR CCR

N Z V C

0 0 0 00 0 0 0

Before execution After execution

Instruction bit pattern : 1001 0111 0110 0010
133

線
("Instruction bit pattern : 1001 0111 0110 0010" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.41 DIV2 (Correction when Remainder is 0)

This instruction is used in signed division. It should be used in combinations such as
DIV0S, DIV1 x 32, DIV2, DIV3 and DIV4S.

■ DIV2 (Correction when Remainder is 0)
Assembler format: DIV2 Ri

Operation: if (D1 = = 1) {
MDH + Ri → temp

}
else {

MDH – Ri → temp
}
if (Z == 1) {

0 → MDH
}

Flag change:

N and V: Unchanged

Z: Set when the operation result of stepwise division is "0", cleared otherwise. Set according to

remainder of division results, not according to quotient.

C: Set when the result of stepwise division involves a carry or borrow operation, cleared otherwise.

Execution cycles: 1 cycle

Instruction format:

N Z V C

– C – C

MSB LSB

1 0 0 1 0 1 1 1 0 1 1 1 Ri
134

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DIV2 R2

MDH

MDL

D1 D0 T

SCR SCR

D1 D0 T

0 0 00 0 0

R2 0 0 F F F F F F

MDH

MDL

R2

0 0 0 0 0 0 0 F

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 F

0 0 F F F F F F

0 0 F F F F F F

N Z V C

CCR CCR

N Z V C

0 1 0 00 0 0 0

Before execution After execution

Instruction bit pattern : 1001 0111 0111 0010
135

線
("Instruction bit pattern : 1001 0111 0111 0010" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.42 DIV3 (Correction when Remainder is 0)

This instruction is used in signed division. It should be used in combinations such as
DIV0S, DIV1 x 32, DIV2, DIV3 and DIV4S.

■ DIV3 (Correction when Remainder is 0)
Assembler format: DIV3

Operation: if (Z = = 1) {
MDL + 1 → MDL

}

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: DIV3

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0

MDH

MDL

D1 D0 T

SCR SCR

D1 D0 T

0 0 00 0 0

R2 0 0 F F F F F F

MDH

MDL

R2

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 F

0 0 0 0 0 0 0 0

0 0 F F F F F F

N Z V C

CCR CCR

N Z V C

0 1 0 00 1 0 0

Before execution After execution

Instruction bit pattern : 1001 1111 0110 0000
136

線
("Instruction bit pattern : 1001 1111 0110 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.43 DIV4S (Correction Answer for Signed Division)

This instruction is used in signed division. It should be used in combinations such as
DIV0S, DIV1 x 32, DIV2, DIV3 and DIV4S.

■ DIV4S (Correction Answer for Signed Division)
Assembler format: DIV4S

Operation: if (D1 = = 1) {
0 – MDL → MDL

}

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: DIV4S

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0

MDH

MDL

D1 D0 T

SCR SCR

D1 D0 T

1 1 01 1 0

R2 0 0 F F F F F F

MDH

MDL

R2

F F F F F F F 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 F

0 0 0 0 0 0 0 0

0 0 F F F F F F

N Z V C

CCR CCR

N Z V C

0 0 0 00 0 0 0

Before execution After execution

Instruction bit pattern : 1001 1111 0111 0000
137

線
("Instruction bit pattern : 1001 1111 0111 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.44 LSL (Logical Shift to the Left Direction)

Makes a logical left shift of the word data in "Ri" by "Rj" bits, stores the result to "Ri".
Only the lower 5 bits of "Rj", which designates the size of the shift, are valid and the
shift range is 0 to 31 bits.

■ LSL (Logical Shift to the Left Direction)
Assembler format: LSL Rj, Ri

Operation: Ri << Rj → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last. Cleared when the shift amount is "0".

Execution cycles: 1 cycle

Instruction format:

Example: LSL R2, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 0 1 1 0 Rj Ri

R2

R3

 R2

R3

F F F F F F 0 0

0 0 0 0 0 0 0 8

F F F F F F F F

0 0 0 0 0 0 0 8

N Z V C

CCR CCR

N Z V C

1 0 0 10 0 0 0

Before execution After execution

Instruction bit pattern : 1011 0110 0010 0011
138

線
("Instruction bit pattern : 1011 0010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.45 LSL (Logical Shift to the Left Direction)

Makes a logical left shift of the word data in "Ri" by "u4" bits, stores the result to "Ri".

■ LSL (Logical Shift to the Left Direction)
Assembler format: LSL #u4, Ri

Operation: Ri << u4 → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last. Cleared when the shift amount is "0".

Execution cycles: 1 cycle

Instruction format:

Example: LSL #8, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 0 1 0 0 u4 Ri

R3 R3 F F F F F F 0 0F F F F F F F F

N Z V C

CCR CCR

N Z V C

1 0 0 10 0 0 0

Instruction bit pattern : 1011 0100 1000 0011

Before execution After execution
139

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.46 LSL2 (Logical Shift to the Left Direction)

Makes a logical left shift of the word data in "Ri" by "{u4 + 16}" bits, stores the results to
"Ri".

■ LSL2 (Logical Shift to the Left Direction)
Assembler format: LSL2 #u4, Ri

Operation: Ri << {u4 + 16} → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last.

Execution cycles: 1 cycle

Instruction format:

Example: LSL2 #8, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 0 1 0 1 u4 Ri

R3 R3 F F 0 0 0 0 0 0F F F F F F F F

N Z V C

CCR CCR

N Z V C

1 0 0 10 0 0 0

Instruction bit pattern : 1011 0101 1000 0011

Before execution After execution
140

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.47 LSR (Logical Shift to the Right Direction)

Makes a logical right shift of the word data in "Ri" by "Rj" bits, stores the result to "Ri".
Only the lower 5 bits of "Rj", which designates the size of the shift, are valid and the
shift range is 0 to 31 bits.

■ LSR (Logical Shift to the Right Direction)
Assembler format: LSR Rj, Ri

Operation: Ri >> Rj → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last. Cleared when the shift amount is "0".

Execution cycles: 1 cycle

Instruction format:

Example: LSR R2, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 0 0 1 0 Rj Ri

R2

R3

 R2

R3

0 0 F F F F F F

0 0 0 0 0 0 0 8

F F F F F F F F

0 0 0 0 0 0 0 8

N Z V C

CCR CCR

N Z V C

0 0 0 10 0 0 0

Before execution After execution

Instruction bit pattern : 1011 0010 0010 0011
141

線
("Instruction bit pattern : 1011 0010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.48 LSR (Logical Shift to the Right Direction)

Makes a logical right shift of the word data in "Ri" by "u4" bits, stores the result to "Ri".

■ LSR (Logical Shift to the Right Direction)
Assembler format: LSR #u4, Ri

Operation: Ri >> u4 → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last. Cleared when the shift amount is "0".

Execution cycles: 1 cycle

Instruction format:

Example: LSR #8, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 0 0 0 0 u4 Ri

R3 R3 0 0 F F F F F FF F F F F F F F

N Z V C

CCR CCR

N Z V C

0 0 0 10 0 0 0

Instruction bit pattern : 1011 0000 1000 0011

Before execution After execution
142

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.49 LSR2 (Logical Shift to the Right Direction)

Makes a logical right shift of the word data in "Ri" by "{u4 + 16}" bits, stores the result
to "Ri".

■ LSR2 (Logical Shift to the Right Direction)
Assembler format: LSR2 #u4, Ri

Operation: Ri >> {u4 + 16} → Ri

Flag change:

N: Cleared

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last.

Execution cycles: 1 cycle

Instruction format:

Example: LSR2 #8, R3

N Z V C

0 C – C

MSB LSB

1 0 1 1 0 0 0 1 u4 Ri

R3 R3 0 0 0 0 0 0 F FF F F F F F F F

N Z V C

CCR CCR

N Z V C

0 0 0 10 0 0 0

Instruction bit pattern : 1011 0001 1000 0011

Before execution After execution
143

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.50 ASR (Arithmetic Shift to the Right Direction)

Makes an arithmetic right shift of the word data in "Ri" by "Rj" bits, stores the result to
"Ri".
Only the lower 5 bits of "Rj", which designates the size of the shift, are valid and the
shift range is 0 to 31 bits.

■ ASR (Arithmetic Shift to the Right Direction)
Assembler format: ASR Rj, Ri

Operation: Ri >> Rj → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last. Cleared when the shift amount is "0".

Execution cycles: 1 cycle

Instruction format:

Example: ASR R2, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 1 0 1 0 Rj Ri

R2

R3

 R2

R3

F F F F 0 F F F

0 0 0 0 0 0 0 8

F F 0 F F F F F

0 0 0 0 0 0 0 8

N Z V C

CCR CCR

N Z V C

1 0 0 10 0 0 0

Before execution After execution

Instruction bit pattern : 1011 1010 0010 0011
144

線
("Instruction bit pattern : 1011 1010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.51 ASR (Arithmetic Shift to the Right Direction)

Makes an arithmetic right shift of the word data in "Ri" by "u4" bits, stores the result to
"Ri".

■ ASR (Arithmetic Shift to the Right Direction)
Assembler format: ASR #u4, Ri

Operation: Ri >> u4 → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last. Cleared when the shift amount is "0".

Execution cycles: 1 cycle

Instruction format:

Example: ASR #8, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 1 0 0 0 u4 Ri

R3 R3 F F F F 0 F F FF F 0 F F F F F

N Z V C

CCR CCR

N Z V C

1 0 0 10 0 0 0

Instruction bit pattern : 1011 1000 1000 0011

Before execution After execution
145

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.52 ASR2 (Arithmetic Shift to the Right Direction)

Makes an arithmetic right shift of the word data in "Ri" by "{u4 + 16}" bits, stores the
result to "Ri".

■ ASR2 (Arithmetic Shift to the Right Direction)
Assembler format: ASR2 #u4, Ri

Operation: Ri >> {u4 + 16} → Ri

Flag change:

N: Set when the MSB of the operation result is "1", cleared when the MSB is "0".

Z: Set when the operation result is "0", cleared otherwise.

V: Unchanged

C: Holds the bit value shifted last.

Execution cycles: 1 cycle

Instruction format:

Example: ASR2 #8, R3

N Z V C

C C – C

MSB LSB

1 0 1 1 1 0 0 1 u4 Ri

R3 R3 F F F F F F F 0F 0 F F F F F F

N Z V C

CCR CCR

N Z V C

1 0 0 10 0 0 0

Instruction bit pattern : 1011 1001 1000 0011

Before execution After execution
146

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.53 LDI:32 (Load Immediate 32-bit Data to Destination
Register)

Loads 1 word of immediate data to "Ri".

■ LDI:32 (Load Immediate 32-bit Data to Destination Register)
Assembler format: LDI:32 #i32, Ri

Operation: i32 → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 3 cycles

Instruction format:

Example: LDI:32 #87654321H, R3

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 1 0 0 0 Ri(n+0)

i32(higher)

i32(lower)

(n+2)

(n+4)

R3 R3 8 7 6 5 4 3 2 10 0 0 0 0 0 0 0

Before execution After execution

Instruction bit pattern : 1001 1111 1000 0011
 : 1000 0111 0110 0101
 : 0100 0011 0010 0001
147

線
("Instruction bit pattern : 1001 1111 1000 0011
: 1000 0111 0110 0101
: 0100 0011 0010 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.54 LDI:20 (Load Immediate 20-bit Data to Destination
Register)

Extends the 20-bit immediate data with 12 zeros in the higher bits, loads to "Ri".

■ LDI:20 (Load Immediate 20-bit Data to Destination Register)
Assembler format: LDI:20 #i20, Ri

Operation: extu (i20) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

Example: LDI:20 #54321H, R3

N Z V C

– – – –

MSB LSB

1 0 0 1 1 0 1 1 Ri(n+0)

i20(lower)

i20(higher)

(n+2)

R3 R3 0 0 0 5 4 3 2 10 0 0 0 0 0 0 0

Before execution After execution

Instruction bit pattern : 1001 1011 0101 0011
 : 0100 0011 0010 0001
148

線
("Instruction bit pattern : 1001 1011 0101 0011
: 0100 0011 0010 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register)

Extends the 8-bit immediate data with 24 zeros in the higher bits, loads to "Ri".

■ LDI:8 (Load Immediate 8-bit Data to Destination Register)
Assembler format: LDI:8 #i8, Ri

Operation: extu (i8) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: LDI:8 #21H, R3

N Z V C

– – – –

MSB LSB

1 1 0 0 Rii8

R3 R3 0 0 0 0 0 0 2 10 0 0 0 0 0 0 0

Before execution After execution

Instruction bit pattern : 1100 0010 0001 0011
149

線
("Instruction bit pattern : 1100 0010 0001 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.56 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "Rj" to "Ri".

■ LD (Load Word Data in Memory to Register)
Assembler format: LD @Rj, Ri

Operation: (Rj) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LD @R2, R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 1 0 0 Rj Ri

R2

12345678

 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

R2

R3R3

 8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

Memory

12345678 8 7 6 5 4 3 2 1

Memory

Before execution After execution

Instruction bit pattern : 0000 0100 0010 0011
150

線
("Instruction bit pattern : 0000 0100 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.57 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "(R13 + Rj)" to "Ri".

■ LD (Load Word Data in Memory to Register)
Assembler format: LD @ (R13, Rj), Ri

Operation: (R13 + Rj) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LD @ (R13, R2), R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 0 0 0 Rj Ri

R2

12345678

1234567C

 0 0 0 0 0 0 0 4

x x x x x x x x

1 2 3 4 5 6 7 8

R2

R3R3

R13

 8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 4

12345678

1234567C 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8R13

Memory Memory

Before execution After execution

Instruction bit pattern : 0000 0000 0010 0011
151

線
("Instruction bit pattern : 0000 0000 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.58 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "(R14 + o8 × 4)" to "Ri".
The value "o8" is a signed calculation.

■ LD (Load Word Data in Memory to Register)
Assembler format: LD @ (R14, disp10), Ri

Operation: (R14 + o8 × 4) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LD @ (R14, 4), R3

N Z V C

– – – –

MSB LSB

0 0 1 0 Rio8

12345678

1234567C

x x x x x x x x

1 2 3 4 5 6 7 8

R3

R14

 8 7 6 5 4 3 2 1

12345678

1234567C 8 7 6 5 4 3 2 1

R3

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

R14

Instruction bit pattern : 0010 0000 0001 0011

Memory Memory

Before execution After execution
152

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.59 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "(R15 + u4 × 4)" to "Ri".
The value "u4" is an unsigned calculation.

■ LD (Load Word Data in Memory to Register)
Assembler format: LD @ (R15, udisp6), Ri

Operation: (R15 + u4 × 4) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LD @ (R15, 4), R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 0 1 1 u4 Ri

12345678

1234567C

1 2 3 4 5 6 7 8

R3

R15

 8 7 6 5 4 3 2 1

12345678

1234567C 8 7 6 5 4 3 2 1

R3

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

R15

Instruction bit pattern : 0000 0011 0001 0011

x x x x x x x x

Memory Memory

Before execution After execution
153

線
("o4" → "u4")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.60 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "R15" to "Rj", and adds 4 to the value of "R15".
If "R15" is given as parameter "Ri", the value read from the memory will be loaded into
memory address "R15".

■ LD (Load Word Data in Memory to Register)
Assembler format: LD @ R15 +, Ri

Operation: (R15) → Ri
R15 + 4 → R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LD @ R15 +, R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 1 1 1 0 0 0 0 Ri

12345678

1234567C

1 2 3 4 5 6 7 8

R3

R15

 8 7 6 5 4 3 2 1 12345678

1234567C

 8 7 6 5 4 3 2 1

R3

1 2 3 4 5 6 7 C

8 7 6 5 4 3 2 1

R15

x x x x x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0000 0111 0000 0011
154

線
("Instruction bit pattern : 0000 0111 0000 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.61 LD (Load Word Data in Memory to Register)

Loads the word data at memory address "R15" to dedicated register "Rs", and adds 4 to
the value of "R15".
If the number of a non-existent register is given as parameter "Rs", the read value "Ri"
will be ignored.
If "Rs" is designated as the system stack pointer (SSP) or user stack pointer (USP), and
that pointer is indicating "R15" [the "S" flag in the condition code register (CCR) is set
to "0" to indicate the "SSP", and to "1" to indicate the "USP"], the last value remaining
in "R15" will be the value read from memory.

■ LD (Load Word Data in Memory to Register)
Assembler format: LD @ R15 +, Rs

Operation: (R15) → Rs
R15 + 4 → R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 0 0 1 1 1 1 0 0 0 Rs
155

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: LD @ R15 +, MDH

12345670

12345674

1 2 3 4 5 6 7 4R15

MDH

 8 7 6 5 4 3 2 1

12345670

12345674 8 7 6 5 4 3 2 1

R15 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1MDHx x x x x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0000 0111 1000 0100
156

線
("Instruction bit pattern : 0000 0111 1000 0100" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.62 LD (Load Word Data in Memory to Program Status Register)

Loads the word data at memory address "R15" to the program status (PS), and adds 4
to the value of "R15".
At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If data in the range 0 to 15 is loaded from memory, the value 16 will be added to
that data before being transferred to the "ILM". If the original "ILM" value is in the range
0 to 15, then any value from 0 to 31 can be transferred to the "ILM".

■ LD (Load Word Data in Memory to Program Status Register)
Assembler format: LD @ R15 +, PS

Operation: (R15) → PS
R15 + 4 → R15

Flag change:

N, Z, V, and C: Data is transferred from "R15".

Execution cycles: 1 + a + c cycles

The value of "c" is normally 1 cycle. However, if the next instruction involves read or write access

to memory address "R15", the system stack pointer (SSP) or the user stack pointer (USP), then an

interlock is applied and the value becomes 2 cycles.

Instruction format:

N Z V C

C C C C

MSB LSB

0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0
157

線
("Ri" → "R15")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: LD @ R15 +, PS

12345670

12345674

1 2 3 4 5 6 7 4

F F F F F 8 D 5PS

R15

 F F F 8 F 8 C 0

12345670

12345674 F F F 8 F 8 C 0

PS

1 2 3 4 5 6 7 8

F F F 8 F 8 C 0

R15

Memory Memory

Before execution After execution

Instruction bit pattern : 0000 0111 1001 0000
158

線
("Instruction bit pattern : 0000 0111 1001 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.63 LDUH (Load Half-word Data in Memory to Register)

Extends with zeros the half-word data at memory address "Rj", loads to "Ri".

■ LDUH (Load Half-word Data in Memory to Register)
Assembler format: LDUH @Rj, Ri

Operation: extu ((Rj)) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LDUH @R2, R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 1 0 1 Rj Ri

R2

12345678

 1 2 3 4 5 6 7 8

x x x x x x x x

R2

R3R3

 4 3 2 1

0 0 0 0 4 3 2 1

1 2 3 4 5 6 7 8

Memory

12345678 4 3 2 1

Memory

Before execution After execution

Instruction bit pattern : 0000 0101 0010 0011
159

線
("Instruction bit pattern : 0000 0101 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.64 LDUH (Load Half-word Data in Memory to Register)

Extends with zeros the half-word data at memory address "(R13 + Rj)", loads to "Ri".

■ LDUH (Load Half-word Data in Memory to Register)
Assembler format: LDUH @(R13, Rj), Ri

Operation: extu ((R13 + Rj)) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LDUH @(R13, R2), R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 0 0 1 Rj Ri

R2

12345678

 0 0 0 0 0 0 0 4

x x x x x x x x

R2

R3R3

 4 3 2 1

0 0 0 0 4 3 2 1

0 0 0 0 0 0 0 4

12345678

1234567C 1234567C 4 3 2 1

1 2 3 4 5 6 7 8R13 R13 1 2 3 4 5 6 7 8

Memory Memory

Before execution After execution

Instruction bit pattern : 0000 0001 0010 0011
160

線
("Instruction bit pattern : 0000 0001 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.65 LDUH (Load Half-word Data in Memory to Register)

Extends with zeros the half-word data at memory address "(R14 + o8 × 2)", loads to
"Ri".
The value "o8" is a signed calculation.

■ LDUH (Load Half-word Data in Memory to Register)
Assembler format: LDUH @(R14, disp9), Ri

Operation: extu ((R14 + o8 × 2)) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LDUH @(R14, 2), R3

N Z V C

– – – –

MSB LSB

0 1 0 0 Rio8

12345678

R3R3

 4 3 2 1

0 0 0 0 4 3 2 1

12345678

1234567A 1234567A 4 3 2 1

1 2 3 4 5 6 7 8R14 1 2 3 4 5 6 7 8R14

Instruction bit pattern : 0100 0000 0001 0011

Memory Memory

Before execution After execution

x x x x x x x x
161

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.66 LDUB (Load Byte Data in Memory to Register)

Extends with zeros the byte data at memory address "Rj", loads to "Ri".

■ LDUB (Load Byte Data in Memory to Register)
Assembler format: LDUB @Rj, Ri

Operation: extu ((Rj)) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LDUB @R2, R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 1 1 0 Rj Ri

R2

12345678

 1 2 3 4 5 6 7 8

x x x x x x x x

R2

R3R3

 2 1

0 0 0 0 0 0 2 1

1 2 3 4 5 6 7 8

12345678 2 1

Memory Memory

Before execution After execution

Instruction bit pattern : 0000 0110 0010 0011
162

線
("Instruction bit pattern : 0000 0110 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.67 LDUB (Load Byte Data in Memory to Register)

Extends with zeros the byte data at memory address "(R13 + Rj)", loads to "Ri".

■ LDUB (Load Byte Data in Memory to Register)
Assembler format: LDUB @ (R13, Rj), Ri

Operation: extu ((R13 + Rj)) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LDUB @(R13, R2), R3

N Z V C

– – – –

MSB LSB

0 0 0 0 0 0 1 0 Rj Ri

R2

12345678

 0 0 0 0 0 0 0 4

x x x x x x x x

R2

R3R3

 2 1

0 0 0 0 0 0 2 1

0 0 0 0 0 0 0 4

12345678

1234567C 1234567C 2 1

1 2 3 4 5 6 7 8R13 R13 1 2 3 4 5 6 7 8

Memory Memory

Before execution After execution

Instruction bit pattern : 0000 0010 0010 0011
163

線
("Instruction bit pattern : 0000 0010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.68 LDUB (Load Byte Data in Memory to Register)

Extends with zeros the byte data at memory address "(R14 + o8)", loads to "Ri".
The value "o8" is a signed calculation.

■ LDUB (Load Byte Data in Memory to Register)
Assembler format: LDUB @ (R14, disp8), Ri

Operation: extu ((R14 + o8)) → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: LDUB @(R14, 1), R3

N Z V C

– – – –

MSB LSB

0 1 1 0 Rio8

12345678

x x x x x x x x R3R3

 2 1

0 0 0 0 0 0 2 1

12345678

12345679 12345679 2 1

1 2 3 4 5 6 7 8R14 1 2 3 4 5 6 7 8R14

Instruction bit pattern : 0110 0000 0001 0011

Memory Memory

Before execution After execution
164

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.69 ST (Store Word Data in Register to Memory)

Loads the word data in "Ri" to memory address "Rj".

■ ST (Store Word Data in Register to Memory)
Assembler format: ST Ri, @Rj

Operation: Ri → (Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: ST R3, @R2

N Z V C

– – – –

MSB LSB

0 0 0 1 0 1 0 0 Rj Ri

R2

12345678

 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

R2

R3R3

 x x x x x x x x

8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8

12345678 8 7 6 5 4 3 2 1

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0100 0010 0011
165

線
("Instruction bit pattern : 0001 0100 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.70 ST (Store Word Data in Register to Memory)

Loads the word data in "Ri" to memory address "(R13 + Rj)".

■ ST (Store Word Data in Register to Memory)
Assembler format: ST Ri, @ (R13, Rj)

Operation: Ri → (R13 + Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: ST R3, @ (R13, R2)

N Z V C

– – – –

MSB LSB

0 0 0 1 0 0 0 0 Rj Ri

R2

12345678

 0 0 0 0 0 0 0 4

8 7 6 5 4 3 2 1

R2

R3R3

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 4

12345678

1234567C 1234567C

1 2 3 4 5 6 7 8R13 R13 1 2 3 4 5 6 7 8

x x x x x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0000 0010 0011
166

線
("Instruction bit pattern : 0001 0000 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.71 ST (Store Word Data in Register to Memory)

Loads the word data in "Ri" to memory address "(R14 + o8 × 4)".
The value "o8" is a signed calculation.

■ ST (Store Word Data in Register to Memory)
Assembler format: ST Ri,@ (R14, disp10)

Operation: Ri → (R14 + o8 × 4)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: ST R3, @ (R14, 4)

N Z V C

– – – –

MSB LSB

0 0 1 1 Rio8

12345678

R3R3

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

12345678

1234567C 1234567C

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

R14 1 2 3 4 5 6 7 8R14

Instruction bit pattern : 0011 0000 0001 0011

x x x x x x x x

Memory Memory

Before execution After execution
167

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.72 ST (Store Word Data in Register to Memory)

Loads the word data in "Ri" to memory address "(R15 + u4 × 4)".
The value "u4" is an unsigned calculation.

■ ST (Store Word Data in Register to Memory)
Assembler format: ST Ri, @ (R15, udisp6)

Operation: Ri → (R15 + u4 × 4)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: ST R3, @ (R15, 4)

N Z V C

– – – –

MSB LSB

0 0 0 1 0 0 1 1 u4 Ri

12345678

R3R3

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

12345678

1234567C 1234567C

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

R15 1 2 3 4 5 6 7 8R15

Instruction bit pattern : 0001 0011 0001 0011

x x x x x x x x

Memory Memory

Before execution After execution
168

線
("o4" → "u4")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.73 ST (Store Word Data in Register to Memory)

Subtracts 4 from the value of "R15", stores the word data in "Ri" to the memory address
indicated by the new value of "R15".
If "R15" is given as the parameter "Ri", the data transfer will use the value of "R15"
before subtraction.

■ ST (Store Word Data in Register to Memory)
Assembler format: ST Ri, @ – R15

Operation: R15 – 4 → R15
Ri → (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: ST R3, @ – R15

N Z V C

– – – –

MSB LSB

0 0 0 1 0 1 1 1 0 0 0 0 Ri

12345674

R3R3

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 112345674

12345678 12345678

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

R15 1 2 3 4 5 6 7 4R15

x x x x x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0111 0000 0011
169

線
("Instruction bit pattern : 0001 0111 0000 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.74 ST (Store Word Data in Register to Memory)

Subtracts 4 from the value of "R15", stores the word data in dedicated register "Rs" to
the memory address indicated by the new value of "R15".
If a non-existent dedicated register is given as "Rs", undefined data will be transferred.

■ ST (Store Word Data in Register to Memory)
Assembler format: ST Rs, @ – R15

Operation: R15 – 4 → R15
Rs → (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: ST MDH, @ – R15

N Z V C

– – – –

MSB LSB

0 0 0 1 0 1 1 1 1 0 0 0 Rs

12345670

R15R15

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

12345670

12345674 12345674

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1MDH

1 2 3 4 5 6 7 4

MDH

x x x x x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0111 1000 0100
170

線
("Instruction bit pattern : 0001 0111 1000 0100" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.75 ST (Store Word Data in Program Status Register to Memory)

Subtracts 4 from the value of "R15", stores the word data in the program status (PS) to
the memory address indicated by the new value of "R15".

■ ST (Store Word Data in Program Status Register to Memory)
Assembler format: ST PS, @ – R15

Operation: R15 – 4 → R15
PS → (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: ST PS, @ – R15

N Z V C

– – – –

MSB LSB

0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0

12345670

R15R15

F F F 8 F 8 C 0

F F F 8 F 8 C 0

12345670

12345674 12345674

1 2 3 4 5 6 7 8

F F F 8 F 8 C 0PS

1 2 3 4 5 6 7 4

PS

x x x x x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0111 1001 0000
171

線
("Instruction bit pattern : 0001 0111 1001 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.76 STH (Store Half-word Data in Register to Memory)

Stores the half-word data in "Ri" to memory address "Rj".

■ STH (Store Half-word Data in Register to Memory)
Assembler format: STH Ri, @Rj

Operation: Ri → (Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: STH R3, @R2

N Z V C

– – – –

MSB LSB

0 0 0 1 0 1 0 1 Rj Ri

R2

12345678

 1 2 3 4 5 6 7 8

0 0 0 0 4 3 2 1

R2

R3R3

0 0 0 0 4 3 2 1

1 2 3 4 5 6 7 8

12345678 4 3 2 1x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0101 0010 0011
172

線
("Instruction bit pattern : 0001 0101 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.77 STH (Store Half-word Data in Register to Memory)

Stores the half-word data in "Ri" to memory address "(R13 + Rj)".

■ STH (Store Half-word Data in Register to Memory)
Assembler format: STH Ri, @(R13, Rj)

Operation: Ri → (R13 + Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: STH R3, @(R13, R2)

N Z V C

– – – –

MSB LSB

0 0 0 1 0 0 0 1 Rj Ri

R2

1234567A

 0 0 0 0 0 0 0 4

0 0 0 0 4 3 2 1

R2

R3R3

0 0 0 0 4 3 2 1

4 3 2 1

0 0 0 0 0 0 0 4

1234567A

1234567C 1234567C

1 2 3 4 5 6 7 8R13 R13 1 2 3 4 5 6 7 8

x x x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0001 0010 0011
173

線
("Instruction bit pattern : 0001 0001 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.78 STH (Store Half-word Data in Register to Memory)

Stores the half-word data in "Ri" to memory address "(R14 + o8 × 2)".
The value "o8" is a signed calculation.

■ STH (Store Half-word Data in Register to Memory)
Assembler format: STH Ri, @(R14, disp9)

Operation: Ri → (R14 + o8 × 2)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: STH R3, @(R14, 2)

N Z V C

– – – –

MSB LSB

0 1 0 1 Rio8

12345678

R3R3

0 0 0 0 4 3 2 1

4 3 2 1

12345678

1234567A 1234567A

1 2 3 4 5 6 7 8

0 0 0 0 4 3 2 1

R14 1 2 3 4 5 6 7 8R14

Instruction bit pattern : 0101 0000 0001 0011

x x x x

Memory Memory

Before execution After execution
174

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.79 STB (Store Byte Data in Register to Memory)

Stores the byte data in "Ri" to memory address "Rj".

■ STB (Store Byte Data in Register to Memory)
Assembler format: STB Ri, @Rj

Operation: Ri → (Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: STB R3, @R2

N Z V C

– – – –

MSB LSB

0 0 0 1 0 1 1 0 Rj Ri

R2

12345678

 1 2 3 4 5 6 7 8

0 0 0 0 0 0 2 1

R2

R3R3

0 0 0 0 0 0 2 1

1 2 3 4 5 6 7 8

12345678 2 1x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0110 0010 0011
175

線
("Instruction bit pattern : 0001 0110 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.80 STB (Store Byte Data in Register to Memory)

Stores the byte data in "Ri" to memory address "(R13 + Rj)".

■ STB (Store Byte Data in Register to Memory)
Assembler format: STB Ri, @ (R13, Rj)

Operation: Ri → (R13 + Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: STB R3, @(R13, R2)

N Z V C

– – – –

MSB LSB

0 0 0 1 0 0 1 0 Rj Ri

R2

1234567B

 0 0 0 0 0 0 0 4

0 0 0 0 0 0 2 1

R2

R3R3

0 0 0 0 0 0 2 1

2 1

0 0 0 0 0 0 0 4

1234567B

1234567C 1234567C

1 2 3 4 5 6 7 8R13 R13 1 2 3 4 5 6 7 8

x x

Memory Memory

Before execution After execution

Instruction bit pattern : 0001 0010 0010 0011
176

線
("Instruction bit pattern : 0001 0010 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.81 STB (Store Byte Data in Register to Memory)

Stores the byte data in "Ri" to memory address "(R14 + o8)".
The value "o8" is a signed calculation.

■ STB (Store Byte Data in Register to Memory)
Assembler format: STB Ri, @ (R14, disp8)

Operation: Ri → (R14 + o8)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: STB R3, @(R14, 1)

N Z V C

– – – –

MSB LSB

0 1 1 1 Rio8

12345678

R3R3

0 0 0 0 0 0 2 1

2 1

12345678

12345679 12345679

1 2 3 4 5 6 7 8

0 0 0 0 0 0 2 1

R14 1 2 3 4 5 6 7 8R14

Instruction bit pattern : 0111 0000 0001 0011

x x

Memory Memory

Before execution After execution
177

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.82 MOV (Move Word Data in Source Register to Destination
Register)

Moves the word data in "Rj" to "Ri".

■ MOV (Move Word Data in Source Register to Destination Register)
Assembler format: MOV Rj, Ri

Operation: Rj → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: MOV R2, R3

N Z V C

– – – –

MSB LSB

1 0 0 0 1 0 1 1 Rj Ri

R2 8 7 6 5 4 3 2 1

x x x x x x x x

R2

R3R3

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Before execution After execution

Instruction bit pattern : 1000 1011 0010 0011
178

線
("Instruction bit pattern : 1000 1011 0010 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.83 MOV (Move Word Data in Source Register to Destination
Register)

Moves the word data in dedicated register "Rs" to general-purpose register "Ri".
If the number of a non-existent dedicated register is given as "Rs", undefined data will
be transferred.

■ MOV (Move Word Data in Source Register to Destination Register)
Assembler format: MOV Rs, Ri

Operation: Rs → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: MOV MDL, R3

N Z V C

– – – –

MSB LSB

1 0 1 1 0 1 1 1 Rs Ri

R3R3 8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1MDL 8 7 6 5 4 3 2 1MDL

x x x x x x x x

Before execution After execution

Instruction bit pattern : 1011 0111 0101 0011
179

線
("Instruction bit pattern : 1011 0111 0101 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.84 MOV (Move Word Data in Program Status Register to
Destination Register)

Moves the word data in the program status (PS) to general-purpose register "Ri".

■ MOV (Move Word Data in Program Status Register to Destination Register)
Assembler format: MOV PS, Ri

Operation: PS → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: MOV PS, R3

N Z V C

– – – –

MSB LSB

0 0 0 1 0 1 1 1 0 0 0 1 Ri

R3R3 F F F 8 F 8 C 0

F F F 8 F 8 C 0PS F F F 8 F 8 C 0PS

x x x x

Before execution After execution

x x x x

Instruction bit pattern : 0001 0111 0001 0011
180

線
("Instruction bit pattern : 0001 0111 0001 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.85 MOV (Move Word Data in Source Register to Destination
Register)

Moves the word data in general-purpose register "Ri" to dedicated register "Rs".
If the number of a non-existent register is given as parameter "Rs", the read value "Ri"
will be ignored.

■ MOV (Move Word Data in Source Register to Destination Register)
Assembler format: MOV Ri, Rs

Operation: Ri → Rs

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: MOV R3, MDL

N Z V C

– – – –

MSB LSB

1 0 1 1 0 0 1 1 Rs Ri

R3R3 8 7 6 5 4 3 2 18 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1x x x x x x x xMDL MDL

Before execution After execution

Instruction bit pattern : 1011 0011 0101 0011
181

線
("Instruction bit pattern : 1011 0011 0101 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.86 MOV (Move Word Data in Source Register to Program
Status Register)

Moves the word data in general-purpose register Ri to the program status (PS).
At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If data in the range 0 to 15 is loaded from "Ri", the value 16 will be added to
that data before being transferred to the "ILM". If the original "ILM" value is in the range
0 to 15, then any value from 0 to 31 can be transferred to the "ILM".

■ MOV (Move Word Data in Source Register to Program Status Register)
Assembler format: MOV Ri, PS

Operation: Ri → PS

Flag change:

N, Z, V, and C: Data is transferred from "Ri".

Execution cycles: c cycle(s)

The number of execution cycles is normally "1". However, if the instruction immediately after

involves read or write access to memory address "R15", the system stack pointer (SSP) or the user

stack pointer (USP), then an interlock is applied and the value becomes 2 cycles.

Instruction format:

N Z V C

C C C C

MSB LSB

0 0 0 0 0 1 1 1 0 0 0 1 Ri
182

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: MOV R3, PS

R3R3 F F F 3 F 8 D 5 F F F 3 F 8 D 5

F F F 3 F 8 D 5PS PSx x x x x x x x

Before execution After execution

Instruction bit pattern : 0000 0111 0001 0011
183

線
("Instruction bit pattern : 0000 0111 0001 0011" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.87 JMP (Jump)

This is a branching instruction with no delay slot.
Branches to the address indicated by "Ri".

■ JMP (Jump)
Assembler format: JMP @Ri

Operation: Ri → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

Example: JMP @R1

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 0 0 0 0 Ri

R1R1 C 0 0 0 8 0 0 0

F F 8 0 0 0 0 0

0 0 0 0 0 0 F F

C 0 0 0 8 0 0 0PC PC

Before execution After execution

Instruction bit pattern : 1001 0111 0000 0001
184

線
("Instruction bit pattern : 1001 0111 0000 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.88 CALL (Call Subroutine)

This is a branching instruction with no delay slot.
After storing the address of the next instruction in the return pointer (RP), branch to the
address indicated by "lavel12" relative to the value of the program counter (PC). When
calculating the address, double the value of "rel11" as a signed extension.

■ CALL (Call Subroutine)
Assembler format: CALL label12

Operation: PC + 2 → RP
PC +2 + exts (rel11 × 2) → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

Example: CALL label

...

label: ; CALL instruction address + 122H

N Z V C

– – – –

MSB LSB

1 1 0 1 0 rel11

PCPC F F 8 0 0 0 0 0 F F 8 0 0 1 2 2

F F 8 0 0 0 0 4x x x x x x x xRP RP

Before execution After execution

Instruction bit pattern : 1101 0000 1001 0000
185

線
("extension for use as the branch destination address" → "extension")

線
("CALL 120H" →
" CALL label
...
label: ; CALL instruction address + 122H")

線
("Instruction bit pattern : 1101 0000 1001 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.89 CALL (Call Subroutine)

This is a branching instruction with no delay slot.
After storing the address of the next instruction in the return pointer (RP), a branch to
the address indicated by "Ri" occurs.

■ CALL (Call Subroutine)
Assembler format: CALL @Ri

Operation: PC + 2 → RP
Ri → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

Example: CALL @R1

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 0 0 0 1 Ri

R1 F F F F F 8 0 0

8 0 0 0 F F F E

F F F F F 8 0 0

F F F F F 8 0 0PC

8 0 0 1 0 0 0 0RP

R1

PC

RPx x x x

Before execution After execution

x x x x

Instruction bit pattern : 1001 0111 0001 0001
186

線
("Instruction bit pattern : 1001 0111 0001 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.90 RET (Return from Subroutine)

This is a branching instruction with no delay slot.
Branches to the address indicated by the return pointer (RP).

■ RET (Return from Subroutine)
Assembler format: RET

Operation: RP → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2 cycles

Instruction format:

Example: RET

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0

PCPC F F F 0 8 8 2 0

8 0 0 0 A E 8 6

8 0 0 0 A E 8 6

8 0 0 0 A E 8 6RP RP

Before execution After execution

Instruction bit pattern : 1001 0111 0010 0000
187

線
("Instruction bit pattern : 1001 0111 0010 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.91 INT (Software Interrupt)

Stores the values of the program counter (PC) and program status (PS) to the stack
indicated by the system stack pointer (SSP) for interrupt processing. Writes "0" to the
"S" flag in the condition code register (CCR), and uses the "SSP" as the stack pointer
for the following steps. Writes "0" to the "I" flag (interrupt enable flag) in the "CCR" to
disable external interrupts. Reads the vector table for the interrupt vector number "u8"
to determine the branch destination address, and branches.
This instruction has no delay slot.
Vector numbers 9 to 13, 64 and 65 are used by emulators for debugging interrupts and
therefore the corresponding numbers "INT#9" to "INT#13", "INT#64", "INT#65" should
not be used in user programs.

■ INT (Software Interrupt)
Assembler format: INT #u8

Operation: SSP – 4 → SSP
PS → (SSP)
SSP – 4 → SSP
PC + 2 → (SSP)
"0" → I flag
"0" → S flag
(TBR + 3FCH – u8 × 4) → PC

Flag change:

N, Z, V, and C: Unchanged

S and I: Cleared to "0".

Execution cycles: 3 + 3a cycles

Instruction format:

S I N Z V C

0 0 – – – –

MSB LSB

0 0 0 1 1 1 1 1 u8
188

線
("INT#9" to "#13", "#64", "#65" → "INT#9" to "INT#13", "INT#64", "INT#65")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: INT #20H

6 8 0 9 6 8 0 0 6 8 0 9 6 8 0 0

8 0 8 8 8 0 8 8

F F F F F 8 F 0

R15

 000FFF7C

x x x x x x x x

 7FFFFFF8

7FFFFFFC

80000000

000FFF7C

7FFFFFF8

7FFFFFFC

80000000

8 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

SSP

TBR

4 0 0 0 0 0 0 0

0 0 0 F F C 0 0

USP

PC

F F F F F 8 F 0

8 0 8 8 8 0 8 6

PS

1 1 0 0 0 0

S I N Z V C

CCR

R15

7 F F F F F F 8

7 F F F F F F 8

SSP

TBR

4 0 0 0 0 0 0 0

0 0 0 F F C 0 0

USP

PC

F F F F F 8 C 0

6 8 0 9 6 8 0 0

PS

0 0 0 0 0 0

S I N Z V C

CCR

Memory Memory

Before execution After execution

x x x x x x x x

x x x x x x x x

x x x x x x x x

Instruction bit pattern : 0001 1111 0010 0000
189

線
("Instruction bit pattern : 0001 1111 0010 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.92 INTE (Software Interrupt for Emulator)

This software interrupt instruction is used for debugging. It stores the values of the
program counter (PC) and program status (PS) to the stack indicated by the system
stack pointer (SSP) for interrupt processing. It writes "0" to the "S" flag in the condition
code register (CCR), and uses the "SSP" as the stack pointer for the following steps.
It determines the branch destination address by reading interrupt vector number "#9"
from the vector table, then branches.
There is no change to the "I" flag in the condition code register (CCR).
The interrupt level mask register (ILM) in the program status (PS) is set to level 4.
This instruction is the software interrupt instruction for debugging.
In step execution, no "EIT" events are generated by the "INTE" instruction.
This instruction has no delay slot.

■ INTE (Software Interrupt for Emulator)
Assembler format: INTE

Operation: SSP – 4 → SSP
PS → (SSP)
SSP – 4 → SSP
PC + 2 → (SSP)
4 → ILM
"0" → S flag
(TBR + 3D8H) → PC

Flag change:

I, N, Z, V, and C: Unchanged

S: Cleared to "0".

Execution cycles: 3 + 3a cycles

Instruction format:

S I N Z V C

0 – – – – –

MSB LSB

1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0
190

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: INTE

6 8 0 9 6 8 0 0 6 8 0 9 6 8 0 0

8 0 8 8 8 0 8 8

F F F F F 8 F 0

R15

 000FFFD8

x x x x x x x x

 7FFFFFF8

7FFFFFFC

80000000

000FFFD8

7FFFFFF8

7FFFFFFC

80000000

8 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

SSP

TBR

4 0 0 0 0 0 0 0

0 0 0 F F C 0 0

USP

PC

F F F 5 F 8 F 0

8 0 8 8 8 0 8 6

PS

1 0 1 0 1ILM 0 0 1 0 0ILM

1 1 0 0 0 0

S I N Z V C

CCR

R15

7 F F F F F F 8

7 F F F F F F 8

SSP

TBR

4 0 0 0 0 0 0 0

0 0 0 F F C 0 0

USP

PC

F F E 4 F 8 D 0

6 8 0 9 6 8 0 0

PS

0 1 0 0 0 0

S I N Z V C

CCR

Memory Memory

Before execution After execution

x x x x x x x x

x x x x x x x x

x x x x x x x x

Instruction bit pattern : 1001 1111 0011 0000
191

線
("Instruction bit pattern : 1001 1111 0011 0000") is added.

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.93 RETI (Return from Interrupt)

Loads data from the stack indicated by "R15" to the program counter (PC) and program
status (PS), and retakes control from the interrupt handler.
This instruction requires the S flag in the register (CCR) to be executed in a state of "0".
Do not manipulate the S flag in the normal interrupt handler; use it in a state of 0 as it is.
This instruction has no delay slot.
At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If data in the range 0 to 15 is loaded in memory, the value 16 will be added to
that data before being transferred to the "ILM". If the original "ILM" value is in the range
0 to 15, then any value between 0 and 31 can be transferred to the "ILM".

■ RETI (Return from Interrupt)
Assembler format: RETI

Operation: (R15) → PC
R15 + 4 → R15
(R15) → PS
R15 + 4 →R15

Flag change:

S, I, N, Z, V, and C: Change according to values retrieved from the stack.

Execution cycles: 2 + 2a cycles

Instruction format:

S I N Z V C

C C C C C C

MSB LSB

1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0
192

線
(D2, D1, → S,)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: RETI

8 0 8 8 8 0 8 8

F F F 3 F 8 F 1

8 0 8 8 8 0 8 8

F F F 3 F 8 F 1

R15

x x x x x x x x

7FFFFFF8

7FFFFFFC

80000000

7FFFFFF8

7FFFFFFC

80000000

8 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

SSP

4 0 0 0 0 0 0 0USP

PC

F F F 3 F 8 F 1

8 0 8 8 8 0 8 8

PS

1 0 0 1 1ILM1 0 0 0 0ILM

1 1 0 0 0 1

S I N Z V C

CCR

R15

7 F F F F F F 8

7 F F F F F F 8

SSP

4 0 0 0 0 0 0 0USP

PC

F F F 0 F 8 D 4

F F 0 0 9 0 B C

PS

0 1 0 1 0 0

S I N Z V C

CCR

Memory Memory

Before execution After execution

x x x x x x x x

Instruction bit pattern : 1001 0111 0011 0000
193

線
("Instruction bit pattern : 1001 0111 0011 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.94 Bcc (Branch Relative if Condition Satisfied)

This branching instruction has no delay slot.
If the conditions established for each particular instruction are satisfied, branch to the
address indicated by "label9" relative to the value of the program counter (PC). When
calculating the address, double the value of "rel8" as a signed extension.
If conditions are not satisfied, no branching can occur.
Conditions for each instruction are listed in Table 7.94-1.

■ Bcc (Branch Relative if Condition Satisfied)
Assembler format: BRA label9 BV label9

BNO label9 BNV label9
BEQ label9 BLT label9
BNE label9 BGE label9
BC label9 BLE label9
BNC label9 BGT label9
BN label9 BLS label9
BP label9 BHI label9

Operation: if (conditions satisfied) {
PC + 2 + exts (rel8 × 2) → PC

}

Flag change:

N, Z, V, and C: Unchanged

Table 7.94-1 Branching Conditions

Mnemonic cc Conditions Mnemonic cc Conditions

BRA 0000 Always satisfied BV 1000 V = 1

BNO 0001 Always unsatisfied BNV 1001 V = 0

BEQ 0010 Z = 1 BLT 1010 V xor N = 1

BNE 0011 Z = 0 BGE 1011 V xor N = 0

BC 0100 C = 1 BLE 1100 (V xor N) or Z = 1

BNC 0101 C = 0 BGT 1101 (V xor N) or Z = 0

BN 0110 N = 1 BLS 1110 C or Z = 1

BP 0111 N = 0 BHI 1111 C or Z = 0

N Z V C

– – – –
194

線
("extension, for use as the branch destination address." → "extension")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Execution cycles: Branch: 2 cycles
Not branch: 1 cycle

Instruction format:

Example: BHI label

...

label: ; BHI instruction address + 50H

MSB LSB

1 1 1 0 cc rel8

PC PC F F 8 0 0 0 5 2F F 8 0 0 0 0 0

N Z V C

CCR CCR

N Z V C

1 0 1 01 0 1 0

Z or C = 0 (conditions satisfied)

Before execution After execution

Instruction bit pattern : 1110 1111 0010 1000
195

線
("BHI 50H" →
" BHI label
...
label: ; BHI instruction address + 50H")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.95 JMP:D (Jump)

This branching instruction has a delay slot.
Branches to the address indicated by "Ri".

■ JMP:D (Jump)
Assembler format: JMP : D @Ri

Operation: Ri → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: JMP : D @R1
LDI : 8 #0FFH, R1 ; Instruction placed in delay slot

The instruction placed in the delay slot will be executed before execution of the branch destination

instruction.

The value "R1" above will vary according to the specifications of the "LDI:8" instruction placed in

the delay slot.

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 0 0 0 0 Ri

...

R1R1 0 0 0 0 0 0 F F

F F 8 0 0 0 0 0

C 0 0 0 8 0 0 0

PC C 0 0 0 8 0 0 0PC

Before execution of "JMP" instruction After branching

Instruction bit pattern : 1001 1111 0000 0001
196

線
("Instruction bit pattern : 1001 1111 0000 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.96 CALL:D (Call Subroutine)

This is a branching instruction with a delay slot.
After saving the address of the next instruction after the delay slot to the "RP", branch
to the address indicated by "label12" relative to the value of the program counter (PC).
When calculating the address, double the value of "rel11" as a signed extension.

■ CALL:D (Call Subroutine)
Assembler format: CALL : D label12

Operation: PC + 4 → RP
PC + 2 + exts (rel11 × 2) → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

N Z V C

– – – –

MSB LSB

1 1 0 1 1 rel11
197

線
("extension for use as the branch destination address" → "extension")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: CALL:D label
LDI : 8 #0, R2 ; Instruction placed in delay slot

...

label: ; CALL: D instruction address + 122H

The instruction placed in the delay slot will be executed before execution of the branch destination

instruction.

The value "R2" above will vary according to the specifications of the "LDI:8" instruction placed in

the delay slot.

PC F F 8 0 0 1 2 2F F 8 0 0 0 0 0

RP F F 8 0 0 0 0 4

R2

PC

RP

R2 0 0 0 0 0 0 0 0

x x x x x x x x

x x x x x x x x

Before execution of "CALL" instruction After branching

Instruction bit pattern : 1101 1000 1001 0000
198

線
("CALL : D 120H
LDI : 8 #0, R2 ; Instruction placed in delay slot" →
"CALL:D label
LDI : 8 #0, R2 ; Instruction placed in delay slot
...
label: ; CALL: D instruction address + 122H")

線
("Instruction bit pattern : 1101 1000 1001 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.97 CALL:D (Call Subroutine)

This is a branching instruction with a delay slot.
After saving the address of the next instruction after the delay slot to the "RP", it
branches to the address indicated by "Ri".

■ CALL:D (Call Subroutine)
Assembler format: CALL : D @Ri

Operation: PC + 4 → RP
Ri → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 0 0 0 1 Ri
199

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: CALL : D @R1
LDI : 8 #1, R1 ; Instruction placed in delay slot

The instruction placed in the delay slot will be executed before execution of the branch destination

instruction.

The value "R1" above will vary according to the specifications of the "LDI:8" instruction placed in

the delay slot.

...

PC F F F F F 8 0 08 0 0 0 F F F E

F F F F F 8 0 0

RP 8 0 0 1 0 0 0 2

R1

PC

RP

R1 0 0 0 0 0 0 0 1

x x x x x x x x

Before execution of "CALL" instruction After branching

Instruction bit pattern : 1001 1111 0001 0001
200

線
("Instruction bit pattern : 1001 1111 0001 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.98 RET:D (Return from Subroutine)

This is a branching instruction with a delay slot.
Branches to the address indicated by the "RP".

■ RET:D (Return from Subroutine)
Assembler format: RET : D

Operation: RP → PC

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0
201

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: RET : D
MOV R0, R1 ; Instruction placed in delay slot

The instruction placed in the delay slot will be executed before execution of the branch destination

instruction.

The value "R1" above will vary according to the specifications of the "MOV" instruction placed in

the delay slot.

...

PC 8 0 0 0 A E 8 6F F F 0

x x x x x x x x

8 8 2 0

8 0 0 0 A E 8 6RP 8 0 0 0 A E 8 6

PC

RP

0 0 1 1 2 2 3 3R0 R0 0 0 1 1 2 2 3 3

R1 R1 0 0 1 1 2 2 3 3

Before execution of "RET" instruction After branching

Instruction bit pattern : 1001 1111 0010 0000
202

線
("Instruction bit pattern : 1001 1111 0010 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.99 Bcc:D (Branch Relative if Condition Satisfied)

This is a branching instruction with a delay slot.
If the conditions established for each particular instruction are satisfied, branch to the
address indicated by "label9" relative to the value of the program counter (PC). When
calculating the address, double the value of "rel8" as a signed extension.
If conditions are not satisfied, no branching can occur.
Conditions for each instruction are listed in Table 7.99-1.

■ Bcc:D (Branch Relative if Condition Satisfied)
Assembler format: BRA : D label9 BV : D label9

BNO : D label9 BNV : D label9
BEQ : D label9 BLT : D label9
BNE : D label9 BGE : D label9
BC : D label9 BLE : D label9
BNC : D label9 BGT : D label9
BN : D label9 BLS : D label9
BP : D label9 BHI : D label9

Operation: if (conditions satisfied) {
PC + 2 + exts (rel8 × 2) → PC

}

Flag change:

N, Z, V, and C: Unchanged

Table 7.99-1 Branching Conditions

Mnemonic cc Conditions Mnemonic cc Conditions

BRA : D 0000B Always satisfied BV : D 1000B V = 1

BNO : D 0001B Always unsatisfied BNV : D 1001B V = 0

BEQ : D 0010B Z = 1 BLT : D 1010B V xor N = 1

BNE : D 0011B Z = 0 BGE : D 1011B V xor N = 0

BC : D 0100B C = 1 BLE : D 1100B (V xor N) or Z = 1

BNC : D 0101B C = 0 BGT : D 1101B (V xor N) or Z = 0

BN : D 0110B N = 1 BLS : D 1110B C or Z = 1

BP : D 0111B N = 0 BHI : D 1111B C or Z = 0

N Z V C

– – – –
203

線
("extension, for use as the branch destination address" → "extension")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Execution cycles: 1 cycle

Instruction format:

Example: BHI:D label
LDI :8 #255, R1 ; Instruction placed in delay slot

label: ; BHI: D instruction address + 50H

The instruction placed in the delay slot will be executed before execution of the branch destination

instruction.

The value "R1" above will vary according to the specifications of the "LDI:8" instruction placed in

the delay slot.

MSB LSB

1 1 1 1 cc rel8
...

PC PC F F 8 0 0 0 5 2F F 8 0 0 0 0 0

R1 R1 0 0 0 0 0 0 F F8 9 4 7 9 7 A F

N Z V C

CCR CCR

N Z V C

1 0 1 01 0 1 0

Z or C = 0, conditions satisfied

Before execution After execution

Instruction bit pattern : 1111 1111 0010 1000
204

線
("BHI :D 50H
LDI :8 #255, R1 ; Instruction placed in delay slot" →
"BHI:D label
...
LDI :8 #255, R1 ; Instruction placed in delay slot
label: ; BHI: D instruction address + 50H")

線
("Instruction bit pattern : 1111 1111 0010 1000" is changed.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.100 DMOV (Move Word Data from Direct Address to Register)

Transfers, to "R13", the word data at the direct address corresponding to 4 times the
value of "dir8".

■ DMOV (Move Word Data from Direct Address to Register)
Assembler format: DMOV @dir10, R13

Operation: (dir8 × 4) → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: DMOV @88H, R13

N Z V C

– – – –

MSB LSB

0 0 0 0 1 0 0 0 dir8

0 1 2 3 4 5 6 7

R13

Memory

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

84H

88H

8CH

84H

88H

8CH

0 1 2 3 4 5 6 7

R13

Memory

0 1 2 3 4 5 6 7

Instruction bit pattern : 0000 1000 0010 0010

Before execution After execution
205

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.101 DMOV (Move Word Data from Register to Direct Address)

Transfers the word data in "R13" to the direct address corresponding to 4 times the
value of "dir8".

■ DMOV (Move Word Data from Register to Direct Address)
Assembler format: DMOV R13, @dir10

Operation: R13 → (dir8 × 4)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: DMOV R13, @54H

N Z V C

– – – –

MSB LSB

0 0 0 1 1 0 0 0 dir8

R13

Memory

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

 50H

54H

58H

50H

54H

58H

8 9 A B C D E F R13

Memory

Instruction bit pattern : 0001 1000 0001 0101

Before execution After execution

8 9 A B C D E F

8 9 A B C D E F
206

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.102 DMOV (Move Word Data from Direct Address to Post
Increment Register Indirect Address)

Transfers the word data at the direct address corresponding to 4 times the value of
"dir8" to the address indicated in "R13". After the data transfer, it increments the value
of "R13" by 4.

■ DMOV (Move Word Data from Direct Address to Post Increment Register Indirect
Address)

Assembler format: DMOV @dir10, @R13+

Operation: (dir8 × 4) → (R13)
R13 + 4 → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 0 1 1 0 0 dir8
207

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOV @88H, @R13+

1 4 1 4 2 1 3 5 1 4 1 4 2 1 3 5

1 4 1 4 2 1 3 5

R13

Memory

00000088

 FFFF1248

FFFF124C

FFFF1248

FFFF124C

00000088

F F F F 1 2 4 8 R13

Memory

F F F F 1 2 4 C

Instruction bit pattern : 0000 1100 0010 0010

x x x x x x x x

x x x x x x x x

x x x x x x x x

Before execution After execution
208

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.103 DMOV (Move Word Data from Post Increment Register
Indirect Address to Direct Address)

Transfers the word data at the address indicated in "R13" to the direct address
corresponding to 4 times the value "dir8". After the data transfer, it increments the
value of "R13" by 4.

■ DMOV (Move Word Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOV @R13+, @dir10

Operation: (R13) → (dir8 × 4)
R13 + 4 → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 1 1 1 0 0 dir8
209

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOV @R13+, @54H

8 9 4 7 9 1 A F

8 9 4 7 9 1 A F

8 9 4 7 9 1 A F

R13

 00000054

 FFFF1248

FFFF124C

FFFF1248

FFFF124C

00000054

F F F F 1 2 4 8 R13

F F F F 1 2 4 C

Instruction bit pattern : 0001 1100 0001 0101

Memory Memory

x x x x

Before execution After execution

x x x x

x x x x x x x x

 x x x x x x x x
210

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.104 DMOV (Move Word Data from Direct Address to
Pre-decrement Register Indirect Address)

Decrements the value of "R15" by 4, then transfers word data at the direct address
corresponding to 4 times the value of "dir8" to the address indicated in "R15".

■ DMOV (Move Word Data from Direct Address to Pre-decrement Register Indirect
Address)

Assembler format: DMOV @dir10, @ – R15

Operation: R15 – 4 → R15
(dir8 × 4) → (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 0 1 0 1 1 dir8
211

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOV @2CH, @ – R15

8 2 A 2 8 2 A 9 8 2 A 2 8 2 A 9

8 2 A 2 8 2 A 9

R15

Memory

0000002C

 7FFFFF84

7FFFFF88

0000002C

7 F F F F F 8 8 R15

Memory

7 F F F F F 8 4

Instruction bit pattern : 0000 1011 0000 1011

7FFFFF84

7FFFFF88x x x x x x x x

x x x x x x x x

x x x x x x x x

Before execution After execution
212

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.105 DMOV (Move Word Data from Post Increment Register
Indirect Address to Direct Address)

Transfers the word data at the address indicated in "R15" to the direct address
corresponding to 4 times the value "dir8". After the data transfer, it increments the value
of "R15" by 4.

■ DMOV (Move Word Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOV @R15+, @dir10

Operation: (R15) → (dir8 × 4)
R15 + 4 → R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 1 1 0 1 1 dir8
213

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOV @R15+, @38H

8 3 4 3 8 3 4 A

8 3 4 3 8 3 4 A

8 3 4 3 8 3 4 A

R15

Memory

00000038

 7FFEEE80

7FFEEE84

00000038

7 F F E E E 8 0 R15

Memory

7 F F E E E 8 4

Instruction bit pattern : 0001 1011 0000 1110

7FFEEE80

7FFEEE84

x x x x

Before execution After execution

x x x x

x x x x x x x x x x x x x x x x
214

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.106 DMOVH (Move Half-word Data from Direct Address to
Register)

Transfers the half-word data at the direct address corresponding to 2 times the value
"dir8" to "R13". Uses zeros to extend the higher 16 bits of data.

■ DMOVH (Move Half-word Data from Direct Address to Register)
Assembler format: DMOVH @dir9, R13

Operation: (dir8 × 2) → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: DMOVH @88H, R13

N Z V C

– – – –

MSB LSB

0 0 0 0 1 0 0 1 dir8

R13

 86

88

8A

86

88

8A

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x R13

B 2 B 6 B 2 B 6

0 0 0 0 B 2 B 6

Instruction bit pattern : 0000 1001 0100 0100

Before execution After execution

Memory Memory
215

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.107 DMOVH (Move Half-word Data from Register to Direct
Address)

Transfers the half-word data from "R13" to the direct address corresponding to 2 times
the value "dir8".

■ DMOVH (Move Half-word Data from Register to Direct Address)
Assembler format: DMOVH R13, @dir9

Operation: R13 → (dir8 × 2)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: DMOVH R13, @52H

N Z V C

– – – –

MSB LSB

0 0 0 1 1 0 0 1 dir8

R13

 50

52

54

50

52

54

x x x x

x x x x

x x x x

x x x x

x x x x

R13

A E 8 6

F F F F A E 8 6F F F F A E 8 6

Instruction bit pattern : 0001 1001 0010 1001

Before execution After execution

Memory Memory
216

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.108 DMOVH (Move Half-word Data from Direct Address to Post
Increment Register Indirect Address)

Transfers the half-word data at the direct address corresponding to 2 times the value
"dir8" to the address indicated by "R13". After the data transfer, it increments the value
of "R13" by 2.

■ DMOVH (Move Half-word Data from Direct Address to Post Increment Register Indirect
Address)

Assembler format: DMOVH @dir9, @R13+

Operation: (dir8 × 2) → (R13)
R13 + 2 → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 0 1 1 0 1 dir8
217

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOVH @88H, @R13+

1 3 7 4

R13

 00000088

 FF000052

FF000054

F F 0 0 0 0 5 2 R13 F F 0 0 0 0 5 4

Instruction bit pattern : 0000 1101 0100 0100

1 3 7 4

1 3 7 4

 00000088

 FF000052

FF000054

Before execution After execution

x x x xx x x x

x x x x

Memory Memory
218

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.109 DMOVH (Move Half-word Data from Post Increment
Register Indirect Address to Direct Address)

Transfers the half-word data at the address indicated by "R13" to the direct address
corresponding to 2 times the value "dir8". After the data transfer, it increments the value
of "R13" by 2.

■ DMOVH (Move Half-word Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOVH @R13+, @dir9

Operation: (R13) → (dir8 × 2)
R13 + 2 → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 1 1 1 0 1 dir8
219

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOVH @R13+, @52H

8 9 3 3

R13

 00000052

 FF801220

FF801222

FF801220

FF801222

F F 8 0 1 2 2 0 R13 F F 8 0 1 2 2 2

Instruction bit pattern : 0001 1101 0010 1001

8 9 3 3

8 9 3 3

 00000052

x x x x

x x x x x x x x

Memory Memory

Before execution After execution
220

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.110 DMOVB (Move Byte Data from Direct Address to Register)

Transfers the byte data at the address indicated by the value "dir8" to "R13". Uses zeros
to extend the higher 24 bits of data.

■ DMOVB (Move Byte Data from Direct Address to Register)
Assembler format: DMOVB @dir8, R13

Operation: (dir8) → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

Example: DMOVB @91H, R13

N Z V C

– – – –

MSB LSB

0 0 0 0 1 0 1 0 dir8

R13

Memory

90

91

92

90

91

92

x x

x x x x x x x x

x x

x x

x x

R13

3 2 3 2

Memory

0 0 0 0 0 0 3 2

Instruction bit pattern : 0000 1010 1001 0001

Before execution After execution
221

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.111 DMOVB (Move Byte Data from Register to Direct Address)

Transfers the byte data from "R13" to the direct address indicated by the value "dir8".

■ DMOVB (Move Byte Data from Register to Direct Address)
Assembler format: DMOVB R13, @dir8

Operation: R13 → (dir8)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: DMOVB R13, @53H

N Z V C

– – – –

MSB LSB

0 0 0 1 1 0 1 0 dir8

R13

Memory

52

53

54

52

53

54

x x

x x

x x

x x

x x

R13

F E

Memory

F F F F F F F EF F F F F F F E

Instruction bit pattern : 0001 1010 0101 0011

Before execution After execution
222

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.112 DMOVB (Move Byte Data from Direct Address to Post
Increment Register Indirect Address)

Moves the byte data at the direct address indicated by the value "dir8" to the address
indicated by "R13". After the data transfer, it increments the value of "R13" by 1.

■ DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect
Address)

Assembler format: DMOVB @dir8, @R13+

Operation: (dir8) → (R13)
R13 + 1 → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 0 1 1 1 0 dir8
223

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOVB @71H, @R13+

9 9

R13

Memory

00000071

x x

x x x x

 88001234

88001235

8 8 0 0 1 2 3 4 R13 8 8 0 0 1 2 3 5

Instruction bit pattern : 0000 1110 0111 0001

00000071

88001234

88001235

9 9

9 9

Memory

Before execution After execution
224

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.113 DMOVB (Move Byte Data from Post Increment Register
Indirect Address to Direct Address)

Transfers the byte data at the address indicated by "R13" to the direct address indicated
by the value "dir8". After the data transfer, it increments the value of "R13" by 1.

■ DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct
Address)

Assembler format: DMOVB @R13+, @dir8

Operation: (R13) → (dir8)
R13 + 1 → R13

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 1 1 1 1 0 dir8
225

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: DMOVB @R13+, @57H

5 5 5 5

5 5

R13

Memory

00000057 x x

x x x x

 FF801220

FF801221

F F 8 0 1 2 2 0 R13 F F 8 0 1 2 2 1

Instruction bit pattern : 0001 1110 0101 0111

00000057

FF801220

FF801221

Memory

Before execution After execution
226

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.114 LDRES (Load Word Data in Memory to Resource)

Transfers the word data at the address indicated by "Ri" to the resource on channel "u4".
Increments the value of "Ri" by 4.

■ LDRES (Load Word Data in Memory to Resource)
Assembler format: LDRES @Ri+, #u4

Operation: (Ri) → Resource on channel u4
Ri + 4 → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: LDRES @R2+, #8

N Z V C

– – – –

MSB LSB

1 0 1 1 1 1 0 0 u4 Ri

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

R2

 ch.8 Resourcech.8 Resource x x x x x x x x

 12345678

1234567C

12345678

1234567C

1 2 3 4 5 6 7 8 R2

1 2 3 4 5 6 7 C

Memory Memory

Before execution After execution

Instruction bit pattern : 1011 1100 1000 0010
227

線
("Instruction bit pattern : 1011 1100 1000 0010" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.115 STRES (Store Word Data in Resource to Memory)

Transfers the word data at the resource on channel "u4" to the address indicated by "Ri".
Increments the value of "Ri" by 4.

■ STRES (Store Word Data in Resource to Memory)
Assembler format: STRES #u4, @Ri+

Operation: Resource on channel u4 → (Ri)
Ri + 4 → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: a cycle(s)

Instruction format:

Example: STRES #8, @R2+

N Z V C

– – – –

MSB LSB

1 0 1 1 1 1 0 1 u4 Ri

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

R2

 ch.8 Resourcech.8 Resource

x x x x x x x x12345678

1234567C

12345678

1234567C

1 2 3 4 5 6 7 8 R2

1 2 3 4 5 6 7 C

Memory Memory

Before execution After execution

Instruction bit pattern : 1011 1101 1000 0010
228

線
("Instruction bit pattern : 1011 1101 1000 0010" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.116 COPOP (Coprocessor Operation)

Transfers the 16-bit data consisting of parameters "CC", "CRj", "CRi" to the
coprocessor indicated by channel number "u4".
Basically, this operation is a calculation between registers within the coprocessor. The
calculation process indicated by the value "CC" is carried out between coprocessor
registers "CRj" and "CRi". Note that the actual interpretation of the fields "CC", "CRj",
and "CRi" is done by the coprocessor so that the detailed operation is determined by
the specifications of the coprocessor.
If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.
If the coprocessor designated by the value "u4" has generated an error in a previous
operation, a "coprocessor error" trap is generated.

■ COPOP (Coprocessor Operation)
Assembler format: COPOP #u4, #CC, CRj, CRi

Operation: CC, CRj, CRi → Coprocessor on channel u4

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2+ a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 1 1 0 0 u4(n+0)

CRiCRjCC(n+2)
229

線
("Resource" → "Coprocessor")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: COPOP #15, #1, CR3, CR4

16-bit data is transferred through the bus to the coprocessor indicated by channel number 15.

Assuming that the coprocessor indicated by channel 15 is a single-precision

floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.116-1

will have the following effect on coprocessor operation.

Table 7.116-1 Conditions for Coprocessor Command "CC" (COPOP)

CC Calculation

00 Addition CRi + CRj → CRi

01 Subtraction CRi – CRj → CRi

02 Multiplication CRi × CRj → CRi

03 Division CRi ÷ CRj → CRi

Other No operation

MSB LSB

0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0

CR3 C 0 0 0 0 0 0 0

(- 1 x 20)

CR3 C 0 0 0 0 0 0 0

CR4 4 0 8 0 0 0 0 0

(2 x 20) (3 x 20)

CR4 4 0 C 0 0 0 0 0

(Coprocessor register) (Coprocessor register)

Before execution After execution
230

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.117 COPLD (Load 32-bit Data from Register to Coprocessor
Register)

Transfers the 16-bit data consisting of parameters "CC", "Rj", "CRi" to the coprocessor
indicated by channel number "u4", then on the next cycle transfers the contents of CPU
general-purpose register "Rj" to that coprocessor.
Basically, this operation transfers data to a register within the coprocessor. The 32-bit
data stored in CPU general-purpose register "Rj" is transferred to coprocessor register
"CRi". Note that the actual interpretation of the fields "CC", "Rj", "CRi" is done by the
coprocessor so that the detailed actual operation is determined by the specifications of
the coprocessor.
If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.
If the coprocessor designated by the value "u4" has generated an error in a previous
operation, a "coprocessor error" trap is generated.

■ COPLD (Load 32-bit Data from Register to Coprocessor Register)
Assembler format: COPLD #u4, #CC, Rj, CRi

Operation: CC, Rj, CRi → Coprocessor on channel u4
Rj → CRi

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 1 1 0 1 u4(n+0)

CRiRjCC(n+2)
231

線
("Resource" → "Coprocessor")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: COPLD #15, #4, R8, CR1

16-bit data is transferred through the bus to the coprocessor indicated by channel number 15. Next,

the contents of general-purpose register "R8" are transferred through the bus to that coprocessor.

Assuming that the coprocessor indicated by channel 15 is a single-precision

floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.117-1

will have the following effect on coprocessor operation.

Table 7.117-1 Conditions for Coprocessor Command "CC" (COPLD)

CC Calculation

00 Addition CRi + CRj → CRi

01 Subtraction CRi – CRj → CRi

02 Multiplication CRi × CRj → CRi

03 Division CRi ÷ CRj → CRi

Other No calculation

MSB LSB

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1

R8 3 F 8 0 0 0 0 0

(CPU register)

R8 3 F 8 0

3 F 8 0

0 0 0 0

(Coprocessor register)

(CPU register)

(Coprocessor register)

CR1 x x x x x x x x CR1 0 0 0 0

Before execution After execution
232

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.118 COPST (Store 32-bit Data from Coprocessor Register to
Register)

Transfers the 16-bit data consisting of parameters "CC", "CRj", "Ri" to the coprocessor
indicated by channel number "u4", then on the next cycle loads the data output by the
coprocessor into CPU general-purpose register "Ri".
Basically, this operation transfers data from a register within the coprocessor. The
32-bit data stored in coprocessor register "CRj" is transferred to CPU general-purpose
register "Ri". Note that the actual interpretation of the fields "CC", "CRj", "Ri" is done
by the coprocessor so that the detailed actual operation is determined by the
specifications of the coprocessor.
If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.
If the coprocessor designated by the value "u4" has generated an error in a previous
operation, a "coprocessor error" trap is generated.

■ COPST (Store 32-bit Data from Coprocessor Register to Register)
Assembler format: COPST #u4, #CC, CRj, Ri

Operation: CC, CRj, Ri → Coprocessor on channel u4
CRj → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 1 1 1 0 u4(n+0)

RiCRjCC(n+2)
233

線
("Resource" → "Coprocessor")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: COPST #15, #4, CR2, R4

16-bit data is transferred through the bus to the coprocessor indicated by channel number 15. Next,

the output data of the coprocessor are transferred through the bus to that coprocessor.

Assuming that the coprocessor indicated by channel 15 is a single-precision

floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.118-1

will have the following effect on coprocessor operation.

Table 7.118-1 Conditions for Coprocessor Command "CC" (COPST)

CC Calculation

00 Addition CRi + CRj → CRi

01 Subtraction CRi – CRj → CRi

02 Multiplication CRi × CRj → CRi

03 Division CRi ÷ CRj → CRi

Other No calculation

MSB LSB

0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

R4

B F 8 0 0 0 0 0

R4 B F 8 0

B F 8 0

0 0 0 0

CR2 CR2 0 0 0 0

(CPU register)

(Coprocessor register)

(CPU register)

(Coprocessor register)

x x x x x x x x

Before execution After execution
234

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.119 COPSV (Save 32-bit Data from Coprocessor Register to
Register)

Transfers the 16-bit data consisting of parameters "CC", "CRj", "Ri" to the coprocessor
indicated by channel number u4, then on the next cycle loads the data output by the
coprocessor to CPU general-purpose register "Ri".
Basically, this operation transfers data from a register within the coprocessor. The
32-bit data stored in coprocessor register "CRj" is transferred to CPU general-purpose
register "Ri". Note that the actual interpretation of the fields "CC", "CRj", "Ri" is done
by the coprocessor so that the detailed actual operation is determined by the
specifications of the coprocessor.
If the coprocessor designated by the value "u4" is not mounted, a "coprocessor not
found" trap is generated.
However, no "coprocessor error" trap will be generated even if the coprocessor
designated by the value "u4" has generated an error in a previous operation.
The operation of this instruction is basically identical to "COPST", except for the above
difference in the operation of the error trap.

■ COPSV (Save 32-bit Data from Coprocessor Register to Register)
Assembler format: COPSV #u4, #CC, CRj, Ri

Operation: CC, CRj, Ri → Coprocessor on channel u4
CRj → Ri

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 1 1 1 1 u4(n+0)

RiCRjCC(n+2)
235

線
("Resource" → "Coprocessor")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: COPSV #15, #4, CR2, R4

16-bit data is transferred through the bus to the coprocessor indicated by channel number 15. Next,

the data output by the coprocessor is loaded into the CPU through the data bus. Note that no

"coprocessor error" trap will be generated even if the coprocessor designated by the value "u4" has

generated an error in a previous operation.

Assuming that the coprocessor indicated by channel 15 is a single-precision

floating-decimal calculation unit, the coprocessor command "CC" set as shown in Table 7.119-1

will have the following effect on coprocessor operation.

Table 7.119-1 Conditions for Coprocessor Command "CC" (COPSV)

CC Calculation

00 Addition CRi + CRj → CRi

01 Subtraction CRi – CRj → CRi

02 Multiplication CRi × CRj → CRi

03 Division CRi ÷ CRj → CRi

Other No calculation

MSB LSB

0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

R4

4 0 0 0 0 0 0 0

R4 4 0 0 0

4 0 0 0

0 0 0 0

CR2 CR2 0 0 0 0

(CPU register)

(Coprocessor register)

(CPU register)

(Coprocessor register)

x x x x x x x x

Before execution After execution
236

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.120 NOP (No Operation)

This instruction performs no operation.

■ NOP (No Operation)
Assembler format: NOP

Operation: This instruction performs no operation.

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: NOP

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0

PC PC 8 3 4 3 8 3 4 C8 3 4 3 8 3 4 A

Before execution After execution

Instruction bit pattern : 1001 1111 1010 0000
237

線
("Instruction bit pattern : 1001 1111 1010 0000" is addded.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.121 ANDCCR (And Condition Code Register and Immediate
Data)

Takes the logical AND of the byte data in the condition code register (CCR) and the
immediate data, and returns the results into the "CCR".

■ ANDCCR (And Condition Code Register and Immediate Data)
Assembler format: ANDCCR #u8

Operation: CCR and u8 → CCR

Flag change:

S, I, N, Z, V, and C: Varies according to results of calculation.

Execution cycles: c cycle(s)

The number of execution cycles is normally "1". However, if the instruction immediately after

involves read or write access to memory address "R15", the system stack pointer (SSP) or the user

stack pointer (USP), then an interlock is applied and the value becomes 2 cycles.

Instruction format:

Example: ANDCCR #0FEH

S I N Z V C

C C C C C C

MSB LSB

1 0 0 0 0 0 1 1 u8

CCR CCR0 1 0 1 0 1

S I N Z V C

0 1 0 1 0 0

S I N Z V C

Before execution After execution

Instruction bit pattern : 1000 0011 1111 1110
238

線
("Instruction bit pattern : 1000 0011 1111 1110" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.122 ORCCR (Or Condition Code Register and Immediate Data)

Takes the logical OR of the byte data in the condition code register (CCR) and the
immediate data, and returns the results into the "CCR".

■ ORCCR (Or Condition Code Register and Immediate Data)
Assembler format: ORCCR #u8

Operation: CCR or u8 → CCR

Flag change:

S, I, N, Z, V, and C: Varies according to results of calculation.

Execution cycles: c cycle(s)

The number of execution cycles is normally "1". However, if the instruction immediately after

involves read or write access to memory address "R15", the system stack pointer (SSP) or the user

stack pointer (USP), then an interlock is applied and the value becomes 2 cycles.

Instruction format:

Example: ORCCR #10H

S I N Z V C

C C C C C C

MSB LSB

1 0 0 1 0 0 1 1 u8

CCR CCR0 0 0 1 0 1

S I N Z V C

0 1 0 1 0 1

S I N Z V C

Before execution After execution

Instruction bit pattern : 1001 0011 0001 0000
239

線
("Instruction bit pattern : 1001 0011 0001 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.123 STILM (Set Immediate Data to Interrupt Level Mask
Register)

Transfers the immediate data to the interrupt level mask register (ILM) in the program
status (PS).
Only the lower 5 bits (bit4 to bit0) of the immediate data are valid.
At the time this instruction is executed, if the value of the interrupt level mask register
(ILM) is in the range 16 to 31, only new "ILM" settings between 16 and 31 can be
entered. If the value "u8" is in the range 0 to 15, the value 16 will be added to that data
before being transferred to the "ILM". If the original "ILM" value is in the range 0 to 15,
then any value between 0 and 31 can be transferred to the "ILM".

■ STILM (Set Immediate Data to Interrupt Level Mask Register)
Assembler format: STILM #u8

Operation: u8 → ILM

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: STILM #14H

N Z V C

– – – –

MSB LSB

1 0 0 0 0 1 1 1 u8

ILM ILM1 1 1 1 1 1 0 1 0 0

Before execution After execution

Instruction bit pattern : 1000 0111 0001 0100
240

線
("Instruction bit pattern : 1000 0111 0001 0100" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.124 ADDSP (Add Stack Pointer and Immediate Data)

Adds 4 times the immediate data as a signed extended value, to the value in "R15".

■ ADDSP (Add Stack Pointer and Immediate Data)
Assembler format: ADDSP #s10

Operation: R15 + exts (s8 × 4) → R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: ADDSP # – 4

N Z V C

– – – –

MSB LSB

1 0 1 0 0 0 1 1 s8

 R15 8 0 0 0 0 0 0 0 R15

7 F F F F F F C

Instruction bit pattern : 1010 0011 1111 1111

Before execution After execution
241

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.125 EXTSB (Sign Extend from Byte Data to Word Data)

Extends the byte data indicated by "Ri" to word data as a signed binary value.

■ EXTSB (Sign Extend from Byte Data to Word Data)
Assembler format: EXTSB Ri

Operation: exts (Ri) → Ri (byte → word)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: EXTSB R1

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 1 0 0 0 Ri

 R1 0 0 0 0 0 0 A B R1 F F F F F F A B

Before execution After execution

Instruction bit pattern : 1001 0111 1000 0001
242

線
("Instruction bit pattern : 1001 0111 1000 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.126 EXTUB (Unsign Extend from Byte Data to Word Data)

Extends the byte data indicated by "Ri" to word data as an unsigned binary value.

■ EXTUB (Unsign Extend from Byte Data to Word Data)
Assembler format: EXTUB Ri

Operation: extu (Ri) → Ri (byte → word)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: EXTUB R1

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 1 0 0 1 Ri

 R1 F F F F F F F F R1 0 0 0 0 0 0 F F

Before execution After execution

Instruction bit pattern : 1001 0111 1001 0001
243

線
("Instruction bit pattern : 1001 0111 1001 0001" is changed.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.127 EXTSH (Sign Extend from Byte Data to Word Data)

Extends the half-word data indicated by "Ri" to word data as a signed binary value.

■ EXTSH (Sign Extend from Byte Data to Word Data)
Assembler format: EXTSH Ri

Operation: exts (Ri) → Ri (half-word → word)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: EXTSH R1

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 1 0 1 0 Ri

 R1 0 0 0 0 A B C D R1 F F F F A B C D

Before execution After execution

Instruction bit pattern : 1001 0111 1010 0001
244

線
("Instruction bit pattern : 1001 0111 1010 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.128 EXTUH (Unsigned Extend from Byte Data to Word Data)

Extends the half-word data indicated by "Ri" to word data as an unsigned binary value.

■ EXTUH (Unsigned Extend from Byte Data to Word Data)
Assembler format: EXTUH Ri

Operation: extu (Ri) → Ri (half-word → word)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 cycle

Instruction format:

Example: EXTUH R1

N Z V C

– – – –

MSB LSB

1 0 0 1 0 1 1 1 1 0 1 1 Ri

 R1 F F F F F F F F R1 0 0 0 0 F F F F

Before execution After execution

Instruction bit pattern : 1001 0111 1011 0001
245

線
("Instruction bit pattern : 1001 0111 1011 0001" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.129 LDM0 (Load Multiple Registers)

The "LDM0" instruction accepts registers in the range R0 to R7 as members of the
parameter "reglist". (See Table 7.129-1.)
 Registers are processed in ascending numerical order.

■ LDM0 (Load Multiple Registers)
Assembler format: LDM0 (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".

(R15) → Ri

R15 + 4 → R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist", the execution cycles
required are as follows.

If n=0: 1 cycle

For other values of n: a (n – 1) + b + 1 cycles

Instruction format:

N Z V C

– – – –

Table 7.129-1 Bit Values and Register Numbers for "reglist" (LDM0)

Bit Register Bit Register

7 R7 3 R3

6 R6 2 R2

5 R5 1 R1

4 R4 0 R0

MSB LSB

1 0 0 0 1 1 0 0 reglist
246

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: LDM0 (R3, R4)

9 0 B C 9 3 6 3

8 3 4 3 8 3 4 A

x x x x x x x x

7FFFFFC0

7FFFFFC4

7FFFFFC8

R15 7 F F F F F C 0

R4

R3

Instruction bit pattern : 1000 1100 0001 1000

9 0 B C 9 3 6 3

8 3 4 3 8 3 4 A

 7FFFFFC0

7FFFFFC4

7FFFFFC8

R15 7 F F F F F C 8

8 3 4 3 8 3 4 A

9 0 B C 9 3 6 3

R4

R3

Memory Memory

Before execution After execution

x x x x x x x x

x x x x x x x x

x x x x x x x x
247

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.130 LDM1 (Load Multiple Registers)

The LDM1 instruction accepts registers in the range R8 to R15 as members of the
parameter "reglist" (See Table 7.130-1.).
Registers are processed in ascending numerical order.
If "R15" is specified in the parameter "reglist", the final contents of "R15" will be read
from memory.

■ LDM1 (Load Multiple Registers)
Assembler format: LDM1 (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".

(R15) → Ri

R15 + 4 → R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist", the execution cycles
required are as follows.

If n=0: 1 cycle

For other values of n: a (n – 1) + b + 1 cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 0 1 1 0 1 reglist
248

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: LDM1 (R10, R11, R12)

Table 7.130-1 Bit Values and Register Numbers for "reglist" (LDM1)

Bit Register Bit Register

7 R15 3 R11

6 R14 2 R10

5 R13 1 R9

4 R12 0 R8

9 0 B C 9 3 6 3

8 D F 7 8 8 E 4

x x x x x x x x

7FFFFFC4

7FFFFFC8

7FFFFFCC

R15 7 F F F F F C 0

R12

R10

Instruction bit pattern : 1000 1101 0001 1100

9 0 B C 9 3 6 3

8 D F 7 8 8 E 4

 7FFFFFC4

8 F E 3 9 E 8 A7FFFFFC0 8 F E 3 9 E 8 A7FFFFFC0

7FFFFFC8

7FFFFFCC

R15 7 F F F F F C C

8 D F 7 8 8 E 4

8 F E 3 9 E 8 A

R12

R10

R11 9 0 B C 9 3 6 3R11

Memory Memory

Before execution After execution

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x
249

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.131 STM0 (Store Multiple Registers)

The "STM0" instruction accepts registers in the range R0 to R7 as members of the
parameter "reglist" (See Table 7.131-1.) .
Registers are processed in descending numerical order.

■ STM0 (Store Multiple Registers)
Assembler format: STM0 (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".

R15 – 4 → R15

Ri → (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist", the execution cycles
required are as follows.

a × n + 1 cycle

Instruction format:

N Z V C

– – – –

Table 7.131-1 Bit Values and Register Numbers for "reglist" (STM0)

Bit Register Bit Register

7 R0 3 R4

6 R1 2 R5

5 R2 1 R6

4 R3 0 R7

MSB LSB

1 0 0 0 1 1 1 0 reglist
250

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: STM0 (R2, R3)

9 0 B C 9 3 6 3

8 3 4 3 8 3 4 A

x x x x x x x x

7FFFFFC0

7FFFFFC4

7FFFFFC8

R15 7 F F F F F C 8

R3

R2

Instruction bit pattern : 1000 1110 0011 0000

9 0 B C 9 3 6 3

8 3 4 3 8 3 4 A

 7FFFFFC0

7FFFFFC4

7FFFFFC8

R15 7 F F F F F C 0

8 3 4 3 8 3 4 A

9 0 B C 9 3 6 3

R3

R2

Memory Memory

Before execution After execution

x x x x x x x x

x x x x x x x x

x x x x x x x x
251

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.132 STM1 (Store Multiple Registers)

The "STM1" instruction accepts registers in the range R8 to R15 as members of the
parameter "reglist" (See Table 7.132-1.).
Registers are processed in descending numerical order.
If "R15" is specified in the parameter "reglist", the contents of "R15" retained before the
instruction is executed will be written to memory.

■ STM1 (Store Multiple Registers)
Assembler format: STM1 (reglist)

Operation: The following operations are repeated according to the number of registers specified in the
parameter "reglist".

R15 – 4 → R15

Ri → (R15)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: If "n" is the number of registers specified in the parameter "reglist", the execution cycles
required are as follows.

a × n + 1 cycles

Instruction format:

N Z V C

– – – –

Table 7.132-1 Bit Values and Register Numbers for "reglist" (STM1)

Bit Register Bit Register

7 R8 3 R12

6 R9 2 R13

5 R10 1 R14

4 R11 0 R15

MSB LSB

1 0 0 0 1 1 1 1 reglist
252

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: STM1 (R10, R11, R12)

9 0 B C 9 3 6 3

8 D F 7 8 8 E 4

x x x x x x x x

7FFFFFC4

7FFFFFC8

7FFFFFCC

R15 7 F F F F F C C

R12

R10

Instruction bit pattern : 1000 1111 0011 1000

9 0 B C 9 3 6 3

8 D F 7 8 8 E 4

 7FFFFFC4

8 F E 3 9 E 8 A

7FFFFFC0 8 F E 3 9 E 8 A7FFFFFC0

7FFFFFC8

7FFFFFCC

R15 7 F F F F F C 0

8 D F 7 8 8 E 4

8 F E 3 9 E 8 A

R12

R10

R11 9 0 B C 9 3 6 3R11

Memory Memory

Before execution After execution

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x
253

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.133 ENTER (Enter Function)

This instruction is used for stack frame generation processing for high level languages.
The value "u8" is calculated as an unsigned value.

■ ENTER (Enter Function)
Assembler format: ENTER #u10

Operation: R14 → (R15 – 4)
R15 – 4 → R14
R15 – extu (u8 × 4) → R15

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 1 + a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

0 0 0 0 1 1 1 1 u8
254

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: ENTER #0CH

7 F F F F F F 8

 7FFFFFF8

7FFFFFFC

80000000

R14

Instruction bit pattern : 0000 1111 0000 0011

8 0 0 0 0 0 0 0

7FFFFFF4

7FFFFFF0

7FFFFFEC

8 0 0 0 0 0 0 0

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

x x x xx x x x

7 F F F F F F 4R14

R15 7 F F F F F E CR15

7FFFFFF8

7FFFFFFC

80000000

7FFFFFF4

7FFFFFF0

7FFFFFEC

Memory Memory

Before execution After execution
255

線
("XXXX XXXX 0000 0011" → "0000 1111 0000 0011")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.134 LEAVE (Leave Function)

This instruction is used for stack frame release processing for high level languages.

■ LEAVE (Leave Function)
Assembler format: LEAVE

Operation: R14 + 4 → R15
(R15 – 4) → R14

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: b cycle(s)

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0
256

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: LEAVE

7 F F F F F E C

 7FFFFFF8

7FFFFFFC

80000000

R14

7 F F F F F F 4

7FFFFFF4

7FFFFFF0

7FFFFFEC

8 0 0 0 0 0 0 08 0 0 0 0 0 0 0

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

8 0 0 0 0 0 0 0R14

R15 7 F F F F F F 8R15

7FFFFFF8

7FFFFFFC

80000000

7FFFFFF4

7FFFFFF0

7FFFFFEC

Memory Memory

Before execution After execution

Instruction bit pattern : 1001 1111 1001 0000
257

線
("Instruction bit pattern : 1001 1111 1001 0000" is addded.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
7.135 XCHB (Exchange Byte Data)

Exchanges the contents of the byte address indicated by "Rj" and those indicated by
"Ri".
The lower 8 bits of data originally at "Ri" are transferred to the byte address indicated
by "Rj", and the data originally at "Rj" is extended with zeros and transferred to "Ri".
The CPU will not accept hold requests between the memory read operation and the
memory write operation of this instruction.

■ XCHB (Exchange Byte Data)
Assembler format: XCHB @Rj, Ri

Operation: Ri → TEMP
extu ((Rj)) → Ri
TEMP → (Rj)

Flag change:

N, Z, V, and C: Unchanged

Execution cycles: 2a cycles

Instruction format:

N Z V C

– – – –

MSB LSB

1 0 0 0 1 0 1 0 Rj Ri
258

線
("extu (Rj) → Ri" → "extu ((Rj)) → Ri")

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
Example: XCHB @R1, R0

R1

 80000001

80000002

80000003

80000001

80000002

80000003

x x

x x

x x

x x

F D

R1

7 8

8 0 0 0 0 0 0 28 0 0 0 0 0 0 2

R0 R0 0 0 0 0 0 0 F D0 0 0 0 0 0 7 8

Memory Memory

Before execution After execution

Instruction bit pattern : 1000 1010 0001 0000
259

線
("Instruction bit pattern : 1000 1010 0001 0000" is added.)

CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
260

APPENDIX

The appendix section includes lists of CPU instructions
used in the FR family, as well as instruction map
diagrams.

APPENDIX A Instruction Lists

APPENDIX B Instruction Maps
261

APPENDIX A Instruction Lists
APPENDIX A Instruction Lists

Appendix A includes a description of symbols used in instruction lists, plus the
instruction lists.

A.1 Symbols Used in Instruction Lists

A.2 Instruction Lists
262

APPENDIX A Instruction Lists
A.1 Symbols Used in Instruction Lists

This section describes symbols used in the FR family instruction lists.

■ Symbols Used in Instruction Lists

● Symbols in Mnemonic and Operation Columns

• i4 4-bit immediate data, range 0 to 15 with zero extension, and –16 to –1 with minus extension

• i8 unsigned 8-bit immediate data, range 0 to 255

• i20 unsigned 20-bit immediate data, range 00000H to FFFFFH

• i32 unsigned 32-bit immediate data, range 00000000H to FFFFFFFF H
• s8............. signed 8-bit immediate data, range –128 to 127

• s10........... signed 10-bit immediate data, range –512 to 508 (in multiples of 4)

• u4 unsigned 4-bit immediate data, range 0 to 15

• u8 unsigned 8-bit immediate data, range 0 to 255

• u10 unsigned 10-bit immediate data, range 0 to 1020 (multiples of 4)

• udisp6...... unsigned 6-bit address values, range 0 to 60 (multiples of 4)

• disp8........ signed 8-bit address values, range –0x80 to 0x7F

• disp9........ signed 9-bit address values, range –0x100 to 0xFE (multiples of 2)

• disp10...... signed 10-bit address values, range –0x200 to 0x1FC (multiples of 4)

• dir8 unsigned 8-bit address values, range 0 to 0xFF

• dir9 unsigned 9-bit address values, range 0 to 0x1FE (multiples of 2)

• dir10........ unsigned 10-bit address values, range 0 to 0x3FC(multiples of 4)

• label9....... signed 9-bit branch address, range –0x100 to 0xFE (multiples of 2) for the value of PC

• label12..... signed 12-bit branch address, range –0x800 to 0x7FE (multiples of 2) for the value of PC

• Ri, Rj....... indicates a general-purpose register (R00 to R15)

• Rs indicates a dedicated register (TBR, RP, USP, SSP, MDH, MDL)

● Symbols in Operation Column

• extu()....... indicates a zero extension operation, in which values lacking higher bits are complemented
by adding the value "0" as necessary.

• extn()....... indicates a minus extension operation, in which values lacking higher bits are complemented
by adding the value "1" as necessary.

• exts() indicates a sign extension operation in which a zero extension is performed for the data
within () in which the MSB is 0 and a minus extension is performed for the data in which the
MSB is 1.

• ()............. indicates indirect addressing, which values reading or loading from/to the memory address
where the registers within () or the formula indicate.

• { }............ indicates the calculation priority; () is used for specifying indirect address
263

線
("128 to 255" → "0 to 255")

線
("0x80000H to 0xFFFFFH" → "00000H to FFFFFH")

線
("0x80000000H to 0xFFFFFFFFH" → "00000000H to FFFFFFFFH")

線
("• Ri" → "• Ri, Rj")

線
("• ()............. indicates indirect addressing, which values reading or loading from/to the memory address
where the registers within () or the formula indicate.
• { }............ indicates the calculation priority; () is used for specifying indiiirect address" is added.)

APPENDIX A Instruction Lists
● Format Column

A to F format TYPE-A through F as described in Section "6.1 Instruction Formats".

● OP Column

"OP" codes have the following significance according to the format type listed in the format column.

• Format types A, C, D.....2-digit hexadecimal value represents 8-bit "OP" code.

• Format type B2-digit hexadecimal value represents higher 4 bits of "OP" code, lower 4 bits
"0".

• Format type E4-digit hexadecimal value with higher 2 digits representing higher 8-bits of
"OP" code, next digit representing 4-bit "SUB-OP" code, last digit "0".

• Format type F.................2-digit hexadecimal code representing higher 5 bits of "OP" code, remainder
"0".

● Cycle (CYC) Column

Numerical values represent machine cycles, variables "a" through "d" have a minimum value of 1.

• a............... Memory access cycles, may be increased by "Ready" function.

• b Memory access cycles, may be increased by "Ready" function. Note that if the next
instruction references a register involved in a "LD" operation an interlock will be applied,
increasing the number of execution cycles from 1 cycle to 2 cycles.

• c............... If the instruction immediately after is a read or write operation involving register "R15", or
the "SSP" or "USP" pointers, or the instruction format is TYPE-A, an interlock will be
applied, increasing the number of execution cycles from 1 cycle to 2 cycles.

• d If the instruction immediately after references the "MDH/MDL" register, interlock will be
applied, increasing the number of execution cycles from 1 cycle to 2 cycles.
When dedicated register such as TBR, RP, USP, SSP, MDH, and MDL is accessed with ST
Rs, @-R15 command just after DIV1 command, an interlock is always brought, increasing
the number of execution cycles from 1 cycle to 2 cycles.

● FLAG Column

• C.............. varies according to results of operation.

• – no change

• 0 value becomes "0".

• 1 value becomes "1".
264

線
("special" → "dedicated")

APPENDIX A Instruction Lists
A.2 Instruction Lists

The full instruction set of the FR family CPU is 165 instructions, consisting of the following
sixteen types. These instructions are listed in Table A.2-1 through Table A.2-16.
• Add/Subtract Instructions (10 Instructions)
• Compare Instructions (3 Instructions)
• Logical Calculation Instructions (12 Instructions)
• Bit Operation Instructions (8 Instructions)
• Multiply/Divide Instructions (10 Instructions)
• Shift Instructions (9 Instructions)
• Immediate Data Transfer Instructions (3 Instructions)
• Memory Load Instructions (13 Instructions)
• Memory Store Instructions (13 Instructions)
• Inter-register Transfer Instructions / Dedicated Register Transfer Instructions

(5 Instructions)
• Non-delayed Branching Instructions (23 Instructions)
• Delayed Branching Instructions (20 Instructions)
• Direct Addressing Instructions (14 Instructions)
• Resource Instructions (2 Instructions)
• Coprocessor Instructions (4 Instructions)
• Other Instructions (16 Instructions)

■ Instruction Lists

Table A.2-1 Add/Subtract Instructions (10 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

ADD Rj, Ri
ADD #i4, Ri
ADD2 #i4, Ri

A
C
C

A6
A4
A5

1
1
1

CCCC
CCCC
CCCC

Ri + Rj → Ri
Ri + extu(i4) → Ri
Ri + extn(i4) → Ri

Zero extension
Minus extension

ADDC Rj, Ri A A7 1 CCCC Ri + Rj + c → Ri Add with carry

ADDN Rj, Ri
ADDN #i4, Ri
ADDN2 #i4, Ri

A
C
C

A2
A0
A1

1
1
1

– – – –
– – – –
– – – –

Ri + Rj → Ri
Ri + extu(i4) → Ri
Ri + extn(i4) → Ri

Zero extension
Minus extension

SUB Rj, Ri A AC 1 CCCC Ri – Rj → Ri

SUBC Rj, Ri A AD 1 CCCC Ri – Rj – c → Ri Subtract with carry

SUBN Rj, Ri A AE 1 – – – – Ri – Rj → Ri
265

APPENDIX A Instruction Lists
Table A.2-2 Compare Instructions (3 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

CMP Rj, Ri
CMP #i4, Ri
CMP2 #i4, Ri

A
C
C

AA
A8
A9

1
1
1

CCCC
CCCC
CCCC

Ri – Rj
Ri – extu(i4)
Ri – extn(i4)

Zero extension
Minus extension

Table A.2-3 Logical Calculation Instructions (12 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation RMW Remarks

AND Rj, Ri
AND Rj, @Ri
ANDH Rj, @Ri
ANDB Rj, @Ri

A
A
A
A

82
84
85
86

1
1+2a
1+2a
1+2a

CC – –
CC – –
CC – –
CC – –

Ri &= Rj
(Ri) &= Rj
(Ri) &= Rj
(Ri) &= Rj

-
❍

❍

❍

Word
Word
Half-word
Byte

OR Rj, Ri
OR Rj, @Ri
ORH Rj, @Ri
ORB Rj, @Ri

A
A
A
A

92
94
95
96

1
1+2a
1+2a
1+2a

CC – –
CC – –
CC – –
CC – –

Ri |= Rj
(Ri) |= Rj
(Ri) |= Rj
(Ri) |= Rj

-
❍

❍

❍

Word
Word
Half-word
Byte

EOR Rj, Ri
EOR Rj, @Ri
EORH Rj, @Ri
EORB Rj, @Ri

A
A
A
A

9A
9C
9D
9E

1
1+2a
1+2a
1+2a

CC – –
CC – –
CC – –
CC – –

Ri ^= Rj
(Ri) ^= Rj
(Ri) ^= Rj
(Ri) ^= Rj

-
❍

❍

❍

Word
Word
Half-word
Byte

Table A.2-4 Bit Operation Instructions (8 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation RMW Remarks

BANDL #u4, @Ri (u4: 0 to 0FH)
BANDH #u4, @Ri (u4: 0 to 0FH)

C
C

80
81

1+2a
1+2a

– – – –
– – – –

(Ri)&={F0H+u4} ❍ Lower 4-bit operation
Higher 4-bit operation(Ri)&={{u4<<4}+FH} ❍

BORL #u4, @Ri (u4: 0 to 0FH)
BORH #u4, @Ri (u4: 0 to 0FH)

C
C

90
91

1+2a
1+2a

– – – –
– – – –

(Ri) | = u4
(Ri) | = {u4<<4}

❍

❍

Lower 4-bit operation
Higher 4-bit operation

BEORL #u4, @Ri (u4: 0 to 0FH)
BEORH #u4, @Ri (u4: 0 to 0FH)

C
C

98
99

1+2a
1+2a

– – – –
– – – –

(Ri) ^ = u4
(Ri) ^ = {u4<<4}

❍

❍

Lower 4-bit operation
Higher 4-bit operation

BTSTL #u4, @Ri (u4: 0 to 0FH)
BTSTH #u4, @Ri (u4: 0 to 0FH)

C
C

88
89

2+a
2+a

0C – –
CC – –

(Ri) & u4
(Ri) & {u4<<4}

-
-

Lower 4-bit test
Higher 4-bit test
266

線
("(Ri)&=(F0H+u4)" → "(Ri)&={F0H+u4}")

線
("(Ri)&=((u4<<4)+FH)" → "(Ri)&={{u4<<4}+FH}")

線
("(Ri) | = (u4<<4)" → "(Ri) | = {u4<<4}")

線
("(Ri) ^ = (u4<<4)" → "(Ri) ^ = {u4<<4}")

線
("(Ri) & (u4<<4)" → "(Ri) & {u4<<4}")

APPENDIX A Instruction Lists
Table A.2-5 Multiply/Divide Instructions (10 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

MUL Rj,Ri
MULU Rj,Ri
MULH Rj,Ri
MULUH Rj,Ri

A
A
A
A

AF
AB
BF
BB

5
5
3
3

CCC –
CCC –
CC – –
CC – –

Rj × Ri → MDH,MDL
Rj × Ri → MDH,MDL
Rj × Ri → MDL
Rj × Ri → MDL

32bits × 32bits=64bits
Unsigned
16bits × 16bits=32bits
Unsigned

DIV0S Ri
DIV0U Ri
DIV1 Ri
DIV2 Ri
DIV3
DIV4S

E
E
E
E
E
E

97-4
97-5
97-6
97-7
9F-6
9F-7

1
1
d
1
1
1

– – – –
– – – –
– C– C
– C– C
– – – –
– – – –

Step operation
32bits/32bits=32bits

Table A.2-6 Shift Instructions (9 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

LSL Rj, Ri
LSL #u4, Ri
LSL2 #u4, Ri

A
C
C

B6
B4
B5

1
1
1

CC – C
CC – C
CC – C

Ri << Rj → Ri
Ri << u4 → Ri
Ri <<{u4+16} → Ri

Logical shift

LSR Rj, Ri
LSR #u4, Ri
LSR2 #u4, Ri

A
C
C

B2
B0
B1

1
1
1

CC – C
CC – C
CC – C

Ri >> Rj → Ri
Ri >> u4 → Ri
Ri >>{u4+16} → Ri

Logical shift

ASR Rj, Ri
ASR #u4, Ri
ASR2 #u4, Ri

A
C
C

BA
B8
B9

1
1
1

CC – C
CC – C
CC – C

Ri >> Rj → Ri
Ri >> u4 → Ri
Ri >>{u4+16} → Ri

Arithmetic shift

Table A.2-7 Immediate Data Transfer Instructions (Immediate Transfer Instructions for Immediate Value
Set or 16-bit or 32-bit Values) (3 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

LDI:32 #i32, Ri
LDI:20 #i20, Ri
LDI:8 #i8, Ri

E
C
B

9F-8
9B
C0

3
2
1

– – – –
– – – –
– – – –

i32 → Ri
i20 → Ri
i8 → Ri

Higher 12 bits are zeros
Higher 24 bits are zeros
267

線
("Ri <<(u4+16) → Ri" → "Ri <<{u4+16} → Ri")
("Ri >>(u4+16) → Ri" → "Ri >>{u4+16} → Ri")
("Ri >>(u4+16) → Ri" → "Ri >>{u4+16} → Ri")

APPENDIX A Instruction Lists
Note:

The field "o8" in the TYPE-B instruction format and the field "u4" in the TYPE-C format have the

following relation to the values "disp8" to "disp10" in assembly notation.

Table A.2-8 Memory Load Instructions (13 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

LD @Rj, Ri
LD @(R13,Rj), Ri
LD @(R14,disp10), Ri
LD @(R15,udisp6), Ri
LD @R15+, Ri
LD @R15+, Rs
LD @R15+, PS

A
A
B
C
E
E
E

04
00
20
03

07-0
07-8
07-9

b
b
b
b
b
b

1+a+b

– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
CCCC

(Rj) → Ri
(R13+Rj) → Ri
(R14+disp10) → Ri
(R15+udisp6) → Ri
(R15) → Ri,R15+=4
(R15) → Rs, R15+=4
(R15) → PS, R15+=4

Rs: dedicated register

LDUH @Rj, Ri
LDUH @(R13,Rj), Ri
LDUH @(R14,disp9), Ri

A
A
B

05
01
40

b
b
b

– – – –
– – – –
– – – –

(Rj) → Ri
(R13+Rj) → Ri
(R14+disp9) → Rj

Zero extension
Zero extension
Zero extension

LDUB @Rj, Ri
LDUB @(R13,Rj), Ri
LDUB @(R14,disp8), Ri

A
A
B

06
02
60

b
b
b

– – – –
– – – –
– – – –

(Rj) → Ri
(R13+Rj) → Ri
(R14+disp8) → Ri

Zero extension
Zero extension
Zero extension

• disp8 → o8=disp8

• disp9 → o8=disp9 >> 1

• disp10 → o8=disp10 >> 2
• udisp6 → u4=udisp6 >> 2
268

APPENDIX A Instruction Lists
Note:

The field "o8" in the TYPE-B instruction format and the field "u4" in the TYPE-C format have the

following relation to the values "disp8" to "disp10" in assembly notation.

Table A.2-9 Memory Store Instructions (13 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

ST Ri, @Rj
ST Ri, @(R13,Rj)
ST Ri, @(R14,disp10)
ST Ri, @(R15,udisp6)
ST Ri, @-R15
ST Rs, @-R15
ST PS, @-R15

A
A
B
C
E
E
E

14
10
30
13

17-0
17-8
17-9

a
a
a
a
a
a
a

– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –

Ri → (Rj)
Ri → (R13+Rj)
Ri → (R14+disp10)
Ri → (R15+udisp6)
R15–=4,Ri → (R15)
R15–=4, Rs → (R15)
R15–=4, PS → (R15)

Word
Word
Word

Rs: dedicated register

STH Ri, @Rj
STH Ri, @(R13,Rj)
STH Ri, @(R14,disp9)

A
A
B

15
11
50

a
a
a

– – – –
– – – –
– – – –

Ri → (Rj)
Ri → (R13+Rj)
Ri → (R14+disp9)

Half-word
Half-word
Half-word

STB Ri, @Rj
STB Ri, @(R13,Rj)
STB Ri, @(R14,disp8)

A
A
B

16
12
70

a
a
a

– – – –
– – – –
– – – –

Ri → (Rj)
Ri → (R13+Rj)
Ri → (R14+disp8)

Byte
Byte
Byte

• disp8 → o8=disp8

• disp9 → o8=disp9 >> 1

• disp10 → o8=disp10 >> 2
• udisp6 → u4=udisp6 >> 2

Table A.2-10 Inter-register Transfer Instructions / Dedicated Register Transfer Instructions (5 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

MOV Rj, Ri
MOV Rs, Ri
MOV Ri, Rs
MOV PS, Ri
MOV Ri, PS

A
A
A
E
E

8B
B7
B3

17-1
07-1

1
1
1
1
c

– – – –
– – – –
– – – –
– – – –
CCCC

Rj → Ri
Rs → Ri
Ri → Rs
PS → Ri
Ri → PS

Transfer between general-purpose registers
Rs: dedicated register
Rs: dedicated register
269

APPENDIX A Instruction Lists
Notes:

• The field "rel8" in the TYPE-D instruction format and the field "rel11" in the TYPE-F format have
the following relation to the values "label9" and "label12" in assembly notation.

label9 → rel8=(label9 – PC – 2)/2

label12 → rel11=(label12 – PC – 2)/2

• The value "2/1" in the cycle(CYC) column indicates "2" cycles if branching, "1" if not branching.

• It is necessary to set the S flag to "0" for RETI execution.

Table A.2-11 Non-delayed Branching Instructions (23 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

JMP @Ri E 97-0 2 – – – – Ri → PC

CALL label12
CALL @Ri

F
E

D0
97-1

2
2

– – – –
– – – –

PC+2 → RP ,PC+2+rel11×2 → PC
PC+2 → RP, Ri → PC

RET E 97-2 2 – – – – RP → PC Return

INT #u8 D 1F 3+3a – – – – SSP–=4,PS → (SSP),SSP–=4,PC+2 → (SSP),
0 → I flag, 0 → S flag,
 (TBR+3FC–u8×4) → PC

INTE E 9F-3 3+3a – – – – SSP–=4,PS → (SSP),SSP–=4,PC+2 → (SSP),
0 → S flag, 4 → ILM,
(TBR+3D8–u8×4) → PC

RETI E 97-3 2+2a CCCC (R15) → PC,R15+=4,(R15) → PS,R15+=4

BNO label9
BRA label9
BEQ label9
BNE label9
BC label9
BNC label9
BN label9
BP label9
BV label9
BNV label9
BLT label9
BGE label9
BLE label9
BGT label9
BLS label9
BHI label9

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

E1
E0
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

1
2

2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1

– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –

No branch
PC+2+rel8×2 → PC
PC+2+rel8×2 → PC if Z==1
PC+2+rel8×2 → PC if Z==0
PC+2+rel8×2 → PC if C==1
PC+2+rel8×2 → PC if C==0
PC+2+rel8×2 → PC if N==1
PC+2+rel8×2 → PC if N==0
PC+2+rel8×2 → PC if V==1
PC+2+rel8×2 → PC if V==0
PC+2+rel8×2 → PC if V xor N==1
PC+2+rel8×2 → PC if V xor N==0
PC+2+rel8×2 → PC if (V xor N) or Z==1
PC+2+rel8×2 → PC if (V xor N) or Z==0
PC+2+rel8×2 → PC if C or Z==1
PC+2+rel8×2 → PC if C or Z==0
270

APPENDIX A Instruction Lists
Notes:

• The field "rel8" in the TYPE-D instruction format and the field "rel11" in the TYPE-F format have
the following relation to the values "label9" and "label12" in assembly notation.

label9 → rel8=(label9 – PC – 2)/2

label12 → rel11=(label12 – PC – 2)/2

• Delayed branching instructions are always executed after the following instruction (the delay slot).

• In order to occupy a delay slot, an instruction must satisfy either of the following conditions. Any
other instructions used in this position may not be executed according to definition.

- Instructions other than branching instructions, with the cycle (CYC) column showing the value
"1".

- Instructions with the cycle (CYC) column showing the value "a", "b", "c", or "d".

Table A.2-12 Delayed Branching Instructions (20 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

JMP:D @Ri E 9F-0 1 – – – – Ri → PC

CALL:D label12
CALL:D @Ri

F
E

D8
9F-1

1
1

– – – –
– – – –

PC+4 → RP ,PC+2+rel11×2 → PC
PC+4 → RP, Ri → PC

RET:D E 9F-2 1 – – – – RP → PC Return

BNO:D label9
BRA:D label9
BEQ:D label9
BNE:D label9
BC:D label9
BNC:D label9
BN:D label9
BP:D label9
BV:D label9
BNV:D label9
BLT:D label9
BGE:D label9
BLE:D label9
BGT:D label9
BLS:D label9
BHI:D label9

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

F1
F0
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –
– – – –

No branch
PC+2+rel8×2 → PC
PC+2+rel8×2 → PC if Z==1
PC+2+rel8×2 → PC if Z==0
PC+2+rel8×2 → PC if C==1
PC+2+rel8×2 → PC if C==0
PC+2+rel8×2 → PC if N==1
PC+2+rel8×2 → PC if N==0
PC+2+rel8×2 → PC if V==1
PC+2+rel8×2 → PC if V==0
PC+2+rel8×2 → PC if V xor N==1
PC+2+rel8×2 → PC if V xor N==0
PC+2+rel8×2 → PC if (V xor N) or Z==1
PC+2+rel8×2 → PC if (V xor N) or Z==0
PC+2+rel8×2 → PC if C or Z==1
PC+2+rel8×2 → PC if C or Z==0
271

APPENDIX A Instruction Lists
Note:

The field "dir" in the TYPE-D instruction format has the following relation to the values "dir8" to
"dir10" in assembly notation.

Table A.2-13 Direct Addressing Instructions (14 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

DMOV @dir10, R13
DMOV R13, @dir10
DMOV @dir10, @R13+
DMOV @R13+, @dir10
DMOV @dir10, @–R15
DMOV @R15+, @dir10

D
D
D
D
D
D

08
18
0C
1C
0B
1B

b
a
2a
2a
2a
2a

– – – –
– – – –
– – – –
– – – –
– – – –
– – – –

(dir10) → R13
 R13 → (dir10)
(dir10) → (R13),R13+=4
(R13) → (dir10),R13+=4
R15–=4,(dir10) → (R15)
(R15) → (dir10),R15+=4

Word
Word
Word
Word
Word
Word

DMOVH @dir9, R13
DMOVH R13, @dir9
DMOVH @dir9, @R13+
DMOVH @R13+, @dir9

D
D
D
D

09
19
0D
1D

b
a
2a
2a

– – – –
– – – –
– – – –
– – – –

(dir9) → R13
 R13 → (dir9)
(dir9) → (R13),R13+=2
(R13) → (dir9),R13+=2

Half-word
Half-word
Half-word
Half-word

DMOVB @dir8, R13
DMOVB R13, @dir8
DMOVB @dir8, @R13+
DMOVB @R13+, @dir8

D
D
D
D

0A
1A
0E
1E

b
a
2a
2a

– – – –
– – – –
– – – –
– – – –

(dir8) → R13
 R13 → (dir8)
(dir8) → (R13),R13++
(R13) → (dir8),R13++

Byte
Byte
Byte
Byte

• dir8 → dir=dir8

• dir9 → dir=dir9 >> 1

• dir10 → dir=dir10 >> 2

Table A.2-14 Resource Instructions (2 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

LDRES @Ri+, #u4 C BC a – – – – (Ri) → resource u4
Ri + =4

u4: Channel number

STRES #u4, @Ri+ C BD a – – – – Resource u4 → (Ri)
Ri + =4

u4: Channel number

Table A.2-15 Coprocessor Instructions (4 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation Remarks

COPOP #u4, #CC, CRj, CRi
COPLD #u4, #CC, Rj, CRi
COPST #u4, #CC, CRj, Ri
COPSV #u4, #CC, CRj, Ri

E
E
E
E

9F-C
9F-D
9F-E
9F-F

2+a
1+2a
1+2a
1+2a

– – – –
– – – –
– – – –
– – – –

Designates operation
Rj → CRi
CRj → Ri
CRj → Ri No error trap generated
272

線
("disp8" → "dir8"), ("disp9" → "dir9"), ("disp10" → "dir10")

APPENDIX A Instruction Lists
Notes:

• In the "ADD SP" instruction, the field "s8" in the TYPE-D instruction format has the following
relation to the value "s10" in assembly notation.

s10 → s8=s10 >> 2

• In the "ENTER" instruction, the field "u8" in the TYPE-D instruction format has the following
relation to the value "u10" in assembly notation.

u10 → u8=u10 >> 2

• The number of execution cycles for the "LDM0" (reglist) and "LDM1" (reglist) instructions is:
a × (n – 1) + b + 1 cycles, where "n" is the number of registers designated.

• The number of execution cycles for the "STM0" (reglist) and "STM1" (reglist) instructions is:
a × n+1 cycles, where "n" is the number of registers designated.

Table A.2-16 Other Instructions (16 Instructions)

Mnemonic Format OP CYC
FLAG
NZVC

Operation RMW Remarks

NOP E 9F-A 1 – – – – No change -

ANDCCR #u8
ORCCR #u8

D
D

83
93

c
c

CCCC
CCCC

CCR and u8 → CCR
CCR or u8 → CCR

-
-

STILM #u8 D 87 1 – – – – u8 → ILM - Sets "ILM" immediate
value

ADDSP #s10 D A3 1 – – – – R15 += s10 - "ADD SP" instruction

EXTSB Ri
EXTUB Ri
EXTSH Ri
EXTUH Ri

E
E
E
E

97-8
97-9
97-A
97-B

1
1
1
1

– – – –
– – – –
– – – –
– – – –

Sign extension 8 → 32bit
Zero extension 8 → 32bit
Sign extension 16 → 32bit
Zero extension 16 → 32bit

-
-
-
-

LDM0 (reglist)

LDM1 (reglist)

D

D

8C

8D

See
notes
below.

– – – –

– – – –

(R15) → reglist,
increment R15
(R15) → reglist,
increment R15

-

-

Load multiple R0 to R7

Load multiple R8 to R15

STM0 (reglist)

STM1 (reglist)

D

D

8E

8F

See
notes
below.

– – – –

– – – –

Decrement R15
reglist → (R15)
Decrement R15
reglist → (R15)

-

-

Store multiple R0 to R7

Store multiple R8 to R15

ENTER #u10 D 0F 1+a – – – – R14 → (R15 – 4),
R15 – 4 → R14,
R15 – u10 → R15

- Function entry processing

LEAVE E 9F-9 b – – – – R14 + 4 → R15,
(R15 – 4) → R14

- Function exit processing

XCHB @Rj, Ri A 8A 2a – – – – Ri → TEMP
(Rj) → Ri
TEMP → (Rj)

❍ Byte data for semaphore
processing
273

線
("i8" → "u8")

APPENDIX B Instruction Maps
APPENDIX B Instruction Maps

This appendix presents FR family instruction map and "E" format.

B.1 Instruction Map

B.2 "E" Format
274

APPENDIX B Instruction Maps
B.1 Instruction Map

This section shows instruction maps for FR family CPU.

■ Instruction Map
Table B.1-1 Instruction Map

H
ig

he
r

4
bi

ts

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

0
LD

 @
(R

13
,R

j),

R
i

S
T

 R
i,

@
(R

13
,R

j)

LD
 @

(R
14

,
di

sp
10

),
R

i

S
T

 R
i,@

(R

14
,

di
sp

10
)

LD
U

H
@

(R
14

,
di

sp
9)

,R
i

S
T

H
R

i,@
(R

14
,

di
sp

9)

LD
U

B

@
(R

14
,

di
sp

8)
,R

i

S
T

B

R
i,@

(R
14

,
di

sp
8)

B
A

N
D

L
#u

4,
@

R
i

B
O

R
L

#u
4,

@
R

i
A

D
D

N
 #

i4
,R

i
LS

R
 #

u4
,R

i

LD
I:8

 #
i8

,R
i

C
A

LL

la
be

l1
2

B
R

A
 la

be
l9

B
R

A
:D

la

be
l9

1
LD

U
H

@

(R
13

,R
j),

 R
i

S
T

H
 R

i,
@

(R
13

,R
j)

B
A

N
D

H

#u
4,

@
R

i
B

O
R

H

#u
4,

@
R

i
A

D
D

N
2

#i
4,

R
i

LS
R

2
#u

4,
R

i
B

N
O

 la
be

l9
B

N
O

:D

la
be

l9

2
LD

U
B

@

(R
13

,R
j),

 R
i

S
T

B
 R

i,
@

(R
13

,R
j)

A
N

D
 R

j,R
i

O
R

R

j,R
i

A
D

D
N

 R
j,R

i
LS

R
 R

j,R
i

B
E

Q
 la

be
l9

B
E

Q
:D

la

be
l9

3
LD

 @
(R

15
,

ud
is

p6
),

R
i

S
T

 R
i,

@
(R

15
,u

d6
)

A
N

D
C

C
R

#u

8
O

R
C

C
R

#u

8
A

D
D

S
P

#s

10
M

O
V

 R
i,R

s
B

N
E

 la
be

l9
B

N
E

:D

la
be

l9

4
LD

@

R
j,R

i
S

T
 R

i,@
R

j
A

N
D

 R
j,@

R
i

O
R

 R
j,@

R
i

A
D

D
 #

i4
,R

i
LS

L
#u

4,
R

i
B

C
 la

be
l9

B
C

:D

la
be

l9

5
LD

U
H

 @
R

j,R
i

S
T

H
 R

i,@
R

j
A

N
D

H

R
j,@

R
i

O
R

H

R
j,@

R
i

A
D

D
2

#i
4,

R
i

LS
L2

 #
u4

,R
i

B
N

C
 la

be
l9

B
N

C
:D

la

be
l9

6
LD

U
B

 @
R

j,R
i

S
T

B
 R

i,@
R

j
A

N
D

B

R
j,@

R
i

O
R

B
 R

j,@
R

i
A

D
D

 R
j,R

i
LS

L
 R

j,R
i

B
N

 la
be

l9
B

N
:D

la

be
l9

7
E

 fo
rm

at
E

 fo
rm

at
S

T
IL

M
 #

u8
E

 fo
rm

at
A

D
D

C
 R

j,R
i

M
O

V
 R

s,
R

i
B

P
 la

be
l9

B
P

:D

la
be

l9

8
D

M
O

V

@
d1

0,
R

13
D

M
O

V

R
13

,@
d1

0
B

T
S

T
L

#u
4,

@
R

i
B

E
O

R
L

#u
4,

@
R

i
C

M
P

 #
i4

,R
i

A
S

R
 #

u4
,R

i

C
A

LL
:D

la

be
l1

2

B
V

 la
be

l9
B

V
:D

la

be
l9

9
D

M
O

V
H

,
R

13
D

M
O

V
H

R

13
, @

d9
B

T
S

T
H

#u

4,
@

R
i

B
E

O
R

H

#u
4,

@
R

i
C

M
P

2
#i

4,
R

i
A

S
R

2
#u

4,
R

i
B

N
V

 la
be

l9
B

N
V

:D

la
be

l9

A
D

M
O

V
B

 @
d8

,
R

13
D

M
O

V
B

R

13
, @

d8
X

C
H

B

@
R

j,R
i

E
O

R
 R

j,R
i

C
M

P
 R

j,R
i

A
S

R
 R

j,R
i

B
LT

 la
be

l9
B

LT
:D

 la
be

l9

B
D

M
O

V

@
d1

0,
@

–R
15

D
M

O
V

@

R
15

+
,@

d1
0

M
O

V
 R

j,R
i

LD
:2

0
#i

20
,R

i
M

U
LU

 R
j,R

i
M

U
LU

H

R
j,R

i
B

G
E

 la
be

l9
B

G
E

:D

la
be

l9

C
D

M
O

V

@
d1

0,
@

R
13

+
D

M
O

V

@
R

13
+

,@
d1

0
LD

M
0

(r
eg

lis
t)

E
O

R
 R

j,@
R

i
S

U
B

 R
j,R

i
LD

R
E

S

@
R

i+
,#

u4
B

LE
 la

be
l9

B
LE

:D

la
be

l9

D
D

M
O

V
H

,
@

R
13

+
D

M
O

V
H

@

R
13

+
, @

d9
LD

M
1

(r
eg

lis
t)

E
O

R
H

R

j,@
R

i
S

U
B

C
 R

j,R
i

S
T

R
E

S

#u
4,

@
R

i+
B

G
T

 la
be

l9
B

G
T

:D

la
be

l9

E
D

M
O

V
B

@

d8
, @

R
13

+
D

M
O

V
B

@

R
13

+
, @

d8
S

T
M

0
(r

eg
lis

t)
E

O
R

B

R
j,@

R
i

S
U

B
N

 R
j,R

i
B

LS
 la

be
l9

B
LS

:D

la
be

l9

F
E

N
T

E
R

 #
u1

0
IN

T

 #
u8

S
T

M
1

(r
eg

lis
t)

E
 fo

rm
at

M
U

L
 R

j,R
i

M
U

LH
 R

j,R
i

B
H

I l
ab

el
9

B
H

I:D

la
be

l9

Lower 4 bits

@
d9

@
d9
275

APPENDIX B Instruction Maps
B.2 "E" Format

This section shows "E" format for FR family CPU.

■ "E" Format

-: Undefined

Table B.2-1 "E" Format

Higher 8 bits

07 17 97 9F

Lo
w

er
 4

 b
its

0 LD @R15+,Ri ST Ri,@–R15 JMP @Ri JMP:D @Ri

1 MOV Ri,PS MOV PS,Ri CALL @Ri CALL:D @Ri

2 − − RET RET:D

3 − − RETI INTE

4 − − DIV0S Ri −

5 − − DIV0U Ri −

6 − − DIV1 Ri DIV3

7 − − DIV2 Ri DIV4S

8 LD @R15+,Rs ST Rs,@–R15 EXTSB Ri LDI:32 #i32,Ri

9 LD @R15+,PS ST PS,@–R15 EXTUB Ri LEAVE

A − − EXTSH Ri NOP

B − − EXTUH Ri −

C − − − COPOP #u4,
#CC,CRj,CRi

D − − − COPLD #u4,
#CC,Rj,CRi

E − − − COPST #u4,
#CC,CRj,Ri

F − − − COPSV #u4,
#CC,CRj,Ri
276

線
"- : Undefined" is added.

INDEX
INDEX

The index follows on the next page.
This is listed in alphabetical order.
277

INDEX
Index

A

ADD
ADD (Add 4-bit Immediate Data to Destination

Register)...73
ADD (Add Word Data of Source Register to

Destination Register)72
ADD2 (Add 4-bit Immediate Data to Destination

Register)...74
Add Stack Pointer

ADDSP (Add Stack Pointer and Immediate Data)
..241

Add Word Data
ADD (Add Word Data of Source Register to

Destination Register)72
ADDC (Add Word Data of Source Register and Carry

Bit to Destination Register)75
ADDN (Add Word Data of Source Register to

Destination Register)76
ADDC

ADDC (Add Word Data of Source Register and Carry
Bit to Destination Register)75

ADDN
ADDN (Add Immediate Data to Destination Register)

..77
ADDN (Add Word Data of Source Register to

Destination Register)76
ADDN2 (Add Immediate Data to Destination

Register)...78
ADDSP

ADDSP (Add Stack Pointer and Immediate Data)
..241

Alignment
Data Restrictions on Word Alignment11
Program Restrictions on Word Alignment11

AND
AND (And Word Data of Source Register to Data in

Memory) ..86
AND (And Word Data of Source Register to

Destination Register)85
And Byte Data

ANDB (And Byte Data of Source Register to Data in
Memory) ..90

And Condition Code
ANDCCR (And Condition Code Register and

Immediate Data)..................................238
And Half-word Data

ANDH (And Half-word Data of Source Register to
Data in Memory)88

And Word Data
AND (And Word Data of Source Register to Data in

Memory) .. 86
AND (And Word Data of Source Register to

Destination Register) 85
ANDB

ANDB (And Byte Data of Source Register to Data in
Memory) .. 90

ANDCCR
ANDCCR (And Condition Code Register and

Immediate Data) 238
ANDH

ANDH (And Half-word Data of Source Register to
Data in Memory) 88

Arithmetic Shift
ASR (Arithmetic Shift to the Right Direction)

... 144, 145
ASR2 (Arithmetic Shift to the Right Direction)

... 146
ASR

ASR (Arithmetic Shift to the Right Direction)
... 144, 145

ASR2 (Arithmetic Shift to the Right Direction)
... 146

B

BANDH
BANDH (And 4-bit Immediate Data to Higher 4 Bits

of Byte Data in Memory) 108
BANDL

BANDL (And 4-bit Immediate Data to Lower 4 Bits of
Byte Data in Memory)......................... 106

Bcc
Bcc (Branch Relative if Condition Satisfied) 194
Bcc:D (Branch Relative if Condition Satisfied)

... 203
BEORH

BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of
Byte Data in Memory)......................... 116

BEORL
BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of

Byte Data in Memory)......................... 114
Bit Order

Bit Order and Byte Order.................................... 10
Bit Pattern

Relation between Bit Pattern "Rs" and Register Values
.. 65
278

INDEX
Bit Patterns
Relation between Bit Patterns "Ri" and "Rj" and

Register Values..................................... 64
BORH

BORH (Or 4-bit Immediate Data to Higher 4 Bits of
Byte Data in Memory) 112

BORL
BORL (Or 4-bit Immediate Data to Lower 4 Bits of

Byte Data in Memory) 110
Branch Relative

Bcc (Branch Relative if Condition Satisfied) 194
Bcc:D (Branch Relative if Condition Satisfied)

.. 203
BTSTH

BTSTH (Test Higher 4 Bits of Byte Data in Memory)
.. 119

BTSTL
BTSTL (Test Lower 4 Bits of Byte Data in Memory)

.. 118
Bypassing

Register Bypassing... 56
Byte Order

Bit Order and Byte Order.................................... 10

C

CALL
CALL (Call Subroutine) 185, 186
CALL:D (Call Subroutine)........................ 197, 199

Carry Bit
ADDC (Add Word Data of Source Register and Carry

Bit to Destination Register) 75
SUBC (Subtract Word Data in Source Register and

Carry Bit from Destination Register)....... 80
CCR

Condition Code Register (CCR: Bit 07 to bit 00)
.. 21

CMP
CMP (Compare Immediate Data of Source Register

and Destination Register) 83
CMP (Compare Word Data in Source Register and

Destination Register) 82
CMP2 (Compare Immediate Data and Destination

Register) .. 84
Compare Immediate Data

CMP (Compare Immediate Data of Source Register
and Destination Register) 83

CMP2 (Compare Immediate Data and Destination
Register) .. 84

Compare Word Data
CMP (Compare Word Data in Source Register and

Destination Register) 82
Condition Code Register

Condition Code Register (CCR: Bit 07 to bit 00)
.. 21

COPLD
COPLD (Load 32-bit Data from Register to

Coprocessor Register)231
COPOP

COPOP (Coprocessor Operation)229
Coprocessor

"PC" Values Saved for Coprocessor Error Traps
..49

"PC" Values Saved for Coprocessor Not Present Traps
..48

Conditions for Generation of Coprocessor Error Traps
..49

Conditions for Generation of Coprocessor Not Found
Traps ..48

COPLD (Load 32-bit Data from Register to
Coprocessor Register)231

COPOP (Coprocessor Operation)229
Coprocessor Error Trap Operation........................49
Coprocessor Not Found Trap Operation48
COPST (Store 32-bit Data from Coprocessor Register

to Register) ...233
COPSV (Save 32-bit Data from Coprocessor Register

to Register) ...235
Overview of Coprocessor Error Traps...................49
Overview of Coprocessor Not Found Traps...........48
Results of Coprocessor Operations after a Coprocessor

Error Trap ...49
Saving and Restoring Coprocessor Error Information

..50
COPST

COPST (Store 32-bit Data from Coprocessor Register
to Register) ...233

General-purpose Registers during Execution of
"COPST/COPSV" Instructions................48

COPSV
COPSV (Save 32-bit Data from Coprocessor Register

to Register) ...235
General-purpose Registers during Execution of

"COPST/COPSV" Instructions................48
CPU

Features of the FR Family CPU Core......................2
Initialization of CPU Internal Register Values at Reset

..33
Sample Configuration of the FR Family CPU4

D

Dedicated Registers
Dedicated Registers ..17

Delay Slots
Instructions Prohibited in Delay Slots58
Undefined Instructions Placed in Delay Slots43

Delayed Branching Instructions
Examples of Processing Delayed Branching

Instructions ...61
279

INDEX
Examples of Programing Delayed Branching
Instructions ...62

Overview of Branching with Delayed Branching
Instructions ...58

Restrictions on Interrupts during Processing of
Delayed Branching Instructions59

Destination Register
ADD (Add 4-bit Immediate Data to Destination

Register)...73
ADD (Add Word Data of Source Register to

Destination Register)72
ADD2 (Add 4-bit Immediate Data to Destination

Register)...74
ADDC (Add Word Data of Source Register and Carry

Bit to Destination Register)75
ADDN (Add Immediate Data to Destination Register)

..77
ADDN (Add Word Data of Source Register to

Destination Register)76
ADDN2 (Add Immediate Data to Destination

Register)...78
AND (And Word Data of Source Register to

Destination Register)85
CMP (Compare Immediate Data of Source Register

and Destination Register)83
CMP (Compare Word Data in Source Register and

Destination Register)82
CMP2 (Compare Immediate Data and Destination

Register)...84
EOR (Exclusive Or Word Data of Source Register to

Destination Register)99
LDI:20 (Load Immediate 20-bit Data to Destination

Register)...148
LDI:32 (Load Immediate 32-bit Data to Destination

Register)...147
LDI:8 (Load Immediate 8-bit Data to Destination

Register)...149
MOV (Move Word Data in Program Status Register to

Destination Register)180
MOV (Move Word Data in Source Register to

Destination Register)178, 179, 181
OR (Or Word Data of Source Register to Destination

Register)...92
SUB (Subtract Word Data in Source Register from

Destination Register)79
SUBN (Subtract Word Data in Source Register from

Destination Register)81
Direct Address

Direct Address Area ...7
DMOV (Move Word Data from Direct Address to

Post Increment Register Indirect Address)
..207

DMOV (Move Word Data from Direct Address to Pre-
decrement Register Indirect Address)
..211

DMOV (Move Word Data from Direct Address to
Register) .. 205

DMOV (Move Word Data from Register to Direct
Address) .. 206

DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)
... 223

DMOVB (Move Byte Data from Direct Address to
Register) .. 221

DMOVB (Move Byte Data from Register to Direct
Address) .. 222

DMOVH (Move Half-word Data from Direct Address
to Post Increment Register Indirect Address)
... 217

DMOVH (Move Half-word Data from Direct Address
to Register)... 215

DMOVH (Move Half-word Data from Register to
Direct Address)................................... 216

DIV
DIV0S (Initial Setting Up for Signed Division)

... 128
DIV0U (Initial Setting Up for Unsigned Division)

... 130
DIV1 (Main Process of Division) 132
DIV2 (Correction when Remainder is 0) 134
DIV3 (Correction when Remainder is 0) 136
DIV4S (Correction Answer for Signed Division)

... 137
Division

DIV0S (Initial Setting Up for Signed Division)
... 128

DIV0U (Initial Setting Up for Unsigned Division)
... 130

DIV1 (Main Process of Division) 132
DMOV

DMOV (Move Word Data from Direct Address to
Post Increment Register Indirect Address)
... 207

DMOV (Move Word Data from Direct Address to Pre-
decrement Register Indirect Address).... 211

DMOV (Move Word Data from Direct Address to
Register) .. 205

DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
... 209, 213

DMOV (Move Word Data from Register to Direct
Address) .. 206

DMOVB
DMOVB (Move Byte Data from Direct Address to

Post Increment Register Indirect Address)
... 223

DMOVB (Move Byte Data from Direct Address to
Register) .. 221

DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
... 225
280

INDEX
DMOVB (Move Byte Data from Register to Direct
Address)... 222

DMOVH
DMOVH (Move Half-word Data from Direct Address

to Post Increment Register Indirect Address)
.. 217

DMOVH (Move Half-word Data from Direct Address
to Register)... 215

DMOVH (Move Half-word Data from Post Increment
Register Indirect Address to Direct Address)
.. 219

DMOVH (Move Half-word Data from Register to
Direct Address)................................... 216

E

E Format
"E" Format .. 276

EIT
Basic Operations in "EIT" Processing 34

EIT handler
Recovery from EIT handler........................... 28, 36

Emulator
INTE (Software Interrupt for Emulator) 190

ENTER
ENTER (Enter Function) 254

Enter Function
ENTER (Enter Function) 254

EOR
EOR (Exclusive Or Word Data of Source Register to

Data in Memory)................................. 100
EOR (Exclusive Or Word Data of Source Register to

Destination Register) 99
EORB

EORB (Exclusive Or Byte Data of Source Register to
Data in Memory)................................. 104

EORH
EORH (Exclusive Or Half-word Data of Source

Register to Data in Memory) 102
Error Information

Saving and Restoring Coprocessor Error Information
.. 50

Error Trap
"PC" Values Saved for Coprocessor Error Traps

.. 49
Conditions for Generation of Coprocessor Error Traps

.. 49
Coprocessor Error Trap Operation 49
Overview of Coprocessor Error Traps 49
Results of Coprocessor Operations after a Coprocessor

Error Trap .. 49
Exception

"PC" Values Saved for Undefined Instruction
Exceptions.. 43

Factors Causing Exception Processing 42

How to Use Undefined Instruction Exceptions.......43
Operations of Undefined Instruction Exceptions43
Overview of Exception Processing42
Overview of Undefined Instruction Exceptions......43
Time to Start of Undefined Instruction Exception

Processing...43
Exchange Byte Data

XCHB (Exchange Byte Data)258
Exclusive Or Byte Data

EORB (Exclusive Or Byte Data of Source Register to
Data in Memory)104

Exclusive Or Half-word Data
EORH (Exclusive Or Half-word Data of Source

Register to Data in Memory).................102
Exclusive Or Word Data

EOR (Exclusive Or Word Data of Source Register to
Data in Memory)100

EOR (Exclusive Or Word Data of Source Register to
Destination Register)..............................99

Execution
"PC" Values Saved for "INT" Instruction Execution

..45
"PC" Values Saved for "INTE" Instruction Execution

..46
External Interrupts

Relation of Step Trace Traps to "NMI" and External
Interrupts ..47

EXTSB
EXTSB (Sign Extend from Byte Data to Word Data)

..242
EXTSH

EXTSH (Sign Extend from Byte Data to Word Data)
..244

EXTUB
EXTUB (Unsign Extend from Byte Data to Word

Data) ..243
EXTUH

EXTUH (Unsigned Extend from Byte Data to Word
Data) ..245

F

Format
"E" Format...276

FR Family
Features of the FR Family CPU Core......................2
FR Family Register Configuration........................14
Sample Configuration of an FR Family Device........3
Sample Configuration of the FR Family CPU4

G

General-purpose Registers
General-purpose Registers during Execution of

"COPST/COPSV" Instructions................48
Initial Value of General-purpose Registers16
281

INDEX
Interlocking Produced by Reference to "R15" and
General-purpose Registers after Changing
the "S" Flag ..57

Overview of General-purpose Registers................15
Special Uses of General-purpose Registers15

H

Hazards
Overview of Register Hazards56

I

ILM
Interrupt Level Mask Register (ILM: Bit 20 to bit 16)

..19
Immediate Data

ADD (Add 4-bit Immediate Data to Destination
Register)...73

ADD2 (Add 4-bit Immediate Data to Destination
Register)...74

ADDN (Add Immediate Data to Destination Register)
..77

ADDN2 (Add Immediate Data to Destination
Register)...78

ADDSP (Add Stack Pointer and Immediate Data)241
ANDCCR (And Condition Code Register and

Immediate Data)..................................238
BANDH (And 4-bit Immediate Data to Higher 4 Bits

of Byte Data in Memory)108
BANDL (And 4-bit Immediate Data to Lower 4 Bits of

Byte Data in Memory)106
BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of

Byte Data in Memory)116
BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of

Byte Data in Memory)114
BORH (Or 4-bit Immediate Data to Higher 4 Bits of

Byte Data in Memory)112
BORL (Or 4-bit Immediate Data to Lower 4 Bits of

Byte Data in Memory)110
ORCCR (Or Condition Code Register and Immediate

Data) ..239
Indirect Address

DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
..209, 213

DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
..225

DMOVH (Move Half-word Data from Post Increment
Register Indirect Address to Direct Address)
..219

Instruction
"INT" Instruction Operation45
"INTE" Instruction Operation46
"PC" Values Saved for "INT" Instruction Execution

..45

"PC" Values Saved for "INTE" Instruction Execution
... 46

"PC" Values Saved for Undefined Instruction
Exceptions ... 43

Examples of Processing Delayed Branching
Instructions .. 61

Examples of Processing Non-delayed Branching
Instructions .. 60

Examples of Programing Delayed Branching
Instructions .. 62

General-purpose Registers during Execution of
"COPST/COPSV" Instructions 48

How to Use Undefined Instruction Exceptions 43
Instruction Formats .. 64
Instruction Lists ... 265
Instruction Notation Formats............................... 66
Instructions Prohibited in Delay Slots 58
Operations of Undefined Instruction Exceptions

... 43
Overview of Branching with Delayed Branching

Instructions .. 58
Overview of Branching with Non-delayed Branching

Instructions .. 58
Overview of the "INT" Instruction....................... 45
Overview of the "INTE" Instruction..................... 46
Overview of Undefined Instruction Exceptions 43
Precautionary Information for Use of "INT"

Instructions .. 45
Precautionary Information for Use of "INTE"

Instructions .. 46
Restrictions on Interrupts during Processing of

Delayed Branching Instructions.............. 59
Symbols Used in Instruction Lists 263
Time to Start of Trap Processing for "INT"

Instructions .. 45
Time to Start of Trap Processing for "INTE"

Instructions .. 46
Time to Start of Undefined Instruction Exception

Processing .. 43
Undefined Instructions Placed in Delay Slots........ 43
Use of Operand Information Contained in Instructions

... 7
Instruction Execution

"PC" Values Saved for "INT" Instruction Execution
... 45

"PC" Values Saved for "INTE" Instruction Execution
... 46

Instruction Map
Instruction Map ... 275

INT
"INT" Instruction Operation................................ 45
"PC" Values Saved for "INT" Instruction Execution

... 45
INT (Software Interrupt)................................... 188
Overview of the "INT" Instruction....................... 45
282

INDEX
Precautionary Information for Use of "INT"
Instructions... 45

Time to Start of Trap Processing for "INT"
Instructions... 45

INTE
"INTE" Instruction Operation.............................. 46
"PC" Values Saved for "INTE" Instruction Execution

.. 46
INTE (Software Interrupt for Emulator) 190
Overview of the "INTE" Instruction..................... 46
Precautionary Information for Use of "INTE"

Instructions... 46
Time to Start of Trap Processing for "INTE"

Instructions... 46
Interlocking

Interlocking ... 57
Interlocking Produced by Reference to "R15" and

General-purpose Registers after Changing
the "S" Flag .. 57

Interrupt
"PC" Values Saved for Interrupts......................... 39
"PC" Values Saved for Non-maskable Interrupts

.. 41
Conditions for Acceptance of Non-maskable Interrupt

Requests... 40
Conditions for Acceptance of User Interrupt Requests

.. 38
How to Use Non-maskable Interrupts................... 41
How to Use User Interrupts................................. 39
INT (Software Interrupt)................................... 188
INTE (Software Interrupt for Emulator) 190
Interrupts during Execution of Stepwise Division

Programs.. 37
Operation Following Acceptance of a Non-maskable

Interrupt ... 40
Operation Following Acceptance of an User Interrupt

.. 38
Overview of Interrupt Processing 37
Overview of Non-maskable Interrupts.................. 40
Overview of User Interrupts 38
Precautionary Information for Interrupt Processing in

Pipeline Operation 55
Relation of Step Trace Traps to "NMI" and External

Interrupts.. 47
Restrictions on Interrupts during Processing of

Delayed Branching Instructions 59
RETI (Return from Interrupt) 192
Sources of Interrupts .. 37
Time to Start of Interrupt Processing.................... 39
Time to Start of Non-maskable Interrupt Processing

.. 40
Interrupt Level Mask Register

Interrupt Level Mask Register (ILM: Bit 20 to bit 16)
.. 19

STILM (Set Immediate Data to Interrupt Level Mask
Register) .. 240

J

JMP
JMP (Jump) ...184
JMP:D (Jump) ..196

Jump
JMP (Jump) ...184

L

LD
LD (Load Word Data in Memory to Program Status

Register) ...157
LD (Load Word Data in Memory to Register)

.................150, 151, 152, 153, 154, 155
LDI

LDI:20 (Load Immediate 20-bit Data to Destination
Register) ...148

LDI:32 (Load Immediate 32-bit Data to Destination
Register) ...147

LDI:8 (Load Immediate 8-bit Data to Destination
Register) ...149

LDM
LDM0 (Load Multiple Registers)246
LDM1 (Load Multiple Registers)248

LDRES
LDRES (Load Word Data in Memory to Resource)

..227
LDUB

LDUB (Load Byte Data in Memory to Register)
..162, 163, 164

LDUH
LDUH (Load Half-word Data in Memory to Register)

..159, 160, 161
LEAVE

LEAVE (Leave Function)..................................256
Leave Function

LEAVE (Leave Function)..................................256
Left Direction

LSL (Logical Shift to the Left Direction)138, 139
LSL2 (Logical Shift to the Left Direction)140

Load
COPLD (Load 32-bit Data from Register to

Coprocessor Register)231
Load Byte Data

LDUB (Load Byte Data in Memory to Register)
..162, 163, 164

Load Half-word Data
LDUH (Load Half-word Data in Memory to Register)

..159, 160, 161
Load Immediate

LDI:20 (Load Immediate 20-bit Data to Destination
Register) ...148

LDI:32 (Load Immediate 32-bit Data to Destination
Register) ...147
283

INDEX
LDI:8 (Load Immediate 8-bit Data to Destination
Register)...149

Load Multiple Registers
LDM0 (Load Multiple Registers).......................246
LDM1 (Load Multiple Registers).......................248

Load Word Data
LD (Load Word Data in Memory to Program Status

Register)...157
LD (Load Word Data in Memory to Register)

..................150, 151, 152, 153, 154, 155
LDRES (Load Word Data in Memory to Resource)

..227
Logical Shift

LSL (Logical Shift to the Left Direction)
..138, 139

LSL2 (Logical Shift to the Left Direction)140
LSR (Logical Shift to the Right Direction)

..141, 142
LSR2 (Logical Shift to the Right Direction)143

LSL
LSL (Logical Shift to the Left Direction)

..138, 139
LSL2 (Logical Shift to the Left Direction)140

LSR
LSR (Logical Shift to the Right Direction)

..141, 142
LSR2 (Logical Shift to the Right Direction)143

M

MD
Configuration of the "MD" Register30

Memory Space
Memory Space ...6

MOV
MOV (Move Word Data in Program Status Register to

Destination Register)180
MOV (Move Word Data in Source Register to

Destination Register)178, 179, 181
MOV (Move Word Data in Source Register to

Program Status Register)......................182
Move Byte Data

DMOVB (Move Byte Data from Direct Address to
Post Increment Register Indirect Address)
..223

DMOVB (Move Byte Data from Direct Address to
Register)...221

DMOVB (Move Byte Data from Post Increment
Register Indirect Address to Direct Address)
..225

DMOVB (Move Byte Data from Register to Direct
Address) ...222

Move Half-word Data
DMOVH (Move Half-word Data from Direct Address

to Post Increment Register Indirect Address)
..217

DMOVH (Move Half-word Data from Direct Address
to Register)... 215

DMOVH (Move Half-word Data from Post Increment
Register Indirect Address to Direct Address)
... 219

DMOVH (Move Half-word Data from Register to
Direct Address)................................... 216

Move Word Data
DMOV (Move Word Data from Direct Address to

Post Increment Register Indirect Address)
... 207

DMOV (Move Word Data from Direct Address to Pre-
decrement Register Indirect Address).... 211

DMOV (Move Word Data from Direct Address to
Register) .. 205

DMOV (Move Word Data from Post Increment
Register Indirect Address to Direct Address)
... 209, 213

DMOV (Move Word Data from Register to Direct
Address) .. 206

MOV (Move Word Data in Program Status Register to
Destination Register) 180

MOV (Move Word Data in Source Register to
Destination Register) 178, 179, 181

MOV (Move Word Data in Source Register to
Program Status Register) 182

MUL
MUL (Multiply Word Data).............................. 120

MULH
MULH (Multiply Half-word Data) 124

Multiple Processes
Priority of Multiple Processes 52

Multiple Registers
LDM0 (Load Multiple Registers) 246
LDM1 (Load Multiple Registers) 248
STM0 (Store Multiple Registers)....................... 250
STM1 (Store Multiple Registers)....................... 252

Multiplication/Division Register
Overview of the Multiplication/Division Register

... 29
Multiply Half-word Data

MULH (Multiply Half-word Data) 124
Multiply Unsigned Half-word Data

MULUH (Multiply Unsigned Half-word Data)
... 126

Multiply Unsigned Word Data
MULU (Multiply Unsigned Word Data) 122

Multiply Word Data
MUL (Multiply Word Data).............................. 120

MULU
MULU (Multiply Unsigned Word Data) 122

MULUH
MULUH (Multiply Unsigned Half-word Data)

... 126
284

INDEX
N

NMI
Relation of Step Trace Traps to "NMI" and External

Interrupts.. 47
No Operation

NOP (No Operation) .. 237
Non-delayed Branching Instructions

Examples of Processing Non-delayed Branching
Instructions... 60

Overview of Branching with Non-delayed Branching
Instructions... 58

Non-maskable Interrupt
Conditions for Acceptance of Non-maskable Interrupt

Requests... 40
Operation Following Acceptance of a Non-maskable

Interrupt ... 40
Time to Start of Non-maskable Interrupt Processing

.. 40
Non-maskable Interrupts

"PC" Values Saved for Non-maskable Interrupts
.. 41

How to Use Non-maskable Interrupts................... 41
Overview of Non-maskable Interrupts.................. 40

NOP
NOP (No Operation) .. 237

O

Operand
Use of Operand Information Contained in Instructions

.. 7
OR

OR (Or Word Data of Source Register to Data in
Memory) .. 93

OR (Or Word Data of Source Register to Destination
Register) .. 92

Or Byte Data
ORB (Or Byte Data of Source Register to Data in

Memory) .. 97
Or Condition Code

ORCCR (Or Condition Code Register and Immediate
Data).. 239

Or Half-word Data
ORH (Or Half-word Data of Source Register to Data

in Memory) .. 95
Or Word Data

OR (Or Word Data of Source Register to Data in
Memory) .. 93

OR (Or Word Data of Source Register to Destination
Register) .. 92

ORB
ORB (Or Byte Data of Source Register to Data in

Memory) .. 97

ORCCR
ORCCR (Or Condition Code Register and Immediate

Data) ..239
ORH

ORH (Or Half-word Data of Source Register to Data
in Memory) ...95

P

PC
"PC" Values Saved for "INT" Instruction Execution

..45
"PC" Values Saved for "INTE" Instruction Execution

..46
"PC" Values Saved for Coprocessor Error Traps

..49
"PC" Values Saved for Coprocessor Not Present Traps

..48
"PC" Values Saved for Interrupts39
"PC" Values Saved for Non-maskable Interrupts

..41
"PC" Values Saved for Step Trace Traps...............47
"PC" Values Saved for Undefined Instruction

Exceptions ..43
Pipeline

How to Avoid Mismatched Pipeline Conditions55
Overview of Pipeline Operation54
Precautionary Information for Interrupt Processing in

Pipeline Operation55
Priority

Priority of Multiple Processes52
Priority of Simultaneous Occurrences51
Reset Priority Level ..33

Program Counter
Overview of the Program Counter18
Program Counter Functions18

Program Status Register
LD (Load Word Data in Memory to Program Status

Register) ...157
MOV (Move Word Data in Program Status Register to

Destination Register)............................180
MOV (Move Word Data in Source Register to

Program Status Register)182
Overview of Program Status Register19
Program Status Register Configuration19
ST (Store Word Data in Program Status Register to

Memory)...171
Unused Bits in the Program Status Register...........19

PS Register
Note on PS Register ..22

R

Register
Configuration of the "MD" Register30
285

INDEX
Interrupt Level Mask Register (ILM: Bit 20 to bit 16)
..19

LD (Load Word Data in Memory to Program Status
Register)...157

Note on PS Register..22
Overview of the Multiplication/Division Register

..29
Overview of the Table Base Register....................23
Precautions Related to the Table Base Register24
STILM (Set Immediate Data to Interrupt Level Mask

Register)...240
System Condition Code Register (SCR: Bit 10 to

bit 08) ..20
Table Base Register Configuration.......................24
Table Base Register Functions.............................24

Register Bypassing
Register Bypassing ...56

Register Hazards
Overview of Register Hazards56

Remainder
DIV2 (Correction when Remainder is 0).............134
DIV3 (Correction when Remainder is 0).............136

Reset
Initialization of CPU Internal Register Values at Reset

..33
Reset Operations ..33
Reset Priority Level ..33

Restoring
Saving and Restoring Coprocessor Error Information

..50
Restrictions

Data Restrictions on Word Alignment11
Program Restrictions on Word Alignment11
Restrictions on Interrupts during Processing of

Delayed Branching Instructions59
RET

RET (Return from Subroutine)187
RET:D (Return from Subroutine).......................201

RETI
RETI (Return from Interrupt)192

Return Pointer
Overview of the Return Pointer25
Return Pointer Configuration...............................26
Return Pointer Functions.....................................26

Right Direction
ASR (Arithmetic Shift to the Right Direction)

..144, 145
ASR2 (Arithmetic Shift to the Right Direction)

..146
LSR (Logical Shift to the Right Direction)

..141, 142
LSR2 (Logical Shift to the Right Direction)143

S

Sample
Sample Configuration of an FR Family Device 3
Sample Configuration of the FR Family CPU 4

Save
COPSV (Save 32-bit Data from Coprocessor Register

to Register)... 235
Saving

Saving and Restoring Coprocessor Error Information
... 50

SCR
System Condition Code Register (SCR: Bit 10 to

bit 08) .. 20
Set Immediate Data

STILM (Set Immediate Data to Interrupt Level Mask
Register) .. 240

Sign Extend
EXTSB (Sign Extend from Byte Data to Word Data)

... 242
EXTSH (Sign Extend from Byte Data to Word Data)

... 244
Signed Division

DIV0S (Initial Setting Up for Signed Division)
... 128

DIV4S (Correction Answer for Signed Division)
... 137

Simultaneous Occurrences
Priority of Simultaneous Occurrences 51

Software Interrupt
INT (Software Interrupt)................................... 188
INTE (Software Interrupt for Emulator) 190

Source Register
ADD (Add Word Data of Source Register to

Destination Register) 72
ADDC (Add Word Data of Source Register and Carry

Bit to Destination Register).................... 75
ADDN (Add Word Data of Source Register to

Destination Register) 76
AND (And Word Data of Source Register to Data in

Memory) .. 86
AND (And Word Data of Source Register to

Destination Register) 85
ANDB (And Byte Data of Source Register to Data in

Memory) .. 90
ANDH (And Half-word Data of Source Register to

Data in Memory) 88
CMP (Compare Immediate Data of Source Register

and Destination Register)....................... 83
CMP (Compare Word Data in Source Register and

Destination Register) 82
EOR (Exclusive Or Word Data of Source Register to

Data in Memory) 100
EOR (Exclusive Or Word Data of Source Register to

Destination Register) 99
286

INDEX
EORB (Exclusive Or Byte Data of Source Register to
Data in Memory)................................. 104

EORH (Exclusive Or Half-word Data of Source
Register to Data in Memory) 102

MOV (Move Word Data in Source Register to
Destination Register) 178, 179, 181

MOV (Move Word Data in Source Register to
Program Status Register) 182

OR (Or Word Data of Source Register to Data in
Memory) .. 93

OR (Or Word Data of Source Register to Destination
Register) .. 92

ORB (Or Byte Data of Source Register to Data in
Memory) .. 97

ORH (Or Half-word Data of Source Register to Data
in Memory) .. 95

SUB (Subtract Word Data in Source Register from
Destination Register) 79

SUBC (Subtract Word Data in Source Register and
Carry Bit from Destination Register)....... 80

SUBN (Subtract Word Data in Source Register from
Destination Register) 81

SSP
System Stack Pointer (SSP),User Stack Pointer (USP)

.. 27
ST

ST (Store Word Data in Program Status Register to
Memory) .. 171

ST (Store Word Data in Register to Memory)
.................. 165, 166, 167, 168, 169, 170

Stack Pointer
Functions of the System Stack Pointer and User Stack

Pointer ... 28
Relation between "R15" and Stack Pointer 16
Stack Pointer Configuration 28
System Stack Pointer (SSP),User Stack Pointer (USP)

.. 27
STB

STB (Store Byte Data in Register to Memory)
.. 175, 176, 177

Step Trace
"PC" Values Saved for Step Trace Traps 47
Conditions for Generation of Step Trace Traps 47
Overview of Step Trace Traps 47
Precautionary Information for Use of Step Trace Traps

.. 47
Relation of Step Trace Traps to "NMI" and External

Interrupts.. 47
Step Trace Trap Operation 47

Stepwise Division Programs
Interrupts during Execution of Stepwise Division

Programs.. 37
STH

STH (Store Half-word Data in Register to Memory)
.. 172, 173, 174

STILM
STILM (Set Immediate Data to Interrupt Level Mask

Register) ...240
STM

STM0 (Store Multiple Registers)250
STM1 (Store Multiple Registers)252

Store
COPST (Store 32-bit Data from Coprocessor Register

to Register) ...233
Store Byte Data

STB (Store Byte Data in Register to Memory)
..175, 176, 177

Store Half-word Data
STH (Store Half-word Data in Register to Memory)

..172, 173, 174
Store Multiple Registers

STM0 (Store Multiple Registers)250
STM1 (Store Multiple Registers)252

Store Word Data
ST (Store Word Data in Program Status Register to

Memory)...171
ST (Store Word Data in Register to Memory)

..................165, 166, 167, 168, 169, 170
STRES (Store Word Data in Resource to Memory)

..228
STRES

STRES (Store Word Data in Resource to Memory)
..228

SUB
SUB (Subtract Word Data in Source Register from

Destination Register)..............................79
SUBC

SUBC (Subtract Word Data in Source Register and
Carry Bit from Destination Register)80

SUBN
SUBN (Subtract Word Data in Source Register from

Destination Register)..............................81
Subroutine

CALL (Call Subroutine)............................185, 186
CALL:D (Call Subroutine)197, 199
RET (Return from Subroutine)...........................187
RET:D (Return from Subroutine)201

Subtract Word Data
SUB (Subtract Word Data in Source Register from

Destination Register)..............................79
SUBC (Subtract Word Data in Source Register and

Carry Bit from Destination Register)80
SUBN (Subtract Word Data in Source Register from

Destination Register)..............................81
System Condition Code Register

System Condition Code Register (SCR: Bit 10 to
bit 08)...20
287

INDEX
System Stack Pointer
Functions of the System Stack Pointer and User Stack

Pointer ...28
System Stack Pointer (SSP),User Stack Pointer (USP)

..27

T

Table Base Register
Overview of the Table Base Register....................23
Precautions Related to the Table Base Register24
Table Base Register Configuration.......................24
Table Base Register Functions.............................24

Test
BTSTH (Test Higher 4 Bits of Byte Data in Memory)

..119
BTSTL (Test Lower 4 Bits of Byte Data in Memory)

..118
Trap

"PC" Values Saved for Coprocessor Error Traps
..49

"PC" Values Saved for Coprocessor Not Present Traps
..48

"PC" Values Saved for Step Trace Traps47
Conditions for Generation of Coprocessor Error Traps

..49
Conditions for Generation of Coprocessor Not Found

Traps..48
Conditions for Generation of Step Trace Traps......47
Coprocessor Error Trap Operation49
Coprocessor Not Found Trap Operation48
Overview of Coprocessor Error Traps49
Overview of Coprocessor Not Found Traps48
Overview of Step Trace Traps47
Overview of Traps..44
Precautionary Information for Use of Step Trace Traps

..47
Relation of Step Trace Traps to "NMI" and External

Interrupts ..47
Results of Coprocessor Operations after a Coprocessor

Error Trap...49
Sources of Traps ..44
Step Trace Trap Operation47
Time to Start of Trap Processing for "INT"

Instructions ...45
Time to Start of Trap Processing for "INTE"

Instructions ...46

U

Undefined Instruction Exception
"PC" Values Saved for Undefined Instruction

Exceptions ..43

How to Use Undefined Instruction Exceptions 43
Operations of Undefined Instruction Exceptions

... 43
Overview of Undefined Instruction Exceptions 43
Time to Start of Undefined Instruction Exception

Processing .. 43
Undefined Instructions

Undefined Instructions Placed in Delay Slots........ 43
Unsign Extend

EXTUB (Unsign Extend from Byte Data to Word
Data) ... 243

Unsigned Division
DIV0U (Initial Setting Up for Unsigned Division)

... 130
Unsigned Extend

EXTUH (Unsigned Extend from Byte Data to Word
Data) ... 245

User Interrupt
Conditions for Acceptance of User Interrupt Requests

... 38
How to Use User Interrupts................................. 39
Operation Following Acceptance of an User Interrupt

... 38
Overview of User Interrupts 38

User Stack Pointer
Functions of the System Stack Pointer and User Stack

Pointer ... 28
System Stack Pointer (SSP),User Stack Pointer (USP)

... 27
USP

System Stack Pointer (SSP),User Stack Pointer (USP)
... 27

V

Vector Table
Contents of Vector Table Areas............................. 9
Overview of Vector Table Areas 8
Unused Vector Table Area.................................... 6
Vector Table Area Initial Value............................. 9
Vector Table Configuration 35

W

Word Alignment
Data Restrictions on Word Alignment.................. 11
Program Restrictions on Word Alignment 11

X

XCHB
XCHB (Exchange Byte Data)............................ 258
288

CM71-00101-5E

FUJITSU SEMICONDUCTOR • CONTROLLER MANUAL

FR Family

32-BIT MICROCONTROLLER

INSTRUCTION MANUAL

December 2007 the fifth edition

Published FUJITSU LIMITED Electronic Devices

Edited Strategic Business Development Dept

	CHAPTER 1 FR FAMILY OVERVIEW
	1.1 Features of the FR Family CPU Core
	1.2 Sample Configuration of an FR Family Device
	1.3 Sample Configuration of the FR Family CPU

	CHAPTER 2 MEMORY ARCHITECTURE
	2.1 FR Family Memory Space
	2.1.1 Direct Address Area
	2.1.2 Vector Table Area

	2.2 Bit Order and Byte Order
	2.3 Word Alignment

	CHAPTER 3 REGISTER DESCRIPTIONS
	3.1 FR Family Register Configuration
	3.2 General-purpose Registers
	3.3 Dedicated Registers
	3.3.1 Program Counter (PC)
	3.3.2 Program Status (PS)
	3.3.3 Table Base Register (TBR)
	3.3.4 Return Pointer (RP)
	3.3.5 System Stack Pointer (SSP), User Stack Pointer (USP)
	3.3.6 Multiplication/Division Register (MD)

	CHAPTER 4 RESET AND "EIT" PROCESSING
	4.1 Reset Processing
	4.2 Basic Operations in "EIT" Processing
	4.3 Interrupts
	4.3.1 User Interrupts
	4.3.2 Non-maskable Interrupts (NMI)

	4.4 Exception Processing
	4.4.1 Undefined Instruction Exceptions

	4.5 Traps
	4.5.1 "INT" Instructions
	4.5.2 "INTE" Instruction
	4.5.3 Step Trace Traps
	4.5.4 Coprocessor Not Found Traps
	4.5.5 Coprocessor Error Trap

	4.6 Priority Levels

	CHAPTER 5 PRECAUTIONARY INFORMATION FOR THE FR FAMILY CPU
	5.1 Pipeline Operation
	5.2 Pipeline Operation and Interrupt Processing
	5.3 Register Hazards
	5.4 Delayed Branching Processing
	5.4.1 Processing Non-delayed Branching Instructions
	5.4.2 Processing Delayed Branching Instructions

	CHAPTER 6 INSTRUCTION OVERVIEW
	6.1 Instruction Formats
	6.2 Instruction Notation Formats

	CHAPTER 7 DETAILED EXECUTION INSTRUCTIONS
	7.1 ADD (Add Word Data of Source Register to Destination Register)
	7.2 ADD (Add 4-bit Immediate Data to Destination Register)
	7.3 ADD2 (Add 4-bit Immediate Data to Destination Register)
	7.4 ADDC (Add Word Data of Source Register and Carry Bit to Destination Register)
	7.5 ADDN (Add Word Data of Source Register to Destination Register)
	7.6 ADDN (Add Immediate Data to Destination Register)
	7.7 ADDN2 (Add Immediate Data to Destination Register)
	7.8 SUB (Subtract Word Data in Source Register from Destination Register)
	7.9 SUBC (Subtract Word Data in Source Register and Carry Bit from Destination Register)
	7.10 SUBN (Subtract Word Data in Source Register from Destination Register)
	7.11 CMP (Compare Word Data in Source Register and Destination Register)
	7.12 CMP (Compare Immediate Data of Source Register and Destination Register)
	7.13 CMP2 (Compare Immediate Data and Destination Register)
	7.14 AND (And Word Data of Source Register to Destination Register)
	7.15 AND (And Word Data of Source Register to Data in Memory)
	7.16 ANDH (And Half-word Data of Source Register to Data in Memory)
	7.17 ANDB (And Byte Data of Source Register to Data in Memory)
	7.18 OR (Or Word Data of Source Register to Destination Register)
	7.19 OR (Or Word Data of Source Register to Data in Memory)
	7.20 ORH (Or Half-word Data of Source Register to Data in Memory)
	7.21 ORB (Or Byte Data of Source Register to Data in Memory)
	7.22 EOR (Exclusive Or Word Data of Source Register to Destination Register)
	7.23 EOR (Exclusive Or Word Data of Source Register to Data in Memory)
	7.24 EORH (Exclusive Or Half-word Data of Source Register to Data in Memory)
	7.25 EORB (Exclusive Or Byte Data of Source Register to Data in Memory)
	7.26 BANDL (And 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
	7.27 BANDH (And 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
	7.28 BORL (Or 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
	7.29 BORH (Or 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
	7.30 BEORL (Eor 4-bit Immediate Data to Lower 4 Bits of Byte Data in Memory)
	7.31 BEORH (Eor 4-bit Immediate Data to Higher 4 Bits of Byte Data in Memory)
	7.32 BTSTL (Test Lower 4 Bits of Byte Data in Memory)
	7.33 BTSTH (Test Higher 4 Bits of Byte Data in Memory)
	7.34 MUL (Multiply Word Data)
	7.35 MULU (Multiply Unsigned Word Data)
	7.36 MULH (Multiply Half-word Data)
	7.37 MULUH (Multiply Unsigned Half-word Data)
	7.38 DIV0S (Initial Setting Up for Signed Division)
	7.39 DIV0U (Initial Setting Up for Unsigned Division)
	7.40 DIV1 (Main Process of Division)
	7.41 DIV2 (Correction when Remainder is 0)
	7.42 DIV3 (Correction when Remainder is 0)
	7.43 DIV4S (Correction Answer for Signed Division)
	7.44 LSL (Logical Shift to the Left Direction)
	7.45 LSL (Logical Shift to the Left Direction)
	7.46 LSL2 (Logical Shift to the Left Direction)
	7.47 LSR (Logical Shift to the Right Direction)
	7.48 LSR (Logical Shift to the Right Direction)
	7.49 LSR2 (Logical Shift to the Right Direction)
	7.50 ASR (Arithmetic Shift to the Right Direction)
	7.51 ASR (Arithmetic Shift to the Right Direction)
	7.52 ASR2 (Arithmetic Shift to the Right Direction)
	7.53 LDI:32 (Load Immediate 32-bit Data to Destination Register)
	7.54 LDI:20 (Load Immediate 20-bit Data to Destination Register)
	7.55 LDI:8 (Load Immediate 8-bit Data to Destination Register)
	7.56 LD (Load Word Data in Memory to Register)
	7.57 LD (Load Word Data in Memory to Register)
	7.58 LD (Load Word Data in Memory to Register)
	7.59 LD (Load Word Data in Memory to Register)
	7.60 LD (Load Word Data in Memory to Register)
	7.61 LD (Load Word Data in Memory to Register)
	7.62 LD (Load Word Data in Memory to Program Status Register)
	7.63 LDUH (Load Half-word Data in Memory to Register)
	7.64 LDUH (Load Half-word Data in Memory to Register)
	7.65 LDUH (Load Half-word Data in Memory to Register)
	7.66 LDUB (Load Byte Data in Memory to Register)
	7.67 LDUB (Load Byte Data in Memory to Register)
	7.68 LDUB (Load Byte Data in Memory to Register)
	7.69 ST (Store Word Data in Register to Memory)
	7.70 ST (Store Word Data in Register to Memory)
	7.71 ST (Store Word Data in Register to Memory)
	7.72 ST (Store Word Data in Register to Memory)
	7.73 ST (Store Word Data in Register to Memory)
	7.74 ST (Store Word Data in Register to Memory)
	7.75 ST (Store Word Data in Program Status Register to Memory)
	7.76 STH (Store Half-word Data in Register to Memory)
	7.77 STH (Store Half-word Data in Register to Memory)
	7.78 STH (Store Half-word Data in Register to Memory)
	7.79 STB (Store Byte Data in Register to Memory)
	7.80 STB (Store Byte Data in Register to Memory)
	7.81 STB (Store Byte Data in Register to Memory)
	7.82 MOV (Move Word Data in Source Register to Destination Register)
	7.83 MOV (Move Word Data in Source Register to Destination Register)
	7.84 MOV (Move Word Data in Program Status Register to Destination Register)
	7.85 MOV (Move Word Data in Source Register to Destination Register)
	7.86 MOV (Move Word Data in Source Register to Program Status Register)
	7.87 JMP (Jump)
	7.88 CALL (Call Subroutine)
	7.89 CALL (Call Subroutine)
	7.90 RET (Return from Subroutine)
	7.91 INT (Software Interrupt)
	7.92 INTE (Software Interrupt for Emulator)
	7.93 RETI (Return from Interrupt)
	7.94 Bcc (Branch Relative if Condition Satisfied)
	7.95 JMP:D (Jump)
	7.96 CALL:D (Call Subroutine)
	7.97 CALL:D (Call Subroutine)
	7.98 RET:D (Return from Subroutine)
	7.99 Bcc:D (Branch Relative if Condition Satisfied)
	7.100 DMOV (Move Word Data from Direct Address to Register)
	7.101 DMOV (Move Word Data from Register to Direct Address)
	7.102 DMOV (Move Word Data from Direct Address to Post Increment Register Indirect Address)
	7.103 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
	7.104 DMOV (Move Word Data from Direct Address to Pre-decrement Register Indirect Address)
	7.105 DMOV (Move Word Data from Post Increment Register Indirect Address to Direct Address)
	7.106 DMOVH (Move Half-word Data from Direct Address to Register)
	7.107 DMOVH (Move Half-word Data from Register to Direct Address)
	7.108 DMOVH (Move Half-word Data from Direct Address to Post Increment Register Indirect Address)
	7.109 DMOVH (Move Half-word Data from Post Increment Register Indirect Address to Direct Address)
	7.110 DMOVB (Move Byte Data from Direct Address to Register)
	7.111 DMOVB (Move Byte Data from Register to Direct Address)
	7.112 DMOVB (Move Byte Data from Direct Address to Post Increment Register Indirect Address)
	7.113 DMOVB (Move Byte Data from Post Increment Register Indirect Address to Direct Address)
	7.114 LDRES (Load Word Data in Memory to Resource)
	7.115 STRES (Store Word Data in Resource to Memory)
	7.116 COPOP (Coprocessor Operation)
	7.117 COPLD (Load 32-bit Data from Register to Coprocessor Register)
	7.118 COPST (Store 32-bit Data from Coprocessor Register to Register)
	7.119 COPSV (Save 32-bit Data from Coprocessor Register to Register)
	7.120 NOP (No Operation)
	7.121 ANDCCR (And Condition Code Register and Immediate Data)
	7.122 ORCCR (Or Condition Code Register and Immediate Data)
	7.123 STILM (Set Immediate Data to Interrupt Level Mask Register)
	7.124 ADDSP (Add Stack Pointer and Immediate Data)
	7.125 EXTSB (Sign Extend from Byte Data to Word Data)
	7.126 EXTUB (Unsign Extend from Byte Data to Word Data)
	7.127 EXTSH (Sign Extend from Byte Data to Word Data)
	7.128 EXTUH (Unsigned Extend from Byte Data to Word Data)
	7.129 LDM0 (Load Multiple Registers)
	7.130 LDM1 (Load Multiple Registers)
	7.131 STM0 (Store Multiple Registers)
	7.132 STM1 (Store Multiple Registers)
	7.133 ENTER (Enter Function)
	7.134 LEAVE (Leave Function)
	7.135 XCHB (Exchange Byte Data)

	APPENDIX
	APPENDIX A Instruction Lists
	A.1 Symbols Used in Instruction Lists
	A.2 Instruction Lists

	APPENDIX B Instruction Maps
	B.1 Instruction Map
	B.2 "E" Format

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

