UltraSPARC’Ill Cu

User’s Manual

D Sun

microsystems

Version 2.2.1
January 2004

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, U.S.A. All rights reserved.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun Fireplane Interconnect, VIS,
OpenBoot PROM, UltraSPARC III Cu and SPARC are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC
trademarks are based upon architecture developed by Sun Microsystems, Inc.

Use of any spare or replacement CPUs is limited to repair or one-for-one replacement of
CPUs in products exported in compliance with U.S. export laws. Use of CPUs as product
upgrades unless authorized by the U.S. Government is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
ORNON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT
SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Table of Contents

Preface xxxvii

Acronyms and Definitions xliii

Section I: Processor Introduction

1. Processor INTroOdUCLIONcccieieeeerieeiiieeeeeeeeeeeeeeeeeseeesssssssssseessseeseeessssssssssssssssssssssssssssssssssss

1.1 Overview

1.2 CPU Features

1.3 Cache Features

1.4 Technology

L.5 UltraSPARC III Cu Differencesocceeveueeeriiieeiiieeiiee et
1.5.1 BoOtbus LimitatiOnsc.ccevoueeeiiireriiieeniieenieeeiieeeieeeeiieeesieeeeieeeeeeeeeneee s
1.5.2 Instruction Set EXtENSIONSccceeviiieriireniieeiie et
1.5.3 Instruction Differencesccccoeeriiiiniiiiiiieeie e
1.5.4 Memory SUDSYSIEIMccccuiieriiieiiiieeeiieesiieeieee ettt e iee et e e e e neeeeeeeeeeneee s
155 INEEITUPES .eeeiiiiiiieeeiiiee ettt ettt e et e e s bbaeee e
1.5.6 Address SPace SIZEcccceeevuieiiiieeiieeeie et
T 2T 4 1] 1<) oSSR 9

1.5.8 Non-Cacheable Store Compression

1.5.9 EITOT COITECHION .uuvueieieieeeeieeiieeeeeeeeeeeeeeeee e e e e e e e e e e e e eeeeeeeeeeeesaeeeaaaaes 11

1.5.10 SRAM Protection and RAS Featuresccccccevviveniiiiniie i 11

2. System INtroductionoccoveiniiiiinsenninneniiennnennenneenienieoseesiesesseeseesssesssessseessssssss 13
2.1 System CONfIGUIATIONSeviiiieiiiieiiie ettt ee e eee e e e e eteeeeneeeenees 13
2.1.1 Two-Processor Configuration with UltraSPARC III Cucccccvverneenne. 13

2.1.2 Four-Processor Configuration with UltraSPARC III Cucccccuvveenennnee 14

2.1.3 Multiprocessor System with the UltraSPARC III Cucccoocevevieennennnes 16

2.1.4 Very Large Multiprocessor System with the UltraSPARC III Cu 17

2.2 (O To] s T 010 1 15 (<) 1 Lot USSR 18
2.3 System INEETTACESoeiiiieiiieeiee e 18
2.3.1 Fireplane INterCONNECTccouiieiiieriiiieiiie et et eeee e eeee e 18

2.3.2 SDRAM INEITACE ...eeieiiieiiiieiiie ettt 19

2.3.3 DCDS INtEITACE .oiiiiieeiiieeiieeiiie ettt e e seeeeeneee e 19

2.3.4 L2-Cache INterfaceccccoeveiiieeiiieeiieeeie ettt 19

2.3.5 BoOot BUS INtEIrfACE ...occcviieeiiiieiiieeiieeee et 19

23,6 JTAG INtEITACE ..eeveiiieeiiieeiie ettt ettt et saee e enaee e 19

Section Il: Architecture and Functions

3. CPU Architecture BasiCscouieeiniiniiieniiiinineinneninienneenseinseisnsesseessseesssesssseess 23
3.1 COMPONENE OVEIVIEW ...eviieiiieeiiieeiieaeiieeeteeessteessseeesseeeaaeessnseesasseesnseeesseesssseennes 23
3.1.1 Instruction Fetch and Bufferingcccccoevviiiiiiiiniiee e 24

3.1.2 Execution PIpeliNescccceviiiriiiiiiiiiiniiiniiciiceicceeseeetc e 25

3.1.3 Load/Store UNIE ...cc.covceeiiiiiieiiiiniieiie ettt 26

3.1.4 Memory Management UNitScocceecirmiiniiniiiiiiiinienientceieeieenieeseeae 27

3.1.5 L2-cache Unit (Level-2 Unified Cache)ccoceevuiinieniiniiiiiinicnicneee 28

3.1.6 System Interface UNitccoceeiiiiieiiiieiiiieeie e 28

3.1.7 Memory Controller Unitccoceeriiiriiiniiniiiiiiieeneenientcee e 29

3.2 CPU Operating MOAESccveeeiueieeiiieeiieeeiieeeiee et e eieeesaeeesteessnaeesseeeseneesnseeenes 29

UltraSPARC Ill Cu User’s Manual < January 2004

3.2.1 Privileged MOdec.ooieiiieiiiieiie e 29

3.2.2 Non-Privileged Modecccoiiiiiiiiiiieiieeie ettt 30

323 Reset and RED . State .ooonneieiieee e 30

3.2.4 Error Handlingccooooiiiiiiiiiie et 32

3.2.5 Debug and Diagnostics Modecccceeeeriiniiiiiienieniiniceiceecnecevceen 34

4. Instruction EXECULION ...c..cociviiireiniiniinsiensensiennninsiensensseissnesssesssessssesssesssessssssssesssessseses 37
4.1 INEFOAUCLION ...ttt ettt e 37
4.1.1 NOP, Neutralized, and Helper Instructionscccceeeueeeniieenirenieeeneennn 38

4.2 Processor PIPELINEc.oooiiiiiiiiiiiiie ettt 38
4.2.1 Grouping Dependenciesc.cccceeiiieriiiierieieiiieeieeesee e 41

4.2.2 Dispatch Dependenciesccoccoeeeiireriiiieniieeiieeeieeeeee e eeee e 41

4.2.3 Execution Dependenciescccceecueeriiiieniieeiiieeiie e 41

4.2.4 Instruction-Fetch Stagesccoccceeiiiiiiiiiiniieee e 42

4.2.5 Instruction Issue and QUeUe Stagescccccererireriireriiieiieeeie e 43

4.2.6 Execution Pipelineccccoocoiiiiiiiiiiieiiieiee e 44

4.2.7 Trap and DOne StaAgESc.eeevueeeiiieeiieeeiieeeiee e ettt e e e eeee s 46

4.3 Pipeline RECIrCUlationccuiiiiiiiiiiiieiie et 47
4.4 Grouping RUIESooocuiiiiiiiiiiie ettt et e s 47
4.4.1 EXeCUtion OIdercoceeriiiiiiiniiiiiiiieniec ettt sttt 48

4.4.2 Integer Register Dependencies to Instructions in the MS Pipeline 48

4.43 Integer Instructions Within a Groupcccceeviieriiieniiieiiieeieeeee e 49

4.4.4 Same-Group BYPasscoeoviiiiiiiiiiiiiiiiiieeee e 50

4.4.5 Floating-Point Unit Operand Dependenciescccceeeveeeviveenirenieeennnenn. 50

4.4.6 Grouping Rules for Register-Window Management Instructions 51

4.4.7 Grouping Rules for Reads and Writes of the ASRSccovvviiiiriinennenn. 52

4.4.8 Grouping Rules for Other InStructionsccceeeeeveviieniieeiiierieeeennn 52

4.5 ConditioNal MOVESooviiriiiniiiniiieieeteenite ettt ettt et et sie e st esaeesereeaneen 53
4.6 Instruction Latencies and Dispatching Propertiesccocoveveiieniiieniienieeen 54
4.6.1 LAteNCY ooueeeiieieiiiiee et e s 55

Table of Contents

4.6.2 BIOCKING .oioiiiiiiiieiiie ettt ettt 55
O T T o5 | o T<) 11 T USSR 56
4.6.4 Break and SIGccoooiiiiiiiieiie e 56

Section lll: Execution Environment

5. Data FOrmMALS ..cccoeiiiiiiieiiiiiiietiiinneteiciinetteisnettecsssnsetesssssessssssssessssssssessssssssssssssssssssssans 65
5.1 Integer Data FOImMAtSccoouiiiiiiiiiiiiiiiee et 66
5.1.1 Integer Data Value Rangeccccccoeoieiiiiiiiiieiiie e 66

5.1.2 Integer Data ALIZNMENTcccuiveriieeiiieeiiie e e eieeeereeeeeeee s ieeeseeeeeeaee e 67

5.1.3 Signed Integer Data TYPES ...cccveerceieeriieeiiiieeitieeeiteeeeeesreee e e seeeeeenee e 67

5.1.4 Unsigned Integer Data TYPEScccvveerieeiiiieiiiieeeiieeeieeesieeesieeesieeesenee e 69

5.1.5 Taged WOTdooeeeiiieiieee ettt e 70

5.2 Floating-Point Data FOrmatsccceeveiiiiiieiiiieniie e 71
5.2.1 Floating-Point Data Value Rangeccccoocoeveriieiniiniiie e 71

5.2.2 Floating-Point Data AligNmentccceeevreeiireriiieeiiie e siee e 71

5.2.3 Floating-Point, Single-PreciSionccccceveireriiieeniieiiiie e 72

5.2.4 Floating-Point, Double-Precisionccceevireriiierniieeiiie e 72

5.2.5 Floating-Point, QUad-PreciSionccceeeeieeiiireriiieeiiie e siee e 73

53 VIS Execution Unit Data FOrmatsccoceiviiniiniiiniiiiieiiniciccccecnec e 74
5.3.1 Pixel Data FOrmatcccocieriiniiiiiiiiiiicnicccccceeseeetc e 75

5.3.2 Fixed-Point Data FOrmatsccccceveiieiiiieiiiieeiie e 76

6. L 4 T 1 N 79
6.1 INEOAUCLION ..oniiiiiiiiiiiiiee ettt e 79
6.2 Integer Unit General-Purpose r RegISterscccoocvveiciieiiiieniieeiiee e 80
6.2.1 Windowed (in/local/out) r REGIStErsccccocvireviiieeriieiiiieiieeeiie e 82

6.2.2 Global 1 Re@IStEr SELScccueieiiiiieiiieeiiie ettt seeeeeeaee e 82

6.2.3 128-bit Operand Considerationscccccvevvereriiieeriererneeesneeesieeeeneeennes 84

6.3 Register Window Managementccceeerveeriirenuieeniieeeeesiieeseeessseeesneeesnseeenes 84

UltraSPARC Ill Cu User’s Manual < January 2004

6.4

6.5

6.6

6.7

6.8

6.3.1 CALL and JMPL INSTIUCLIONS ...vvveieiieeieeeeeeeeeieeeeeeeeeeeeeeeeee e 86

6.3.2 Circular WindOWIngccccciieriiieiiie ettt e e 86
6.3.3 Clean Window with RESTORE and SAVE Instructionscc.cccecueeuee. 86
Floating-Point General-Purpose RegiStersccccoooeiriiieriiieniieieeeeecee e 86
6.4.1 Floating-Point Register Number Encodingcccoeeovvieiiiiniieninenn. 88
6.4.2 Double and Quad Floating-Point Operandscccceeovveeiiieniiienieeennn 89
Control and Status Register SUMmArycocoveeiiiiniiieniie e 91
6.5.1 State and Ancillary State Register Summaryccccococveviieniieniinenn. 91
6.5.2 Privileged RegiSter SUMMAIYcccceeiiieriiieniieeriee e 92
6.5.3 ASI and Specially Accessed Register Summaryc.ccocoveevieenieennnn. 94
State REGISTEIS 1..uvvieeiiieiiiieeiie et ettt e et e et e st e e st e e st e e st e e sneeesnneeeeneeeeans 96
6.6.1 32-bit Multiply/Divide (YD) State Register 0ccococveeiiveniirenieeenn. 96
6.6.2 Integer Unit Condition Codes State Register 2 (CCR)ccceccvvevvireneenn. 96
6.6.3 Address Space Identifier (ASI) Register ASR 3ccooiiiiiiiiiieieeen 98
6.6.4 TICK Register (TICK) ASR4cociiiiiiiiniiiieieeeeecceecec e 98
6.6.5 Program Counters State RegiSter 5cceeciiiviiiiiiiieieeeeeeee e 99
6.6.6 Floating-Point Registers State (FPRS) Register 6ccccocveviivevirennnn. 99
Ancillary State Registers: ASRS 16-25 ...ooiiiiiiiiiiee e 100
6.7.1 Dispatch Control Register (DCR) ASR 18ccoiiiiiieiiieieeeeeeeee 100
6.7.2 Graphics Status Register (GSR) ASR 19cooviiiiiieiieee e 103
6.7.3 Software Interrupt State Registers: ASRs 20, 21, and 22ccccveeenneee. 104
6.7.4 Timer State Registers: ASRs 4, 23, 24,25 oo 106
Privileged REGISTETSoooiiieiiiieiiie ettt ettt eeee s 109
6.8.1 Trap Stack Privileged Registers 0 through 3ccoooiiiiiiiiiiiii. 109
6.8.2 Trap Base Address (TBA) Privileged Register 5cccoeiveviiieninenenn. 111
6.8.3 Processor State (PSTATE) Privileged Register 6ccccecovveviiveninenennn. 112
6.8.4 Trap Level (TL) Privileged Register 7cccovoiieiiieiiieieeeeeeeeen 117
6.8.5 Processor Interrupt Level (PIL) Privileged Register 8cccevviveneenn. 117
6.8.6 Register-Window State Privileged Registers 9 through 13 118
6.8.7 Window State (WSTATE) Privileged Register 14cccccceeviiveviinennnnn. 120

Table of Contents

6.8.8 Version (VER) Privileged Register 31ccccviiiiiiiiiiiiie e 120

6.9 Special AcCesS REZISTETueiiiiiieiiiieiiie et e 122
6.9.1 Floating-Point Status Register (FSR)ccooiiiiiiiiii e 122

6.10 ASTMapped REGISLEISeeeieieiiiieeiie ettt ettt e e e seeeesnaee e 132
6.10.1 Data Cache Unit Control Register (DCUCR)cccooceieiiiiniiiieiiiieieene 132

6.10.2 Data Watchpoint ReZISterscecouiieiiieiiiieiie e 136

7. INSErUCION TYPES ceeereireiiiireiiiitiisitiisnticsetesstiessstiesstscsstsssssesssssssssssessssssssssssssssssssssssssnssss 139
7.1 INErOAUCTION ...eiiiiiie ettt e et e et e e s e e enaee e 140
7.2 Memory Addressing for Load and Store InStructionsccceveeeeriieriieencieenne 140
7.2.1 Integer Unit Memory Alignment Requirementscccceeeeeeviieeneeennne 141

7.2.2 FP/VIS Memory Alignment Requirementsccccccoeevieeiiiieniieenieenns 141

7.2.3 Byte Order Addressing Conventions (Endianess)ccccoeeeeeviieeniennnne 141

7.2.4 Address Space Identifiersccoovieeiiieiiiieie e 142

7.2.5 Maintaining Data CONETENCYccceeviiieriiiieiiiieiiie e 143

7.3 Integer Execution ENVIrONMENTtcoocuiieiiiieiiiiieiiieeie e 143
7.3.1 TU Data Access INStruCHIONScccueeeiiiieriiiieiiieeeiee e 143

7.3.2 TU Arithmetic INStruCtionScccueieiiieiiiieiiie e 147

7.3.3 TU Lo@ic INStrUCHIONS ...eeeviiieiiiieiiieeiiee et 148

7.3.4 TU Compare INStIUCLIONSeeeuieeieieeiiiieeiiiieeiieeeeieeeiee et eseeeeseeeesneee e 148

7.3.5 IU Miscellaneous InStructionscceevueeeriuireniiieeiiieesiee e siee e 149

7.4 Floating-Point Execution ENvVironmentccceeouiieiiiiriiieniieesiee e 150
7.4.1 Floating-Point Operate InStructionscccccvevvieeerieieriiieeiiee e 150

7.4.2 FPU/VIS Data Access INStructionscceeeeeeriiieerieieeiiee e siee e 151

7.4.3 FP Arithmetic INStruCtionscccceieiiieiiiieiie e 152

7.4.4 FP Conversion INStrucCtionsccceeeeeeeiiiiieiiieeiiieeciee e 153

7.4.5 FP Compare INStruCtionsccecoueeeiiieiiiieiiieeeiie e esieee st seeeeeeeee e 153

7.4.6 FP Miscellaneous INStructionscccoeereveriieeniiieeiiie e seee e 153

7.5 VIS Execution ENVITONMENtoooiiiiiiiiiiiieeie e 154
7.5.1 VIS Pixel Data INStIUCtiONSocevvieeiiieiiiieiiieeciie e erieee e seee e 154

Vi

UltraSPARC Ill Cu User’s Manual < January 2004

7.5.2 VIS Fixed-Point 16-bit and 32-bit Data Instructionscccceeeeeeeeeeenn.. 155

7.5.3 VIS Logic INStrUCHIONS ...eeeriiieiiiiieiiieeiie et 156
7.6 Data Coherency INStruCtIONSc.ceeiuiiiiiieiiiieeeiie ettt e e 156
7.6.1 FLUSH Instruction Cache InStructionc..ccceceevveeneenvieenienecnecnneenneen 157
7.6.2 MEMBAR (Memory Synchronization) Instructionccccccvevuieennnnn. 157
7.6.3 Store Barrier INStrucCtioncoceeciiiiieenieniiiniiiieeeenecccceee e 157
7.7 Register Window Management InStructionscceeereeeeeiireniieeniieeieeseeeeeeennn 157
7.8 Program Control Transfer INStructionscceeceveriieeiiieeiie e 158
7.8.1 Control Transfer Instructions (CTIS)cccevieeeiiciiiieeiiiiiee e 159
7.9 Prefetch INSTIUCTIONS ...oocviiriiiiiiiiieiienic ettt 164
7.10 Instruction Summary Table by Categoryccceeciieiiiiriiieeiiieeie e 165
7.10.1 InStruction SUPETSCIIPLS ..eeeevererurreeriereeiieeeiieesteeesiteeesieeeeneeeseeeesnneeenneeens 165
7.10.2 Instruction Mnemonics EXPansioncccceeeeveriiieiiieeiieenieeeee e 165
7.10.3 Instruction Grouping RUlesccccoeiiiiiiiiiiiniiiiie e 165
7.10.4 Table Organizationc.ccceeciierieieeniieeniee et e seeeseee e e e eneeesneeeseeens 165
7.10.5 Integer Execution Environment Instructionscccccceeeieveniirenienennenn. 166
7.10.6 Floating-Point Execution Environment Instructionscccccvevueeeneenn. 170
7.10.7 VIS Execution Environment InStructionsc...cceccevveerveenieneenecnneenen 172
7.10.8 Data Coherency InStrucCtionscccceceveeiiieniiieeniie e 173
7.10.9 Register-Window Management InStructionsccecceeevvrenrieeneeneneennn 173
7.10.10 Program Control Transfer INStructionscccceeveeeeieieeiiieniieeneeeeennn 174
7.10.11 Data Prefetch INStructionsccoceevieerieniiniiiiiienienecnicciceeeec e 174
7.11 Instruction Formats and Fieldsccoceiiiiiiiiniiniiiiiiiccccccecc e 175
7.12 Reserved Opcodes and Instruction Fieldscccccooviiiiiiiiiiiieiieeeeeeeen 179
7.12.1 Summary of Unimplemented Instructionscccceeveveeiiieniiienineeennn 179
7.13 Big/Little-endian AddIeSSIngccceeoueeeiiieriieeeiie ettt 180
7.13.1 Big-endian Addressing CONVeNntionccceeeuererueeesereenieeeieeseeeeneeenns 180
7.13.2 Little-endian Addressing Conventionccccceeeeueeereeeeneeensirenneeenneenns 182
Address Space Identifiersccovveivviiiieiiiiiiiniininiiicneinnseicnntecseeesssesssssesssssessssesssenes 185

Table of Contents

vii

8.1 AST INIFOAUCTION vttt e e e e e e e e e e e e e e e eeeeeeeeeeseaaeeaaenaes 185

8.1.1 Load/Store INStruCtionscccueveiiieeiiieeiiie et 186
8.1.2 PrOCESSOT STALE ouuveieiiiiiiieeiiittee ettt ettt e eate e e st e e e 186
8.1.3 Default ASIS oot 186
8.1.4 Non-Translating and Bypassing ASISccoccviriiiniieiiie e 186
8.1.5 Datapath ..oceeieiiiee e 186
8.2 AST HETEAILY ..eeeeniieeeiiieeeiee ettt ettt e et e et e e st e e st eeaneeesneeeenneeenes 188
8.2.1 SPARC VO ASIS ittt ettt 188
8.2.2 UltraSPARC UltraSPARC IIT Family ASISccccoviimieniiniiiiieieneeneee 188
8.2.3 UltraSPARC III Cu Specific ASIS ..oeeieieeiiieiiie et 189
8.3 AST GIOUPS ettt ettt e bttt e e sttt e e st et e e s aabbeeeesebbaeeeeas 189
8.4 Instructions Associated with the ASTSocoiiiiiiiiie e 191
8.4.1 Block Load and Block Store ASIScooviiiiiiiiiiiieiiie e 191
8.4.2 Partial Store ASIS ..ooeeiiieeiieee e 191
8.4.3 Short Floating-Point Load and Store ASIScccviviiieiiiiniieeeeee 191
8.5 USINE ASIS ittt ettt et e ettt e et e e st e e et e e st e e e neeeenneeeannee s 192
8.5.1 Data WIdthscooiiiiiiiiiiiiiiie e 192
8.5.2 Operand ALIZNMENToeoiuiiiiiiieiiieeiiee et eee et et e st e seeeesneee e 192
8.5.3 Common EXCEPLIONSccccuiiiiiiieiiieeiiie ettt 192
8.6 List of AST Definitionsccueeeiiieriiiieiiieeiiee et eeee et seeee e seeeeenaee e 193
8.7 Special Memory ACCESS ASIS ...oiiiiieiiiie it 204
8.7.1 ASI 0x14 (ASI_PHYS_USE_EC) ..cioiiiiiiiiniieiieeenieeeceeeieeeeeeee 205
8.7.2 ASI0x15 (ASI_PHYS_BYPASS_EC_WITH_EBIT)cccoevvvinienirnncnn 205
8.7.3 ASI0x1C (ASI_PHYS_USE_EC_LITTLE) ..cccteevtiinieniiniieieenieeneeeeene 205
8.74 ASI0x1D (ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE) 205
8.7.5 ASIs 0x24 and 0x2C (Load Quadword ASIS)ccceeevvvieeeciiieeeiiiiee e 206

Section IV: Memory and Cache

9. J\7 311000 g AT 4) LN 209

viii UltraSPARC Ill Cu User’s Manual < January 2004

10.

9.1 UltraSPARC I Cu TSO Behaviorccc.covieeiiieriiniiiiieniieniceieeieenieceee e 210
9.2 Memory Location Identificationcceeeiiieriiiiiniie e 210
9.3 Memory Accesses and Cacheabilitycocoveviiiiniiiiiiieee e 210
9.3.1 Coherence DOmaiNsccceoeeriiriiiinieenienieneeieetenee et 211
0.3.2 Global VISIDIIItY ...cccuviieiiieeiiieiie et 212
0.3.3 MemOry OrdeIiNgGeeeeiueeeeiieeeiiieeiiee ettt eiteeeee et e et e eeeeeeeeeeneeeeeneeeas 212
9.4 Memory SYNCAIONIZATIONc..eeiiiieeiiieeiiee ettt e e e e 213
9.4.1 MEMBAR #SYNC ..oiiiiiiiiiiiieiesiiee ettt et 214
9.42 MEMBAR RUIES ...ooiuiiiiiiiiiiiiiitieie ittt 214
943 FLUSH .ottt sttt s 216
9.5 ALOMIC OPETATIONS ..eeivieeiiieiiiieeiieeeieeeeiteeetteestee ettt e e seeesnseeesnteeeaseeeeseeesnneeenneeens 216
9.6 Non-Faulting Loadccooiiiiiiiiie e 218
9.7 Prefetch INSTIUCTIONS ...coviiriiiiiiiiiiiieniicrtc et 218
9.8 Block Loads and StOTesc.ccocuieriiniiiiiiiieeciie et 219
9.9 I/0 and Accesses with Side-Effectsccocoeiiiniiiiiiiiiiniiiiccceececceeeee 220
9.9.1 Instruction Prefetch to Side-Effect Locationsccoceevvveecienecnecnncenneen 220
9.9.2 Instruction Prefetch Exiting Red Stateccccoeviiieiiiiiiiiiniiieieeen 221
9.10 UltraSPARC I Cu Internal ASIS ..cc.coociiiiiiiiiiiiiiiiieeneereeeeeeec e 221
9.11 StOT€ COMPIESSION ...veieieireiiieeieieeiiee ettt eetteeeseeeeeeeesseeesneeeesneeesaneeesaseeesnseeeanseeenns 222
9.12 Read-After-Write (RAW) BYPasSIngcceeeeeviieriiieiiieeiieece e 222
9.12.1 RAW Bypassing Algorithmccccoeiiiiriiiiniiiiieeeeee e 223
9.12.2 RAW Detection AlOTithmcccoeieiiiiriiiiiiecie e 224
Caches and Cache CONEIeNCYccoeicrviiisveiniseicssencssincsssiscsssesssssessssessssseesssssssssssssenes 225
10.1 (OF: 1] T @ o211 /715 10 o ES TS 225
10.1.1 Virtual Indexed, Physical Tagged Caches (VIPT)ccccocvvviiiiiiniiiieen, 225
10.1.2 Physical Indexed, Physical Tagged Caches (PIPT)ccccoeovveiieeiirennnen. 226
10.2 Cache FIUSNINGooiiiiiiiie et e e s 229
10.2.1 Address Aliasing FIUShingccococviiiiiiiiiiiiiieee e 230
10.2.2 Committing Block Store Flushingcccoceeeiiiiniiiiniiieiieeeeeeeeen 231

Table of Contents

11.

10.2.3 Displacement FIUShINGcccoiieiiiiiiiieiieee e 231

10.3 Bypassing the D-Cacheccoouiiriiiiiiiieeee e 231
10.4 Controlling P-Cachecoooiiiiiiiie e 232
10.5 Coherence TabIEsccouiieiiiiiiiieee ettt seee e enes 233
10.5.1 Processor State Transition and the Generated Transaction 233
10.5.2 Snoop Output and INPULoeeiiiieiiieie e 236
10.5.3 Transaction Handlingccccccoeeiiiiiiiieiiiieee e 240
Memory Management UNItc.eeevviiiiveiiiieiiineicniincnsiecssniscsssnsisssssssesssssessssesssssssssseses 245
11.1 Virtual Address Translationcccoeriireiiierie e 245
11.2 Translation Table ENtryccoooiiiiiiiiiiiii e 248
11.3 Translation Storage Bufferoooiiiiiiiiiii e 251
11.3.1 TSB Indexing SUPPOITcccveieiiieeiiieeiieeiiie et eeeeeeee et e seeeeeeee e 251
11.3.2 TSB Cacheabilitycccooeiiiiiiiieiieeie et 252
11.3.3 TSB Organizationcccceeviuieeriieeiiieeiieesieeeeeeesseee e e enteessneeeseeeeas 252
11.4 Hardware Support for TSB ACCESS ...eeovuuieeiiiieeiiieeiieeciee et 253
11.4.1 Typical TLB Miss/Refill SEqUENCEcccevviireriiieiiieeiiie e 253
11.4.2 TSB Pointer FOrmationcccoeoiieriiireniieeriee e 254
11.4.3 TSB Pointer Logic Hardware Descriptioncccceeceeevciieriieeniiieenieene 256
11.4.4 Required TLB CONAItiONSccereeuiieeiiieiiieeiee e eee e 258
11.4.5 Required TSB ConditioNnscccccoeieriuireiiieeiiieeiieeeieeeeiee e e siee e 258
11.4.6 MMU Global Registers Selectioncccceeveeeriieeriireiieeiiee e 258
11.5 Faults and Traps ...eeecveeeeieeeiie ettt et et ee et e et e e sneeeeneee e 259
11.6 ASI Value, Context, and Endianness Selection for Translationccccccevvvveeee. 261
11.7 Reset, Disable, and RED_state BEhaviorcccccoooeeeiiiiiieiieeiiec e 263
11.8 SPARC V9 “MMU Requirements” ANNEXcoccveerieereriiieeniieeniieeeieeesieeesneeeennes 264
11.9 Data Translation Lookaside Bufferccccoooiiiiiiiiiiie e 265
11.9.1 D-TLB Access OPerationcccceeeeueeeiueeenirenieieesieeeseeesaneeesneeeeseeeenes 266
11.9.2 Same Page Size on Both dt512_0 and dt512_1ccoooiiiiiiiiiiieeee 267
11.9.3 D-TLB Automatic Replacementcccceeviieriiieniiriniieeciee e 268

UltraSPARC Ill Cu User’s Manual < January 2004

11.9.4 D-TLB Directed Data Read/WTIItecccooevvviiiiiiiiiiiiiiiiiiiiiiieeeeeee 270

11.9.5 D-TLB Tag Read RegISterccceeviiiieriiieiiieeiieeeiee et 271

11.9.6 Demap OPErationcccceeeeeeeeiiieeriieeniieesieeeieeeeieeeeeeteesneeeeneeesnseeesneeens 272

11.9.7 D-TLB ACCESS SUMIMATYeeeerriiiieeeiiiiiieeeniiiiieeeniiieeeseiieeeessireeeessssreeeenas 273

11.9.8 D-MMU Operation SUMMATYcccceeeuieerueeeirereniieenieeenieeeeneeeseeeenneeens 274

11.9.9 Internal Registers and AST Operationsceccceeeeeeereieenieeenieenieeeneenns 276

11.9.10 D-MMU BYPASS ..eeuvirvieiiiiiriieiiitieiisteeteste ettt sttt siee s seeenees 294

11.10 Instruction Translation Lookaside Bufferccccooiiiiiiiiiiiiiiiieeeee 294
11.10.1 I-TLB Access OPerationccceeeceeeriuieenueeeirieeeieeeseeeesieeesneeesseeenneeens 294

11.10.2 I-TLB Automatic Replacementcccoooveeeiiiiriiieniiieeeeeeeee e 295

11.10.3 I-TLB ACCESS SUMMATY ...eevteieriiiieeeniiiiteeeaiiiteeeaiieeeeseiteeeessireeeessneeeeenas 296

11.10.4 I-MMU Operation SUMMATLYccccveeruieenrueeesreeesneeeseeeenseeessseeesseeesseens 298

11.10.5 Internal Registers and AST Operationsccccceeeeeeeriieeniiieenieeeieeeneenns 298

11.10.6 I-MMU BYPASS ...veeuiiiieiiiiiniieiesiteie sttt sttt sttt 311

Section V: Supervisor Programming

12. Traps and Trap Handlingcoeeiiiinniiiiininetiiinnneniecnnnseiicnseeccsnseesssssseesesssssssens 315
12.1 Processor States, Normal and Special Trapscccccoceeevieeriiieniieeniie e eeee e 316
12,11 RED_SEAIE .oouiieiiiiiieiiieeie ettt ettt et 317

12.1.2 EITOT_STAE .eouviiiiiiiiiiieniie ettt et ettt e s 320

12.2 TTAP CALEZOTICS ..ervvvieiiiieeiiieeiieeeieeeette ettt e eteeesatee e sbeeetaeesnsaeessseeenseesnsaeesnseeennseens 320
12.2.1 PrECISE TIAPS .eeeeoeeieiiiieeiieeeiieeitee ettt e ette et e et eetee et e e seeeenseeeenseeennnee s 321

12.2.2 Deferred Traps ..cceeeeceeeeeieeerieeeiieeeieeeette et e et e eee et e eireeeseeeenseeennnee s 321

12.2.3 DiSTupting TIPS «ouveeruveriiiiieniieiie ettt 322

12.2.4 RESEE TIAPS teeeuvereeeeiiiieeeeiiiiee ettt ettt e e ettt e e ettt e s ettt e e s sibeeeessbbaeeeeas 323

12.2.5 Uses of the Trap CateZOTIiCSccceccvereriuieeriieeirieeeiieerieeenreeeseeeeseeeneneens 323

12.3 0 1 o O} 113 o) SRS 324
12.3.1 PIL CONEIOL ..oooiiiiiiiiiiiiit ettt 324

Table of Contents

xi

12.3.2 TEM CONLIOL ..ottt s 325

12.4 Trap-Table Entry AdAIeSSESccveieruiieiiieeiiieeiie ettt eee e e eneee e 325
12.4.1 Trap Table Organizationccccoceeeeieeeriieeniieeeiee e eeeeeieeeeeee s 325

12,42 Trap TYPE (TT) weeeeiieeeie ettt s 326

| PR T 1 o g () 0 15 (<1 331

12.4.4 Details of Supported Trapscccceceieeiiiieiiieeiie e 331

12.5 TTAP PIOCESSINEZ ..veieiiiieiiie ettt ettt ettt e e e e st ee e st e s st e e sneeeeneeeenes 334
12.5.1 Normal Trap ProCesSingccccecoiemiiieiiiieeiiieeiieeeieeeeiee e 335

12.5.2 Fast MMU Trap ProCessSingcccceeeeuereriieenieeniieeeiieeeieeeeeieesieeeeeee e 337

12.5.3 Interrupt Vector Trap Processingccccccoevoeeriiiieniieeiiieenieesieeeeiee e 338

12.5.4 Special Trap ProCeSSINGcccouieeiiieeiiieiiie ettt 339

12.6 Exception and Interrupt DeSCIIPtionscceeveereriieeriieeiiee e seee e 345
13. Interrupt Handlingcceooviiiniiiiiiiiniiiinieiiinnicnsnicssniicsssiscsssisssssssssssssssssssssssssssssssses 351
13.1 Interrupt Vector DISPatChleeeviiieiiieie e 352
13.2 Interrupt Vector RECEIVEc.uiieiiieeiiieiie ettt 353
13.3 Interrupt Global REGIStErSceeiuiieiiiieiiie et 354
13.4 Interrupt AST REGISTEISeeeiuiieeiiieeiie ettt et eseee e eneee e 354
13.4.1 Outgoing Interrupt Vector Data<7:0> RegiStercccoeeevvrieeriieenienne 354

13.4.2 Interrupt Vector Dispatch RegISterccceeviiiiiiiieiiieie e 355

13.4.3 Interrupt Vector Dispatch Status RegiSterccccvevveriiiiriiiiieiiieeeieene 356

13.4.4 Incoming Interrupt Vector Data<7:0>ccccooiiiiiiiiiniieeiiie e 356

13.4.5 Interrupt Vector Receive RegiSterccoooevviiiiiiiiiiiiiie e, 357

13.5 Software Interrupt Register (SOFTINT)oooviiiiiiieiiieiie e 358
13.5.1 Setting the Software Interrupt Registercccevviveiiiiiiiieiiie e 358

13.5.2 Clearing the Software Interrupt Registerccccevvviiiiiiiiiieiiieeieene 358

Section VI: Performance Programming

14. Performance INStrumentationcccccccceeecereeeennreeereeaneceeceesnssscesssssssscessssssssecssssssssscssssnse 363

xii UltraSPARC Ill Cu User’s Manual < January 2004

14.1 Performance Control Register (PCR)coooiiiiiiiiiiiiieeeee e 364

14.2 Performance Instrumentation Counter (PIC) Registercccoeevveiiieiiienieeen. 365
14.2.1 PIC Counter Overflow Trap Operationcccceeeeeeereieenereenieeeieeeneenns 367
14.3 Performance Instrumentation Operationccecceeeiieeriieeniieeenieeeseeeeeeeeeeenns 367
14.3.1 Performance Instrumentation Implementationscceccveeivrereerennnnn. 369
14.3.2 Performance Instrumentation ACCUIACYccccoeveviuireriieenieeeiieeeieeeeeenns 369
14.4 Pipeline COUNLETSoeiiiieiiieiiieeeiie ettt et etee ettt e et e et e et e e st e e eneeeenneeenneeas 369
14.4.1 Instruction Execution and CPU Clock Countscccccceeereveenerenieeeennnnnn 369
14.4.2 TIU SEALISTICS ..eeuveerreerireriieiieniee e eittetee st sttt e st sttt eaeesaeesaneeaeenaeenane 370
14.4.3 TIU Stall COUNS ..eoeiiiieiiieeiiie ettt ettt e eee e e e s 370
14.4.4 R-stage Stall COUNLScccueieriiieiiiiieiiie ettt e s 372
14.4.5 Recirculation COUNLScccueeiiiiieriieeriie et e e 372
14.5 Cache AcCCESS COUNETSeevviieiiieeeiieeeitie ettt e eite e et e e et e e et e eseeeeneeesnseeesnneeeneeeas 373
14.5.1 Instruction Cache EVENtsccccoeviiiiiiiiiiiie e 373
14.5.2 Data Cache EVENtScccooviuiiiiiiiiiiieeiie et 373
14.5.3 Write Cache EVENLSccoiiiiiiiiiieiiie et 374
14.5.4 Prefetch Cache EVENtScoccueiiiiiiiiiiieie e 374
14.5.5 L2-Cache EVENLS ...cccueiiiiiieiiieeiiee ettt 375
14.5.6 Separating D-cache Stall Countscceeeuieeiiieriiieniieeee e 376
14.6 Memory Controller COUNTETSeeeruieiriiieeiieeeiieesieeeiieeeieeeeeaeeesneeeeneeesneeeeneeeas 378
14.6.1 Memory Controller Read Request Eventscccccoevoiieiiiniiieniieenn 378
14.7 Data Locality Counters for Scalable Shared Memory Systemscccccceeeueeeneenn. 379
T4.7. T EVENE TIEE .eoieiiiiieiiiiieeeeitee ettt et e et e e eiteee e 380
14.7.2 Data Locality Event MatriXcccccceeriireiiiieeieeeie e 382
14.7.3 Synthesized Data Locality Eventsccccceviiiiriiiiniieieeeeceeee 383
14.8 Miscellaneous COUNLEISc..eeviieeeriieeriieeeiieeeieeesiteeeteeesteeesnaeeesneeeeseeesnneeesneeens 384
14.8.1 System Interface Events and Clock Cyclescocoveviiiiiiiiiiiienieen. 384
14.8.2 Software EVENTScccoviiiiiiiieiiie ettt 384
14.8.3 Floating-Point Operation EVentscccoocoueeeiiieriiieniieeeeeeeeee e 385
14.9 PCR.SL and PCR.SU ENCOAINGScccuviieiuiiieiiieeiieesiee ettt 385

Table of Contents xiii

Xiv

15. Processor OPtimMiZationeececcivveiiiinnneeiiiiineeiecsssseticssssesecssssseesssssssessessssssessssssessessons 387

15.1
15.2

15.3

16. Prefetch

16.1

16.2

INtrOAUCHIONooiiiiiiiiici et 387
Instruction Stream ISSUEScccooiiiiriiieiiiiieieneei e 387
15.2.1 Instruction ALZNMENTcooeeriiriiiieiiieieieeeeeee et 388
15.2.2 Instruction Cache TiMingcccccceeriiieriiieeniiieiiee et 390
15.2.3 Executing Code Out of the Level 2 Cachec...ccoceeviiniiiiinicinicncnnen. 390
15.2.4 TLB MISSES ..cuveuieiieiiiiiniinieieieieeiteeete ettt sttt esneseete ettt eae s seneneeneenens 391
15.2.5 Conditional Moves vs. Conditional Branchescc.ccocceeeeeniiniinncnnen. 391
15.2.6 Instruction Cache Utilizationc..ccooceereerieiiieeneenienieiieereenee e 392
15.2.7 Handling of CTI COUPLES ...vvveriiiieiiieeiiieeiie et 392
15.2.8 Mispredicted Branchescccoocvveeiiieiiiiieniie et 392
15.2.9 Return Address Stack (RAS) ..ooieoiieiiiieieeee et 392
Data Stream ISSUEScccoiiiiiiiiiiiiiiiiiii i 393
15.3.1 Data Cache Organizationccccceerveeiiieeeiiieereeesnieeesieeeesneesssveesneneenns 393
15.3.2 Data Cache TIMINGccceeevoviieiiieeiiieeiieeeeee et e eieeeeree e eaeesaeeeeeee e 394
15.3.3 Data ALIZNMENT ..ooccuviieiiieeiieeeiie et eite et et e st e e st e esaeessaeesseeesnseeenes 394
15.3.4 Store Considerationsccoceeveevuirieeiiireniieneneee et 394
15.3.5 Read-After-Write Hazardsccccccoceeiiiniiniiniiiiiiniiiccccceece e 395

.. 397
Prefetch Cachecooooiiiiiiiiie e 397
16.1.1 P-Cache Data FIOWccccociiiiiiiiiiiiiiiiciee e 398
16.1.2 Fetched_Mode Tag Bitcceeviiieiiiiieiieeeiie ettt 398
Software PrefetChcc.oooooiiiiiiii e 398
16.2.1 Software Prefetch InStructionsccocceevveerieiiieenieinieniciicceeniceeen 399
16.2.2 Software Prefetch Instruction Uses the MS Pipelinecccccoevveeeennne. 400
16.2.3 Cancelling Software Prefetchccccoovieviiniiiiiiniiniiicccccccen 400
16.2.4 Prefetch Instruction Variantsc..ccecceereerieiiieeneenienicnicere e 400
16.2.5 General COMMENTScc.coieiiriieiiiniieiienieeiete et 401
16.2.6 Code EXAMPIE ...ooeeviieiiiieiieeiee ettt 402

UltraSPARC Ill Cu User’s Manual < January 2004

16.3 Hardware PrefetCh ... 404
16.3.1 Cancelling Hardware Prefetchescccooviiiiiieniiiiiieeeeeeeeen 404

16.3.2 FP/VIS Load Instruction Miss Fetchc.cccooconiiniiniiinnniieneen 405

17. IEEE 754-1985 Standardc.coeeeiecnenneinieensensenneennesssesssessssesssesssessssesssssssesssssssssssses 407
17.1 INEOAUCLION ...ttt ettt 407
17.1.1 Floating-point OPerationsccecceereuieesueeriererieeeseeeeneeeeseeeseeeesneeens 407

17.1.2 RoUNding MOAEc.oeeiiiieiiieeiiie ettt 408

17.1.3 Nonstandard FP Operating Modececoieeiiieriiieniieeeeeeeeeee e 408

17.1.4 Memory and Register Data Imagescccccceeeiireriireniiieniieeeeeeeeen 408

17.1.5 Subnormal OPerationscceccueeeieeeriuieenieeeiieeeieeeseeeeseeeereeeeeeeesneeens 408

17.1.6 FSR.CEXC and FSR.AEXC Updatesc.cccocveemeerienciieneenieniceieeneeenens 409

17.1.7 Prediction LOZIC ...ccccviiiiieeiie ettt 409

17.2 Floating-point NUMDEISccceiiiiiiiiieiiee ettt seee e 409
17.2.1 Floating-point Number LiNnecccceevoiieiiiieiiierie e 411

17.3 TEEE OPETAtIONSeeeitieeiiieiiieeeiieeeiieeeetteeetteeeteeeeeteeeseeesnseeesnteeeneeaeneeeenneeennseens 411
1731 AdAItION .eeiiiiieiiiiieciic ettt 412

17.3.2 SUDLTACTION ...eiiiiiiiiiiiiiit ettt ettt e 413

17.3.3 MUultipliCationceocuiiiiiieeiiie ettt et e e s 414

17.3:4 DIVISION toutiiiiiiiiiiiiieiiie ittt ettt ettt st ettt e aee e 415

17.3.5 SQUATe ROOT ettt 416

17.3.6 COMPATE ...oeeiiiiiieeeiiiiiee ettt ettt ettt e e e e ettt e s ettt e e s abbeeeesebtaeeeeas 416

17.3.7 Precision CONVETSIONccceereiriiriieniieniienieeieeniee et eiee s eeneeeee e 417

17.3.8 Floating-point to Integer Number Conversioncccceeeeeeeerererieeeennnnnn 418

17.3.9 Integer to Floating-point Number Conversionccccceeeeeeeerereereeeennnnnn 419

17.3.10 Copy/MOoVe OPEIatiOnSc.cceceeeriueeeruieeniieeeireeeeieeeseeeesseeesseeesseeesneeens 419

17.3.11 fRegister Load/Store Operationscceccceeeeererieeenieieenieeeieeeeeeeneeens 420

17.3.12 VIS OPETALIONSeeerieiieeiiieeiiieeieeeeieeeetteeeteeeeteeeeteeeseeeeeneeesseeasnneeeaneeens 420

17.4 Traps and EXCEPLIONS ...oeiiuiiiiiiieiiieeciie ettt ettt et e et e e e eneee s 420
17.4.1 Summary of EXCEPLIONScccueeriiiieriiiieiiieeiee et 421

Table of Contents

XV

17.4.2 Trap EVENE ...ooiiiiiiiiiei ettt 422

XVi

R T 1 o 1 0 () 5 1 2RSSR 422

17.5 TEEE TIAPS -eeteeuteteetieteiteete sttt ettt sttt ettt sttt bt ettt eseesteebeentesbeeneenbeeneen 422
17.5.1 1EEE Trap Enable Mask (TEM)coooiiiiiiiiiieeeecee e 422

17.5.2 1EEE Invalid (V) TIaD «.eeeeoeeeeiiieeiieeeiie ettt 423

17.5.3 IEEE OVerflow (0f) Trap ..c.coccoieeiiieeiie et 423

17.5.4 1EEE Underflow (Uf) Trap ...cccoceeeoiieeiieeiiie et 423

17.5.5 1EEE Divide-by-Zero (DZ) Trap ...ccccccoveeeeeeeiiieeieeeee e 423

17.5.6 IEEE Inexact (NX) Trap ...cccceeroieeiiieeiie et 424

17.6 Underflow OPErationccceeeeiuieeriieeiiiee et eiieeeee et eeee et e et eeneeeeeeeesnnee s 424
17.6.1 Trapped UnderfloWcccoieiiiiiiiiieii e 425

17.6.2 Untrapped UnderfloWcoooiiieiiiiiiiieiiie et 425

17.7 TEEE NaN OPEIatiOnsccccueeeiuiieriieeniiieeitieeeiieesteeesseeeesaeeesseeesnseesaseeesnseeesneeanns 426
17.7.1 Signaling and Quiet NANScccceiiiiiiiiieiiieeiiie e 426

17.7.2 SNaN to QNaN Transformationccccerieeiiiiiieeiiiiiee e 426

17.7.3 Operations with NaN Operandscccoccceeeroieriiieniieeniie e see e 427

17.7.4 NaN Results from Operands without NaNscccoccimviiiiiiiiiiiiieieene 428

17.8 SUbNOrMal OPErationsc.eeeivieiiiieiiieeeieeeiee et ee e tte et eeeeeeeeeieee e e e enteeeeneeeenees 428
17.8.1 Response to Subnormal Operandscccceeveeeviiieniiriiie e 428

17.8.2 Subnormal Number Generationcccccceereeeeriieenieeenieeeiieeseeeeseeeenee 429

Section VII: Special Topics

18. ReSet ANd RED_SEALE ..u..creeueereneiereeeeeneieeenecereneserenssssssssssassssssssesssssesssssssssssssssssssssssssasssssanss 435
18.1 RED_state CharacteriStiCSccoviereuirerrieeririeeiieestieeseeeesereesseeesnseesnseeesnseeesseennes 435
18.2 RESEES . 436
18.2.1 Power-on Reset (POR)ccoveiiiieiiiieeiiieeiie et 436

18.2.2 SyStem RESET ..coeiiiiiiiiiiiiiiieie e 437

18.2.3 Externally Initiated Reset (XIR)coceoviiriiniiiiiiiiiinicnieeicceeee e 437

UltraSPARC Ill Cu User’s Manual < January 2004

18.2.4 Watchdog Reset (WDR) and error_stateccceecoeveviieeniieeniieniieeeenn 437

18.2.5 Software-Initiated Reset (SIR)ccooviviiiiiiiiiiieeiieee et 438
18.3 RED_State Trap VECIOTceiiiiiiiiiiiiiiieei ittt e 438
18.4 MACRINE SEALES ...eoueiieiiieeiiiie ettt tee ettt e ettt e sttt e et e et eeeenee e e s 438

Section VlIl: Appendix

Instruction Definitionscocovieiienieniinniennienieniienienienieenienieniessessessessssesssesssessseses 447
Al A et et 454
A2 Alignment Instructions (VIS I) ooeooiiiiiiii e 455
A3 Three-Dimensional Array Addressing Instructions (VIS T)ooooiiiiiiniiiiniiinnen. 457
A4 Block Load and Block Store (VIS I) .eoiiiiiiiiiiiiiiiee et 460
A.S Byte Mask and Shuffle Instructions (VIS II)ccccoooiiiviiiiiiiieeiiecieeeeee e 468
A.6 Branch on Integer Register with Prediction (BPr)ccccovvviiiiiiiiiiiieeieee e, 469
A7 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 471
A.8 Branch on Integer Condition Codes with Prediction (BPcc)coccvvvvevecivieeeennnnenn. 474
A9 Call and LINK ..oocoiviiiiiiiiiieeeec et 476
A10 CompPare and SWAP ...cccccciiieeeiiiiiieeeriiiee ettt e e eeiiree e s eebreeeestbree e e ataeeeeeattaeeesanaaeas 477
A1l DONE and RETRY ..ottt 479
A.12 Edge Handling Instructions (VIS I, VISII) .coccooiiiiiiiiiiiiiie e 480
A.13 Floating-Point Add and Subtractccooceiiiiiiiiiii e 483
A.14 Floating-Point COMPATEcecuieiiiiiiiiiieiieeiieeiie ettt ettt seee et esbeeeneeens 486
A.15 Convert Floating-Point t0 INtEZETccceiriiiiiiiiiiieieieee e 488
A.16 Convert Between Floating-Point Formatsccoccciiiiiiniiiiniiiiiceniceeeee, 489
A.17 Convert Integer to F1oating-Pointccceeviviiiiiiiiiieiiiie e 491
A.18 Floating-Point MOVEcccooiiiiiiiiiieeiii ettt ettt e e 493
A.19 Floating-Point Multiply and Dividecccoociriiiiiiiiiiiiieeceeee e 494
A.20 Floating-Point SQUAre ROOtoceiiiiiiiiiiiiiie et 496
A.21 Flush InStruction MEMOTYc.ccovviiiiiiieeiiieeiiieeiree e e ereeeereeetreeetaeeeeraeesereeenenes 497
A.22 Flush Register WINAOWScoouiiiiiiiiiiieiiesiieeiie ettt ettt e e 499

Table of Contents xvii

xviii

A23
A24
A25
A26
A27
A28
A29
A30
A3l
A32
A33
A34
A35
A36
A37
A38
A39
A.40
A4l
A42
A43

A44
A 45

[llegal INStruction TIAPeeeeceiieeiieeiiie ettt e e 500

Jump and LinKooeoii et 501
Load F1oating-PoOMntcocouiiiiiiieiiieeie ettt et seee et 502
Load Floating-Point from Alternate Spaceccccceevviieiiiieeiiieiiee e eeee e 504
| e T B 1)<, USRS 506
Load Integer from Alternate SPacecceeoueeeiiiieiiieriiieiiee et 508
Load Quadword, Atomic (VIS I) .ooooiiiiiiiii e 510
Load-Store Unsigned BYteccoociiiiiiiiiiiieiie e 512
Load-Store Unsigned Byte to Alternate Space ..cccooiiiieiiieiieeceeeee e 513
Logical Operate Instructions (VIS T) ...coooiiiiiiiiieeee e 514
L0gical OPETrationscceceeuiieiiieeiieeeiie et et e e ee e st ee e st e et e et e e sneeesnteeeaneeennns 517
MEMOTY BATTIET ...eiiiiiiieeiiieeiie ettt ettt e et e e e snteeenneee e 519
Move Floating-Point Register on Condition (FMOVCC) ..ccceevviiiiiiiiiiiieiiieeiee 524
Move Floating-Point Register on Integer Register Condition (FMOVr) 529
Move Integer Register on Condition (MOVCC) ...ocoviieviiieiiiieiiieeieece e 531
Move Integer Register on Register Condition (MOVT)ccoevviiiiiiieiiiieniieeieene 536
Multiply and Divide (64-Dit)eeeeiuiieriiiieiiiiesie et 537
INO OPCIALION ...ieiiiieieie ettt ettt e et e et e e et e e st e ebeeeenneeeenseeennneeeneeean 538
Partial Store (VIS I) ettt etra e e e e eabe e e e e 540
Partitioned Add/Subtract Instructions (VIS T)cooooviviiiiiiiiieeeee e 542
Partitioned Multiply Instructions (VIS I) ...ccooeeiiiioiiiiiieeeeee e 543
A.43.1 FMULSX16 INSIUCtIONeovveeniiiiiiiiieiienieenicctcceeieese e 545
A.43.2 FMULSXIO6AU INStIUCtION ...cceeviiiiiiiienieiniiiiieeieeieenec e 545
A.43.3 FMULSXIOAL INStrUCION ...covvviuiiiiiiiiieieeniiceiecieeiecnee e 546
A.43.4 FMULSSUXI6 INSIUCTION ...eovviiiiiiiiiiieeniieniicnieeieeiecnee e 546
A.43.5 FMULSULXI16 INStIUCION ...eoviiuiiiiiiiiieniieniieiieeieeieenee e 547
A.43.6 FMULDSSUX16 INStructioncccccocueenieeneeniiiieeieeieenieereeieeniee e 548
A.43.77 FMULDSULXIO6 INStrUCtIONeeouviruiieiienieiniiiiieeieeieenee e 549
Pixel Compare (VIS I) oottt 550
Pixel Component Distance (PDIST) (VIS T) .ooooiiiiiiiiiieeeeeeece e 552

UltraSPARC Ill Cu User’s Manual < January 2004

A .46

A 47
A48

A49
A.50
A5l
A52
A.53
A54
A.55
A.56
A.57
A58
A.59
A.60
A61
A.62
A.63
A.64
A.65
A.66
A.67
A.68

Pixel Formatting (VIS I) ..eoooiiiiie e
A46.1T FPACKILO oot e
A46.2 FPACKS2 oo
A46.3 FPACKFEIX ..ottt e
A46.4 FEXPAND ..ottt
A.46.5 FPMERGE ...cciiiiiiiiiiie e e
Population COUNEc.oeiiiiiiiiee ettt e e e et eeneeeeneee s
PrefetCh Dataoooeiieeee e
A.48.1 Prefetch Instruction Variantscceeceevrieeiiieeniie e
A.48.2 New Error Handling of Prefetchescoccceviiiieiiiieiiieeeeee e
Read Privileged REGIStErc.eeiiiiiiiiiieiie et
Read State REeGISIEroviiiiiiiiieiie et
RETURN ottt ettt ettt enees

Short Floating-Point Load and Store (VIS I) ..occevveiiieiiiieieee e
SHUTDOWN (VIS 1) ittt ettt
Software-Initiated RESEtc.cociiriiiiiiiiiiiiii i
Store F1oating-POiNtcccuiiiiiiiiiieeie et e
Store Floating-Point into Alternate SPaceccoccveviiieiiieeiiie e
SEOTE INEEZET .neeeeeiieiiiiee ettt ettt e ettt e st e e s ebbee e e e
Store Integer into AIternate SPACEccceevuiiiiiieeiiie et
SUDIIACE ...ttt ettt st en
TaEEA Add ..
Yo eTa B o] o SR
Trap on Integer Condition Codes (TCC) ..vvrerriiiriiiieiiiieiiee e
Write Privileged REGISTETc..ooviiiieiiiiiiiie ettt

Table of Contents

Xix

XX

A.69 Write State REGISIEr ..oc.eeiiiiieiiieeiiie ettt ettt 600
A.70 Deprecated INSIUCIONSoeeiiireiiieiiiieeiieeeiie et e eee et e ettee et eesneeeenneeeeneeens 603
A.70.1 Branch on Floating-Point Condition Codes (FBfcc)ooocvvveviiieiiiennnnen. 603
A.70.2 Branch on Integer Condition Codes (BicC) ...ccevevvveeeiiiieriiieniiieieeeienn 605
A.70.3 Divide (64-Dit/32-Dit) ..ccerieviriiiieniieiiereseee e 608
A.70.4 Load Floating-Point Status Registercccccceeviiiiiiieiiienieeieeeene 611
A.70.5 Load Integer Doublewordcccoeiiiieriieeniie e 612
A.70.6 Load Integer Doubleword from Alternate Spacecccccceeveveerueeennnnnn. 614
AT0.7 MUltiply (32-Dit) ceeeveeieieiiiiieiesieeiese et 616
A.70.8 MUltiPLY SteP oveeeiiiieiiie et 617
A.70.9 Read Y REZISIET ..ooviiiiiiieeiie ettt 619
A.70.10 StOTe BAITICT ...oovviiiiiiiiieiieiieniieeit ettt et n 619
A.70.11 Store Floating-Point Status Register LOWerccoccveeiiiiniiienieeeeen. 621
A.70.12 Store Integer Doublewordcccoeeiiiiriiieniie e 622
A.70.13 Store Integer Doubleword into Alternate Spaceccccoceevvveerveeennnnnn. 623
A.70.14 Swap Register With MEemMOTYccccociieriiieriiieiiie e 625
A.70.15 Swap Register with Alternate Space Memorycccccceeeevveviveenueeennnnn. 626
A.70.16 Tagged Add and Trap on OVerflowcccceeveiiieiiiieiiiecii e 628
A.70.17 Tagged Subtract and Trap on OVerflowccccoeoeeeiiiiiiiieniiieieeeeee 629
A.70.18 WIite Y REZISLET .uveieiiiieiiieeciie ettt 630
Assembly Language SYNEAXccccvverecsssseniesisssnricssssssssssssssssssssssasssssssssssssssssasssssssosssssssssas 633
B.1 NOtAtION USEA ..c.veeniiiieiiiiiiiiiriccietre ettt sttt 633
B.1.1 REgIStEr NAMES ...eevviiiiiieiiiicciie et et e e tre e et e b e e ssveeeneneees 634
B.1.2 Special SYmMbol NamMEScccveieriiiiiiieiiie e e 634
B.1.3 VALUES .ottt ettt 637
B.14 LaBEIS .uviiiiiiiieeieteeee ettt 637
B.1.5 Other Operand SYNEAXcccccccvieeeiiieriiieeriie et eereeesreeeseeesreeesreeeseneeanns 637
B.1.6 COMMENLS ...eviiiiiiiiiiiieie et 638
B.2 SYNLAX DESIZN ..vveeivviieiiiieiiie et etee et e et e et e e ebeeetbeeetaeessbeeeseseeessseessseeessseeesseens 638

UltraSPARC Ill Cu User’s Manual < January 2004

B.3 Synthetic INStIUCTIONSoiiiiiiiiiiieeiii ettt e e et seeeeeneee e 638

Section IX: Index

19. ReViSION HISTOIY .uuueiiiiiieiiiiiiiiiiiinietticinnetiicnineetecssnentecsssnsessssssssesscssssssesssssssessessnsessns 671

Table of Contents XXi

XXii UltraSPARC Ill Cu User’s Manual < January 2004

List of Figures

FIGURE 2-1

FIGURE 2-2

FIGURE 2-3

FIGURE 3-1

FIGURE 4-1

FIGURE 5-1

FIGURE 5-2

FIGURE 5-3

FIGURE 5-4

FIGURE 5-5

FIGURE 5-6

FIGURE 5-7

FIGURE 5-8

FIGURE 5-9

FIGURE 5-10

FIGURE 5-11

FIGURE 5-12

FIGURE 5-13

FIGURE 5-14

FIGURE 5-15

Two-Processor Configuration with the UltraSPARC III Cu ocooiiiiiiiiiiiiicicceccce 14
Multiprocessor System with the UltraSPARC III CU ..ocvvevieeiiiieieeee et 16
Very Large Multiprocessor System with the UltraSPARC IIT Cu ...cooiieiiiiiiniiceeee e 17
UltraSPARC III Cu ATCRItECEUIE .o.evieiiiiiieiiiieiie ettt ettt st bee e e 24
Instruction Pipeline Diagram Instruction Dependenciesc..cccoovveviiieieieiienienieieieneenee 40
Signed Integer Byte Data FOrmatoccooiiiiiiiiiiieceeee e 68
Signed Integer Halfword Data FOrmatccccooiiiiiiiiiniiiiicicec e 68
Signed Integer Word Data FOrmMAt cccoeviiiiiiiiiiiieiericesee et ee et ve e 68
Signed Integer Double Data FOrmatoccooieiiiiiiiiieiec e 68
Signed Extended Integer Data Format —c..cocooiiiiiiiiiiiiniicceceeee e 69
Unsigned Integer Byte Data FOrmMatcccoviiiiiiiieiecie et 69
Unsigned Integer Halfword Data FOrmat —occooiiiiiiiiieiceeeee e 69
Unsigned Integer Word Data FOrmat —........cccocoviiiiiiiiiniiieiecce e 70
Unsigned Integer Double Data FOrmatccccoovvieiieriienieiieeie et 70
Unsigned Extended Integer Data FOrmat —oocooiiieiiiiiiiieeece e 70
Tagged Word Data FOImat ccooiiiiiiiiiiiiiiecc et 70
Floating-Point Single-Precision Data FOrmatccccccooviiiiiiiiiiiiieiiecieieeereeeeie e 72
Floating-Point Double-Precision Double Word Data Format —cccceoeieiiieicieecee 72
Floating-Point Double-Precision Extended Word Data Format —c.ccoccoininininincncnene 73
Floating-Point Quad-Precision Data FOrmat —ccceccieviieiieiiieiiiiieic e 74

xXiii

XXiv

FIGURE 5-16

FIGURE 5-17

FIGURE 5-18

FIGURE 6-1

FIGURE 6-2

FIGURE 6-3

FIGURE 6-4

FIGURE 6-5

FIGURE 6-6

FIGURE 6-7

FIGURE 6-8

FIGURE 6-9

FIGURE 6-10

FIGURE 6-11

FIGURE 6-12

FIGURE 6-13

FIGURE 6-14

FIGURE 6-15

FIGURE 6-16

FIGURE 6-17

FIGURE 6-18

FIGURE 6-19

FIGURE 6-20

FIGURE 6-21

FIGURE 6-22

FIGURE 6-23

FIGURE 6-24

Pixel Data Format with Band Sequential Ordering ShOWN cccoooiiiiiniiniiniiiienieeeeeeee 76

Fixed16 VIS Data FOrmat —ccociiiiiiiiiiiiicicieeece et 76
Fixed32 VIS Data FOIMAat ccc.coveiiiniiieieiiecceeeteetee ettt 77
Three Overlapping Windows and the Eight Global Registers —occovveeriniienienienienienieiee 83
Windowed I Registers for NW NDOWE = 8 ..o..oiiiiiiiiiee ettt 85
Integer Unit r Registers and Floating-Point Unit Working Registers —.........c.ccocevinininenenennne. 90
State and Ancillary State REZISIEIS eovveeiiiriiiiieiieiie ettt st 91
Privileged REGISTEIS ..ooociieiiieieiieiieitie ettt eite ettt ettt et et eseaeesteessaessaeenseeseesnneensaenseesnneenes 93
ASI and Specially Accessed REZISIEIS cciiiriiiiiiiiieiee e e 95
Y REZISIET ovietietiitieteteetett ettt ettt ettt ettt ete et e b e b et esseseeteeseeae s e s essesseseeseebeebe s e b ensessetsenseneeneas 96
Condition Codes REGISTET ..c.ieiuiieiieiieiieeie ettt et et et eete et e teestaeseaeeseessaessnesnseeseenes 97
Integer Condition Codes (CCR i €C and CCR_XCC) ..oovveieieieiiceceeeeeeeeeeeee e 97
Address Space Identifier REZISIET coouieiiiiiiiiiiiiee ettt 98
Floating-Point Registers State REGISTEr ccccieviiiieiiieieiieeie ettt 99
Dispatch Control Register (ASR 18) .ouiiiiiieieee e 101
Graphic Status Register (ASR 19) oottt et 103
SOFTINT, SET_SOFTINT, and CLR_SOFTINT Register Formatsccccooceevinvieneerienienns 104
Timer State REZISIEIS ..ooiiiiiiieiiitiiiee ettt ettt e e e eneeas 106
Trap State Register FOIMAt cooiiiiiiiiiiieieie ettt et 110
Trap Stack and Event EXamPpPIe c.oooieiiiiiiiiieieieeee e 111
Trap Base Address REZISIEr oouiiiiiiiiiieeie ettt 112
Trap Vector Address FOrmat c.oooiiiiiiiiiiie et st 112
PSTATE FIEIAS .ottt 112
Trap Level REGISIET ..c.ooiuiiiiieiiee ettt ettt et e 117
Processor Interrupt Level REISTET coouiiiiiiiiiiiiiii ettt s 118
WBTATE REEISTET ittt ettt ettt ettt ettt et e s et e st esseaseseeseesessesene 120
VErSion REGISIET ..o.eiiiiiiiiiiieie ittt ettt b e et es et et et e e enbe s 121

UltraSPARC IIl Cu User’'s Manual « January 2004

FIGURE 6-25

FIGURE 6-26

FIGURE 6-27

FIGURE 6-28

FIGURE 6-29

FIGURE 6-30

FIGURE 6-31

FIGURE 7-1

FIGURE 7-2

FIGURE 7-3

FIGURE 7-4

FIGURE 7-5

FIGURE 8-1

FIGURE 8-2

FIGURE 11-1

FIGURE 11-2

FIGURE 11-3

FIGURE 11-4

FIGURE 11-5

FIGURE 11-6

FIGURE 11-7

FIGURE 11-8

FIGURE 11-9

FIGURE 11-10

FIGURE 11-11

FIGURE 11-12

FIGURE 11-13

FSRFIelds RESEIVEA BIS .viiiviiieiiiiiiiiieceie ettt ettt ettt et ereeea e e e e eaeeeaaeeaeans 122

Trap Enable Mask (TEM) Fields of FSR c.ccooiiiiiieeeeeeeeeee e 128
Accrued Exception Bits (a€XC) Fields of FSR cccoiiiiiiieee e 129
Current Exception Bits (C€XC) Fields of FSR ... 129
DCU Control Register Access Data Format (AST4516) ..ooveviieiiiiiieeeeeeeeece e 133
VA Data Watchpoint Register FOrmat —cccooiiiiiiiiiii e 137
PA Data Watchpoint Register FOrmat —.........ccccoooiiiiiiiiiiiiiieeeeeee e 137
Summary of Instruction Formats: Formats 1 and 2cccooviieiiiiiienieicieee e 175
Summary of Instruction Formats: Format 3 ..o 176
Summary of Instruction Formats: Format 4 ..o 177
Big-endian Addressing CONVENTIONS ...cc.eecverierierieeieeieeieeteesieesteeseeessaessaessaesssesnseeseenseesseens 181
Little-endian Addressing CONVENTIONS ...o.eeieiiiiiiiieiieieieeie ettt ene 182
ASI Source and Function Conceptual Diagram ccooceviiiiinienienienieeeeeeeeeee e 187
AST GIOUPS coeeieeiiite ettt ettt ettt ettt e et e ettt e e et ee ettt eeaabe e e esa e e e eate e e etteeeentteeenteeeannaeeeennreas 188
Virtual-to-Physical Address Translation for All Four Page Sizesccccocivininininineeee 246
Software View of the MMU ..o 247
Translation Storage Buffer (TSB) Translation Table Entry (TTE) ...cccooiviiininininicciee 248
TSB Organization, Illustrated for Both Common and Shared Casescccceceveiriiinencnennnnn. 252
Formation of TSB Pointers for 8 KB and 64 KB TTE ccccoiiiiiiiiiiiciciccce e 256
D-MMU Primary Context REZISTEr cceevuiiiiiiiieiieeie ettt 265
D-MMU Secondary Context REZISTEr ...ocvevuiiuieiieieiieiieieerec et 266
Tag Access Extension Register Format for Saving Page Sizes Informationcccccecveeeneeee. 268
D-MMU Primary Context REZISTEr cceeiiiiiieiieiieeie ettt 278
D-MMU Secondary Context REISTEr cvevuiiuieiieieiiitieieesc et 278
D-MMU Nucleus Context REZISIET cc.eeruiiiiiiiiiiieieeieeieeit ettt st st 278
D-MMU TLB Tag Access Registers FOrmatcccoviieieiiiniiiiiieieeeeeeie e 279
D-MMU TLB Data Access Address FOrmat —c.oceoveivinieinineinincieineeeneeeeneeeeeeenee 282

List of Figures XXV

XXVi

FIGURE 11-14

FIGURE 11-15

FIGURE 11-16

FIGURE 11-17

FIGURE 11-18

FIGURE 11-19

FIGURE 11-20

FIGURE 11-21

FIGURE 11-22

FIGURE 11-23

FIGURE 11-24

FIGURE 11-25

FIGURE 11-26

FIGURE 11-27

FIGURE 11-28

FIGURE 11-29

FIGURE 11-30

FIGURE 11-31

FIGURE 11-32

FIGURE 11-33

FIGURE 12-1

FIGURE 12-2

FIGURE 12-3

FIGURE 12-4

FIGURE 14-1

FIGURE 14-2

FIGURE 14-3

D-MMU TLB Tag Read REIStEIS ...cc.eoiiiiiiiiieiieiiesiie sttt st 283

MMU Tag Target REGISTETS ...ccueecuierieeiieitieriieeie et eitesteeseeeteesteeseaeeseesseesseesssesnseesseesssesnseanne 283
MMU Data TSB REZISTEIS ..eeiiuieiieiieiieieiteeiiete ettt sttt ettt ettt et et eeeeensesbe e enesneas 284
MMU Data TSB EXtension REISIEIS c.cooieiiiiiiiieiiieieeic ettt 285
D-MMU TSB 8 KB/64 KB Pointer and D-MMU Direct Pointer Registerccccoevvevienieninns 286
MMU Data Synchronous Fault Status Registers (I-SFSR, D-SFSR) ..o 287
MMU Data Synchronous Fault Address Register (D-SFAR) ...ocooiiiiiiiiiiiceicieeeee 289
MMU Demap Operation Address and Data FOrmats —..........cccoceecienienienienienceeceee e 290
MMU TLB Diagnostic Access Virtual Address —......ooooereiiriiieieieneseeeeeeeee e 292
D-MMU TLB CAM Diagnostic REZISLETS ...c.eeviiriiriieiieiiieieeieeieeit ettt st 293
[-MMU TLB Tag AcCess REZISIETS ..veevieiieiiieiieeieeiee ettt eieesieeseveenreeaeeseeesnaessseenseenseenes 299
I-MMU TLB Data Access AdAIESS ccccvviriirieirinieieiienceeeniereeeteereeee et sreneaeenens 301
[-MMU TLB Tag Read REZIStEIS ...cccueeiuiiiiiiiieiieiteiee sttt sttt st 302
MMU Tag Target REGISTETS ...ccveecuieiieeiieitieriieeie et ettesieeseeeteesteeseaeeseesseesseesssesnseenseesseesnseanne 303
MMU Instruction TSB REGISIETS ..c.veueeuiiiieiiiiiieieieiieii ettt eaeeneas 303
MMU Instruction TSB EXtension REZISTETS ccueeiuiiiiiiniiiiiieiieiieieeiceieeicee e 305
I-MMU TSB 8 KB/64 KB Pointer and [-MMU Direct Pointer Register —..........cccocevvevienieinns 305
MMU Instruction Synchronous Fault Status Registers (I-SFSR, D-SFSR) ...coooeiiiiiiiiine 306
MMU Demap Operation Address and Data FOrmats —.........ccoocevieiieniinienieneeceeeceee e 309
MMU TLB Diagnostic Access Virtual Address Format —........ccccoooeviiviiinienieeeieceeeeeeeeene 310
Processor State DIAZIAM .o..ooiiiiiieiiiieiee ettt ettt an 317
Trap VECtOr AQAIESS .oovieiiiiiieiieite ettt ettt et ettt et sbt e st e et esbteebeebeesieee e 325
Trap Table LAYOUL ...oooiieiieiiieeieeiie ettt ettt ettt et e et ee st e et e e ssaeenbeeseesnsaenseesssesnseeenes 326
Trap Type Encoding for Spill/Fill TIapS ..ooeeeeieieriieseeieee e 331
Performance Control REGISTET couiiiiiiiiiiiiiieeitet ettt sttt e e i 364
Performance Instrumentation Counter REZISTEr cceeviieiiiieeieiieeie sttt 366
Operational Flow Diagram for Controlling Event Counters —coceeeveeeenieieienienieeeieenes 368

UltraSPARC IIl Cu User’'s Manual « January 2004

FIGURE 14-4

FIGURE 14-5

FIGURE 14-6

FIGURE 15-1

FIGURE 15-2

FIGURE 15-3

FIGURE 15-4

FIGURE 17-1

FIGURE A-1

FIGURE A-2

FIGURE A-3

FIGURE A-4

FIGURE A-5

FIGURE A-6

FIGURE A-7

FIGURE A-8

FIGURE A-9

FIGURE A-10

FIGURE A-11

FIGURE A-12

FIGURE A-13

FIGURE A-14

FIGURE A-15

FIGURE A-16

DiSPAtCh COUNLETS ..iuiiiiieiiii ettt ettt ettt et ettt et e s bt e st e e bt e saeesate e beesabeenbeenaeesaneeas 371

D-Cache Load Miss Stall REZIONS occvieiieriieiiieiiiecie et eie ettt ettt seesete e srbeeaeeseeseesaee e 377
Data Locality Event Tree for L2-cache MiSSES cccooeiiiiiiiiiiiiieieeeeseece e 381
Instruction Cache OrganizZation c.ccooceeeiiiiiiieiieniiente sttt e st e sitesatesebeebeenbeeneeesaee e 388
Handling of Conditional Branches —.........c.ccccieiiiiieiieiienie et 391
Handling 0f MOV ECC ..ottt ettt ettt e e e ens 391
Logical Organization of Data Cache coociiiiiiiiiiiiiiiiceeee e 393
Floating-point NUMDET LANE cccviiiieiiieiieiieeie ettt ie ettt teeveebeessaesneesnseensaens 411
Three-Dimensional Array Fixed-Point Address Format —.........ccccooviiiiniiininiiniicnienceeee 458
Three-Dimensional Array Blocked-Address Format (Ar r ay8) ...coccooovveieieieieieeeceeee 458
Three-Dimensional Array Blocked-Address Format (Ar r ay16)ccccooeeveieieieieieneeieennn, 458
Three-Dimensional Array Blocked-Address Format (Ar r ay32) ..ocoovoveieeeieieeeeeeeeee 459
FIMULBX 16 OPEIAtiON ...vecvvivieeiiiieeieeiieieeieeteete ettt ete s ete e ereessesreessesreessesseessesneensesaeensesneas 545
FMULBXLOAU OPETatiON ..ocueeviieiieieieiietietieteste et eie ettt sttt et esesaesesseseeseeseesessenseneeneens 546
FIMULBXLOAL OPEratiOn ..ocuecuieuieieieiieiietietietieteiesieteetteteetesaessesseseeteesessesessesseseesessensensesseseens 546
FMULBSUX LGB OPEration ...coeevieviiiiiiieiieiietietietesteieseeteeteereesessessesaeseesessessesessessessesessessessessens 547
FMULBLUXLE OPEIratiON ...eeeveuieieeiieiiieteietenieieieseetetetetetesesteseetesesaeteseeseneeseseeseseseeseneeseneasas 548
FMULDBSUX 16 OPEIation c.ocuiivieviiiiieeieeietietietee ettt ettt es et ese s e eaeanens 549
FMULDBULX LG OPEIation ccceocvieeiirieiieiieiieiieteeieeteeteeteeeeeteesseereessesreesaesseesaesseensessesnsesneas 549
FPACKLE OPEIation ceeieiieiiiiiiieieieiieti ettt ettt ete st e st ettt saesbesbessesseseeseeseesessensens 555
FPACKSB2 OPEIation ccieieiieiiiiiiieieieiett ettt ettt ettt ettt ettt eseeaesbesbessesseseeseeseesassensens 556
FPACKFT X OPEIAtiON ..o.ocieiieiiiiiitiiiieiietiete ettt ettt eteeae st esaeseeseeseebessesessessesseseesessensens 557
FEXPAND OPEIAtiON ..eouieiiiiieiiitiiteieieitettete sttt ettt sttt ettt et sae bttt es e eneebestesaeneens 558
FPMERGE OPEIation oociouiieiitiiiiiieeeeete ettt ettt ettt eas e eae et et easeseeseeanasens 559

List of Figures XXVii

XXViii UltraSPARC IIl Cu User’'s Manual « January 2004

List of Tables

TABLE 1-1

TABLE 1-2

TABLE 4-1

TABLE 4-2

TABLE 4-3

TABLE 4-4

TABLE 4-4

TABLE 5-1

TABLE 5-2

TABLE 5-3

TABLE 5-4

TABLE 5-5

TABLE 5-6

TABLE 5-7

TABLE 6-1

TABLE 6-2

TABLE 6-3

TABLE 6-4

Integer/Floating-Point unf i ni shed_FPop Exception Conditionscccccoceeveveirivevennnna.
RAS FEAtUIES ..ooiiiiiiiiiiiii s
Processor PIpeline StaZES ociiiiiiiiiiieieteitee ettt
EXECUtion PIPEIINES .oouviiiiiiiiiiieeiie ettt ettt sttt st et
SPARC V9 Conditional MOVES ccuooviiiiiiiiiiiiiieiiicieeee et
EXECUtiON PIPELINES ..ooiieiiiieiieieie ettt ettt ene
UltraSPARC III Cu Instruction Latencies and Dispatching Properties —ccccoeveevevieenineennen.
Signed Integer, Unsigned Integer, and Tagged Integer Format Ranges cccccccoecivincncnnn
Integer Data ALINMENT .o.oiiiiiiiiiiei ettt ettt e e e et enee e e
Floating-Point Doubleword and Quadword Alignmentcccceeveereeiinienienieneeeeee e
Floating-Point Single-Precision Format Definition ccccocoviviniiiniiniiiiiiccnc e
Floating-Point Double-Precision Format Definitionc..cccooiiiriiiiiiieneeeeee e
Floating-Point Quad-Precision Format Definitionc...cccceeveriiiniiiiienieniececeeeee e
Pixel, Fixed16, and Fixed32 Data AlGNMENT oceeviieriieriieieeieeieeie e sve e see e
Integer Unit General-Purpose REISIErS cooiiieiiiiiiiieieeee e
32-bit Floating-Point Registers with AlIasing ccoceiviiriiiiienieneeeeeece e
64-bit Floating-Point Registers with ALIaSING cccceevieiiiiieriieeeieeie e

128-bit Floating-Point Registers with Alasing ccccoiiririiieieeeeeeeee e

XXiX

XXX

TABLE 6-5

TABLE 6-6

TABLE 6-7

TABLE 6-8

TABLE 6-9

TABLE 6-10

TABLE 6-11

TABLE 6-12

TABLE 6-13

TABLE 6-14

TABLE 6-15

TABLE 6-16

TABLE 6-17

TABLE 6-18

TABLE 6-19

TABLE 6-20

TABLE 6-21

TABLE 6-22

TABLE 6-23

TABLE 6-24

TABLE 6-25

TABLE 6-26

TABLE 7-1

TABLE 7-2

TABLE 7-3

TABLE 7-4

TABLE 7-5

Floating-Point Register Number ENcoding ccooeeiiiiiiiiiiiiieceeieeeeeeice e 88

State and Ancillary State REGISIEIS ...c.oocierierieiieeieeie ettt ettt ettt seeseeesneesneeeseeneeas 92

Privile@ed REZISIEIS .o..iiiiiiiiieiiiti ettt ettt ettt ettt be s e e eaean 94

ASI and Specially Accessed REISIEIS oceeiiiiiiiiiiiiiie ittt 95

DCR Bit DESCIPON .ooviiiiiiciieiteee ettt ettt et ettt ettt ene e aeeae s e 101
GSR Bit DESCIIPLION 1.veuieuieiiiiiiiieieeiete ettt ettt sttt sttt s e teesesae s e st eseeseesessenseneeseenenes 103
Register-Window State REZISTETS ocuiiiiieiiieiiieniieiie ettt et st s 104
SOFTINT Bit DESCIIPHIONS ..eevieiuiieiiieiieiieeteeieeieesieestesteesieeseeessteenseesseesssesnseenseesseesseesnsesnnes 105
Timer State REZISIEIS ..ooiiiiiiiieiiitiiiee ettt ettt st enee e e eneeas 106
Trap Stack Register Power-On and Normal Operationccccceeeeiieiienienienienieeniceiesieeee e 111
PSTATE Global Register Selection EVENS c.ceoviieiierieiiieiiceeeeeeeeeeeeee ettt 113
MM ENCOGINGS oottt ettt ettt ettt et e et a et bt e e bt e e bt ens et e e e enbeenean 115
Register-Window State Privileged RegIStErs coceeiiieiiiiiiiiiiiiieiiceieeec e 118
Processor Implementation COAES cccuieiiierieiieeieiie ettt ete st eae et et saeeseaeenaeenseeseennee e 121
UltraSPARC IIT Cu Processor Mask Version Codesccevevveereivencineneeneineneeeneeeenenes 121
Floating-Point Condition Codes (f ccn) Fields of FSR coovoviiiiiiiiceeeeeee 123
Rounding Direction (RD) Field of FSR ocoiiiiiiiieeeecee e 124
Floating-Point Trap Type (ftt) Field of FSR ..o 125
Standard Conditions in Which unfinished_FPop Trap Type Can Occur —.......cceceveeviereenienienns 127
Setting Of FSR.CEXC BItS .ooiiiiieiieiiecie ettt ettt st e st eenaeennes 130
DCUCR Bit Field DESCIIPLIONS ..eeviitieiieieiiieiieiesie ettt ettt st ees 133
ASIs Affected by Watchpoint TTaps ..oc.eoiieeiiiiiiieeceeeeeeeee et 136
MOVI and FMOVI Test CONAItIONS c.ceoiiriieieiiiiieiirneeteieiec e 145
Control Transfer CharaCteriStiCS coevevrirerieirinieiei et ettt sttt nene 161
Instruction Summary for the Integer Execution Environment —ccccoceeviinieniineniencnnieeiee 166
Instruction Summary for the Floating-Point Execution Environment c..cccocvveninincnennn. 170
Instruction Summary for the VIS Execution Environment —..........ccccooceiininiinininincncecece 172

UltraSPARC IIl Cu User’'s Manual « January 2004

TABLE 7-6

TABLE 7-7

TABLE 7-8

TABLE 7-9

TABLE 7-10

TABLE 7-11

TABLE 8-1

TABLE 8-2

TABLE 8-3

TABLE 8-4

TABLE 9-1

TABLE 9-2

TABLE 9-3

TABLE 9-4

TABLE 9-5

TABLE 10-1

TABLE 10-2

TABLE 10-3

TABLE 10-4

TABLE 10-5

TABLE 10-6

TABLE 10-7

TABLE 10-8

TABLE 10-9

TABLE 11-1

TABLE 11-2

TABLE 11-3

Instruction Summary for Data CORETENCY cceeviiiiiiiiiiiiieiieee e 173

Instruction Summary for Register-Window Management —.........c..coceceverinienenencnienieceeene 173
Instruction Summary for Program Control Transferc..cccooviieieiiiiiineeeecee 174
Instruction SUMMAry Table coc.ooiiiiiiiiiiie ettt 174
Instruction Field INterpretation ccocceecuieriieiieriesie ettt ee e s saee s 177
Processor Actions on Unimplemented INStructions ccceeoveieienieienenineseececeeeee e 179
Processor SPECITIC ASIS .ouiiiiieiiiete ettt ettt st et 189
AST SUMMATY TaDIE .ooeiiiiiiieiieie ettt ettt et e st esrteebeesnaesnseessaesnneean 190
Operand ALIZNIMENT ..ottt ettt ettt e b et e st e et eneete s e eneeenes 192
ASI DETINITIONS .ottt ettt ettt e s e s et e e enaeeas 193
MEMBAR SEMAaNtICS ...ooviuiiiiiiiiiiiiiieit ittt 213

MEMBAR Rules for Column VA <12:5> # Row VA <12:5> While Desiring Strong Ordering 214

MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong Ordering ..215

ASIs That Support SWAP, LDSTUB, and CAS cooiiiiieeieeieeeeeeeee e 217
Types of Software Prefetch INStructions ccoeoiiiiiiiiiieee e 219
External Cache OrganizZations ccoeceeiiieiieesiienienie sttt ert ettt e sttt e b e sbeesaeesibeebeebeanee 228
Hit/Miss, State Change, and Transaction Generated for Processor Actioncccceccvevevevenennen. 234
Combined Tag/MTag StAteS ..ccecuiiieriiiieieie ettt ettt ettt e et st e e sbe e enee 236
Deriving DTags, CTags, and MTags from Combined Tagscccceeveriienieneenieniienieneeieeeene 236
Snoop Output and DTag TranSition ccceeveerieiieeiieeieerieerteeseeseesreeeeeteereeseesseesseessnesnnenns 236
Snoop Input and CIQ Operation QUEUEA ooeeiiiiiiiiiieieiereeeee et 239
Transaction Handling at Head of CIQ ooiiiiiiiiiiieieee e 240
No Snoop Transaction Handling ccceecieiiiiiieiiiieie ettt 242
Internal Transaction Handling coooiiiiiiiiii e e 243
TSB and TTE Bit DESCIIPLION ..ccueeiuieiiiiiiieiiieieesite sttt ettt sttt et site e ebeesbeesinens 248
MMU Trap Types, Causes, and Stored State Register Update Policy c.ccccecvveerenincncnennn 259
ASI Mapping for INStruction ACCESS ..eeveriertiiieieieeti ettt sttt sae e ene 261

List of Tables XXXi

XXXii

TABLE 11-4

TABLE 11-5

TABLE 11-6

TABLE 11-7

TABLE 11-8

TABLE 11-9

TABLE 11-10

TABLE 11-

—

TABLE 11-

2

TABLE 11-

—_

3

TABLE 11-

—

4

TABLE 11-

5

TABLE 11-

—_

6

TABLE 11-

—

7

TABLE 11-

8

TABLE 11-19

TABLE 11-20

TABLE 11-21

TABLE 11-22

TABLE 11-23

TABLE 11-24

TABLE 11-25

TABLE 11-26

TABLE 11-27

TABLE 11-28

TABLE 11-29

TABLE 11-30

AST Mapping fOr Data ACCESSES ..evueeriiiiieiieitieiie sttt ettt ettt e st e st ettt e bt enbeesbeesaaesateenne 262

[-MMU and D-MMU Context Register USAZE ccceevcieriieieiieeieiieeie e eee e eve e evesne e e 262
MMU SPARC V9 Annex G Protection Mode Compliancecccoocevenerieininieieieieieeeee 264
D-MMU Primary Context REZISTET ...cc.eeiiiriiiiiiiieiieiieeie ettt 265
D-MMU Primary Context REGISTET c.eeviieiiiiiiiiieiiesiie ettt see st reebe e e saeesenesnneens 266
Four-way Pseudo Random Selection cccooiiiiieiiiiiieeiese e 267
Tag Access Extension Register for Saving Page Sizes Informationc.ccoccevveniniinininnes 269
D-TLB ACCESS NUMDET ..ottt 270
D-MMU TLB ACCESS SUMIMATY ..eeetieiiiriieeieenieeniieniteeteeniee sttt et e steesiressaeebeesbeesaeesaneenseenee 273
D-MMU Table of Operations for Normal ASIS ...cccooiiiiiiiiiiiiiieieeeee et 276
MMU Internal Registers and ASI Operations cccccevveeierienienienieseeseeseesieeseeseeeseeeseeenes 277
D-MMU TLB Tag Access REZISTEIS ccuiiuiiiieieiiieiieieieeieeiie et 279
MMU TLB ACCESS SUIMMATY .eeetieiiieiieeteentteeiteeteenttesitesuteeteesteessteeteesseesseeenseenseesseesnsesnseenes 280
TLB Data AcCess REZISIET ...ociieiiiiiiiieeiieiteee ettt ettt et eeseseeseesaeeseneenns 282
D-MMU TLB Tag Read REZISIEIS ...cc.ovuiiiieiiiiiiiieieieiieeiee sttt 283
MMU Tag Target REGISTETS ...c.ueeriieiiiieiieiietieeite ettt st ettt ettt e st e st e nbeesaeesaeeenee 284
TSB Re@iSter DESCIIPLION .iccvieruiieiiieiieiieeite et eieesieeste et erteeseeeebeesbeesseessaesnseenseenseessneenseenseenes 284
D-SFSR Bit DESCIIPLION .eouiiitiiiieiiiiieieit ettt sttt nnas 287
MMU Synchronous Fault Status Register FT (Fault Type) Field ccoocoeiiiiiniiiiiicieee 289
Demap Address FOIMAt ...cc.oooiiiiiiiieiic ettt sttt e snaeeseesnaeenseenes 291
TLB Diagnostic Register Virtual Address Format —cccooooiiiiiiiinieeececeee e 292
CAM Diagnostic REGISTET ..eoouiiiiiiiiiiiiieeiiet ettt ettt ettt et e e st e s e ebee e 293
Bypass AriDULE BitS ...c.ioiieiiieiieiie ittt ettt sttt s be b e nnee e e 294
[-MMU TLB ACCESS SUMIMATY .eoutietieiieniieeieeieenitesiteeiteenteesieesireebeeseeesieesseeesteenbeesbeesanesseenne 296
I-MMU Table of Operations for Normal ASIS coceiriiiiiiiiiee e 298
I-MMU Tag AcCCESS REGISTET .o.vvieiiieiieiieeieeit ettt et e et steesiae e eseesaaessaeenneenseenes 299
MMU TLB ACCESS SUIMMATY .eeeiieiiiriieeieeniteniteeieenttesteesteeteesieesbeeeteesbeesbeeeateenbeesbeessneenseenee 300

UltraSPARC IIl Cu User’'s Manual « January 2004

TABLE 11-31

TABLE 11-32

TABLE 11-33

TABLE 11-34

TABLE 11-35

TABLE 11-36

TABLE 11-37

TABLE 11-38

TABLE 12-1

TABLE 12-2

TABLE 12-3

TABLE 12-4

TABLE 12-5

TABLE 12-6

TABLE 12-7

TABLE 12-8

TABLE 12-9

TABLE 13-1

TABLE 13-2

TABLE 13-3

TABLE 13-4

TABLE 13-5

TABLE 13-6

TABLE 14-1

TABLE 14-2

TABLE 14-3

TABLE 14-4

TLB Data Access REZISIET ..c..iiiuiiiiiiiiiiieie ettt e e s eae
[-MMU TLB Tag Read REZISIET ...ccueevuiieieeiieieeiieriieeie ettt ettt seeete e sseesieesneesnneenseens
MMU Tag Target REGISIET ..oceeiiiiiiieieiiieiee ettt sttt
TSB Re@iSter DESCIIPLION ..eoeuviiiieiiiiiieiit ettt ettt ettt ettt et e sttt ebe e bt e siaeeabeenbeenaeens
SFSR Bit DESCIIPLION .eecuviiiiiiieeiieeiieiieeie ettt siee sttt teesaaessteessaesstessseenseesseessseenseeseessneenes
MMU Synchronous Fault Status Register FT (Fault Type) Field —ccocoooeiiiiiniiiien
Demap Address FOTMAt ooiiiiiiiiiieeee ettt sttt
MMU TLB Diagnostic Register Virtual Address —.......coocoveevieiieeiiieiieiiecieceeeee e
RED_state Trap Vector Layoutc...coooiiiiiiiiiiiiiiceccereceec e
Typical Usage for Trap LEeVEIS ...couiiiiiiiiiiieeee ettt
Exception and Interrupt Requests, by TT ValUe ...ccoocieeiieiiieiiiieeiececeee e
Exception and Interrupts Requests in Priority Order —.........cccoooiiiiinininiiiiieeeeee e
Trap Types for SPIll/FIll TTAPS .oovieiieiieiieeiie ettt sttt e
Two New Traps Added for D-cache and I-cache Parity Error —.......ccccovievieiienieniiiiecieeeee
Trap Received While in XeCUte_STAtE eoeeieiiiiiiiiieieieier e
Trap Received While in RED_STate c.cociiiiiiiiiiieiiecic ettt
Reset Received While in €F I OF _ST At € .oooiiiiiiiieece et
Outgoing Interrupt Vector Data Register Format —cccoocooiiiiiiiiiiieeeeeeeeee
Interrupt Vector Dispatch Register FOrmat —occooiiiiiiiiiiiiiieeececeeeeeeee e
Interrupt Dispatch Status Register FOrmat —occoeciieieriiiiieciecte e
Incoming Interrupt Vector Data Register Format —c.coocooiiiiiiiiiiceeeeeee
Interrupt Receive Register FOrmMat ocoooiiiiiiiiiiiieiiiceeec e
SOFTINT ASRS ettt sttt
PCR BIt DESCIIPON ..cuiiiieiiiiieiieiieieeieeie ettt ettt et ettt eaeste s eseeseesesaessesseneeseesesaensens
PIC Re@ISTET FICLAS ..eoutieiiiiiietietie ettt et sttt e
PIC Counter Overflow Processor Compatibility COmMpPAariSOncccoeeerveecvereeneeriesveneeneennns

Instruction Execution Clock Cycles and Counts —coceiiriiiininieieieeee e

List of Tables

XXXiii

XXXV

TABLE 14-5

TABLE 14-6

TABLE 14-7

TABLE 14-8

TABLE 14-9

TABLE 14-10

TABLE 14-11

TABLE 14-12

TABLE 14-13

TABLE 14-14

TABLE 14-15

TABLE 14-16

TABLE 14-17

TABLE 14-18

TABLE 14-19

TABLE 14-20

TABLE 14-21

TABLE 14-22

TABLE 14-23

TABLE 14-24

TABLE 16-1

TABLE 17-1

TABLE 17-2

TABLE 17-3

TABLE 17-4

TABLE 17-5

TABLE 17-6

Counters for Collecting ITU StatiStICS eevierierierieiieeie ettt st siee s 370

Counters for ITU Stalls ccoiiiiiiiiiiiiece e 371
Counters for R-stage Stalls cooiiiiiiiiieee e 372
Counters for Recirculation ccooiiiiiiiiiiii e 372
Counters for Instruction Cache EVENtscccocoviiiiiiiiiiiiiiiiiccecccceeeeeeeeeeeee 373
Counters for Data Cache EVENtS cooeoiiiniiiiiiiiciniicereeceneeeeesrce et 373
Counters for Write Cache EVENts ccooiiiiiiiiiiiiiicce e 374
Counters for Prefetch Cache EVENtS ccocooiiiiiiiiiiiiiiicicccecceeeceee e 374
Counters for L2-Cache EVENS ccooooieiiiiiiiciiincicetnecteescce et 375
Re_DC_missovhd Stall Counter Processor Compatibilityccccceveereriieniienienieeieeieneencee 376
Counters for Memory Controller Read EVENts ccooieviiiieiiieiieiieieeic et 378
Counters for Memory Controller Write EVENts coooveiiiiiiiiiiiieieeeceeeee e 378
Counters for Memory Controller Stall Cycles —......oocoiiiiiiiiiiiinieieeeeeeee e 379
Counters for Data Locality EVENtS ccooiiiriiiiieieciecieeeee et 379
Data Locality EVENTS ..oooiiiiiieiiiieee ettt ettt ettt ee s 382
Synthesized Data Locality EVENtS cocuiiiiiiiiiiiiiiieiie e e 383
Counters for System Interface StatiStICS ...c.eevierierierieiiei ettt es 384
Counters for SOftWare StatiStICS ccveverireeiriinieieireet ettt ettt snens 384
Counters for Floating-Point Operation StatiStiCs cccceevieriieriierieniienienieieeieeie et 385
PIC.SL and PIC.SU Selection Bit Field Encodingcccceoieriieiieiiieiicieceeeeesceeeieeiens 385
Types of Software Prefetch INStructions ocooeiiiiiiiieiieeee e 399
FSR.RD DIt OPHIOMS eeeeuiieiiiiiiieniie ittt ettt ettt ettt ettt et et e sate e bt e sbeesabeenbeesanesnbee e 408
F1oating-point NUIMDETS c.eevieiiiiiieriieeieeieesieeste et esteeseeeenteebeeseeeenbeenseesseesnseenseessnesssesseenes 409
Floating-point Addition ooiiiiiiii et 412
Floating-point SUDITACTION eoitiiiiiiiiiiiieiie ettt ettt sttt esaeesaeeene 413
Floating-point MUItIPLICAtION eciiiiieiieiieiie ettt ettt et saee e enbeenbeesseesseeseneenns 414
Floating-point DIVISION ...ceoiiiuiiiiiiiieiee ettt ettt ettt e e eeeas 415

UltraSPARC IIl Cu User’'s Manual « January 2004

TABLE 17-7

TABLE 17-8

TABLE 17-9

TABLE 17-10

TABLE 17-11

TABLE 17-12

TABLE 17-13

TABLE 17-14

TABLE 17-15

TABLE 17-16

TABLE 17-17

TABLE 18-1

TABLE A-1

TABLE A-2

TABLE A-3

TABLE A-4

TABLE A-5

TABLE A-6

TABLE A-7

TABLE A-8

TABLE A-9

TABLE A-10

TABLE A-11

TABLE A-12

TABLE A-13

TABLE A-14

TABLE A-15

TABLE A-16

TABLE A-17

Floating-point SQUAare ROOT ooouiiiiiiiiiiiieiee ettt ettt 416

NUMDET COMPATE .vieueieiiieiieeiieeieertieeteeteesiteeteesteeesseeseessteesseesssesnseesseessseenseesssesnseesseesnseensses 416
Precision CONVEISION ..cc.coveieuiiiirieieiieiiitintet ettt ettt ettt e ettt sae e ene st sa e eseenesaesrenn e 417
Floating-point to Integer Number CONVETSION c.cecueriirieiierieniiesiiesitesite et 418
Integer to Floating-point Number CONVETSION ccceeevieiieriienieiieeeeseiesieeseeesieeseeesseenseeseensens 419
Floating-point Unit EXCEPLIONS ...cuoiiiiiiiiiiiiiiieieiee et 421
RESPONSE 10 TTAPS -eeeeiieiieiiie ettt ettt ettt ettt e st e st b e satesate e bt e sateenbeesaeeeabeean 422
FP o Integer Conversions that Generate Inexact EXCEPtions ccccecevvevieiienieneenienieneennens 424
Underflow EXCeption SUMMATY oc.iiiiiiiiiiiieiieieeieies ettt st see e 425
Results from NalN Operands coceeiieiiiiiiiiiecesitece ettt st et eseeesaeeens 427
Subnormal Handling Constants per Destination Register Precisionccceeceveeevevcvenieecieninnns 430
Machine State After Reset and in RED_St @t @ ocvvooiiiiiiiiiiicceceee e 438
OPCOAE SUPETSCTIPES 1vveeiiieiiieiiesiieeteettestteeteesteestteetbe e beeseteesteebeesseeesseenseesseesnseenseesseesnseensaenn 448
INSEIUCHION ST .ot e 448
Three-Dimensional r[rs2] Array X/Y DIMENSIONS ..ccceoviereieniieniieniieieeieeeeeieeieeseesieeseeeieeneeas 458
Edge Mask SPEeCIfiCatiON c.covuieiiieiiieieeiiesiie ettt ettt s site ettt e st e eabe e b e saeesnneenn 482
Edge Mask Specification (Little-Endian) —........ccccocieiieiiininiiiiiiiineceeceee e 483
Floating-Point to Integer unf i ni shed_FPop Exception Conditionscccecevevrrrurrnnnnn. 489
Floating-Point/Floating-Point unf i ni shed_FPop Exception Conditionscccccceueee... 491
Integer/Floating-Point unf i ni shed_FPop Exception Conditionsccccevevevevreerenenne 492
MVEMBAR MBS K ENCOGINGS .ovvviiiieiiiiiiiieieieieie ettt 520
MVENMBAR CMBS K ENCOAINES ..cviveviictiiciceceieeceteeeeeteet ettt 520

MEMBAR Rules for Column VA <12:5> # Row VA <12:5> While Desiring Strong Ordering 522

MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong Ordering ..523

Types of Software Prefetch INStructions ccoeviriniiiiiiiniinceee e 562
Error Handling of Prefetch ReqUEStS cc.ooiiiiiiiiiiiieiieccce e 564
Shift Count ENCOGINGS ..o.veeiiieiiiiiieiieeie ettt ettt sttt esaeeseteenbeeseesnnee e 579
UDI V/ UDI Vcc Overflow Detection and Value Returned —........ccooveevevieneniieneireecee 609
SDI V/ SDI Vcc Overflow Detection and Value Returned cccoovveveinieeeninieecreeccens 610

List of Tables XXXV

XXXVi

TABLE A-18

TABLE B-1

TABLE B-2

UMULcc / SMULce Condition Code SEtHNGS ..cccveeveeierieeieiieeieeieeiiesiieeieesieesieeseeeseeesaeesinens
Value Names and VAIUES ...c.oooiiiiiiiieiiecieeicesie sttt st ettt st ettt e st ebeeaeeseeeenbeensee e

Prefetch FUNCHION VAIUES ..oocviiiiiiiicieicceee ettt e ave e e tae e eaaeeennes

UltraSPARC IIl Cu User’'s Manual « January 2004

Preface

Welcome to the UltraSPARC®III Cu User’s Manual. This book contains information about
the architecture and programming of the UltraSPARC III Cu processor, one of Sun
Microsystems’ family of SPARC® V9-compliant processors.

Target Audience

This user’s manual is mainly targeted for programmers who write software for the
UltraSPARC III Cu processor. This user’s manual contains a depository of information that is
useful to operating system programmers, application software programmers, logic designers
and third party vendors, who are trying to understand the architecture and operation of the
UltraSPARC III Cu processor. This manual is both a guide and a reference manual for
low-level programming of the processor.

A Brief History of SPARC

SPARC stands for Scalable Processor ARChitecture, which was first announced in 1987.
Unlike more traditional processor architectures, SPARC is an open standard, freely available
through license from SPARC International, Inc. Any company that obtains a license can
manufacture and sell a SPARC-compliant processor.

By the early 1990s, SPARC processors were available from over a dozen different vendors,
and over 8,000 SPARC-compliant applications had been certified.

In 1994, SPARC International, Inc. published The SPARC Architecture Manual, Version 9,
which defined a powerful 64-bit enhancement to the SPARC architecture. SPARC V9
provided support for the following:

64-bit virtual addresses and 64-bit integer data

XXXVii

Fault tolerance
Fast trap handling and context switching
Big-endian and little-endian byte orders

The UltraSPARC processor is the first family of SPARC V9-compliant processors available
from Sun Microsystems, Inc.

Prerequisites

This user’s manual is a companion to The SPARC Architecture Manual, Version 9. The reader
of this user’s manual should be familiar with the contents of The SPARC Architecture
Manual, Version 9, which is available from many technical bookstores or directly from its
copyright holder:

SPARC International, Inc.
2242 Camden Ave, Suite #105
San Jose, CA 95124

(408) 558-8111
http://www.sparc.org

The SPARC Architecture Manual, Version 9 provides a complete description of the

SPARC V9 architecture. Since SPARC V9 is an open architecture, many of the
implementation decisions have been left to the manufacturers of SPARC-compliant
processors. These “implementation dependencies” are introduced in The SPARC Architecture
Manual, Version 9.

XXXViii

User’s Manual Overview

This manual is focused on the treatment of the UltraSPARC III Cu processor. However,
sometimes it refers to the UltraSPARC III family of processors to indicate generality of a
certain feature. The term “UltraSPARC III family of processors” refers to processors that are
similar to the UltraSPARC III Cu processor.

This manual is divided into multiple sections. The following sections are described:

UltraSPARC IIl Cu User’'s Manual « January 2004

Processor Introduction

The processor introduction section describes the high level features of the
UltraSPARC III Cu processor. This section also discusses how the UltraSPARC III Cu
processor is used in a system.

Architecture and Functions

This section discusses the details of the UltraSPARC III Cu architecture and the functions of
various CPU units. An entire chapter is devoted to a discussion on the instruction execution
pipeline.

Execution Environment

This section describes the details necessary to understand the execution environment. Various
topics such as memory models, data formats, registers and instruction types are discussed.

Supervisor Programming

Supervisor software controls the processor and the instruction execution environment for
itself and application programs. Chapters are devoted to trap and interrupt handling.

Performance Programming

This section explores the opportunities to exploit the high-performance architecture of the
processor. Chapters are devoted to performance instrumentation and prefetch, two special
features of the UltraSPARC III Cu processor.

Instruction Definitions Appendix

This section describes, in detail, each instruction for the UltraSPARC III Cu processor.

SPARC V9 Architecture

The SPARC Architecture Manual, Version 9 was used to implement the CPU in the processor
to insure SPARC compatibility for user and application programs. The SPARC V9 manual
provides important theoretical information for operating system programmers who write
memory management software, compiler writers who write machine-specific optimizers, and

Preface XXXiX

anyone who writes code to run on all SPARC V9 compatible machines. Book copies of the
The SPARC Architecture Manual, Version 9 are readily available at bookstores or from
SPARC International, Inc.

Software that is intended to be portable across all SPARC V9 processors should adhere to
The SPARC Architecture Manual, Version 9.

In this book, the word architecture refers to the machine details that are visible to an
assembly language programmer or to the compiler code generator. It does not, necessarily,
include details of the implementation that are not visible or easily observable by software.
Where such details are provided, the intent is to enable faster and better programs.

x|

Textual Usage

Fonts

Fonts are used as follows:

Italic font is used for emphasis, book titles, the first instance of a word that is defined, and
assembly language terms.

Italic sans serif font is used for exception and trap names. “The privileged_action
exception...” is an example of how this font is used.

Typewri t er font (Courier) is used for register fields (named bits), instruction fields,
and read-only register fields. “The r s1 field contains...” is an example of how this font is
used. It is also used for literals, instruction names, register names, and software examples.

UPPERCASE items are acronyms, instruction names, or writable register fields. Some
common acronyms are listed in Acronyms and Definitions.

Note — Names of some instructions contain both uppercase and lowercase letters.

Underbar characters join words in register, register field, exception, and trap names.

Note — Such words can be split across lines at the underbar without an intervening hyphen.
“This is true whenever the integer_condition_code field...” is an example of how the underbar
characters are used.

UltraSPARC IIl Cu User’'s Manual « January 2004

Notational Conventions

The following notational conventions are used:

Square brackets, [], indicate a numbered register in a register file. For example, r [0]
translates to register 0.

Angle brackets, < >, indicate a bit number or colon-separated range of bit numbers within
a field. “Bits FSR<29:28> and FSR<12> are...” is an example of how the angle brackets
are used.

Curly braces, { }, indicate textual substitution. For example, the string
“PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and “ASI_PRIMARY_LITTLE.”

If the bar, |, is used with the curly braces, it represents multiple substitutions. For
example, the string “ASI_DMMU_TSB_{8KBJ|64KB|DIRECT}_PTR_REG” expands to
“ASI_DMMU_TSB_8KB_PTR_REG,” “ASI_DMMU_TSB_64KB_PTR_REG,” and
“ASI_DMMU_TSB_DIRECT_PTR_REG.”

The D symbol designates concatenation of bit vectors. A comma (,) on the left side of an
assignment separates quantities that are concatenated for the purpose of assignment. For
example, if X, Y, and Z are 1-bit vectors and the 2-bit vector T equals 11,, then

X, Y,Z) 0[] T

results in X=0,Y=1,and Z=1.

“A mod B” means “A modulus B,” where the calculated value is the remainder when A is
divided by B.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated.
Numbers in other bases are followed by a numeric subscript indicating their base (for
example, 1001,, FFFF 0000,¢). In some cases, numbers may be preceded by “0x” to indicate
hexadecimal (base-16) notation (for example, 0xFFFF.0000). Long binary and hexadecimal
numbers within the text have spaces or periods inserted every four characters to improve
readability.

The notation 7h’1F indicates a hexadecimal number of 1F 4 with seven binary bits of width.

Informational Notes

This guide provides several different types of information in notes, as follows:

Preface xli

xlii

Programming Note — Programming notes contain incidental information about
programming the UltraSPARC III Cu processor unless otherwise restricted to a particular
processor in the family.

Implementation Note — Implementation notes contain information that contains
implementation specific information the UltraSPARC III Cu processor compared to other
UltraSPARC processors.

Compatibility Note — Compatibility notes contain information relevant to the previous
SPARC V8 architecture.

UltraSPARC Note — UltraSPARC notes highlight the differences between the
UltraSPARC I and UltraSPARC II processors and the UltraSPARC III family of processors.
This note shows architectural and functional differences that may be generalized or
applicable to one particular processor in one of the families. Check the appropriate User’s
Manual or section in this User’s Manual to determine individual processor functionality as
needed.

Note — This highlights a useful note regarding important and informative processor
architecture or functional operation. This may be used for purposes not covered in one of the
other notes.

UltraSPARC IIl Cu User’'s Manual « January 2004

Acronyms and Definitions

This chapter defines concepts and terminology common to all implementations of
SPARC V0.

address space identifier
AFAR

AFSR

aliased

application program

ASI

ASR
Ax
BBC

big-endian

BLD
BST
byte

CDS

clean window

See ASI.

Asynchronous Fault Address Register.

Asynchronous Fault Status Register.

Two virtual addresses that refer to the same physical address.

A program executed with the processor in non-privileged mode. Note: Statements
made in this specification regarding application programs may not be applicable to
programs (for example, debuggers) that have access to privileged processor state (for
example, as stored in a memory-image dump).

Address space identifier. An 8-bit value that identifies an address space. For each
instruction or data access, the integer unit appends an ASI to the address. See also
implicit ASI.

Ancillary State Register.
Either the A0 or A1l pipeline.
Bootbus controller (UltraSPARC III Cu processors).

An addressing convention. Within a multiple-byte integer, the byte with the smallest
address is the most significant; a byte’s significance decreases as its address increases.

Block load.
Block store.
Eight consecutive bits of data.

Crossbar Data Switch. Data bus crossbars for the Sun™ Fireplane interconnect of the
UltraSPARC III Cu Processor. Also known as Dual CPU Data Switch (DCDS).

A register window in which all of the registers contain zero, a valid address from the
current address space, or valid data from the current address space.

xliii

xliv

coherence

completed

consistency

context

copyback

CPI
cross-call
CSR

current window

D-cache
DCTI
DCU
demap

deprecated

DFT

DIMM

dispatch

doublet

doubleword

A set of protocols guaranteeing that all memory accesses are globally visible to all
caches on a shared-memory bus.

A memory transaction is completed when an idealized memory has executed the
transaction with respect to all processors. A load is considered completed when no
subsequent memory transaction can affect the value returned by the load. A store is
considered completed when no subsequent load can return the value that was
overwritten by the store.

See coherence.

A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

The process of copying back a dirty cache line in response to a cache hit while
snooping.

Cycles per instruction. The number of clock cycles it takes to execute an instruction.
An interprocessor call in a multiprocessor system.
Control Status Register.

The block of 24 r registers that is currently in use. The Current Window Pointer (CWP)
register points to the current window.

Level-1 data memory cache.

Delayed control transfer instruction.

Data Cache Unit. Includes controller and Tag and Data RAM arrays.
To invalidate a mapping in the MMU.

The term applied to an architectural feature (such as an instruction or register) for
which a SPARC V9 implementation provides support only for compatibility with
previous versions of the architecture. Use of a deprecated feature must generate correct
results but may compromise software performance. Deprecated features should not be
used in new SPARC V9 software and may not be supported in future versions of the
architecture.

Designed for test.

Dual In-line Memory Module. Provides a single or double bank of SDRAM devices
72 bits or 144 bits of data width.

To send a previously fetched instruction to one or more functional units for execution.
Typically, the instruction is dispatched from a reservation station or other buffer of
instructions waiting to be executed. See also issued.

Two bytes (16 bits) of data.

An aligned octlet. Note: The definition of this term is architecture dependent and may
differ from that used in other processor architectures.

UltraSPARC IIl Cu User's Manual < January 2004

DQM
D-TLB
ECU

EMU

exception

extended word

f register

fceN

FFA or FGA or FP1
FGM or FP0

FGU

floating-point
exception

floating-point IEEE-754
exception

floating-point operate
(FPop) instructions

floating-point trap type

floating-point unit

FPRS
FPU
FRF

FSR

Data input/output Mask. Q stands for either input or output.
Data Translation Lookaside Buffer.
External or embedded Cache Unit controller.

External Memory Unit. A combination of the ECU and the Memory Control Unit
(MCU).

A condition that makes it impossible for the processor to continue executing the
current instruction stream without software intervention. See also trap.

An aligned octlet, nominally containing integer data. Note: The definition of this term
is architecture dependent and may differ from that used in other processor
architectures.

A floating-point register. SPARC V9 includes single-, double-, and quad-precision
f registers.

One of the floating-point condition code fields f ccO, f cc1, fcc2, or f cc3.
Floating-point/Graphics ALU pipeline.
Floating-point/Graphics Multiply pipeline.

Floating-point and Graphics Unit (FPO and FP1).

An exception that occurs during the execution of a Floating-point operate (FPop)
instruction while the corresponding bit in FSR. TEMis set to one. The exceptions are
unfinished_FPop, unimplemented_FPop, sequence_error, hardware_error,
invalid_fp_register, or IEEE_754_exception.

A floating-point exception, as specified by IEEE Standard 754-1985. Listed within this
specification as IEEE_754_exception.

Instructions that perform floating-point calculations, as defined by the FPop1l and
FPop2 opcodes. FPop instructions do not include FBf cc instructions or loads and
stores between memory and the floating-point unit.

The specific type of a floating-point exception, encoded in the FSR. f t t field.

A processing unit that contains the floating-point registers and performs floating-point
operations, as defined by this specification.

Floating-point Register State.
Floating-point unit.
Floating-point Register File.

Floating-point Status Register.

Acronyms and Definitions xlv

halfword

HBM
hexlet
HPE
I-cache
IEU
1o

implementation

implementation
dependent

implicit ASI

informative appendix

initiated
instruction field

instruction group

instruction set
architecture

integer unit

interrupt request

ISA

An aligned doublet. Note: The definition of this term is architecture dependent and
may differ from that used in other processor architectures.

Hierarchical Bus Mode.

Sixteen bytes (128 bits) of data.
Hardware Prefetch Enable.
Level-2 Instruction memory cache.
Instruction Execution Unit.
Instruction Issue Unit.

Hardware or software that conforms to all of the specifications of an instruction set
architecture (ISA).

An aspect of the architecture that can legitimately vary among implementations. In
many cases, the permitted range of variation is specified in the SPARC V9 standard.
When a range is specified, compliant implementations must not deviate from that
range.

The ASI that is supplied by the hardware on all instruction accesses and on data
accesses that do not contain an explicit ASI or a reference to the contents of the ASI
register.

An appendix containing information that is useful but not required to create an
implementation that conforms to the SPARC V9 specification. See also normative
appendix.

Synonym: issued.
A bit field within an instruction word.

One or more independent instructions that can be dispatched for simultaneous
execution.

See ISA.

A processing unit that performs integer and control-flow operations and contains
general-purpose integer registers and processor state registers, as defined by this
specification.

A request for service presented to the processor by an external device.

Instruction set architecture. A set that defines instructions, registers, instruction and
data memory, the effect of executed instructions on the registers and memory, and an
algorithm for controlling instruction execution. It does not define clock cycle times,
cycles per instruction, data paths, etc.

UltraSPARC IIl Cu User's Manual < January 2004

issued

I-TLB
I-TSB
1U
L2-cache

leaf procedure

little-endian

load

load-store

LPA

may

MCU

Memory Management
Unit

Microtag

(1) A memory transaction (load, store, or atomic load-store) is “issued” when a
processor has sent the transaction to the memory subsystem and the completion of the
request is out of the processor’s control. Synonym: initiated.

(2) An instruction (or sequence of instructions) is said to be issued when released from
the processor's in-order instruction fetch unit. Typically, instructions are issued to a
reservation station or other buffer of instructions waiting to be executed. (Other
conventions for this term exist, but this document attempts to use “issue” consistently
as defined here). See also dispatched.

Instruction Translation Lookaside Buffer.
Instruction Translation Storage Buffer.
Integer Unit.

Second level cache.

A procedure that is a leaf in the program’s call graph, that is, one that does not call (by
using CALL or JMPL) any other procedures.

An addressing convention. Within a multiple-byte integer, the byte with the smallest
address is the least significant; a byte’s significance increases as its address increases.

An instruction that reads (but does not write) memory or reads (but does not write)
location(s) in an alternate address space. Load includes loads into integer or
floating-point registers, block loads, Load Quadword Atomic, and alternate address
space variants of those instructions. See also load-store and store, the definitions of
which are mutually exclusive with /oad.

An instruction that explicitly both reads and writes memory or explicitly reads and
writes location(s) in an alternate address space. Load-store includes instructions such
as CASA, CASXA, LDSTUB, and the deprecated SWAP instruction. See also load and
store, the definitions of which are mutually exclusive with load-store.

Local Physical (or Processor) Address. Used in the context of Scalable Shared Memory
(SSM) system architectures.

A keyword indicating flexibility of choice with no implied preference. Note: “May”
indicates that an action or operation is allowed; “can” indicates that it is possible.

Memory Control Unit. Controls the SDRAM signals.

See MMU.

A partial virtual address tag used for early way select of a virtually indexed, physically
tagged set associative cache. Microtag is often referred to as utag or Utag in this
documentation.

Acronyms and Definitions xlvii

MMU

module

MOESI

must

NaN

NCPQ

next program counter
NFO

non-faulting load

non-privileged

non-privileged mode

normative appendix

nPC

NPT
NW NDOWS

OBP

xlviii

Memory Management Unit. The address translation hardware in the

UltraSPARC III Cu implementation that translates 64-bit virtual address into physical
addresses. The MMU is composed of the translation lookaside buffers (TLBs), ASRs,
and ASI registers used to manage address translation. See also context, physical
address, and virtual address.

A master or slave device that attaches to the shared-memory bus.

A cache-coherence protocol. Each of the letters stands for one of the states that a cache
line can be in, as follows: M, modified, dirty data with no outstanding shared copy; O,
owned, dirty data with outstanding shared copy(s); E, exclusive, clean data with no
outstanding shared copy; S, shared, clean data with outstanding shared copy(s); I,
invalid, invalid data.

Synonym: shall.

Not a Number.

Non-coherent pending queue.
See nPC.

Non-fault access only.

A load operation that, in the absence of faults or in the presence of a recoverable fault,
completes correctly, and in the presence of an unrecoverable fault returns (with the
assistance of system software) a known data value (nominally zero). See also
speculative load.

An adjective that describes:

(1) the state of the processor when PSTATE. PRI V = 0, that is, non-privileged mode;
(2) processor state information that is accessible to software while the processor is in
either privileged mode or non-privileged mode; for example, non-privileged registers,
non-privileged ASRs, or, in general, non-privileged state;

(3) an instruction that can be executed when the processor is in either privileged mode
or non-privileged mode.

The mode in which a processor is operating when PSTATE. PRI V = 0. See also
privileged.

An appendix containing specifications that must be met by an implementation
conforming to the SPARC V9 specification. See also informative appendix.

Next program counter. A register that contains the address of the next executed
instruction if a trap does not occur.

Non-privileged trap.
The number of register windows present in a particular implementation.

OpenBootTM PROM.

UltraSPARC Il Cu User's Manual « January 2004

octlet

opcode
optional
ORQ
PA

Page Table Entry

PC

PCR
physical address

PIC
PIO
PIPT

PIVT
POR

prefetchable

privileged

privileged mode

processor

Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte, rather
than octet, is used to describe eight bits of data.

A Dbit pattern that identifies a particular instruction.
A feature not required for SPARC V9 compliance.
Outgoing request queue.

Physical address. An address that maps real physical memory or I/O device space. See
also virtual address.

See PTE.

Program counter. A register that contains the address of the instruction currently being
executed by the IU.

Performance Control Register.
See PA.

Performance Instrumentation Counter.
Programmed 1/0.
Physically indexed, physically tagged.

Physically indexed, virtually tagged.
Power-on Reset. The most aggressive reset.

(1) An attribute of a memory location that indicates to an MMU that PREFETCH
operations to that location may be applied.

(2) A memory location condition for which the system designer has determined that no
undesirable effects will occur if a PREFETCH operation to that location is allowed to
succeed. Typically, normal memory is prefetchable.

Non-prefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with registers
that clear on read; others have registers that initiate operations when read. See also
side-effect.

An adjective that describes:

(1) the state of the processor when PSTATE. PRI V = 1, that is, privileged mode;

(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in general,
privileged state;

(3) an instruction that can be executed only when the processor is in privileged mode.

The mode in which a processor is operating when PSTATE. PRI V = 1. See also
non-privileged.

The combination of the integer unit and the floating-point unit.

Acronyms and Definitions xlix

program counter
PSO
PTA

PTE

QNaN
quadlet

quadword

I register
RAW

RD
RDPR

RED_state

reserved

reset trap

restricted

RMO

See PC.
Partial store order.
Pending tag array.

Page Table Entry. Describes the virtual-to-physical translation and page attributes for a
specific page. A PTE generally means an entry in the page table or in the TLB;
however, it is sometimes used as an entry in the translation storage buffer (TSB). In
general, a PTE contains fewer fields than a TTE. See also TLB and TSB.

Quiet Not a Number.
Four bytes (32 bits) of data.

Aligned hexlet. Note: The definition of this term is architecture dependent and may be
different from that used in other processor architectures.

An integer register. Also called a general-purpose register or working register.
Read-After-Write.

Rounding direction.

Read Privileged Register.

Reset, Error, and Debug state. The processor state when PSTATE. RED=1. A
restricted execution environment used to process resets and traps that occur when
TL = MAXTL - 1.

Describes an instruction field, certain bit combinations within an instruction field, or a
register field that is reserved for definition by future versions of the architecture.

Reserved instruction fields shall read as zero, unless the implementation supports
extended instructions within the field. The behavior of SPARC V9 processors when
they encounter nonzero values in reserved instruction fields is undefined.

Reserved bit combinations within instruction fields are defined in Appendix A,
Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap on these
reserved combinations.

Reserved register fields should always be written by software with values of those
fields previously read from that register or with zeroes; they should read as zero in
hardware. Software intended to run on future versions of SPARC V9 should not
assume that these fields will read as zero or any other particular value. Throughout this
specification, figures and tables illustrating registers and instruction encodings indicate
reserved fields and combinations with an em dash (—).

A vectored transfer of control to privileged software through a fixed-address reset trap
table. Reset traps cause entry into RED_st at e.

Describes an ASI that may be accessed only while the processor is operating in
privileged mode.

Relaxed memory order.

UltraSPARC Ill Cu User’'s Manual < January 2004

rsi,rs2,rd

RTO
RTOR
RTS
RTSM
SAM
scrub

SDRAM

SFAR
SFSR

shall

should

S| AM

side-effect

SIG
SIR
SIU
SNaN

snooping

SPE

The integer or floating-point register operands of an instruction. The source registers
are r S1 and r S2; the destination register is r d.

Read to own.

Read to own remote. A reissued RTO transaction.

Read to share.

Read to share Mtag. An RTS to modify MTag transaction.
SPARC Architecture Manual, Version 9.

Writes data from the W-cache to the L2-cache.

Synchronous Dynamic Random Access Memory. May be prefaced with DDR, double
data rate SDRAM.

Synchronous Fault Address Register.
Synchronous Fault Status Register.

A keyword indicating a mandatory requirement. Designers shall implement all such
mandatory requirements to ensure interoperability with other SPARC V9 compliant
products. Synonym: must.

A keyword indicating flexibility of choice with a strongly preferred implementation.
Synonym: it is recommended.

Set interval arithmetic mode instruction.

The result of a memory location having additional actions beyond the reading or
writing of data. A side-effect can occur when a memory operation on that location is
allowed to succeed. Locations with side-effects include those that, when accessed,
change state or cause external events to occur. For example, some /O devices contain
registers that clear on read; others have registers that initiate operations when read. See
also prefetchable.

Single-Instruction Group. Sometimes shortened to “single-group.”
Software-initiated reset.

System Interface Unit (Sun Fireplane interconnect).

Signalling Not a Number.

The process of maintaining coherency between caches in a shared-memory bus
architecture. All cache controllers monitor (snoop) the bus to determine whether they
have a copy of the shared cache block.

Software prefetch enable.

Acronyms and Definitions li

speculative load

SSM

store

superscalar

supervisor software
TBA

TLB

TLB hit
TLB miss
TPC

Translation Lookaside
Buffer

trap

TSB

TSO

TTE

UE

A load operation that is issued by the processor speculatively, that is, before it is
known whether the load will be executed in the flow of the program. Speculative
accesses are used by hardware to speed program execution and are transparent to code.
An implementation, through a combination of hardware and system software, must
nullify speculative loads on memory locations that have side-effects; otherwise, such
accesses produce unpredictable results. Contrast with non-faulting load, which is an
explicit load that always completes, even in the presence of recoverable faults.

Scalable shared memory. A directory based data coherency mechanism.

An instruction that writes (but does not explicitly read) memory or writes (but does not
explicitly read) location(s) in an alternate address space. Store includes stores from
either integer or floating-point registers, block stores, partial store, and alternate
address space variants of those instructions. See also load and load-store, the
definitions of which are mutually exclusive with store.

An implementation that allows several instructions to be issued, executed, and
commiitted in one clock cycle.

Software that executes when the processor is in privileged mode.
Trap base address.

Translation Lookaside Buffer. A cache within an MMU that contains recent partial
translations. TLBs speed up closely following translations by often eliminating the
need to reread PTE from memory.

The desired translation is present in the on-chip TLB.
The desired translation is not present in the on-chip TLB.

Trap-saved PC.

See TLB.

The action taken by the processor when it changes the instruction flow in response to
the presence of an exception, a TCC instruction, or an interrupt. The action is a
vectored transfer of control to supervisor software through a table, the address of
which is specified by the privileged TBA register. See also exception.

Translation storage buffer. A table of the address translations that is maintained by
software in system memory and that serves as a cache of the address translations.

Total store order.

Translation table entry. Describes the virtual-to-physical translation and page attributes
for a specific page in the Page Table. In some cases, the term is explicitly used for the
entries in the TSB.

User process error.

UltraSPARC Ill Cu User’'s Manual < January 2004

unassigned

undefined

unimplemented

unpredictable

unrestricted

user application
program

VA

victimize
VIPT
virtual address

VIS

VIVT
WAW
WDR

word

WRF
writeback
WRPR

XIR

A valued (for example, an ASI number) semantics which are not architecturally
mandated and which may be determined independently by each implementation within
any given guidelines.

An aspect of the architecture deliberately left unspecified. Software should have no
expectation of, nor make any assumptions about, an undefined feature or behavior. Use
of such a feature can deliver unexpected results, may or may not cause a trap, can vary
among implementations, and can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause
security holes (such as allowing user software to access privileged state), put the
processor into supervisor mode or an unrecoverable state.

An architectural feature that is not directly executed in hardware because it is optional
or emulated in software.

Synonym: undefined.

Describes an ASI that can be used regardless of the processor mode, that is, regardless
of the value of PSTATE. PRI V.

Synonym: application program.

Virtual address. An address produced by a processor that maps all systemwide,
program-visible memory. Virtual addresses usually are translated by a combination of
hardware and software to physical addresses, which can be used to access physical
memory.

[Error handling]
Virtually indexed, physically tagged.
See VA.

Visual Instruction Set. Performs partitioned integer arithmetic and other small integer
operations.

Virtually indexed, virtually tagged (cache).
Write-After-Write.
Watchdog trap-level reset.

An aligned quadlet. Note: The definition of this term is architecture dependent and
may differ from that used in other processor architectures.

Working Register File.
The process of writing a dirty cache line back to memory before it is refilled.
Write Privileged Register.

Externally initiated reset.

Acronyms and Definitions liii

liv UltraSPARC Ill Cu User’'s Manual < January 2004

sEcTiOoN 1

Processor Introduction

January 2004

Ivi UltraSPARC IIl Cu User’'s Manual « January 2004

CHAPTER 1

Processor Introduction

1.1

Overview

The UltraSPARC III Cu processor is a high-performance, highly integrated superscalar
processor that implements the 64-bit SPARC V9 RISC architecture. It can sustain the
execution of up to four instructions per cycle, even in the presence of conditional branches
and cache misses, mainly because the units asynchronously feed instructions and data to the
rest of the pipeline. Instructions that are predicted to be executed are issued in program order
to multiple functional units, executed in parallel, and for added parallelism can be completed
out-of-order. To further increase the number of instructions executed per cycle, instructions
from two basic blocks can be issued in the same group.

The chip supports a 64-bit virtual address space and a 43-bit physical address space. The
core instruction set has been extended to include graphics instructions that provide the most
common operations related to two-dimensional image processing, two- and
three-dimensional graphics and image compression algorithms, and parallel operations on
pixel data with 8- and 16-bit components.

The processor is designed to offer very high clock speeds as well as wide superscalar issue to
exploit instruction-level parallelism. The processor offers large Level-1 instruction and data
caches, large flexible memory management units (MMUSs), and support for large L2-cache.
The processor was designed to work in systems ranging from single processor workstations
through cache coherent servers with over a hundred processors. For building large systems,
the processor has built-in support for both snooping-based cache coherency and
directory-based cache coherency.

The architecture and implementation coupled with new compiler techniques make it possible
to reduce each component while not degrading the other two.

1-1

1-2

1.2

1.3

1.4

CPU Features

The UltraSPARC III Cu processor is a richly featured processor. Features include:

SPARC V9 Architecture with the VIS™ II Instruction Set, SPARC Binary code hardware
compatible

4-way superscalar processor with nine execution units and six execution pipelines
14 stage, non-stalling pipeline

Improved memory latency

64-bit data paths, 64-bit ALUs, 64-bit address arithmetic

64-bit virtual address and 43-bit physical address space

Data prefetching mechanism

L2-cache unit that supports a 2-way set associative cache

Comprehensive error detection and recovery

Data Memory Management Unit with 1040 Translation Lookaside Buffer (TLB) entries
that can support up to 4 MB pages

Cache Features

The UltraSPARC III Cu processor cache features include:

32 KB, 4-way set associative primary instruction cache memory with parity

64 KB, 4-way set associative primary data cache memory with parity

2 KB, 4-way set associative Prefetch cache for software prefetch

2 KB, 4-way set associative Write cache reduces store bandwidth to Level 2 cache

8 MB, 2-way set associative external unified L2-cache with ECC protection (single bit
correction, double bit detection)

Technology

The UltraSPARC III Cu processor technology features include:

0.18 Y, 7-layer Cu metal, CMOS process
1.6 V core and 1.5 V I/O power supplies

UltraSPARC Ill Cu User’'s Manual < January 2004

232 mm? die size

1368 pin ceramic LGA package

900 MHz and higher frequency

80 W power dissipation at 900 MHz

1.5

1.5.1

UltraSPARC III Cu Differences

The UltraSPARC III Cu processor differs from previous UltraSPARC processors in several
key areas, including:

Bootbus limitations
Instruction set extensions
Instruction differences
Memory subsystem
Interrupts
Address space size
Error correction
Registers
Non-cacheable store compression
RAS Architecture
This section describes the UltraSPARC III Cu chip differences and includes a summary table

of those differences. The section concludes with a discussion of the UltraSPARC III Cu
processor performance enhancements and RAS architecture.

Bootbus Limitations

All bootbus addresses must be mapped as side-effect pages with the TTE. E bit set. In
addition, programmers must not issue the following memory operations to any bootbus
address:

Prefetch instructions
Block load and block store instructions
Any memory operations with ASI _PHYS_USE_EC or ASI _PHYS USE EC LI TTLE

Partial store instructions

Chapter 1 Processor Introduction 1-3

1.5.2

1.5.2.1

1.5.2.2

1.5.2.3

Instruction Set Extensions

The UltraSPARC III Cu processor has added Sun proprietary extensions to the SPARC V9
Instruction Set Architecture (ISA), in addition to those implemented in UltraSPARC 1. The
extensions are in the areas of VIS extensions, prefetch enhancement, and interval arithmetic
support.

Visual Instruction Set (VIS) Extensions

Three new VIS instructions were added:

Byte Mask — Sets the Graphics Status Register (GSR) for a following byte shuffle
operation. One byte mask can be issued per instruction group as the last instruction of the
group.

Byte Mask is a break-after instruction.

Byte Shuffle — Allows any set of 8 bytes to be extracted from a pair of double-precision,
floating-point registers and written to a destination double-precision, floating-point
register. The 32-bit byte mask field of the GSR specifies the pattern of source bytes for the
byte shuffle instruction.

Edge(ncc) — Two variants: the original instruction sets the integer condition codes, and
the new instruction does not set condition codes. Differences between the variants are as
follows:

Edge Edge(ncc)
Sets integer condition codes Does not set integer condition codes
Single instruction group Groupable

Because of implementation restrictions in the pipeline, all instructions that set condition
codes and execute in the MS pipeline stage must be in a single instruction group.

Prefetch Enhancement

The processor supports an instruction to invalidate a prefetched line. It invalidates a prefetch
cache line after prefetched data has been loaded into registers and on error conditions.

Interval Arithmetic Support

One new instruction was added to improve the efficiency of interval arithmetic computations.
The Set Interval Arithmetic Mode (SI AM) instruction enables the rounding mode bits in the
Floating-Point Status Register (FSR) to be overridden without the overhead of modifying the
RD field of the FSR. Updates directly to FSR are expensive because they flush the pipeline.

UltraSPARC Ill Cu User’'s Manual < January 2004

1.5.3 Instruction Differences

Several instructions have changed relative to the previous UltraSPARC processors.

SHUTDOWN — Low power mode compliance is achieved through a different mechanism
than that used by the UltraSPARC I processor. For compatibility, the SHUTDOMN
instruction in the UltraSPARC IIT Cu processor executes as a NOP.

FLUSH — Since the processor maintains consistency between the instruction cache and
all store and atomic instructions, the FLUSH instruction is used only to clear the pipeline.
Unlike the case with the UltraSPARC I processor, the FLUSH address is ignored. It is not
used for instruction cache flushing and is not propagated to the system.

Floating-point conversion instructions — Because of implementation restrictions, the
following integer to floating-point conversion instructions generate an unfinished_FPop
exception for certain ranges of integer operands, as shown in TABLE 1-1.

TABLE 1-1 Integer/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FsTO result < — 23! result = 23!, Inf, NaN

FsTOx [result| = 252, Inf, NaN

FATG result < — 23! result = 23!, Inf, NaN

FATOX [result| = 252, Inf, NaN

FdTCs |result| = 252, |result| <23, operand < — 2?2, operand = 2%2, NaN
Fi TCs operand < — 2%2, operand = 2%2

FxTGCs operand < — 222, operand = 222

FxTCQd operand < — 2°!, operand > 25!

When the above instructions take an unfinished_FPop trap, system software must properly
emulate the instruction and resume execution.

NaN handling — Because of implementation restrictions, the processor generates an
unfinished_FPop exception for operations that use the floating-point adder when one or
more of the operands is NaN. Previous UltraSPARC processors would propagate the NaN
in hardware.

Floating-point subnormal — Because of implementation restrictions, the processor
generates an unfinished_FPop exception in nonstandard mode for floating-point addition
and floating-point subtraction operations when the result is a subnormal value. Previous
UltraSPARC processors handled these in hardware. When an unfinished_FPop trap is
generated, it is expected that system software will properly emulate the instruction and
resume execution.

Ti cc reserved field checking — The processor checks the reserved field of the Ti cc
instruction for zero and generates an illegal_instruction trap if the field is nonzero.
Neither UltraSPARC I nor UltraSPARC II processors checked the Ti cc reserved field for
Zero.

Chapter 1 Processor Introduction 1-5

1.5.4

1.54.1

1-6

Memory Subsystem

The memory subsystem design is new. Differences include changes in the caches, cache
flushing, and TLBs.

Caches

The UltraSPARC III Cu memory system comprises five caches: four on-chip and one external
to the chip.

Data cache (D-cache) — A 64 KB, 4-way associative, virtually indexed, physically
tagged (VIPT) cache. The D-cache is write-through, no write-allocate, not included in the
L2-cache. The line size is 32 bytes with no sub-blocking. The D-cache needs to be flushed
only if an alias is created with virtual address (VA) bit 13. VA<13> is the only virtual bit
used to index the D-cache.

Instruction cache (I-cache) — A 32 KB, 4-way associative, VIPT cache. The I-cache is
not included in the L2-cache.

The line size is 32 bytes - no sub-blocking. The I-cache is kept consistent with the store
stream of the processor as well as with external stores from other processors.

You never need to flush the I-cache, not even for address aliases.

Prefetch cache (P-cache) — A 2 KB, 4-way associative cache. It is virtually indexed,
virtually tagged (VIVT) cache for lookup and install to the cache. It is physically indexed
and physically tagged for snoop and invalidate operations. The P-cache is not included in
the L2-cache. The line size is 64 bytes with 32-byte sub-blocks.

The P-cache is globally invalidated if any of the following conditions occur:

If the context registers are written
If there is a demap operation in the DMU
When the DMU is turned on or off

Individual lines are invalidated on any of the following conditions:

A store hits
An external snoop hit
Use of software prefetch invalidate function (PREFETCH with f cn = 16)

The P-cache is used for software prefetch instructions as well as for autonomous hardware
prefetches from the L2-cache.

Software never needs to flush the P-cache, not even for address aliases.

Write cache (W-cache) — A 2 KB, 4-way associative, PIPT cache. The line size is
64 bytes with 32-byte sub-blocks. The W-cache reduces bandwidth to the L2-cache by
coalescing and bursting stores to the L2-cache.

The W-cache is included in the L2-cache; all lines in the W-cache have a corresponding
line allocated in the L2-cache. The data state of the W-cache line always supersedes the
state of the data in the corresponding L2-cache line.

UltraSPARC Ill Cu User’'s Manual < January 2004

It is necessary to flush the W-cache for stable storage. Flushing the L2-cache implicitly
forces the flush of the W-cache.

L2-cache — A 1 MB to 8 MB, direct mapped or 2-way set associative, PIPT cache. The
L2-cache is write-allocate, write-back.

It is necessary to flush the L2-cache for stable storage.

1.5.4.2 Cache Flushing

The following are flushing requirements for specific caches:

Data cache — The UltraSPARC III Cu D-cache differs in size and organization from the
UltraSPARC I D-cache and so requires changes to the algorithms used to flush the cache.

The virtually indexed caches need to be flushed when a virtual address alias is created.
Caches that contain modified data need to be flushed for stable storage.

The UltraSPARC III Cu D-cache is the only cache that needs to be flushed when a virtual
address alias is created. Like the UltraSPARC I D-cache, the UltraSPARC III Cu D-cache
uses one virtual address bit for indexing the cache and thus creates an alias boundary of
16 KB for the D-cache.

Instruction cache — The processor maintains consistency of the on-chip I-cache with the
stores from all processors so that a FLUSH instruction is needed only to ensure the
pipeline is consistent. This means a single flush is sufficient at the end of a sequence of
stores that updates the instruction stream to ensure correct operation.

Unlike the case with the UltraSPARC I processor, the FLUSH instruction does not
propagate externally since all I-caches in an UltraSPARC III Cu multiprocessor system
are maintained consistent. Since the I-cache is a PIPT cache, it does not have to be flushed
for virtual address aliases. The I-cache never contains modified data; therefore, it does not
need to be flushed for stable storage.

Prefetch cache — The P-cache is physically indexed and tagged. It cannot contain
modified data, so it never needs to be flushed.

L2-caches and write caches — Since the L2-cache and W-cache can contain modified
data, they must be flushed for stable storage. The W-cache is included in the L2-cache, so
it is sufficient to flush a block from the L2-cache; if there is a corresponding block in the
W-cache, it will also be flushed. The recommended procedure to flush modified data from
the L2-cache back to memory is as follows:

Load the block (64 bytes) into the floating-point registers by using FP loads or

Block Load.

Write the floating-point registers to memory with a Block Store Commit.

Issue MEMBAR #Sync to ensure completion.

The Block Store with Commit instruction will invalidate the block from both the L2-cache
and the W-cache. Both of these caches are physically indexed, so they do not need to be
flushed for address aliases.

Chapter 1 Processor Introduction 1-7

1.5.4.3

1-8

Translation Lookaside Buffers (TLBs)

The implementation of instruction and data TLBs for the UltraSPARC III Cu processor is
described in this section.

The following are two instruction TLBs that are accessed in parallel:

A 16-entry, fully associative TLB to hold entries for 8 KB, 64 KB, 512 KB, and 4 MB
page sizes. This TLB contains locked and unlocked pages of any size.

A 128 entry, 2-way associative TLB used exclusively for 8 KB page entries. This TLB
contains only unlocked pages.

The following are three data TLBs that are accessed in parallel.

A 16-entry, fully associative TLB to hold entries for § KB, 64 KB, 512 KB, and 4 MB
page sizes. This TLB contains locked and unlocked pages of any size.

Two 512 entry, 2-way set associative that can each be programmed to support lookup of
any one page size at a given time. However, multiple page sizes can be resident. This TLB
contains only unlocked pages.

Other TLB differences are described below:

TLB flushing — Both the instruction and data TLBs now have a demap-all operation that
removes all unlocked Translation Table Entries (TTEs).

TTE format — The UltraSPARC III Cu processor now has the additional elements in the
TTE format:

Physical Address field: Expanded from 28 bits (PA<40:13>, TTE<40:13>) to 30 bits
(PA<42:13>, TTE<42:13>).

Synchronous Fault Status Registers (SFSR) extensions — A new fault type was added
to the FT field of the SFSR to indicate an I/D-TLB miss, and one status bit was added to
the D-TLB SFSR:

NF: Set to signify that the faulting operation was a speculative load instruction.

Instruction/Data Translation Storage Buffer (i/dTSB) Register — Three new register
extensions of the i/dTSB register were added to the UltraSPARC III Cu processor. These
registers allow a different TSB virtual address base to be used for each of the three virtual
address spaces (primary, secondary, nucleus) in the D-TLB and two virtual address spaces
(primary, nucleus) in the I-TLB. On an I/D-TLB miss, the processor selects which TSB
Extension Register to use to form the TSB base address, based on the virtual space
accessed by the faulting instruction.

TLB Data Access Register — The access address for the TLB Data Access Register has
been expanded to enable access to three TLBs, each with up to 512 entries.

TLB Diagnostic Register — A new register replaces the function of the diagnostic bits in
the TTE.

UltraSPARC Ill Cu User’'s Manual < January 2004

1.5.5

1.5.6

1.5.7

Interrupts

The UltraSPARC III Cu processor extends the interrupt architecture previously implemented
in the UltraSPARC I processor in these areas:

Module ID fields — Extended from 5 bits to 10 bits.

Interrupt Transmit BUSY/NACK bits — Extended from 1 pair to 32 pairs, enabling
pipelining of outgoing interrupts.

Data Dispatch and Receive Registers — Expanded from 3 to 8, enabling up to 64 bytes
to be transmitted in an interrupt.

System Tick Interrupt bit — Added to the soft interrupt register.

Address Space Size

The UltraSPARC III Cu processor extends both the virtual and physical address space
previously implemented. It implements the full 64-bit virtual address range defined in the
SPARC V9 architecture. There are no VA holes, compared to the UltraSPARC 1. The physical
address range has also been extended from 41 bits to 43 bits.

Address space with PA<42> =1 is considered as the non-cacheable address space. Physical
address 4000000000044 to 7FFFFFFFFFF 4 is in the non-cacheable area.

Registers

Differences in registers include enhancements to ASI registers and ASR registers.

Address Space Identifier (ASI) Registers

Changes to the ASI registers include those to the following registers:

SRAM diagnostic registers — Several new diagnostic ASI registers were added for the
following on-chip SRAMs:

Prefetch cache
Write cache

Branch predict array
I/D-TLB CAM

Changes were made to fields of existing UltraSPARC II diagnostic ASI registers for the
following on-chip SRAMs:

Data cache
L2-cache
Instruction cache

Chapter 1 Processor Introduction 1-9

1.5.8

1-10

The following ASI registers were removed:

UDB Error Register
UDB Control Register

Asyncronous Fault Status Register (AFSR) — Several changes were made to add new
fault types (L2-cache ECC errors) and remove old fault types (SDB errors). AFSR
accumulates errors.

Asynchronous Fault Address Register (AFAR) — The AFAR was extended to handle a
43-bit physical address. It is now updated on several errors that previously did not capture
the address. AFAR overwrites for higher priority errors if a more severe error occurs.

Secondary Asyncronous Fault Status Register (AFSR) — Secondary AFSR captures
the first error.

Asynchronous Fault Address Register (AFAR) — Secondary AFAR captures the
address associated with the first error and it locks until it is explicitly cleared by software.

Software Interrupt Register (SOFTINT) — The SOFTI NT register has an additional
bit added to signal SYSTEM TICK COMPARE interrupts.

System Interface Registers — The UPA interface ASI has been reused for two new
Fireplane Interconnect registers: a configuration register and an address register.

Ancillary State Registers (ASRs)

Changes to the ASRs include changes to the following registers:

System Tick and Compare — Two new ASRs were added to support a system clock:
ASR 18,4, a System Tick Register (analogous to the per-processor tick register ASR 4y),
and ASR 19, a System Tick Compare Register (analogous to the per-processor tick
compare register 174).

Graphics Status Register (GSR) — New fields were added to the GSR:

32-bit MASK field used by the BSHUFFLE instruction
1-bit | Mfield to enable interval arithmetic round mode
2-bit | RD field to specify round mode for interval arithmetic

Performance Control Register (PCR) — The PCR has been extended to enable a larger
number of performance events to be measured.

Dispatch Control Register (DCR) — Many control fields were added to the DCR to aid
in debugging first silicon.

Non-Cacheable Store Compression

Like previous implementations, the UltraSPARC III Cu processor uses a 16-byte buffer to
merge adjacent non-cacheable stores into a single external data transaction. This merging
greatly increases store bandwidth to the graphics frame buffer. A change in the algorithm for
determining when to break merging improves store bandwidth to graphics devices.

UltraSPARC Ill Cu User’'s Manual < January 2004

1.5.9

Error Correction

Error correction differs from the UltraSPARC I processor and the UltraSPARC II processor
handling, as follows:

L2-cache — The processor uses ECC protection on the L2-cache instead of parity
protection. It requires software correction and recovery for single bit L2-cache ECC read
errors, which are signaled as a precise error.

System interface — A new ECC code has been defined for ECC protection across 132
data bits (nine ECC bits) and three MTag bits (four ECC bits) on the system bus and on
the data switch. The syndromes for these codes differ from the syndromes used
previously. The processor requires software correction and recovery for single-bit system
ECC errors, which are signaled as disrupting errors.

1.5.10

SRAM Protection and RAS Features

TABLE 1-2 lists all UltraSPARC III Cu on-chip SRAM protection and other RAS features.

TABLE 1-2 RAS Features

No. | Feature Feature Description

1. D-cache Data array parity 2 parity bits per 64-bit data
protection

2. D-cache Physical Tag array 1-bit parity per tag entry
parity protection

3. D-cache Snoop Tag array 1-bit parity per tag entry
parity protection

4. I-cache Data array parity 1-bit parity per partially decoded instruction
protection

5. I-cache Physical Tag array 1-bit parity per tag entry
parity protection

6. I-cache Snoop Tag array 1-bit parity per tag entry
parity protection

7. L2-cache data array ECC ECC Protection with 1-bit correction and 2-bit detection
protection

8. L2-cache Tag array ECC ECC Protection with 1-bit correction and 2-bit detection
protection

9. Dual AFSR/AFAR Secondary AFSR/AFAR captures on the first error event

while primary AFSR/AFAR accumulates in case of multiple
events

Chapter 1

Processor Introduction 1-11

UltraSPARC Ill Cu User’'s Manual < January 2004

CHAPTER 2

System Introduction

This chapter discusses how the UltraSPARC III Cu processor is used in systems.

2.1

2.1.1

System Configurations

The UltraSPARC III Cu processor can be used in a variety of configurations from
two-processor systems to very large, high-performance Symmetric Multiprocessor (SMP)
Systems.

Two-Processor Configuration with UltraSPARC III Cu

FIGURE 2-1 is an example of a two-processor UltraSPARC III Cu configuration. This
configuration is the basic building block that can be used to build SMP systems.

In this configuration, both UltraSPARC III Cu processors are connected to a Dual CPU Data
Switch (DCDS) via a 16-byte interface at 150 MHz. Each processor has an address and
control interface to the SDRAMs. However, the data from the SDRAM is connected directly
to the DCDS via a 64-byte interface running at 75 MHz. Note that the ranges for the
SDRAM on different UltraSPARC III Cu CPUs should not overlap. Each UltraSPARC III Cu
CPU connects to the Fireplane Interconnect Address bus. The UltraSPARC III Cu CPU also
connects with an L2-cache via a 32-byte interface and with the Boot PROM via the Boot Bus
interface. Both UltraSPARC III Cu CPUs provide a JTAG interface.

2-13

2.1.2

2-14

SDRAM

Fireplane Address Interconnect JTAG

37 bit + control + arbitration + ECC

| Boot PROM

32 byt 32 bytes
© 200-350 MHz Boot Bus © 200-350 MHz

Addr + Cti Addr + Cti
UltraSPARC Ill Cu [J7aG UltraSPARC 11l Cu
CPU CPU

SDRAM
16 bytes @ 150 MHz

3 Dual CPU Data Switch
Data @ 75 MHz Data @ 75 MHz

64 bytes + ECC 64 bytes + ECC

Fireplane Data Interconnect
32 bytes @ 150 MHz

FIGURE 2-1 Two-Processor Configuration with the UltraSPARC III Cu

Note — Some processors or memories may not be present in the actual system.

Four-Processor Configuration with UltraSPARC III Cu

A four-processor configuration, shown in , is built from a two-processor configuration. This
example also demonstrates how larger systems can be created by using an address repeater

and a Level 1 data switch. I/O controllers, bridge chips, or external devices are connected to
the system via the address repeater and the data switch. This configuration can be repeated to
create a high performance SMP system.

UltraSPARC Ill Cu User’'s Manual < January 2004

To System Address Repeater

Fireplane Address Interconnect

To 1/O Controllers and
External Devices <—= Address Repeater

Fireplane Address Interconnect
37 bit + control + arbitration + ECC

[cocacne] [zcacne
Boot PROM] l Boot PROM

32 bytes 32 bytes
@ 200-300 MHz

32 bytes 32 bytes
@ 200-300 MHz Boot Bus @ 200-300 MHz @ 200-300 MHz Boot Bus

Addr + Ctl Addr + Ctl Addr + Ctl

Addr + Ctl

SDRAM SDRAM SDRAM SDRAM
16 bytes @ 150 MHz

16 bytes @ 150 MHz

Dual CPU Data Switch
(8 chip bit slice switch)

Dual CPU Data Switch

Data @ 75 MHz (8 chip bit slice switch) Data @ 75 MHz Data @ 75 MHz Data @ 75 MHz
64 bytes + ECC 64 bytes + ECC 64 bytes + ECC 64 bytes + ECC
Fireplane Data Interconnect Fireplane Data Interconnect
32 bytes @ 150 MHz 32 bytes @ 150 MHz
To 1/0 Controllers and)
Level 1 Data Switch

External Devices

Fireplane Data Interconnect

To System Data Switch

Four-Processor Configuration with the UltraSPARC III Cu

Chapter 2 System Introduction 2-15

2.1.3

2-16

Multiprocessor System with the UltraSPARC III Cu

A multiprocessor system, as shown in FIGURE 2-2, can be built using the two-processor
configuration shown in FIGURE 2-1. A system address and data repeater are used to build such
systems. Various devices can be connected to the system via PCI interfaces. Level 1 and
Level 2 address repeaters and data switches are used to build systems that can accommodate

up to six processor/memory boards and up to four I/O subsystems.

Level 2 Level 1 Level O
<12]
e = uslicu SDRAM
Address
System Repeater | A
Address | \ll ¢
Repeater >| Dual CPU Data Switch |
| I I
| <> 2]
—| =] wusiicu SDRAM
| =
DataPath |||
r Controller e
| | SDRAM
=| usuicu
| r
I i i
| | I Dual CPU Data Switch |
< ! {
System Level 1 | L2
D! . < <—>|
Controller Data Switch L =] usticu SDRAM
<—1
|
| @
| Address
| Repeater
| | < [33 MiHz Cards
| r— = Ppc
| | > < =] 66 MHz Cards|
| |
Data Path
g):;em L Controller <
Switch |
(Level 2) | < = 33 MHz Cards
| —>
o . PCI
<—>| 66 MHz Cards
Level 1
Data Switch

FIGURE 2-2 Multiprocessor System with the UltraSPARC III Cu

UltraSPARC Ill Cu User’'s Manual < January 2004

2.14

Very Large Multiprocessor System with the

UltraSPARC III Cu

A very large multiprocessor system, as shown in FIGURE 2-3, can be built by interconnecting
multiple configurations, shown in FIGURE 2-2, using Level 3, 18-port crossbar switches.

Level 3 Level 2
18x18 System
Address Address
Crossbar Repeater
| S
r
— =
18x18 System
Response Data
Crossbar Controller
=1
|
18x18 —> System L
Data Data
Crossbar Switch
(Level 2)

Level 1 Level O
<]
= uslicu SDRAM
Address |
Repeater
1 H
| I Dual CPU Data Switch |
! I f
| L2
|_ —=J| usiicu SDRAM
9
aran <
ontrolle | >
99 us il Cu SDRAM
|_
[i H
| >| Dual CPU Data Switch |
Level 1 I ‘ <1z] i
eve
) = L2
Data Switch Lz Us Il Cu SDRAM
Address
Repeater
le=—=| 33 MHz Cards
r— — Pc
66 MHz Cards
| <=
I
Data Path
Controller <
| l<—>| 33 MHz Cards
L — s PCI
== 66 MHz Cards
Level 1
Data Switch

FIGURE 2-3 Very Large Multiprocessor System with the UltraSPARC III Cu

Chapter 2

System Introduction

2.2

Cache Coherence

UltraSPARC III Cu-based systems support a “snooping” based cache coherence protocol and
a directory based cache coherence protocol (also known as Scalable Shared Memory (SSM)).

For small to medium systems, the UltraSPARC III Cu processor uses a MOESI snooping
protocol. In this protocol, when a processor wants a line, it broadcasts the request to all other
processors, which check their caches to see if they have the line.

For larger systems, the UltraSPARC III Cu processor has built-in support for a directory
based coherence protocol (SSM).

In practice, there are small clusters of processors that are connected together with a snooping
based coherence protocol. A directory based cache coherence protocol is used between
clusters.

2.3

2.3.1

2-18

System Interfaces

There are multiple interfaces on the UltraSPARC III Cu processor. This section summarizes
the various interfaces.

Fireplane Interconnect

The Fireplane Interconnect has two parts. Both typically run in the range of 150 MHz.
A hierarchical bus for address and control.
A point-to-point data interconnect.
The Fireplane Interconnect Address Bus has 37 bits of address plus control, arbitration and

ECC bits. All UltraSPARC III Cu processors connect to this bus directly. To build larger
multiprocessor systems, a repeater chip is used to create a hierarchical bus.

The Fireplane Interconnect Data Bus has 32 bytes of data along with ECC and routing
information. All UltraSPARC III Cu processors connect to the Fireplane Interconnect Data
Bus through a DCDS switch. To build larger multiprocessor systems, a point-to-point data
network built with Level 1 data switches can be used.

UltraSPARC Ill Cu User’'s Manual < January 2004

2.3.2

233

234

2.3.5

2.3.6

SDRAM Interface

The UltraSPARC III Cu processor provides address and control bits to the SDRAM. The data
from the SDRAM is directly driven to the DCDS via a 64-byte interface running at one-half
of the Fireplane frequency.

DCDS Interface

The UltraSPARC IIT Cu processor connects to the Dual CPU Data Switch (DCDS) via a
16-byte interface running at 150 MHz and capable of delivering a peak bandwidth of

2.4 GB/s. DCDS is an eight chip, bit slice switch that converts it into a 32-byte Fireplane
Interconnect Data Port running at 150 MHz and capable of delivering a peak bandwidth of
4.8 GB/s.

L2-Cache Interface

The UltraSPARC III Cu processor connects to an up to 8 MB, 2-way set associative external
unified Level 2 (L2) cache with ECC protection via a 32-byte interface, running at 200 MHz
or higher.

Boot Bus Interface

The UltraSPARC III Cu processor has a Boot Bus interface that connects to a Boot PROM,
other booting mechanisms, and diagnostic and recovery mechanisms.

JTAG Interface

The UltraSPARC III Cu processor provides a standard 1149.1 compliant JTAG interface.
This interface can be used to scan out the internal state of the processor for fault diagnosis.
The full scan is a destructive operation that requires the CPU to go through a Power-on reset
(POR) before being used again. In addition, the UltraSPARC III Cu processor also provides a
shadow JTAG interface that allows a subset of the state to be scanned while the processor is
running.

Chapter 2 System Introduction 2-19

2-20 UltraSPARC Ill Cu User’'s Manual < January 2004

sectioN II

Architecture and Functions

January 2004

21

22

UltraSPARC IIl Cu User’'s Manual « January 2004

CHAPTER 3

CPU Architecture Basics

The UltraSPARC III Cu processor is a high-performance, highly integrated, superscalar
processor. The UltraSPARC III Cu fully implements the 64-bit SPARC V9 architecture,
supporting a 64-bit virtual address space and a 43-bit physical address space. The core
instruction set is extended to include new SIMD operations. The processor was designed to
offer very high clock speeds as well as wide superscalar issue to exploit instruction-level
parallelism. The processor offers large Level-1 instruction and data caches, large flexible
memory management units (MMUSs), and support for a large L2-cache. The processor was
designed to work in systems ranging from single processor workstations through
cache-coherent servers with more than a thousand processors. For building a wide range of
system configurations, the processors has built-in support for both snooping-based cache
coherency and directory-based cache coherency.

The UltraSPARC III Cu processor also offers a number of performance enhancements over
previous UltraSPARC processors. The processor incorporates a number of data prefetching
mechanisms to exploit memory-level parallelism. The processor offers an enhanced data
memory management unit (D-MMU) that has 1040 TLB entries and more support for
flexibly using large pages, up to 4 MB pages, to more effectively map gigabytes of data. The
processor supports a 2-way set associative L2-cache instead of a direct-mapped cache.

3.1

Component Overview

The processor consists of a high-performance, instruction fetch engine, called the instruction
issue unit, that is decoupled from the rest of the pipeline by an instruction buffer. Instructions
are steered to either floating-point execution units, integer execution units, or a load/store
unit for execution. Integrated on the processor are controls for the L2-cache, interface to the
Fireplane bus, and a memory controller. A simple block diagram of the UltraSPARC III Cu
processor is shown in FIGURE 3-1.

3-23

3.1.1

3-24

Instruction Fetch and Buffering

The instruction issue unit in the UltraSPARC III Cu processor is responsible for fetching,

UltraSPARC 11l Cu Chip
r-——-—-"—--""-"""""—-""—"""—""—"—"' - — - — — — — — — 1
| Instruction |
| Cache |
32K
I I
I I
L2- Cache e'e System
| Instruction Controller/
| Issue Unit System Interface I
I Unit/ |
| Memory |
| Instruction Controller | I
I Buffer I 8 MB
I I
I I
I I
| FP Units Integer Units Load/Store |
I I
I I
| ' I
| E;Egﬁg:h Data Cache Write Cache |
I 2K 64K 2K I
I I I
I I
L - - - O - - Y - |
FIGURE 3-1 UltraSPARC III Cu Architecture

caching, and supplying groups of instructions to its execution pipelines. Instructions are

fetched and decoded in groups of up to four instructions. Instruction fetching can be done in
every cycle if the request hits instruction cache and other conditions are met. If the request

misses instruction cache, a fill request is sent to the lower memory hierarchy and the

requested 32-byte line is installed in instruction cache. If the requested line is the first half of
a 64-byte boundary, the second half of the 64-byte boundary is prefetched and the line is

filled in the Instruction Prefetch Buffer (IPB) for a potential reference in the future.

UltraSPARC Ill Cu User’'s Manual < January 2004

3.1.2

The UltraSPARC III Cu instruction cache is a 32 KB size, 32-byte line size (eight
instructions), physically tagged, 4-way set associative cache. Its throughput is one cycle with
two-cycle latency. In addition to data and tag array, it also has a microtag, predecode, Load
Prediction Bit (LPB), and snoop tag array. The microtag uses eight bits of virtual address to
enable way-select to be performed before the physical address translation is completed. The
predecode bits include information about which pipeline each instruction will issue to and
other information to optimize execution. The LPB is used to dynamically learn those load
instructions that frequently see a read-after-write (RAW) hazard with preceding stores. The
snoop tag is a copy of the tags dedicated for snoops caused by either stores from the same or
different processors. The instruction cache in the UltraSPARC III Cu processor is kept
completely coherent so the cache never needs to be flushed.

The instruction fetch engine is also dependent upon control transfer instructions, such as
branches and jumps. The UltraSPARC III Cu processor uses a 16K entry branch predictor to
predict fetch direction of conditional branches. The target must be determined for branches
that are either predicted or known to redirect instruction fetches. For PC relative branches,
the target of the branch is computed; this adds a one-cycle branch taken penalty, but avoids
target misprediction. For predicting the target of return instructions an §-entry Return
Address Stack (RAS) is used. For other indirect branches (branches whose targets are
determined by a register value), the software can provide a branch target prediction with a
jump target preparation instruction.

Between the instruction fetch pipeline and the execution pipeline is an instruction buffer that
can hold up to 16 instructions. The instruction buffer decouples the fetch and execute
pipelines and buffers burstiness in each pipeline from each other. The buffer can effectively
hide low latency issues like the taken branch penalty and even hides some of the penalty of
instruction cache misses.

Execution Pipelines

The UltraSPARC III Cu processor has six execution pipelines and can issue up to four
instructions per cycle. The six execution pipelines consist of the following:

Two integer arithmetic and logic (ALU) pipelines

Branch pipeline

Load/store pipeline which also handles special instructions

Floating-point multiply pipeline which also handles SIMD instructions

Floating-point addition pipeline which also handles SIMD instructions
The integer ALU pipelines can issue integer addition, subtraction, logic operations, and
shifts. These pipelines have single-cycle latency and throughput. The branch pipeline handles

all branch instructions and can resolve one branch each cycle. The load/store pipeline can
handle one load or store instruction each cycle and is discussed in more detail in

Chapter 3 CPU Architecture Basics 3-25

3.1.3

3-26

Section 3.1.3. Integer multiplication and division is performed by the load/store pipeline.
Integer multiplication has a latency of 6 to 9 cycles depending on the size of the operands.
Division is also iterative and requires 40 to 70 cycles.

The floating-point pipelines are each four-cycle latency pipelines but are fully pipelined (one
instruction per cycle per pipeline). These pipelines handle single and double precision
floating-point operations and a set of data parallel operations that operate on 8- or 16-bit
fields. Floating-point division and square root operations use the floating-point multiplication
pipeline and are iterative computations. Floating-point division requires 17 or 20 cycles for
single and double precision, respectively. Floating-point square root requires 23 or 29 cycles
for single and double precision, respectively.

Load/Store Unit

As stated earlier, a load or store instruction can be issued each cycle to the load/store
pipeline. The load/store unit consists of the load/store pipeline, a store queue, a data cache,
and a write cache.

Loads have either a two- or three-cycle latency. Integer loads that are for unsigned words or
double words have a two-cycle latency. All other load instructions have a three-cycle latency.
Data can be forwarded from earlier stores still in the store queue to subsequent loads if a
RAW hazard is detected. Data forwarding requires a three-cycle latency. For those
instructions that can have a two-cycle latency, there is a prediction bit in the instruction
cache used to identify those loads that often require store forwarding, which will be issued as
three-cycle loads. If a two-cycle load is not correctly predicted to have a RAW hazard, the
load must be reissued.

There is an 8-entry store queue to buffer stores. Stores reside in the store queue from the time
they are issued until they complete an update to the write cache. The store queue can
effectively isolate the processor from the latency of completing stores. If the store queue fills
up, the processor will block on a subsequent store. The store queue can coalesce stores to the
same cache line. The store queue allows non-catchable stores (for example, stores to a
graphics frame buffer) to be coalesced together such that the required bandwidth to the
device is greatly reduced.

The data cache is a 64 KB, 4-way associative, two-cycle latency, one-cycle throughput,
virtually indexed, physically tagged (VIPT) cache. The data cache, like the instruction cache,
uses 8-bit microtags to do way-selection based on virtual addresses. The data cache is
write-through, no write-allocate, and not included in the L2-cache. The line size is 32 bytes
with no sub-blocking. The data cache needs to be flushed only if an alias is created using
virtual address bit 13. VA[13] is the only virtual bit used to index the data cache.

The write cache is a write-back cache used to reduce the amount of store bandwidth required
to the L2-cache. It exploits both temporal and spatial locality in the store stream. The small
(2 KB) structure achieves a store bandwidth equivalent to a 64 KB write-back data cache

UltraSPARC Ill Cu User’'s Manual < January 2004

3.1.3.1

3.14

while maintaining SPARC V9 TSO compatibility. The write cache is kept fully coherent with
both the processor pipeline and the system memory state. The write cache is 4-way set
associative and has 64-byte lines. The write cache maintains per byte dirty bits.

Data Prefetching Support

The UltraSPARC III Cu processor makes use of an advanced data prefetching mechanism.
This mechanism is used to both overlap load misses to increase memory-level parallelism
and to hide load-miss latency. This mechanism allows software to explicitly expose the
memory-level parallelism and to schedule memory operations. This mechanism is extremely
important because the UltraSPARC IIT Cu processor has blocking loads; when the processor
reaches a load instruction that misses in the cache, the processor waits for the load to
complete before executing any other instructions. The processor supports software
prefetching where the compiler (or Java ™ JIT) can schedule prefetching of data to exploit
memory-level parallelism. Some versions of the processor will also support hardware
prefetching, where the processor observes common data sequences and attempts to prefetch
the data automatically.

There are a number of variations of software prefetches. Software prefetches can specify if
the data should be brought into the processor either for reading or both reading and writing.
Software can also specify if the data should be installed into the L2-cache, for data that will
be reused frequently, or only brought into the prefetch cache.

One of the main mechanisms for implementing prefetches is a special prefetch cache. The
prefetch cache is a small (2 KB) cache that is accessed in parallel with the data cache for
floating-point loads. Floating-point load misses, hardware prefetches, and software
prefetches bring data into the prefetch cache. The prefetch cache is 4-way set associative and
has 64-byte lines, which are broken into two 32-byte sub-blocks with separate valid bits. The
prefetch cache is write invalidate.

Memory Management Units

There are separate Memory Management Units (MMUSs) for instruction and data address
translation. The MMUSs consist of a set of translation lookaside buffers (TLBs) that are tables
of translations from virtual to physical addresses. As long as a virtual address can be
translated using one of the entries in a TLB, the operation proceeds without interruption. If
there is no translation available for a virtual address, the processor traps to software to update
the TLBs with a valid translation.

For the instruction address stream translation, there are two TLBs accessed in parallel. The
first TLB is a 16-entry, fully associative TLB. This TLB can translate page sizes of 8K, 64K,
512K, and 4M, and locked page always reside in this TLB. The second TLB is a 64 set,
2-way set associative (128 entries) TLB. This large TLB is used to translate a page size of
8K.

Chapter 3 CPU Architecture Basics 3-27

3.1.5

3.1.6

3-28

The D-MMU of the UltraSPARC III Cu processor is enhanced to provide more translation
entries and more support for using large pages for translation. For the data reference address
stream translation there are three TLBs accessed in parallel. The first TLB is a 16-entry
fully-associative TLB. This TLB can translate page sizes of 8K, 64K, 512K, and 4M. The
second TLB is a 256-set, 2-way set-associative (512 entries) TLB. This TLB can translate at
8K, 64K, 512K, and 4M page sizes, but at any one time it is configured to only handle one
of the page sizes. The third TLB is identical to the second. This TLB, like the second, can
handle one of four page sizes and can be configured to the same or a different page size than
the second TLB.

The two large TLBs is very important for general use of large pages for translation. One of
the TLBs can be set for large pages (such as 4 MB pages) while the other can be set to the

default page size (usually 8 KB pages). With this configuration, the processor provides robust
support for large pages.

L2-cache Unit (Level-2 Unified Cache)

The UltraSPARC III Cu processor can support an L2-cache of 1 MB, 4 MB or 8 MB. The
L2-cache is 2-way set associative, PIPT cache. The line size of the L2-cache depends on the
cache size (64 bytes for 1 MB, up to 512 bytes for 8 MB). Regardless of the line size, the
cache uses 64-byte sub-blocks that are the unit of fill and the unit of coherency. The
L2-cache is write-allocate, write-back. The tags for the L2-cache are on the CPU chip.

For data, the L2-cache uses standard SRAM parts running at either one-third, one-fourth, or
one-fifth of the processor speed. The interface between the processor and the SRAM is

32 bytes wide. The L2-cache for the UltraSPARC III Cu processor is fully protected with
error correcting code (ECC). Single bit errors in the L2-cache are corrected and double bit
errors are detected. These result in UltraSPARC III Cu state-of-the-art reliability.

System Interface Unit

The system interface unit (SIU) is the UltraSPARC III Cu processor’s port to the external
world. All data is transferred between the UltraSPARC III Cu processor and local DRAM,
main memory associated with another CPU, or the system bus passes through the SIU. The
SIU is the engine for the cache coherency protocol for multiprocessor systems.

The SIU supports clock divisors of 4, 5, and 6 between the system clock and the internal
CPU clock. When the system reset becomes inactive, both the internal CPU clock and the
system interface clock are synchronized at the rising edge.

The system interface allows for a low-cost interconnect of up to six agents. An agent may be
another UltraSPARC III Cu processor, an I/O controller, bus repeater or an SSM controller.
The bandwidth of the external interface buses allows the system interface to be implemented
using a snooping coherence protocol. A snooping interface allows each agent to maintain

UltraSPARC Ill Cu User’'s Manual < January 2004

3.1.7

coherency without the need for an external coherency controller. An UltraSPARC III Cu
processor snoops coherent transaction requests issued on the system interface buses and
follows a write-invalidate MOESI cache coherence policy. Snooping-based systems can be
built with tens of processors.

SSM is a directory-based protocol used for creating very large multiprocessor systems.
Smaller groups of processors using a snooping interface can utilize SSM controllers to create
systems with over a hundred processors. The SIU of the UltraSPARC III Cu processor has
built-in support for working with an SSM controller to facilitate the creation of large
systems.

Memory Controller Unit

The UltraSPARC III Cu processor has an on-chip Memory Controller Unit (MCU). The
UltraSPARC III Cu memory system supports a minimum of 128 MB and a maximum of

16 GB of main memory. The MCU supports 75 MHz SDRAM and interfaces to various
densities of DRAM and single or multiple banks of memory. The MCU only sends out
control signals to the DRAM. The UltraSPARC III Cu SIU is responsible for delivering data
to the data switch for write operations and retrieving data from the data switch for read
operations.

3.2

3.2.1

CPU Operating Modes

The UltraSPARC III Cu processor operates in various modes.

Privileged Mode

This mode is a “supervisor” mode. In this mode, the software is allowed to access both
privileged and non-privileged registers and ASIs. There are certain features that can be
accessed only in privileged mode. Non-privileged software is not allowed to access these
features.

Privileged mode execution is typically used by the kernel and operating system.

Chapter 3 CPU Architecture Basics 3-29

3.2.2

3.2.3

3.23.1

3232

3-30

Non-Privileged Mode

This mode is a “non-supervisor” mode. In this mode, the software is allowed to access only
non-privileged registers and ASIs. If non-privileged software tries to access privileged
registers or ASIs, exceptions are generated and handled by the operating system.

Non-privileged mode execution is typically used by the application programmers.

Reset and RED_State

The UltraSPARC III Cu processor can be reset using various mechanisms. This section deals
with the reset and RED_state for the UltraSPARC III Cu processor.

RED _state Characteristics

A processor enters RED_state by one of the two ways.
First, by trapping when already at the maximum trap level.
Second, by setting the PSTATE. RED.

When the processor enters the RED_state, it will clear the DCU Control Register, including
enable bits for I-cache, D-cache, -MMU, D-MMU, and virtual and physical watchpoints.

Note — Exiting RED_st at e by writing zero to PSTATE. RED in the delay slot of a JMPL
is not recommended. A non-cacheable instruction prefetch can be made to the JMPL target,
which may be in a cacheable memory area. This condition could result in a bus error on
some systems and cause an instruction_access_error trap. You can mask the trap by setting
the NCEEN bit in the ESTATE_ERR _EN register to zero, but this approach will mask all
noncorrectable error checking. Exiting RED_st at e with DONE or RETRY avoids the
problem.

Resets

Reset priorities from highest to lowest are power-on resets (POR, hard or soft), externally
initiated reset (XIR), watchdog reset (WDR), and software-initiated reset (SIR).

UltraSPARC Ill Cu User’'s Manual < January 2004

Power-on Reset (Hard Reset)

A Power-on Reset (POR) occurs when the POK pin is activated and stays asserted until the
processor is within its specified operating range. When the POK pin is active, all other resets
and traps are ignored. POR has a trap type of 1 at physical address offset 20,,. Any pending
external transactions are canceled.

After POR, software must initialize values of certain registers and state that is unknown after
POR. The following bits must be initialized before the caches are enabled:

In the I-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

In the D-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

All L2-cache tags and data

The I-MMU and D-MMU TLBs must also be initialized. The P-cache valid bits must be
initialized before any floating-point loads are executed.

The MCU refresh control register as well as the Fireplane configuration register must be
initialized after a POR.

In SSM systems, the MTags contained in memory must be initialized before any Fireplane
transactions are generated.

Caution — Executing a DONE or RETRY instruction when TSTATE is not initialized after a
POR can damage the chip. The POR boot code should initialize TSTATE<3:0>, using W pr
writes, before any DONE or RETRY instructions are executed.

However, these operations can only be executed in privileged mode. Therefore, user code is
not at the risk of damaging the chip.

System Reset (Soft Reset)

A system reset occurs when the Reset pin is activated. When the Reset pin is active, all other
resets and traps are ignored. System reset has a trap type of 1 at physical address offset 20 .
Any pending external transactions are canceled.

Note — Memory refresh continues uninterrupted during a system reset. System interface,
L2-cache configuration, and memory controller configuration are preserved across a system
reset.

Chapter 3 CPU Architecture Basics 3-31

3.2.4

3-32

Externally Initiated Reset (XIR)

An XIR is sent to the processor through an external hardware pin. It causes a SPARC V9
XIR, which has a trap type 314 at physical address offset 60;4. XIR has higher priority than
all other resets except Power-on Reset and System Reset.

XIR affects only one processor, rather than the entire system. Memory state, cache state, and
most Control Status Register state are unchanged. System coherency is not guaranteed to be
maintained through an XIR reset. The saved PC and nPC will only be approximate because
the trap is not precise with respect to pipeline state.

Watchdog Reset (WDR) and error_state
The processor enters er r or _st at e when a trap occurs at TL = MAXTL.

The processor automatically exits er r or _st at e using WDR. The processor signals itself
internally to take a WDR and sets TT = 2. The WDR traps to the address at

RSTVaddr + 0x40,4. WDR sets the processor in a state where it is prepared for diagnosis of
failures.

WDR affects only one processor rather than the entire system. CWP updates due to window
traps that cause watchdog traps are the same as the no watchdog trap case.

Software-Initiated Reset (SIR)

An SIR is initiated by an S| R instruction within any processor. This per-processor reset has
a trap type 4 at physical address offset 80;. SIR affects only one processor rather than the
entire system.

RED_state Trap Vector

When the UltraSPARC III Cu processor processes a reset or trap that enters RED_st at e, it
takes a trap at an offset relative to the RED_st at e trap vector base address (RSTVaddr);
the base address is at virtual address FFFF FFFF FOOO 00004, which passes through to
physical address 7FF FOOO 0000 .

Error Handling

The UltraSPARC III Cu processor provides extensive support for detecting and correcting
errors. Note that some errors may still be uncorrectable.

UltraSPARC Ill Cu User’'s Manual < January 2004

Error Classes in Severity
The classes of error in order of severity are as follows:

1. Hardware-corrected errors. Hardware tries to correct the error automatically. A trap is
generated to log the error conditions when the error is corrected to enable the actions for
preventive maintenance.

2. Software-correctable errors. Hardware does not correct the error automatically. Instead,
it invokes a trap requesting the recovery software to correct the error. Corrective actions
are expected from the recovery software. If recovery is successful, the system should
continue the operation.

3. Uncorrectable errors. By its nature the error is uncorrectable, and hardware invokes a
trap to signal the occurrence of the error to appropriate recovery software. Depending on
the condition under which the error occurs, the system may be able to recover from the
error and continue operation. If not, it may be able to isolate the error to a particular
process and terminate it. Otherwise, the software should shutdown the system gracefully.

4. Fatal errors. By its nature, the error indicates either loss of system consistency or a
system interconnect protocol error. It is dangerous to continue operation in this situation
because of the impending threat of a failure to maintain data integrity. Therefore, upon the
detection of the error, the processor generates an ERROR signal to its interconnect,
expecting to be halted/reset by the system. System actions induced by the ERROR signal
are system implementation dependent.

Errors Synchronous and Asynchronous to Instruction Execution

Some errors can be detected asynchronously to instruction execution. Other errors are
detected in the course of an instruction execution, that is, synchronous to instruction
execution. Separate error recording mechanisms are used for synchronous and asynchronous
erTors.

An error asynchronous to instruction execution is signalled either through a disrupting trap to
the processor or through an ERROR signal to system hardware to induce a system reset,
depending on the severity of the error.

The errors signalled through a disrupting trap do not directly correspond to an instruction.
Traps may or may not be recoverable.

Errors signalled with an ERROR are meant either to be loss of system consistency or a
protocol error on system interconnect.

On the other hand, an error detected in the course of an instruction execution is signalled
through an error trap to the instruction, with additional information recorded in hardware.
The trap is either precise or deferred. The program (process) affected by the error should be
given a corrected response, or if the error is uncorrectable, the process should be terminated
appropriately. Precise traps are used wherever possible.

Chapter 3 CPU Architecture Basics 3-33

3.2.5

3-34

Corrective Actions

Errors are handled by invocation of one of the following actions:

Reset-inducing ERROR signal. The most severe fatal error generates an ERROR signal
to induce a system reset. Both, an error detected in the course of instruction execution and
an error asynchronous to instruction execution may generate an ERROR signal.

Precise traps. Most errors detected in the course of an instruction execution generate a
precise trap. If the error is hardware correctable, software just logs it. If the error is
software correctable, software corrects it before continuing execution. If the error is
uncorrectable, software takes appropriate action.

Deferred traps. Some uncorrectable errors requiring immediate attention generate a
deferred trap to request software intervention. The recovery software examines the
recorded error information to determine the extent of the damage caused by the error.
Depending on the observed effect, the system may need to be brought down, or it may
continue to run when the effect is isolated within the user program. In any event, the error
does not require immediate reset of the system.

Disrupting traps. An error asynchronous to instruction execution generates a disrupting
trap to request logging and clearing. The error may already be corrected by hardware and
may only require logging. If the error is software correctable, software corrects it before
continuing execution. If the error is uncorrectable, software takes appropriate action.

Debug and Diagnostics Mode

The UltraSPARC III Cu processor provides interfaces for diagnostic access to most internal
state of the processor. This is important for diagnosing, and when possible recovering from
failures. There are a couple of different diagnostic interfaces. All the diagnostic interfaces are
accessible only from software running in privileged mode or from an external system
controller in a server.

There are a number of diagnostic registers that are mapped to internal ASI registers. These
registers are accessed by load and store alternate ASI instructions that specify certain
configurations of ASI numbers and virtual addresses to access the register (all internal
registers are 8 bytes and must be accessed as 8-byte units with 8-byte aligned addresses).
Diagnostic registers are provided for recording various fault conditions as well as important
information and state associated with the fault to help diagnosis and possibly recover.

For diagnostic and error recovery, large memories on chip, such as caches, can have each
element of the memory array be directly read and written. These accesses are performed with
load and store alternate ASIs that use specific ASIs that point to the memory array. These
accesses can only be done by privileged software.

UltraSPARC Ill Cu User’'s Manual < January 2004

Special AST numbers are used for diagnostic accesses to structures where the virtual address
is used to specify the portion of the structure to be read (all internal state must be accessed in
8-byte units with 8-byte aligned addresses). Most structures can be directly read and many
structures can also be directly written or quickly cleared.

The UltraSPARC III Cu processor also provides a serial JTAG interface that can be used by a
system controller for diagnostics. A system controller can perform a shadow scan where
various configuration and diagnostic information is scanned out of the processor without
interfering with the operation of the processor. The system controller can also use the JTAG
interface to scan in information to configure or control various aspects of the processor.

The JTAG interface can also be used to perform a full scan dump. When a full scan dump is
performed, most of the flops in the processor are scanned out through a scan chain. A full
scan dump is a destructive action and the processor must be reset after a full scan dump. The
full scan provides an important tool for diagnosis of serious failures.

For controlling diagnostics mode, there is a range of configuration registers, which can
enable and disable many features of the processor. The configuration registers are only
accessible in privileged mode. Some of the configuration registers are implemented as ASRs.
These registers are accessible from the RDASR/WRASR interface. Most of the configuration
registers are mapped as internal ASI registers. These registers are accessed by load and store
alternate ASI instructions that specify certain configurations of ASI numbers and virtual
addresses to access the register (all internal registers are 8 bytes and must be accessed as
8-byte units with 8-byte aligned addresses).

Chapter 3 CPU Architecture Basics 3-35

3-36 UltraSPARC Ill Cu User’'s Manual < January 2004

CHAPTER 4

Instruction Execution

This chapter focuses on the needs of compiler writers and others who are interested in
scheduling instructions to optimize program performance. The chapter discusses the
following topics:

Section 4.1, “Introduction”

Section 4.2, “Processor Pipeline”
Section 4.3, “Pipeline Recirculation”
Section 4.4, “Grouping Rules”
Section 4.5, “Conditional Moves”

>

Section 4.6, “Instruction Latencies and Dispatching Properties’

4.1

Introduction

The instruction at the memory location specified by the program counter (PC) is fetched and
then executed, annulled, or trapped. Instruction execution may change program-visible
processor and/or memory state. As a side-effect of its execution, new values are assigned to
the PC and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it
impossible to complete normal execution. Such an exception may in turn generate a precise
trap. Other events may also cause traps: an exception caused by a previous instruction (a
deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request (a
reset trap). If a trap occurs, control is vectored into a trap table. See Chapter 12, “Traps and
Trap Handling,” for a detailed description of exception and trap processing.

4-37

4.1.1

4.1.1.1

4.1.1.2

4.1.1.3

NOP, Neutralized, and Helper Instructions

The distinction between NOP and neutralized instructions is subtle.

NOP Instruction

The architected NOP instruction is coded as a SETHI instruction with destination register
%g0. This instruction is groupable in the AQ or Al pipeline.

Neutralized Instruction

Some instructions have no visible effects on the software. They have been de-implemented or
assigned to not have an effect if the processor is in a certain mode. These instructions are
often referred to as NOP instructions, but they are not the same as the NOP instruction in that
they execute in the pipeline that is assigned to them. These are versions of instructions that
have no effect because they only access the ¥g0 register and do not have any side-effects.
Hence, these instructions are functionally neutral.

Helper Instructions

Helper instructions are generated by the hardware to help in the execution or re-execution of
an instruction. The hardware partitions a single instruction into multiple instructions that
flow through the pipeline consecutively. They have no software visibility and are part of the
hardware function of the pipeline.

4.2

4-38

Processor Pipeline

The processor pipeline consists of fourteen stages plus an extra stage that is occasionally
used by the hardware. The pipeline stages are referred to by the following mnemonic single
letter names and are shown in TABLE 4-1.

TABLE 4-1 Processor Pipeline Stages

Pipeline Stage Definition
A Address generation
P Preliminary Fetch
F Fetch instructions from I-cache

UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 4-1 Processor Pipeline Stages (Continued)

Pipeline Stage

Definition

Branch target computation

Instruction group formation

J: grouping

Register access (dispatch/dependency checking stage)

Execute

Cache

Miss detect

Write

eXtend

Trap

ORI ® 2 OE R~ ~==

Done

Rather than executing the instructions in a single pipeline, several separate pipelines are each
dedicated to execution of a particular class of instructions. The execution pipelines start after
the R-stage of the pipeline. Some instructions take a cycle or two to execute, others take a

few cycles within the pipeline. As long as the execution fits within the fixed pipeline depth,
execution can in general be fully pipelined. Some instructions have extended execution times

that sometimes vary in duration depending on the state of the processor.

The following sections provide a stage-by-stage description of the pipeline. Chapter 3, “CPU
Architecture Basics,” describes the functions of the various execution units. This chapter

explains how the pipeline operates the execution units to process the instructions.

FIGURE 4-1 illustrates each pipeline stage in detail and the relationship between high level,
large architectural structures.

Chapter 4

Instruction Execution

4-39

Program Counter
Predicted Return Target

JPL Target
Branch Target i 'I%F%Zt A
Program Interrupts
N~
____________________________________ i
Branch X & m
___Pipeline | Instruction Cache I I = I
(0] 1
32 KB, 4-way, 32-byte line S F
Branch Target B

Instruction I
Enqueue Steering

Instruction Queue 4 X 4 | -
nstruction J
Group Staging

Dequeue

‘ - - Dependency R
Working Redister File 7R 3W Check
T B D D e s g e A
—s FP/VIS Register d z | g
Iw File W< Y Y (|5
A1 D-cach)
< \AO /\ T / cache P-cache E o ﬁg
RN IO |3 =—————=1 - - - |) ll's=| - - -
: 64kB || 2kB [| 5|2 |[| 8
~ | 4-way FA S |a (% C
~ 5 : 1 |
TR = -
(1,:3; \;, 5 E : / SignExtend/Align % > l.Mmiss M
L1325 S 4 I—
SIS IE [|
|
o E = |8 I w
Lla [a I = I
N8 N T i =3 A AP S O |------
O] O | 3
| =) X
I O
o P Y R
| S
| 0 T
|
————————————————————————— + - ————— ¥ === - - - — F-———
w W w
Architecturhl Register File D
(cpmmits) L

! W-cache (2KB) |

FIGURE 4-1 Instruction Pipeline Diagram Instruction Dependencies

4-40 UltraSPARC Ill Cu User’'s Manual < January 2004

4.2.1

4.2.2

4.2.3

Instruction dependencies exist in the grouping, dispatching, and execution of instructions.

Grouping Dependencies

Up to four instructions can be grouped together for simultaneous dispatch. The number of
instructions that can be grouped together depends on the consecutive instructions that are
present in the instruction fetch stream, the availability of execution resources (execution
units), and the state of the system. Instructions are grouped together to provide superscalar
execution of multiple instruction dispatches per clock cycle.

Some instructions are single instruction group instructions. These are dispatched by
themselves one clock at a time as a single instruction in the group.

Note — Pipeline Recirculation: During recirculation, the recirculation invoking instruction
is often re-executed as a single group instruction and often with helper instruction inserted
into the pipeline by the hardware. Even groupable instructions are retried in a single
instruction group. See Section 4.3, “Pipeline Recirculation” for details.

Dispatch Dependencies

Instructions can be held at the R-stage for many different reasons, including:
Working register operand not available
Functional Unit not available
Store-load sequence in progress (atomic operation)

When instructions are held at the dispatch stage, the upper pipeline continues to operate until
the instruction buffer is full. At that point, the upper pipeline stalls.

During recirculation, the recirculation invoking instruction is held at the dispatch stage until
its execution dependency is resolved.

Execution Dependencies

The pipeline assumes all load instructions will hit in a primary cache, allowing the pipeline
to operate at full speed. A cache miss will recirculate the pipeline.

D-cache Miss

Load requires data to be bypassed from an earlier store that has not completed and does
not meet the criteria for read-after-write data bypassing.

Chapter 4 Instruction Execution 4-41

4.2.4

4.24.1

4242

4243

4-42

Instruction-Fetch Stages

The instruction-fetch pipeline stages A, P, F, and B are described below.

A-stage (Address Generation)

The address stage generates and selects the fetch address to be used by the instruction cache
in the next cycle. The address that can be selected in this stage for instruction fetching comes
from several sources, including:

Sequential PC

Branch target (from B-stage)
Trap target

Interrupt

Predicted return target

Jmpl target

Resolved branch/Jmpl target from execution pipeline

P-stage (Preliminary Fetch)

The preliminary fetch stage starts fetching four instructions from the instruction cache. Since
the I-cache has a two-cycle latency, the P-stage and the F-stage are both used to complete an
I-cache access. Although the I-cache has a two-cycle latency, it is pipelined and can access a
new set of up to four instructions every cycle. The address used to start an I-cache access is
generated in the previous cycle.

The P-stage also accesses the Branch Predictor (BP), which is a small, single-cycle access
SRAM whose output is latched at the end of the P-stage. The BP predicts the direction of all
conditional branches, based on the PC of the branch and the direction history of the most
recent conditional branches.

F-stage (Fetch)

The F-stage is used for the second half of the I-cache access. At the end of this stage, up to
four instructions from an I-cache line (32 bytes) are latched for decode. An I-cache fetch
group is not permitted to cross an I-cache line (32-byte boundary).

UltraSPARC Ill Cu User’'s Manual < January 2004

4244

4.2.5

4.2.5.1

B-stage (Branch Target Computation)

The B-stage is the final stage of the instruction-fetch pipeline, A-P-F-B. In this stage, the
four fetched instructions are first available in a register. The processor analyzes the
instructions, looking for Delayed Control Transfer Instructions (DCTI) that can alter the path
of execution. It finds the first DCTI, if any, among the four instructions and computes (if PC
relative) or predicts (if register based) its target address. If this DCTI is predicted taken, the
target address is passed to the A-stage to begin fetching from that stream; if predicted not
taken, the target is passed on to the CTI queue for use in case of mispredict. Also in the
B-stage, the computation of the hit or miss status of the instruction fetch is performed, so
that the validity of the four instructions can be reported to the instruction queue.

In the case of an instruction cache miss, a request is issued to the L2-cache and all the way
out to memory if needed to get the required line. The processor includes an optimization,
where along with the line being fetched, the subsequent line (32 bytes) is also returned and
placed into the instruction prefetch buffer. A subsequent miss that can get its instructions
from the instruction prefetch buffer will behave like a fast miss.

Instruction Issue and Queue Stages

The I-stage and J-stage correspond to the enqueueing and dequeueing of instructions from
the instruction queue. The R-stage is where instruction dependencies are resolved.

[-stage (Instruction Group Formation)

In the I-stage, the instructions fetched from the I-cache are entered as a group into the
instruction queue. The instruction queue is four instructions wide by four instruction groups
deep. The instruction may wait in the queue for an arbitrary period of time until all earlier
instructions are removed from the queue.

The instructions are grouped to use up to four of the execution pipelines, shown in TABLE 4-2.

TABLE 4-2 Execution Pipelines

Pipeline Description

A0 Integer ALU pipeline 0

Al Integer ALU pipeline 1

BR Branch pipeline

MS Memory/Special pipeline

FGM Floating Point/VIS multiply pipeline (with divide/square root pathway)
FGA Floating Point/VIS add ALU pipeline

Chapter 4 Instruction Execution 4-43

4252

4253

4.2.6

4.2.6.1

4-44

J-stage (Instruction Group Staging)

In the J-stage, a group of instructions are dequeued from the instruction queue and prepared
for being sent to the R-stage. If the R-stage is expected to be empty at the end of the current
cycle, the group is sent to the R-stage.

R-stage (Dispatch and Register Access)

The integer working register file is accessed during the R-stage for the operands of the
instructions (up to three) that have been steered to the A0, Al, and MS pipelines. At the end
of the R-stage, results from previous instructions are bypassed in place of the register file
operands, if required.

Up to two floating-point or VIS instructions are sent to the Floating Point/VIS Unit in this
stage.

The register and pipeline dependencies between the instructions in the group and the
instructions in the execution pipelines are calculated concurrently with the register file
access. If a dependency is found, the dependent instruction and any older instruction in the
group is held in the R-stage until the dependency is resolved.

Execution Pipeline

The execution pipeline contains the E, C, M, W and X stages.

Integer Instruction Execution: E-stage (Execute)

The E-stage is the first stage of the execution pipelines. Different actions are performed in
each pipeline.

Integer instructions in the A0 and Al pipelines compute their results in the E-stage. The
instructions include most arithmetic, all shift, and all logical instructions. The results are
available for bypassing to dependent instructions that are in the R-stage, resulting in
single-cycle execution for most integer instructions. The A0 and A1l pipelines are the only
two sources of bypass results in the E-stage.

Other integer instructions are steered to the MS pipeline and if necessary are sent with their
operands to the special execution unit in this stage. They can start their execution during the
E-stage, but will not produce any results to be bypassed until the C-stage or the M-stage.

UltraSPARC Ill Cu User’'s Manual < January 2004

4.2.6.2

4.2.6.3

Load instructions steered to the MS pipeline start accessing the D-cache during the E-stage.
The D-cache features Sum Addressed Memory (SAM) decode logic that combines the
arithmetic calculation for the virtual address with the row decode of the memory array to
reduce lookup time. The virtual address is computed in the E-stage for translation lookaside
buffer (TLB) access and possible access to the P-cache.

Floating-point and VIS instructions access the floating-point register file in the E-stage to
obtain their operands. At the end of the E-stage, the results from previous completing
floating-point/VIS instructions can be bypassed to the E-stage instructions.

Conditional branch instructions in the BR pipeline resolve their directions in the E-stage.
Based on their original predicted direction, a mispredict signal is computed and sent to the
A-stage for possible refetching of the correct instruction stream.

JMPL and RETURN instructions compute their target addresses in the E-stage of the MS
pipeline. The results are sent to the A-stage to start fetching instructions from the target
stream.

C-stage (Cache)

The data cache delivers results for doubleword (64-bit) and unsigned word (32-bit) integer
loads in the C-stage. The D-TLB access is initiated in the C-stage and proceeds in parallel
with the D-cache access. For floating-point loads, the P-cache access is initiated in the

C-stage. The results of the D-TLB access and P-cache access are available in the M-stage.

Special instruction unit results are produced at the end of this stage and can be bypassed to
waiting dependent instructions in the R-stage — minimum two-cycle latency for SIU
instructions. The integer pipelines, A0 and Al, write their results back to the working
register file in the C-stage.

The C-stage is the first stage of execution for floating-point and VIS instructions in the FGA
and FGM pipelines.

M-stage (Miss)

Data cache misses are determined in the M-stage by a comparison of the physical address
from the D-TLB to the physical address in the D-cache tags. If the load requires additional
alignment or sign extension (such as signed word, all halfword, and all byte loads), it is
carried out in this stage, resulting in a three-cycle latency for those load operations. This
stage is used for the second execution cycle of floating-point and VIS instructions. Load data
are available to the floating-point pipelines in the M-stage.

Chapter 4 Instruction Execution 4-45

4.2.6.4

4.2.6.5

4.2.7

4.2.7.1

4.2.7.2

4-46

W-stage (Write)

In the W-stage, the MS integer pipeline results are written into the working register file. The
W-stage is also used as the third execution cycle for floating-point and VIS instructions. The
results of the D-cache miss are available in this stage and the requests are sent to the
L2-cache if needed.

X-stage (Extend)

The X-stage is the last execution stage for most floating-point operations (except divide and
square root) and for all VIS instructions. Floating-point results from this stage are available
for bypass to dependent instructions that will be entering the C-stage in the next cycle.

Trap and Done Stages

This section describes the stages that interrupt or complete instruction execution.

The results of operations are bypassed and sent to the working register file. If no traps are
generated, then they are successfully pipelined down to the architectural register file and
committed. If a trap or recirculation occurs, then the architectural register file (contains
committed data) is copied to the working register in preparation for the instructions to be
re-executed.

T-stage (Trap)

Traps, including floating-point and integer traps, are signalled in this stage. The trapping
instruction, and all instructions younger than the trapping instruction must invalidate their
results before reaching the D-stage to prevent their results from being erroneously written
into the architectural or floating-point register files.

D-stage (Done)

Integer results are written into the architectural register file in this stage. At this point, they
are fully committed and are visible to any traps generated from younger instructions in the
pipeline.

Floating-point results are written into the floating-point register file in this stage. These
results are visible to any traps generated from younger instructions.

UltraSPARC Ill Cu User’'s Manual < January 2004

4.3

Pipeline Recirculation

When a dependency is encountered in or before the dispatch R-stage, then the pipeline is
stalled. Most dependencies, like register or functional unit dependencies are resolved in the
R-stage. When a dependency is encountered after the dispatch R-stage, then the pipeline is
recirculated. Recirculation involves resetting the PC back to the recirculation invoking
instruction. Instructions older than the dependent instruction continue to execute. The
offending instructions and all younger instructions are recirculated. The offending instruction
is re-fetched and goes through the entire pipeline again.

Upon recirculation, the instruction responsible for the recirculation becomes a single-group
instruction that is held in the R-stage until the dependency is resolved.

Load Instruction Dependency

In the case of a load instruction miss in a primary cache, the pipeline recirculates and the
load instruction waits in the R-stage. When the data is returned in the D-cache fill buffer, the
load instruction is dispatched again and the data is provided to the load instruction from the
fill buffer. The pipeline logic inserts two helpers behind the load instruction to move the data
in the fill buffer to the D-cache. The instruction in the instruction fetch stream, after the load
instruction, follows the helpers and will regroup with younger instructions, if possible.

4.4

Grouping Rules

Grouping rules are made before going into R-stage. A group is a collection of instructions
with no resource constraints that will limit them from being executed in parallel.

Instruction grouping rules are necessary for the following reasons:
The instruction execution order is maintained.
Each pipeline runs a subset of instructions.

Resource dependencies, data dependencies, and multicycle instructions require helpers
(NOPs) to maintain the pipelines.

Before continuing, we define a few terms that apply to instructions.
break-before: The instruction will always be the first instruction of a group.

break-after: The instruction will always be the last instruction of a group.

Chapter 4 Instruction Execution 4-47

4.4.1

4.4.2

4-48

single-instruction group (SIG): The instruction will not be issued with any other
instructions in the group. (SIG is sometimes shortened herein to “single-group.”)

instruction latency: The number of processor cycles after dispatching an instruction from
the R-stage that a following data-dependent instruction can dispatch from the R-stage.

blocking, multicycle: The instruction reserves one or more of the execution pipelines for
more than one cycle. The reserved pipelines are not available for other instructions to issue
into until the blocking, multicycle instruction completes.

Execution Order

Rule: Within the R-stage, some of the instructions can be dispatched and others cannot.
If an instruction is younger than an instruction that is not able to dispatch, then the
younger instruction will not be dispatched.

“Younger” and “older” refer to instruction order within the program.The instruction that
comes first in the program order is the older instruction.

Integer Register Dependencies to Instructions in the
MS Pipeline

Rule: If a source register operand of an instruction in the R-stage matches the
destination register of an instruction in the MS pipeline’s E-stage, then the instruction
in the R-stage may not proceed.

The MS pipeline has no E-stage bypass.

If an operand of an instruction in the R-stage matches the destination register of an
instruction in the MS pipeline’s C-stage, then the instruction in the R-stage may not proceed
if the instruction in the MS pipeline’s C-stage does not generate its data until the M-stage.
For example, LDSB does not have the load data until the M-stage, but LDX has its data in the
C-stage. Thus, LDX would not cause an interlock, but LDSB would.

Most instructions in the MS pipeline have their data by the M-stage, so there is no
dependency check on the MS pipeline’s M-stage destination register. In the case of
multicycle MS instructions, the data is always available by the M-stage as the last of the
instructions passes through the pipeline.

UltraSPARC Ill Cu User’'s Manual < January 2004

4.4.2.1

4.4.3

Helpers

Sometimes an instruction, as part of its operation, requires multiple flows in the pipeline. We
call those extra flows after the initial instruction flow helper cycles. The only pipeline that
executes such instructions is the MS pipeline. If an instruction requires a helper, that helper
is generated in the R-stage. The help generation logic generates as many helpers as the
instruction requires.

Most of the time the logic determines the number of helpers by examining the opcode.
However, some recirculate cases run the recirculated instruction differently than the original
flow down the pipeline, and some instructions, like integer multiply and divide, require
variable numbers of helpers. Some helper counts are determined by I/O and memory
controllers and system devices. For example, the D-cache unit requires helpers as it
completes an atomic memory instruction.

Rule: Instructions requiring helpers are always break-after.

There can be no instruction in a group that is younger than an instruction that requires
helpers. Another way of saying this is “an instruction that requires helpers will be the
youngest in its group.” This rule preserves the in-order execution of the integer instructions.

Rule: Helpers block the pipeline.

Helpers block the pipeline from executing other instructions; thus, instructions with helpers
are blocking.

Rule: Helpers are always single-group.

A helper cycle is always alone in a group. No other instruction will ever be dispatched from
the R-stage if there is a helper cycle in the R-stage.

Integer Instructions Within a Group

Rule: Integer instructions within a group are not allowed to write the same destination
register.

By not writing the same destination register at the same time, we simplify bypass logic and
register file write-enable determination and potential Write-after-Write (WAW) errors. The
instructions are break-before second destination is written.

This rule applies only to integer instructions writing integer registers. Floating-point
instructions and floating-point loads (done in the integer A0, Al, and MS pipelines) can be
grouped so that two or more instructions in the same group can write the same floating-point
destination register. Instruction age is associated with each instruction. The write from an
older instruction is not visible, but the execution of the instruction might still cause a trap
and set condition codes.

There are no special rules concerning integer instructions that set condition codes and
integer branch instructions.

Chapter 4 Instruction Execution 4-49

4.4.4

4.4.5

4.45.1

4452

4-50

Integer instructions that set condition codes can be grouped in any way with integer
branches. In fact, any number instructions that set condition codes can be in any order
relative to the branch are allowed, provided that they do not violate any other rules. No
special rules apply to this specific case. Integer instructions that set condition codes in the Al
and A0 pipelines can compute a taken/not taken result in the E-stage, which is the same stage
in which the branch is evaluating the correctness of its prediction. The control logic
guarantees that the correct condition codes are used in the evaluation.

Same-Group Bypass

Rule: Same-group bypass is disallowed, except store instructions.

The group bypass rule states that no instruction can bypass its result to another instruction in
the same group. The one exception to this rule is store. A store instruction can get its store
data (r d), but not its address operands (r s1, r s2), from an instruction in the same group.

Floating-Point Unit Operand Dependencies

Latency and Destination Register Addresses

Floating-point operations have longer latencies than most integer instructions. Moreover,
floating-point square root and divide instructions have varying latencies depending on
whether the operands are single precision or double precision. All the floating-point
instruction latencies are four clock cycles (except for floating-point divide and square root
and PDI ST - PDI ST).

The operands for floating-point operations can either be single precision (32-bit) or double
precision (64-bit). Sixteen of the double precision registers are each made up of two single
precision registers. An operation using one of these double precision registers as a source
operand may be dependent on an earlier single precision operation producing part of the
register value. Similarly, an operation using one of the single precision registers as a source
operand may be dependent on an earlier double precision operation, a part of which may
produce the single precision register value.

Grouping Rules for Floating-Point Instructions

Rule: Floating-point divide/square root is busy.

UltraSPARC Ill Cu User’'s Manual < January 2004

4453

4.4.5.4

4.4.6

The floating-point divide/square root unit is a non-pipelined unit. The Integer Execution Unit
sets a busy bit for each of the two stages of the divide/square root and depends on the FGU
to clear them. Only the first part of the divide/square root is considered to have a busy unit;
therefore, once the first part is complete, a new floating-point divide/square root operation
can be started.

Rule: Floating-point divide/square root needs a write slot in FGM pipeline.

In the stage in which a divide/square root is moved from the first part to the last part, we
cannot issue any instructions to the FGM pipeline. This constraint provides the write slot in
the FGM pipeline so the divide/square root can write the floating-point register file.

Rule: Floating-point store is dependent on floating-point divide/square root.

The floating-point divide/square root unit has a latency longer than the normal pipeline. As a
result, if a floating-point store depend on the result of a floating-point divide/square root,
then the floating-point store instruction may not be dispatched until the floating-point divide/
square root instruction has completed.

Grouping Rules for VIS Instructions

Rule: Graphics Status Register (GSR) Write instructions are break-after.

The SI AM BMASK, and FALI GNADDR instructions write the GSR. The BSHUFFLE and
FALI GNDATA instructions read the GSR in their operation. Because of GSR write latency, a
GSR reader cannot be in the same group as a GSR writer unless the GSR reader is older than
the GSR writer. The simplest solution to this dependency is to make all GSR write
instructions break-after.

Note — The WRGSR instruction is not included in this rule as a special case. The WRGSR
instruction is already break-after by virtue of being a WRASR instruction.

PDIST Special Cases

PDI ST-to-dependent-PDI ST is handled as a special case with one-cycle latency. PDI ST

latency to any other dependent operation is four-cycle latency. In addition, a PDI ST cannot
be issued if there is ST, block store (BST), or partial store instruction in the M-stage of the
pipeline. PDI ST issue is delayed if there is a store type instruction two groups ahead of it.

Grouping Rules for Register-Window Management
Instructions

Rule: Window changing instructions are single-group.

Chapter 4 Instruction Execution 4-51

4.4.7

4.4.8

4-52

The window changing instructions SAVE, RESTORE, and RETURN are all single-group
instructions. These instructions are never grouped with any other instruction. This rule
greatly simplifies the tracking of register file addresses.

Rule: Window changing instructions force bubbles after.

The window changing instructions SAVE, RESTORE, and RETURN also force a subsequent
pipeline bubble. A bubble is distinct from a helper cycle in that there is nothing valid in the
pipeline within a bubble. During the bubble, control logic transfers the new window from the
Architectural Register File (ARF) to the Working Register File (WRF).

Rule: FLUSHWis single-group.

To simplify the Integer Execution Unit’s handling of the register file window flush, the
FLUSHWinstruction is single-group.

Rule: SAVED and RESTORED are single-group.

To simplify the Integer Execution Unit’s window tracking, SAVED and RESTORED are
single-group instructions.

Grouping Rules for Reads and Writes of the ASRs

Rule: Write ASR and Write PR instructions are single-group.

WRASR and WRPR are always the youngest instructions in a group. This case prevents
problems with an instruction being dependent on the result of the write, which occurs late in
the pipeline.

Rule: Write ASR and Write PR force seven bubbles after.

To guarantee that any instruction that starts in the R-stage is started with the most up-to-date
status registers, WRASR and VRPR force bubbles after they are dispatched. Thus, if a WRASR
or a WRPR instruction is in the pipeline anywhere from the E-stage to the T-stage, no
instructions are dispatched from the R-stage (bubbles are forced in).

Rule: Read ASR and Read PR force up to six bubbles before (break-before multicycle).

Many instructions can update the ASRs and PRs. Therefore, if an RDASR or RDPR
instruction is in the R-stage and any valid instruction is in the integer pipelines from the
E-stage to the X-stage, the UltraSPARC III Cu processor does not allow the RDASR and
RDPR instructions to be dispatched. Instead, we wait for all pipeline states to write the ASRs
and privileged registers and then read them.

Grouping Rules for Other Instructions

Rule: Block Load (BLD) and Block Store (BST) are single-group and multicycle.

UltraSPARC Ill Cu User’'s Manual < January 2004

For simplicity in the Integer Execution Unit and memory system, BLD and BST are
single-group instructions with helpers.

Rule: FLUSH is single-group and seven bubbles after.

To simplify the Instruction Issue Unit and Integer Execution Unit, the FLUSH instruction is
single-group. This makes instruction cancellation and issue easier. FLUSH is held in the
R-stage until the store queue and the pipeline from E-stage through D-stage is empty.
Rule: MEMBAR (#Sync, #Lookasi de, #St or eLoad, #Memi ssue) is single-group.
To simplify the Integer Execution Unit and memory system, MEMBAR is a single-group
instruction. MEMBAR will not dispatch until the memory system has completed necessary
transactions.

Rule: Software-initiated reset (S| R) is single-group.

For simplicity, Sl R is a single-group instruction.

Rule: Load FSR (LDFSR) is single-group and forces seven bubbles after.

For simplicity, LDFSR is a single-group instruction.

Rule: DONE and RETRY are single-group.
DONE and RETRY instructions are dispatched as a single-group.

Rule: DONE and RETRY force seven bubbles after.

DONE and RETRY are typically used to return from traps or interrupts and are known as trap
exit instructions.

It takes a few cycles to properly restore the pre-trap state and the working register file from
the architectural register file, so we force bubbles after the trap exit instructions to give us the
cycles to do it all. We will not accept a new instruction until the trap exit instruction leaves
the pipeline (also known as D + 1).

4.5

Conditional Moves

The compiler needs to have a detailed model of the implementation of the various
conditional moves so it can optimally schedule code. TABLE 4-3 describes the implementation
of the five classes of SPARC V9 conditional moves in the pipeline. FADD and ADD
instructions (shaded rows) are also described as a reference for comparison with the
conditional move instructions.

Chapter 4 Instruction Execution 4-53

TABLE 4-3 SPARC V9 Conditional Moves

RD Busy

Instruction Latency Pipelines Used Cycles Groupable Dependency
FMOVi cc 3 cycles FGA and BR 1 Yes icc-0
FMOVf cc 3 cycles FGA and BR 1 Yes fcc-0
FMOVr 3 cycles FGA and MS 1 Yes N/A

FADD 4 cycles FGA 1 Yes N/A

ADD 1 cycle A0 or Al 1 Yes N/A
MOvcc 2 cycles MS and BR 1 Yes icc-0
MOVR 2 cycles MS and BR 1 Yes N/A

Where:

RD Latency — The number of processor cycles until the destination register is available for
bypassing to a dependent instruction.

Pipelines Used — The pipeline that the instruction uses when it is issued. The pipelines are
shown in TABLE 4-2.

Busy Cycles — The number of cycles that the pipelines are not available for other
instructions to be issued. A value of one signifies a fully pipelined instruction.

Groupable — Whether instructions using pipelines, other than those used by the conditional
move, can be issued in the same cycle as the conditional move.

{i,f}CC Dependency — The number of cycles that a CC setting instruction must be
scheduled ahead of the conditional move in order to avoid incurring pipeline stall cycles.

4.6

4-54

Instruction Latencies and Dispatching
Properties

In this section, a machine description is given in the form of a table (TABLE 4-4) dealing with
dispatching properties and latencies of operations. The static or nominal properties are
modelled in the following terms (columns in TABLE 4-4), which are discussed below.

Latencies
Blocking properties in dispatching
Pipeline resources (A0, Al, FGA, FGM, MS, BR)

UltraSPARC Ill Cu User’'s Manual < January 2004

4.6.1

4.6.2

Break rules in grouping (before, after, single-group)

The pipeline assumes the primary cache will be accessed. The dynamic properties, such as
the effect of a cache miss and other conditions, are not described here.

Latency

In the Latency column, latencies are minimum cycles at which a dependent operation
(consumer) can be dispatched relative to the producer operation without causing a
dependency stall or instructions holding back in the R-stage to execute.

Operations like ADDcc produce two results, one in the destination register and another in the
condition codes. For such operations, latencies are stated as a pair x,y, where x is for the
destination register dependence and y is for the condition code.

A zero latency implies that the producer and consumer operations may be grouped together
in a single group, as in { SUBcc, BE % cc}.

Operations like UMUL have different latencies, depending on operand values. These are given
as a range, min—max, for example, 6-8 in UMUL. Operations like LDFSR involve waiting for
a specified condition. Such cases are described by footnotes and a notation like 32+ for
CASA (meaning at least 32 cycles).

Cycles for branch operations (like BPcc) give the dispatching cycle of the retiring target
operation relative to the branch. A pair of numbers, for example 0,8, is given, depending on
the outcome of a branch prediction, where 0 means a correct branch prediction and 8 means
a mispredicted case.

Special cases, such as FCMP(s,d), in which latencies depend on the type of consuming
operations are described in footnotes (bracketed, for example, [1]).

Blocking

The Blocking column gives the number of clock cycles that the dispatch unit waits before
issuing another group of instructions. Operations like FDI Vd (MS pipeline) have limited
blocking property; that is, the blocking is limited to the time before another instruction that
uses MS pipeline can be dispatched. Such cases are noted with footnotes. All pipelines block
instruction dispatch when an instruction is targeted to them, but they are not ready for
another instruction to be pipelined-in.

Chapter 4 Instruction Execution 4-55

4.6.3

4.6.4

Pipeline

The Pipeline column specifies the resource usage. Operations like MOVCC require more than
one resource, as designated by the notation MS and BR. The operation LDF can dispatch to
either MS, A0, or A1 as indicated.

Break and SIG

Grouping properties are given in columns Break and SIG (single-instruction group). In the
Break column, an entry can be “Before,” meaning that this operation causes a break in a
group so that the operation starts a new group. Operations like RDCCR require dispatching to
be stalled until all operations in flight are completed (reach D-stage); in such cases, details
are provided in a footnote reference in the Break column.

Operations like ALl GNADDR must be the last in an instruction group, causing a break in the
group of type “After.”

Certain operations are not groupable and therefore are issued in single-instruction groups. A
break “before” and “after” are implied for non-groupable instructions.

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (1 of 6)
Dispatch
Blocking
Instruction Latency After Pipeline Break SIG
ADD 1 A0 or Al
ADDcc 1,0 [1] A0 or Al
ADDC 5 4 MS Yes
ADDCcc 6,5 [2] 5 MS Yes
ALl GNADDR 2 MS After
AL| GNADDRL 2 MS After
AND 1 A0 or Al
ANDcc 1,0 [1] A0 or Al
ANDN 1 A0 or Al
ANDNcc 1,0 [1] A0 or Al
ARRAY(8,16,32) 2 MS
Bi ccP 0, 8 [3] 0,5 [4] BP
BMASK 2 MS After
BPcc 0, 8 [3] 0, 5 [4] BP
BPR 0, 8 [3] 0, 5 [4] BP and MS
BSHUFFLE 3 FGA Yes
4-56 UltraSPARC Ill Cu User's Manual < January 2004

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (2 of 6)

Dispatch
Blocking

Instruction Latency After Pipeline Break SIG

CALL label 0-3 [5] BP and MS

CASA 32+ 31+ MS After

CASXA 32+ 31+ MS After

DONEP 7 Yes BP and MS Yes

EDGE(8,16,32){L} 5 4 MS Yes

EDGE(8,16,32)N 2 MS

EDGE(8,16,32)LN 2 MS

FABS(s,d) 3 FGA

FADD(s,d) 4 FGA

FALI GNDATA 3 FGA

FANDNOT1{ s} 3 FGA

FANDNOT2{ s} 3 FGA

FAND{ s} 3 FGA

FBPf cc BP

FBf ccP BP

FCWVP(s, d) 1,5 [6] FGA

FCWVPE(s, d) 1,5 [6] FGA

FCVPEQ(16,32) 4 MS and FGA

FCVPGT(16,32) 4 MS and FGA

FCMPLE(16,32) 4 MS and FGA

FCVPNE(16,32) 4 MS and FGA

FDI Vd 20(14) [6] 17(11) [7] FGM

FDI Vs 17(14) [6] 14(11) [7] FGM

FEXPAND 3 FGA

Fi TQ(s,d) 4 FGA

FLUSH 8 7 BP and MS Before [8] Yes

FLUSHW Yes MS Yes

FMOV(s,d) 3 FGA

FMOV(s,d) cc 3 FGA and BP

FMOV(s,d)r 3 FGA and MS

FMJL(s,d) 4 FGM

FMUL8(, SU, UL) x16 4 FGM

FMJUL8x16(AL, AU) 4 FGM

FMULD8(SU, UL) x16 4 FGM

Chapter 4

Instruction Execution

4-57

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (3 of 6)

Dispatch
Blocking
Instruction Latency After Pipeline Break SIG
FNAND{ s} 3 FGA
FNEQ(s,d) 3 FGA
FNOR{ s} 3 FGA
FNOT(1, 2) { s} 3 FGA
FONE{ s} 3 FGA
FORNOT(1, 2) { s} 3 FGA
FOR{ s} 3 FGA
FPACK(FI X, 16,32) 4 FGM
FPADD(16, 16s, 32, 32s) 3 FGA
FPMVERGE 3 FGA
FPSUB(16, 16s, 32, 32s) 3 FGA
FsMJLd 4 FGM
FSQRTd 29(14) [6] 26(11) [7] FGM
FSQRTs 23(14) [6] 20(11) [7] FGM
FSRC(1, 2){s} 3 FGA
F(s,d) TQ(d, s) 4 FGA
F(s,d)TQ 4 FGA
F(s, d) TOx 4 FGA
FSUB(s, d) 4 FGA
FXNOR 3 FGA
FXOR{ s} 3 FGA
FxTQ(s, d) 4 FGA
FZERQ([s} 3 FGA
| LLTRAP MS
JMPL reg, %7 0-4, 9-10 [9] 0-3, 8-9 MS and BP
JMPL % 7+8, %90 3-5, 10-12 [10] 2-4,9-11 MS and BP
JMPL %07+8, %90 0-4, 9 [11] 0-3,8 MS and BP
LoDP 2 Yes MS After
LDDAP 2 Yes MS After
LDDF{ A} 3 MS, A0, or Al
LDF{ A} 3 MS, A0, or Al
LDFSRP [22] Yes MS Yes
LDSB{ A} 3 MS
LDSH{ A} 3 MS

4-58 UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (4 of 6)
Dispatch
Blocking
Instruction Latency After Pipeline Break SIG
LDSTUB{ A} 31+ 30+ MS After
LDSW A} 3 MS
LDUB{ A} 3 MS
LDUH{ A} 3 MS
LDUW A} 2 MS
LDX{ A} 2 MS
LDXFSR [22] Yes MS Yes
MEMBAR #LoadLoad [12] MS Yes
MEMBAR #LoadSt or e [12] MS Yes
MEMBAR #Lookasi de [13] MS Yes
MEMVBAR #Mem ssue [13] MS Yes
MEMBAR #St or eLoad [13] MS Yes
MEMBAR #St or eSt or e [12] MS Yes
MEMBAR #Sync [14] MS Yes
MOVcc 2 MS and BP
MOVf cc 2 MS and BP
MOvr 2 MS
MJLScc 6,5 [2] 5 MS Yes
MULX 6-9 5-8 MS After
NOP N/A MS
R 1 A0 or Al
ORcc 1,0 [1] A0 or Al
ORN 1 A0 or Al
CRNcc 1,0 [1] A0 or Al
PDI ST 4 FGM
POPC Emulated
PREFETCH{ A} MS
RDASI 4 MS Before [15]
RDASR MS Before [15]
RDCCR MS Before [15]
RDDCR”
RDFPRS MS Before [15]
RDPC MS Before [15]
RDPR MS Before [15]

Chapter 4

Instruction Execution

4-59

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (5 of 6)

Dispatch

Blocking
Instruction Latency After Pipeline Break SIG
RDSOFTI NTP
RDTI CK 4 MS Before [15]
RDYP 4 MS Before [15]
RESTORE 2 1 MS Before [16] | Yes
RESTORED MS Yes
RETRYP 2 Yes MS and BP After
RETURN 2,9 [17] 1,8 MS and BP Before [18] | Yes
SAVE 2 1 MS Before [19] | Yes
SAVEDP 2 Yes MS Yes
SDI vV 39 38 MS After
SDi V{cc}P 40,39 [2] 39 MS After
SDI VX 71 70 MS After
SETHI 1 A0 or Al
SHUTDOWN [23] NOP MS NOP
S| AM Yes MS Yes
SIR Yes BP and MS Yes
SLL{ X} 1 A0 or Al
SMULP 6-7 5-6 MS After
SMULccP 7-8, -6-7 [2] 6-8 MS After
SRA{ X} 1 A0 or Al
SRL{ X} 1 A0 or Al
STB{ A} MS
STBARP [20] MS Yes
STD{ A} P 2 MS Yes
STDF{ A} MS
STF{ A} MS
STFSR® 9 MS Before [21] | Yes
ST(H W X) { A} MS
STXFSR 9 MS Before [21] | Yes
SuUB 1 A0 or Al
SUBcc 1,0 [1] A0 or Al
SUBC 5 4 MS Yes
SUBCcc 6,5 [2] 5 MS Yes
SWAP{ A} 31+ 30+ MS After

4-60 UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (6 of 6)
Dispatch
Blocking
Instruction Latency After Pipeline Break SIG
TADDcc 5 Yes MS Yes
TSUBcc 5 Yes MS Yes
Tcc BR and MS
ubl VP 40 39 MS After
uDl vecP 41,40 [2] 40 MS After
UuDIl VX 71 70 MS After
umuLP 6-8 5-7 MS After
UMJLccP 7-8, 6-7 [2] 6-8 MS After
VARASI 16 BR and MS Yes
VRASR 7 BR and MS Yes
VRCCR 7 BR and MS Yes
WRFPRS 7 BR and MS Yes
WRPRP 7 BR and MS Yes
VRYP 7 BR and MS Yes
XNOR 1 A0 or Al
XNORcc 1,0 [1] A0 or Al
XOR 1 A0 or Al
XORcC 1,0 [1] A0 or Al

These operations produce two results: destination register and condition code (% cc, % cc). The latency is one in the
former case and zero in the latter case. For example, SUBcc and BE % cc are grouped together (zero latency).

These operations produce two results: destination register and condition code (% cc, % cc). The latency is given as a
pair of numbers —m,n — for the register and condition code, respectively. When latencies vary in a range, such as in
UMJLcc, this range is indicated by pair — pair.

Latency is x,y for correct, incorrect branch prediction. It is measured as the difference in the dispatching cycle of the
retiring target instruction and that of the branch.

Blocking cycles are x,y for correct, incorrect branch prediction. They are measured as the difference in the dispatching
cycle of instruction in the delay slot (or target, if annulled) that retires and that of the branch.

Native Cal | and Li nk with immediate target address (label).

Latency in parentheses applies when operands involve IEEE special values (NaN, | NF), including zero and illegal
values.

Blocking is limited to another FD operation in succession; otherwise, it is unblocking. Blocking cycles in parentheses
apply when operands involve special and illegal values.

Dispatching stall (7+ cycles) until all stores in flight retire.
0—4 if predicted true; 9—10 if mispredicted.

Chapter 4 Instruction Execution 4-61

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

4-62

Latency is taken to be the difference in dispatching cycles from j nmpl to target operation, including the effect of an
operation in the delay slot. Blocking cycles thus may include cycles due to restore in the delay slot. In a given pair Xx,y,
x applies when predicted correctly and y when predicted incorrectly. Each x or y may be a range of values.

0—4 if predicted true; 9 if mispredicted.

This MEMBAR has NOP semantics, since the ordering specified is implicitly done by processor (memory model is TSO).
All operations in flight complete as in MEMBAR #Sync.

All operations in flight complete.

Issue stalls a minimum of 7 cycles until all operations in flight are done (get to D-stage).
Dispatching stalls until previous save in flight, if any, reaches D-stage.

2 if predicted correctly, 9 otherwise. Similarly for blocking cycles.

Dispatching stalls until previous restore in flight, if any, reaches D-stage.

Dispatching stall until previous restore in flight, if any, reaches D-stage.

Same as MEMBAR #St or eSt or e, which is NOP.

Dispatching stalls until all FP operations in flight are done.

Wait for completion of all FP operations in flight.

The Shutdown instruction is not implemented. The instruction is neutralized and appears as a NOP to software (no
visible effects).

UltraSPARC Ill Cu User’'s Manual < January 2004

sectionN 111

Execution Environment

January 2004

63

64

UltraSPARC IIl Cu User’'s Manual « January 2004

CHAPTER 5

Data Formats

The processor recognizes the following fundamental data types:
Signed integer: 8, 16, 32, and 64 bits
Unsigned integer: 8, 16, 32, and 64 bits
VIS Instruction data formats: pixel (32 bits), fixed16 (64 bits), and fixed32 (64 bits)
Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

Byte: 8 bits

Halfword: 16 bits

Word: 32 bits

Tagged word: 32 bits (30-bit value plus 2-bit tag; deprecated)

Doubleword: 64 bits (deprecated in favor of Extended word)

Extended word: 64 bits

Quadword: 128 bits
The signed integer values are stored as two’s-complement numbers with a width
commensurate with their range. The floating-point formats conform to the IEEE Standard for

Binary Floating-point Arithmetic, IEEE Std 754-1985. In tagged words, the least significant
two bits are treated as a tag; the remaining 30 bits are treated as a signed integer.

Names are assigned to individual subwords of the multiword data formats as described in the
following sections:

Signed Integer Double

Unsigned Integer Double

Floating-Point, Double-Precision

Floating-Point, Quad-Precision

5-65

5.1 Integer Data Formats

The processor supports the following integer data formats:
Signed integer
Unsigned integer

Tagged integer word

5.1.1 Integer Data Value Range

TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer data
formats.

TABLE 5-1 Signed Integer, Unsigned Integer, and Tagged Integer Format Ranges

Range
Data Type Width (bits) Lower Upper
Signed integer byte 8 =27 27 -1
Signed integer halfword 16 213 215 -1
Signed integer word 32 =231 231 -1
Signed integer tagged word 32 229 229 -1
Signed integer double word 64 263 203 -1
Signed extended integer 64 263 203 -1
Unsigned integer byte 8 0 28 -1
Unsigned integer halfword 16 0 216 -1
Unsigned integer word 32 0 232 -1
Unsigned integer tagged word 32 0 230 -
Unsigned integer double word 64 0 204 — 1
Unsigned extended integer 64 0 204 -1
(Unsigned) tagged integer word 32 0 230 -1

5-66 UltraSPARC Ill Cu User’'s Manual < January 2004

5.1.2

Integer Data Alignment

TABLE 5-2 describes the memory and register alignment for integer data.

TABLE 5-2 Integer Data Alignment
Memory
Required Address | Register
Subformat Address (Big- Number Register
Type Width Subformat Field Alignment | endian) Alignment | Number
SB si gned_byt e_i nt eger <7:0> None n any r
UB B (byte) unsi gned_byt e_i nt eger <7: 0>
SH i si gned_hal fwd_i nt eger <7:0> 0 mod 2 n any r
H (halfword) - -
UH unsi gned_hal fwd_i nt eger <7:0>
SW si gned_wor d_i nt eger <7:0> 0 mod 4 n any r
W (word) - -
uw unsi gned_wor d_i nt eger <7:0>
SD-0 si gned_dbl _i nt eger <63:32>
- - 0 mod 8 n 0 mod 2 r
UD-0 unsi gned_dbl _i nt eger <63:32>
D (double word) - -
SD-1 si gned_dbl _i nt eger <31:0> 4 mod 8 n+4 Imod2 |r+1
UD-1 unsi gned_dbl _i nt eger <31:0>
SX si gned_ext _i nt eger <63:0>
X (extendedword) - - 0 mod 8 n — r
UX unsi gned_ext _i nt eger <63:0>
The data types are illustrated in the following subsections.
5.1.3 Signed Integer Data Types
Figures in this section illustrate the following signed data types:
Signed integer byte
Signed integer halfword
Signed integer word
Signed integer doubleword
Signed extended integer
Chapter 5 Data Formats 5-67

5.1.3.1 Signed Integer Byte

FIGURE 5-1 illustrates the signed integer byte data format.

SB |

7 6

FIGURE 5-1 Signed Integer Byte Data Format

5.1.3.2 Signed Integer Halfword
FIGURE 5-2 illustrates the signed integer halfword data format.
SH S
15 14 0

FIGURE 5-2 Signed Integer Halfword Data Format

5.1.33 Signed Integer Word

FIGURE 5-3 illustrates the signed integer word data format.

SW S

3130 0

FIGURE 5-3 Signed Integer Word Data Format

5.1.34 Signed Integer Double
FIGURE 5-4 illustrates both components (SD-0 and SD-1) of the signed integer double data
format.
SD-0 |S signed_dbl_integer<62:32>
3130 0
SD-1 signed_dbl_integer<31:0>
31 0

FIGURE 5-4 Signed Integer Double Data Format

5-68 UltraSPARC Ill Cu User’'s Manual < January 2004

5.1.3.5 Signed Extended Integer

FIGURE 5-5 illustrates the signed extended integer (SX) data format.

SX |s signed_ext_integer
63 62 0

FIGURE 5-5 Signed Extended Integer Data Format

5.14 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:
Unsigned integer byte
Unsigned integer halfword
Unsigned integer word
Unsigned integer doubleword

Unsigned extended integer

5.14.1 Unsigned Integer Byte

FIGURE 5-6 illustrates the unsigned integer byte data format.

uB

FIGURE 5-6 Unsigned Integer Byte Data Format

5.1.4.2 Unsigned Integer Halfword

FIGURE 5-7 illustrates the unsigned integer halfword data format.

UH

15 0

FIGURE 5-7 Unsigned Integer Halfword Data Format

Chapter 5 Data Formats 5-69

5.1.43

5.1.44

5.1.4.5

Unsigned Integer Word

FIGURE 5-8 illustrates the unsigned integer word data format.

Uuw

31 0

FIGURE 5-8 Unsigned Integer Word Data Format

Unsigned Integer Double

FIGURE 5-9 illustrates both components (UD-0 and UD-1) of the unsigned integer double data
format.

ubD-0 unsigned_dbl_integer<63:32>
31 0

UubD-1 unsigned_dbl_integer<31:0>
31 0

FIGURE 5-9 Unsigned Integer Double Data Format

Unsigned Extended Integer

FIGURE 5-10 illustrates the unsigned extended integer (UX) data format.

UX

unsigned_ext_integer

63

5.1.5

5-70

FIGURE 5-10 Unsigned Extended Integer Data Format

Tagged Word

The Tagged word data format is similar to the unsigned word format except for a 2-bit field
in the two least significant bit (LSB) positions. Bit 31 is the overflow bit.

FIGURE 5-11 illustrates the tagged word data format.

TW of tag

31 21 0

FIGURE 5-11 Tagged Word Data Format

UltraSPARC Ill Cu User’'s Manual < January 2004

5.2 Floating-Point Data Formats

Single-precision, double-precision, and quad-precision floating-point data types are described
below.

Single-precision floating-point (32-bit)
Double-precision floating-point (64-bit)
Quad-precision floating-point (128-bit)

5.2.1 Floating-Point Data Value Range

The value range for each format is included with the format and description of each format.

522 Floating-Point Data Alignment

TABLE 5-3 describes the address and memory alignment for floating-point data.

TABLE 5-3 Floating-Point Doubleword and Quadword Alignment

Required Memory Register
Subformat Address Address Number Available
Name Subformat Field Alignment (Big-endian)* | Alignment Registers
FS S: exp<7:0>:fracti on<22:0> Omod 4t n any fOf1,..131
FD-0 s:exp<10:0>:f r act i on<51:32> Omod4® | 0 mod 2 f0.12,..f62
FD-1 fracti on<31:0> Omod4 T |n+4 1 mod 2 F1f3....f63
FX-0 Oomod4 T |n 0 mod 4 fOfA4,...f60
FX-1 Oomod4t |n 0 mod 4 12.16,...f62
FQ-0 s: exp<l4:0>:fraction<111:96> |Omod4% |n 0 mod 4 fOfA4,...f60
FQ-1 fracti on<95:64> Omod4* |n+4 1 mod 4 LS5, f61
FQ-2 fracti on<63:32> Omod4t |n+38 2 mod 4 12.f6...f62
FQ-3 fracti on<31:0> Omod4t |n+12 3 mod 4
FX Oomod4 T |n 0 mod 4 13.f7.../63

*

The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian accesses are used.

—

Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be doubleword-aligned (that is, the
address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores instead of multiple single word loads/stores).

-

Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-aligned (that is, the ad-
dress of its FQ-0 word should be 0 mod 16).

Chapter 5 Data Formats 5-71

523

524

5-72

Floating-Point, Single-Precision

FIGURE 5-12 illustrates the floating-point single-precision data format, and TABLE 5-4
describes the formats.

FS S| exp<7:0> fraction<22:0>

3130 2322 0

FIGURE 5-12 Floating-Point Single-Precision Data Format

TABLE 5-4 Floating-Point Single-Precision Format Definition

s =sign (1-bit)

e = biased exponent (8 bits)
f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255) (-1 x 27127 x 1.f

Subnormal value (e = 0) (-1 x 27126 x 0.f

Zero (e =0) (-1)¥x0

Signalling NaN s =u; e =255 (max); f = .0uu--uu

(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e =255 (max); f =.luu--uu

— 00 (negative infinity) s =1;e =255 (max); f =.000--00

+ 00 (positive infinity) s =0; e =255 (max); f =.000--00

Floating-Point, Double-Precision

FIGURE 5-13 illustrates both components (FD-0 and FD-1) of the floating-point
double-precision data format when two 32-bit registers are used. FIGURE 5-14 illustrates a
double-precision data format using one 64-bit register.

TABLE 5-5 describes the data formats.

FD-0 |s exp<10:0> fraction<51:32>

3130 2019 0
FD-1 fraction<31:0>

31 0

FIGURE 5-13 Floating-Point Double-Precision Double Word Data Format

UltraSPARC Ill Cu User’'s Manual < January 2004

FX|s exp<10:0> fraction<51:0>
63 62 52 51 0

FIGURE 5-14 Floating-Point Double-Precision Extended Word Data Format

TABLE 5-5 Floating-Point Double-Precision Format Definition

s = sign (1-bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047) (-1) x 2671023 1 £

Subnormal value (e = 0) (-1)¥ x 271022 x 0. f

Zero (e =0) (-1)*x0

Signalling NaN s =u; e =2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e =2047 (max); f = .luu--uu

— 00 (negative infinity) s =1;e =2047 (max); f =.000--00

+ 00 (positive infinity) s =0; e =2047 (max); f =.000--00

5.2.5 Floating-Point, Quad-Precision

FIGURE 5-15 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 5-6 describes the formats.

Compatibility Note — Floating-point quad is not implemented in the processor.
Quad-precision operations are emulated in the OS kernel.

Chapter 5 Data Formats 5-73

FQ-0 S exp<14:0> fraction<111:96>

3130 16 15 0
FQ-1 fraction<95:64>

31 0
FQ-2 fraction<63:32>

31 0
FQ-3 fraction<31:0>

31 0

FIGURE 5-15 Floating-Point Quad-Precision Data Format

TABLE 5-6 Floating-Point Quad-Precision Format Definition

s = sign (1-bit)

e = biased exponent (15 bits)

f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767) (-1)% x 26716383 x| £

Subnormal value (e = 0) (-1) x 2716382 x (. f

Zero (e =0) (-1 x0

Signalling NaN s =u; e =32767 (max); f = .O0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e =32767 (max); f =.luu--uu

— 00 (negative infinity) s =1;e =32767 (max); f =.000--00

+ ©0 (positive infinity) s =0; e =32767 (max); f =.000--00

53 VIS Execution Unit Data Formats

VIS instructions are optimized for short integer arithmetic, where the overhead of converting
to and from floating-point is significant. Data components can be 8 or 16 bits; intermediate
results are 16 or 32 bits.

There are two VIS data formats:
Pixel Data
Fixed-point Data

5-74 UltraSPARC Ill Cu User’'s Manual < January 2004

Data Conversions
Conversion from pixel data to fixed data occurs through pixel multiplications. Conversion
from fixed data to pixel data is done with the pack instructions, which clip and truncate to an

8-bit unsigned value. Conversion from 32-bit fixed to 16-bit fixed is also supported with the
FPACKFIX instruction.

Rounding

Rounding can be performed by adding one to the round bit position. Complex calculations
needing more dynamic range or precision should be performed using floating-point data.

Range

The range of values that each format supports is described below.

Data Alignment

The data in memory is expected to be aligned according to TABLE 5-7. If the address does not
properly align, then an exception is generated and the load/store operation fails.

TABLE 5-7 Pixel, Fixed16, and Fixed32 Data Alignment

Memory
VIS Data Required Address | Register
Format Address (Big- Number Register
Type Width VIS Data Format Name Alignment | endian) Alignment | Number
Pixel 8 32 Pixel Data Format 0 mod 4 n r r
Fixed16 64 Fixed16 Data Format 0 mod 8 n 0 mod 2 r
Fixed32 64 Fixed32 Data Format 0 mod 8 n 0 mod 2 r

5.3.1

Pixel Data Format

The Fixed 8-bit data format consists of four unsigned 8-bit integers contained in a 32-bit
word.

One common use is to represent intensity values for the color components of an image. For
example, R, G, B and o are used as color components and are positioned as shown in
FIGURE 5-16.

Chapter 5 Data Formats 5-75

5.3.2

5.3.2.1

31 24 23 16 15 8 7 0
FIGURE 5-16 Pixel Data Format with Band Sequential Ordering Shown

The fixed 8-bit data format can represent two types of pixel data:

Band interleaved images, with the various color components of a point in the image
stored together

Band sequential images, with all of the values for one color component stored together

Fixed-Point Data Formats

The fixed 16-bit data format consists of four 16-bit signed fixed-point values contained in a
64-bit word. The fixed 32-bit format consists of two 32-bit signed fixed-point values
contained in a 64-bit word. Fixed-point data values provide an intermediate format with
enough precision and dynamic range for filtering and simple image computations on pixel
values.

Fixed16 Data Format

Fixed data values provide an intermediate format with enough precision and dynamic range
for filtering and simple image computations on pixel values.

Perform rounding by adding one to the round bit position. Perform complex calculations
needing more dynamic range or precision by means of floating-point data.

The fixed 16-bit data format consists of four 16-bit, signed, fixed-point values contained in a
64-bit word. FIGURE 5-17 illustrates the Fixed16 VIS data format.

integer | fraction integer | fraction integer | fraction integer | fraction

63

5-76

48 47 32 31 16 15 0

FIGURE 5-17 Fixed16 VIS Data Format

UltraSPARC Ill Cu User’'s Manual < January 2004

53.2.2 Fixed32 Data Format

The fixed 32-bit format consists of two 32-bit, signed, fixed-point values contained in a
64-bit word. FIGURE 5-18 illustrates the Fixed32 VIS data format.

integer | fraction integer fraction
63 32 31 0

FIGURE 5-18 Fixed32 VIS Data Format

Chapter 5 Data Formats 5-77

5-78 UltraSPARC Ill Cu User’'s Manual < January 2004

CHAPTER 6

Registers

6.1

This chapter discusses the following topics:

Section 6.1, “Introduction”

Section 6.2, “Integer Unit General-Purpose r Registers”
Section 6.3, “Register Window Management”

Section 6.4, “Floating-Point General-Purpose Registers”
Section 6.5, “Control and Status Register Summary”
Section 6.6, “State Registers”

Section 6.7, “Ancillary State Registers: ASRs 16-25”
Section 6.8, “Privileged Registers”

Section 6.9, “Special Access Register

Section 6.10, “ASI Mapped Registers”

Introduction

The processor consists of many types of registers that serve various purposes and are
accessed in many different ways.

There are separate working registers for the integer and floating-point units (FPUs). Both of
these register sets have been expanded over the evolution of the SPARC processor. The
integer unit registers are shadowed using windowing and selection methods. The registers in
the floating-point register set (also used for VIS and block load store instructions) are
combined in specific ways to support data sizes up to 128 bits. All integer registers and the
upper floating-point registers are 64 bits wide.

6-79

The processor also has a vast array of control, status, state, and diagnostic registers that are
used to setup, control, and operate the processor. The two main operating modes of the
processor, privileged and non-privileged mode, have a profound effect on which of the
control and status registers are available to the software.

The majority of the control and status registers are 64 bits wide and are accessed using the
privileged register access instructions, state register access instructions, and load/store with
ASI access instructions. For convenience, some registers in this chapter are illustrated as
fewer than 64 bits wide. Any bits not shown are reserved for future extensions to the
architecture. Such reserved bits are read as zeroes and, when written by software, should be
written with the values of those bits previously read from that register or with zeroes.

Integer Unit Working Registers (includes r and global)
Floating-point Unit Working Registers
Privileged Registers
State and Ancillary State Registers (includes ASRs)
Floating-point Status Register (FSR)
ASI Mapped Registers (CSRs)
Some of the figures and tables in this chapter are reproduced from The SPARC Architecture

Manual, Version 9 and other sources. Many new diagrams and tables appear for the first time.
Contents of this chapter applies to non-privileged mode unless stated otherwise.

6.2

6-80

Integer Unit General-Purpose r Registers

An UltraSPARC III Cu processor contains 160 general-purpose 64-bit r registers. They are
windowed into 32 registers addressable by Integer Unit Instructions.

The r registers are partitioned into eight addressable global registers and 24 addressable
windowed registers. There are four global register sets: normal, MMU, Interrupt, and
Alternate. The windowed registers point to eight working register sets that are windowed into
r [8] to r [31], as one full register set (eight locals and eight ins) and a half register set (eight
outs) belonging to the next higher state.

In summary, the r registers consist of eight in registers, eight local registers, eight out
registers, and the selected eight global registers.

The current window pointer (CWP) register selects the in/local/out windowed registers.
SAVE and RESTORE instructions modify the CWP register.

The PSTATE. AG, . | G and . MG fields select the global register set. Processor exceptions
modify the PSTATE register fields to select the global register set.

PSTATE and CWP registers are accessible using privileged instructions.

UltraSPARC Ill Cu User’'s Manual < January 2004

At any moment, general-purpose registers appear in non-privileged mode as shown in

TABLE 6-1.

TABLE 6-1 Integer Unit General-Purpose Registers

Windowed r Register
Register Name | Address Source Comments
in[7] r31] Current Register Set
in[6] r[30] Current Register Set
in[5] r[29] Current Register Set
in[4] r[28] Current Register Set
in[3] r[27] Current Register Set
in[2] r[26] Current Register Set
in[1] r[25] Current Register Set
in[0] r[24] Current Register Set
local[7] r[23] Current Register Set
local[6] r[22] Current Register Set
local[5] r[21] Current Register Set
local[4] r [20] Current Register Set
local[3] r[19] Current Register Set
local[2] r[18] Current Register Set
local[1] r17] Current Register Set
local[0] r[1e] Current Register Set
out[7] r[1s] Next higher level Register Set See footnote 1
out[6] r[14] Next higher level Register Set
out[5] r[13] Next higher level Register Set
out[4] r[12] Next higher level Register Set
out[3] r[i1] Next higher level Register Set
out[2] r[10] Next higher level Register Set
out[1] r{ 9] Next higher level Register Set
out[0] r{ 8] Next higher level Register Set
global[7] ri 7] Global[7]
global[6] r[6] Global[6]
global[5] r{ 5] Global[5]
global[4] r[4] Global[4]
Chapter 6 Registers

6-81

TABLE 6-1 Integer Unit General-Purpose Registers (Continued)

Windowed r Register

Register Name | Address Source Comments

global[3] r{ 3] Global[3]

global[2] r{ 2] Global[2]

global[1] r{ 1] Global[1]

global[0] r{ 0] Global[0] Value (r [0]) always zero

1. The CALL instruction writes its own address into the I' [15] register (out[7]).

6.2.1 Windowed (in/local/out) r Registers

At any time, an integer unit instruction can access a 24-register window into the register sets.
A register window comprises the eight in and eight local registers (a complete register set)
together with the eight in registers (upper half of the next higher register set). The CALL
instruction writes its own address into register r [15] (out register 7).

6.2.2 Global r Register Sets

Registers r [0] —r [7] refer to a set of eight global registers (O—g7). At any time, one of
four sets of eight global register sets is selected and can be accessed as the current global
register set. The currently enabled set of global registers is selected by the Alternate Global
(AG), Interrupt Global (I G), and MMU Global (M) fields in the PSTATE register. See
“Processor State (PSTATE) Privileged Register 6” on page 112 for a description of the AG
| G and MG fields.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

An illustration showing the current IU registers is shown in FIGURE 6-1.

6-82 UltraSPARC Ill Cu User’'s Manual < January 2004

Previous
Register Set

Current
Register Set

Next
Register Set

Window (CWP - 1)

RESTORE

T
: ins . SAVE
24] Integer Unit
23] General-Purpose
. Registers:
locals r - g— - . L
n16] I Window (CWP) L
1) | s
outs I . ins 1
18] 1| 24 i
1| 23 1
I . locals I
77777777 I 16] L r[s:/]\lindow (CWP + 1)
n1s]
I : outs ! . ins
I qg | g
| 1| 23
I I . locals
16
ffffffff Nt
15
I I . outs
1 I | qg
| |
7] I 7] I 17
globals | - globals | : globals
11 j LA R
0] 0 1 o] 0 | 0] 0
63
63 L
FIGURE 6-1 Three Overlapping Windows and the Eight Global Registers

Compatibility Note — Since the PSTATE register is writable only by privileged software,
existing non-privileged SPARC V8 software operates correctly on a processor if Supervisor

Software ensures that User Software sees a consistent set of global registers.

In summary, the processor has eight windows or register sets (NWW NDOWS = 8). The total

number of r registers in the processor is 160: 8 normal global registers, 8 alternate global
registers, 8 interrupt global registers, 8 MMU global registers, plus the number of register
sets (eight) times 16 registers/set.

Chapter 6

Registers

6-83

6.2.2.1

6.2.3

Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The outs of
the CWP — 1 (modulo NW NDOWS) window are addressable as the ins of the current window,
and the outs in the current window are the ins of the CWP + 1 (modulo NW NDOWS) window.
The locals are unique to each window.

An outs register with address o, where 8 < 0 < 15, refers to exactly the same register as
(0+16) does after the CWP is incremented by one (modulo NW NDOWS). Likewise, an in
register with address i, where 24 < i < 31, refers to exactly the same register as address

(i — 16) does after the CWP is decremented by one (modulo NW NDOWS). See FIGURE 6-1 and
FIGURE 6-2.

Since CWP arithmetic is performed modulo NW NDOWS5, the highest-numbered implemented
window (window 7) overlaps with window 0. The outs of window NW NDOWS — 1 are the ins
of window 0. Implemented windows are numbered contiguously from 0 through

NW NDOWS - 1.

128-bit Operand Considerations

LDD, LDDA, STD, and STDA instructions access 128-bit data associated with adjacent

I registers and require even-odd register alignment. An attempt to execute an LDD, LDDA,
STD, or STDA instruction that refers to a misaligned (odd) destination register number causes
an illegal_instruction trap.

6.3

6-84

Register Window Management

Note — Register window management is the responsibility of the operating system
(supervisor code). The user code sees an unlimited stack of register windows and does not
have to worry about register window management. The operating system provides support for
underflow and overflow of the stack. This mechanism is transparent to the user code.

The current window in the windowed portion of r registers is given by the CWP register. The
CWP is decremented by the RESTORE instruction and incremented by the SAVE instruction.
Window overflow is detected by the CANSAVE register, and window underflow is detected by
the CANRESTORE register, both of which are controlled by privileged software. A window

overflow (underflow) condition causes a window spill (fill) trap.

UltraSPARC Ill Cu User’'s Manual < January 2004

Programming Note — Because the windows overlap, the number of windows available to
software is one less than the number of implemented windows, that is, 7 (NW NDOAS — 1).

CWP =0 /—\ -
(Current Window Pointer)

CANSAVE =4

w1 ins

w0 locals

RESTORE

w6 locals

CANRESTORE =1 (Overlap)

w5 outs

\ OTHERWIN = 1

CANSAVE + CANRESTORE + OTHERW N = NW NDOWS — 2

The current window (window 0) and the overlap window (window 5)
account for the two windows in the right side of the equation. The
“overlap window” is the window that must remain unused because its ins
and outs overlap two other valid windows.

NW NDOWS = 8, CWP = 0, CANSAVE = 4, OTHERW N= 1, and
CANRESTORE = 1. If the procedure using window WO executes a
RESTORE, then window W7 becomes the current window. If the
procedure using window WO executes a SAVE, then window Wl becomes
the current window.

FIGURE 6-2 Windowed r Registers for N\W NDOWS = 8

Chapter 6 Registers 6-85

6.3.1

6.3.2

6.3.3

CALL and JMPL Instructions

Programming Note — Since the procedure call instructions (CALL and JMPL) do not
change the CWP, a procedure can be called without changing the window.

Circular Windowing

Programming Note — When the register file is full, the outs of the newest window are the
ins of the oldest window, which still contains valid data.

Clean Window with RESTORE and SAVE Instructions

Programming Note — The local and out registers of a register window are guaranteed to
contain either zeroes or an old value that belongs to the current context upon reentering the
window through a SAVE instruction. If a program executes a RESTORE followed by a SAVE,
then the resulting window’s locals and outs may not be valid after the SAVE, since a trap
may have occurred between the RESTORE and the SAVE.

6.4

6-86

Floating-Point General-Purpose Registers

The Floating-point register file contains addressable registers for the following:
Floating-point Instructions
VIS Instructions
Block load and store instructions
FSR load and store instructions
The registers have various widths and assigned addresses as follows:
32 32-bit (single-precision) floating-point registers, f [0], f [1], ... f [31]
32 64-bit (double-precision) floating-point registers, f [0], f [2], ... f [62]
16 128-bit (quad-precision) floating-point registers, f [0], f [4], ... f [60]

UltraSPARC Ill Cu User’'s Manual < January 2004

The floating-point registers are arranged so that some of them overlap, that is, are aliased.
The layout and numbering of the floating-point registers are shown in TABLE 6-2, TABLE 6-3,
and TABLE 6-4. Unlike the windowed r registers, all of the floating-point registers are
accessible at any time. The floating-point registers can be read and written by FPop (FPop1/
FPop2 format) instructions, load/store single/double/quad floating-point instructions, and
block load and block store instructions.

TABLE 6-2 32-bit Floating-Point Registers with Aliasing
[Operand Register and Field[From Register Operand Register and Field[From Register
31 31:0> f31<31:.0> f15 31:0> F15<31:.0>
30 31:0> f30<31:.0> f14 31:.0> F14<31:0>
29 31:0> f29<31:0> f13 31:0> f13<31:0>
128 31:0> f28<31:0> f12 31:0> f12<31:0>
27 31:0> f27<31.0> f11 31:0> F11<31:.0>
126 31:0> f26<31:.0> f10 31:.0> fF10<31:0>
25 31:0> f 25<31:0> 9 31:0> f 9<31:0>
124 31:0> f24<31:0> 8 31:0> f 8<31:0>
23 31:0> f23<31:.0> 7 31:0> F7<31:0>
22 31:0> f22<31.0> f6 31:.0> F6<31:0>
21 31:0> f21<31:0> 5 31:0> f 5<31:0>
120 31:0> f20<31:0> 4 31:0> f4<31:0>
f19 31:0> f19<31:.0> 3 31:0> F3<31:0>
f18 31:0> f18<31.0> 2 31:.0> fF2<31.0>
f17 31:0> f17<31:0> f1 31:0> f1<31:0>
f16 31:0> f16<31:0> 0 31:0> f 0<31:0>
TABLE 6-3 64-bit Floating-Point Registers with Aliasing
[Operand Register and Field[From Register [Operand Register and Fiel[dFrom Register
62 63:0> f 62<63:0> 130 63:0> f 30<31:0>:f 31<31:0>
60 63:0> f 60<63:0> 28 63:0> f28<31:0>:f 29<31:0>
58 63:0> f58<63:0> 26 63:0> fF26<31:.0>:f 27<31:0>
56 63:0> f 56<63:0> 24 63:0> f 24<31:0>:f 25<31:0>
54 63:0> f 54<63:0> 122 63:0> f22<31:0>:f 23<31:0>
52 63:0> f 52<63:0> 20 63:0> f20<31:0>:f 21<31:0>
50 63:0> f50<63:0> f18 63:0> f18<31:.0>:f 19<31:0>
48 63:0> f 48<63:0> f16 63:0> f16<31:0>:f 17<31:0>
46 63:0> f 46<63:0> f14 63:0> f 14<31:0>:f 15<31:0>
f44 63:0> f 44<63:0> f12 63:0> f12<31:0>:f 13<31:0>
42 63:0> f42<63:0> f10 63:0> fF10<31:0>:f 11<31:0>
40 63:0> f 40<63:0> 8 63:0> f 8<31:0>:f 9<31:0>
38 63:0> f 38<63:0> f6 63:0> f 6<31:0>:f 7<31:0>
36 63:0> f 36<63:0> 4 63:0> f 4<31:0>:f 5<31:0>
34 63:0> f34<63:0> 2 63:0> F2<31:0>:f 3<31:0>
32 63:0> f 32<63:0> 0 63:0> f 0<31:0>:f 1<31:0>
Chapter 6 Registers

6-87

TABLE 6-4 128-bit Floating-Point Registers with Aliasing

[Operand Register and Field[From Register
60 127:0> f 60<63:0>:f 62<63:0>
56 127:0> f 56<63:0>:f 58<63:0>
52 127:0> f52<63:0>:f 54<63:0>
48 127:0> f 48<63:0>:f 50<63:0>
44 127:0> f 44<63:0>:f 46<63:0>
40 127:0> f 40<63:0>:f 42<63:0>
36 127:0> f 36<63:0>:f 38<63:0>
32 127:0> f 32<63:0>:f 34<63:0>
28 127:0> f28<31:0>:f 29<31:0>:f 30<31:0>:f 31<31:0>
24 127:0> f 24<31:0>:f 25<31:0>:f 26<31:0>:f 27<31:0>
20 127:0> f20<31:0>:f 21<31:0>:f 22<31:0>:f 23<31:0>
f16 127:0> f16<31:0>:f 17<31:0>:f 18<31:0>:f 19<31:0>
f12 127:0> f12<31:0>:f 13<31:0>:f 14<31:0>:f 15<31:0>
3 127:0> f 8<31:0>:f 9<31:0>:f 10<31:0>:f 11<31:0>
4 127:0> f 4<31:0>:f 5<31:0>:f 6<31:0>:f 7<31:0>
o 127:0> f0<31:0>:f 1<31:0>:f 2<31:0>:f 3<31:0>

6.4.1 Floating-Point Register Number Encoding

The floating-point register number encoding in the instruction field depends on the width of
register being addressed. The encoding for the 5-bit instruction field (labeled b<4>-b<0>,
where b<4> is the most significant bit of the register number), is given in TABLE 6-5.

TABLE 6-5 Floating-Point Register Number Encoding

Register Operand IS Encoding in a 5-bit Register Field in an
Type -bit Register Number, fn Instruction, rd/rs

32-bit (single) 0 b<4>| b<3>| b<2>| b<1>| b<0> | b<4>| b<3> | b<2> | b<1>| b<0>
64-bit (double) b<5>| b<4>| b<3>| b<2>| b<I> 0 b<4>| b<3> [b<2>| b<I>| b<5>
128-bit (quad) b<5>| b<d>| b<3>| b<2>| 0 0 |b<4>|b<3>|b<2>| 0 |b<5>

Compatibility Note — In the SPARC V8 architecture, bit 0 of 64- and 128-bit register
numbers encoded in instruction fields was required to be zero. Therefore, all SPARC V8
floating-point instructions can run unchanged on a UltraSPARC III Cu processor, using the
encoding in TABLE 6-5.

6-88 UltraSPARC Ill Cu User’'s Manual < January 2004

6.4.2

Double and Quad Floating-Point Operands

A 32-bit f register can hold one single-precision operand; a 64-bit (double-precision)
operand requires an aligned pair of f registers, and a 128-bit (quad-precision) operand
requires an aligned quadruple of f registers. At a given time, the floating-point registers can
hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-precision values in
the lower half of the floating-point register file, plus an additional 16 double-precision or

8 quad-precision values in the upper half, or mixtures of the three sizes.

See FIGURE 6-3, TABLE 6-2, TABLE 6-3, and TABLE 6-4 for illustrative formats.

Programming Note — Data to be loaded into a floating-point double or quad register that
is not doubleword aligned in memory must be loaded into the lower 16 double registers

(8 quad registers) by means of single-precision LDF instructions. If desired, the data can then
be copied into the upper 16 double registers (8 quad registers).

Programming Note — An attempt to execute an instruction that refers to a misaligned
floating-point register operand (that is, a quad-precision operand in a register whose 6-bit
register number is not 0 mod 4) shall cause a fp_exception_other trap, with FSR. ftt =6
(invalid_fp_register).

Programming Note — Given the encoding in TABLE 6-5, it is impossible to specify a
double-precision register with a misaligned register number.

Note — The processor does not implement quad-precision operations in hardware. All
floating-point quad (including load and store) operations trap to the OS kernel and are
emulated. Since the processor does not implement quad floating-point arithmetic operations
in hardware, the fp_exception_other trap with FSR. f t t = 6 (invalid_fp_register) does not
occur in processors.

Chapter 6 Registers 6-89

NWINDOWS
Register Sets

63
Circulates

Integer Unit

General-Purpose
1 r Registers
63 0
1 |Locals <—— Er[23:16] 3 % MMU
63 0
" Outs <w—— E r[15:8] = % Interrupt
- = HS———
Register Window | r[7:0] Selected by 63 0
i PSTATE.AG, IG, MG
RESTORE
WORD (32): f0, f1, ... f31
. . . DOUBLEWORD(32): {0, 2, ... 62
- Floating-point Unit QUADWORD (16): 10, f4, ... 160
General-Purpose
i Registers [2] [_fe0 |
63 0 63 0
58] 56 |
Floating-point Numbers 63 63 ° DOUBLEWORD
J VIS Data Numbers 54 | 152 |~ Example
s p
Block Copy Function 63 o 6 0
FSR Register Access [50 [48] Example
63 0 |63 0 48
T Note: There are no odd |63 146 Ol |63 44 oI
numbered registers above f31. T3 1 0 | QUADWORD
- WORDSs cannot be loaded 63 0 63 0 Example
into 32 through 162. 38] 136] f40
63 0 63 0
[34 | 32 |
7 63 0 63 0
SAVE
{0 I R <1 I;I f29 Q f28 |31:0|
- 31 0
pr 1 e[1 5L 1 4[]
31 0 31 0 31 0 31 0
QUADWORD
pa] 2] 2L 1 1o L— Example
31 0 31 0
mo 1 mel_— M7L_1 me[1
i 30 3T 0 10 51 % DOUBLEWORD
s 1 ma[1 [M8L_—] 2] Example
31 0 31 0 f12
M1 fol[__1 fo9 I;OI 8 [] Ex?géple
31 0 31 0
o7] o6 L] 05 I 7 I
31 0
WORD
oL mh—] EEER oL &%

FIGURE 6-3 Integer Unit r Registers and Floating-Point Unit Working Registers

6-90

UltraSPARC Ill Cu User’'s Manual < January 2004

6.5 Control and Status Register Summary

This section presents a summary of control and status registers.

6.5.1 State and Ancillary State Register Summary
See FIGURE 6-4 and TABLE 6-6 for more information on state and ancillary state registers
(ASRs).
rs1
Value
D
State Y [—JRrRw O
Registers | ccr] oRW 2
ASI J Rw 3
RD TICK - 4 Non-Privi OK, if TIC =
WR %XSXSXQ RW on-Privileged Read OK, if TICK.NPT =0
I
(to/from - 7 "W °
IU Working FPRS [1 RW 6
Registers
gisters) PCR PEENE] RW 1610\
PIC SNSNNXSSIJ] RV 17y Non-Privileged Read OK, if PCR.PRIV = 0
DCR = RW 18y
GSR] RW 19
Set_Softint Im:ol w 204
Cir_Softint Im:il W 2149 P ASRs
Softnt Imq RW 2249
TICK CMP] RW 23¢g
STICK Eﬁsxxm RW 244 Non-Privileged Read OK, if STICK.NPT =0
STICK CMP [RW 2510/

FIGURE 6-4 State and Ancillary State Registers

Chapter 6 Registers 6-91

TABLE 6-6 State and Ancillary State Registers
State Register
Number Access
(base 10 used) | Restriction R/W Abbreviation Description Reference Section | Notes
0 None RW YP Register 32-bit Multiply/Divide
(deprecated)
1 Reserved
2 None RW CCR Condition Code
None RW ASI Address Space Identifier Section 6.6.3
Depends R TICK TICK register for CPU Timer, | Section 6.7.4 1
4 also accessible as a privileged
register
5 None R PC Program Counter Section 6.6.5
6 None RW FPRS Floating-point Registers State
ASR 7-15 Reserved Reserved for future use; do not
reference by software.
ASR 16 Privileged RW PCR Performance Instrumentation Chapter 14, 2
Depends |RW | PIC “Performance
ASR 17 Instrumentation”
ASR 18 Privileged RW DCR Dispatch Control Register Section 6.7.1
ASR 19 None RW GSR Graphics (VIS) Status Register | Section 6.7.2
ASR 20 Privileged w SET_SOFTINT Software Interrupts Section 6.7.3
ASR 21 Privileged w CLR_SOFTINT
ASR 22 Privileged RW SOFTINT_REG
ASR 23 Privileged RW TICK_CMP CPU and System Timer Section 6.7.4
ASR 24 Depends RW STICK Registers 4
ASR 25 Privileged RW STICK_CMP
ASR 26-31 Reserved Reserved for future use; do not
reference by software.

1. Writes are always privileged; reads are privileged if TI CK. NPT = 1; otherwise, reads are non-privileged.

2. If PCR. NC= 0, access is always privileged. If PCR. NC# 0 and PCR. PRI V= 0, access is non-privileged; otherwise, access is privileged.

3. All accesses are privileged if PCR. PRI V = 1; otherwise, all accesses are non-privileged.

4. Writes are always privileged; reads are privileged if STI CK. NPT = 1. Otherwise, reads are non-privileged.

6.5.2

6-92

Privileged Register Summary

See FIGURE 6-5 and TABLE 6-7 for more information on privileged registers.

UltraSPARC Ill Cu User’'s Manual < January 2004

Privileged | roc oy
egisters 63 0
g TNPC L] RW
63 0
TSTATE 1 RwW
RDPR - 39 I:OI W
WRPR -
I——
(to/from TICK &5 1 RW
IU Working TBA] RW
i 63 0
RegISters) PSTATE E RW TSTATE
0
TL RW
20
PIL RW
30
cwp RW 9 L B
p CCR
CANSAVE | RW 1049 AS|I PSTATE CWP
0
CANRESTORE RW 114,
40
CLEANWIN RW 124
4 0
OTHERWIN RW 134
40
WSTATE RW 144
50
Reserved R 15-3049
63 0
VERC//77] R 31
3 3 10

FIGURE 6-5 Privileged Registers

Chapter 6 Registers

6-93

TABLE 6-7 Privileged Registers
Privileged
Register Number Access Reference
(base 10 used) Restriction R/W Abbreviation Description Section Notes
0 Privileged RW TPC Trap stage program counter Section 6.8.1
1 Privileged RW TNPC Trap state next program counter
2 Privileged RW TSTATE Trap state register
3 Privileged RW TT Trap type register
4 Privileged RW TICK CPU TICK timer register, also Section 6.7.4
accessible as a state register
5 Privileged RW TBA Trap base address register Section 6.8.2
6 Privileged RW PSTATE Processor state register Section 6.8.3
7 Privileged RW TL Trap level register Section 6.8.4
8 Privileged RW PIL Processor Interrupt Level register | Section 6.8.5
9 Privileged RW CWP Current window pointer Section 6.8.6
10 Privileged RW CANSAVE Saveable register sets
11 Privileged RW CANRESTORE | Restorable register sets
12 Privileged RW CLEANWIN Clean register sets
13 Privileged RW OTHERWIN Other register sets susceptible to
spill/fill
14 Privileged RW WSTATE Window state register for traps due | Section 6.8.7
to spills and fills
15-30 Privileged Reserved
31 Privileged R VER Processor version register Section 6.8.8

6.5.3

6-94

ASI and Specially Accessed Register Summary

See FIGURE 6-6 and TABLE 6-8 for more information on ASI and specially accessed registers.

UltraSPARC Ill Cu User’'s Manual < January 2004

Status Registers
(ASI mapped)

RwW ASl VA

Value
DCUCR ["1 RW 45, 004
VA Watchpoint |SU:0| RW 585 38y
PA Watchpoint ﬁl RW 58,5 406

Special Access Registers

PSR L————] STFSR, STXFSR
LDFSR, LDXFSR

FIGURE 6-6 ASI and Specially Accessed Registers

TABLE 6-8 ASI and Specially Accessed Registers

Access Reference

Type Abbreviation Description Restriction | RIW Section Notes
ASI DCUCR Data Cache Unit Control Section 6.10.1

Register
ASI 58;¢ | PA WATCHPOINT Watchpoint for physical

addresses)

- - Section 6.10.2
VA WATCHPOINT Watchpoint for virtual

addresses
LD/ST Load/Store FSR Access the Floating-point
Floating- Status Register
point
Opcode

Chapter 6 Registers 6-95

6.6

6.6.1

State Registers

The state registers provide control and status to the Integer Execution Unit.

The type and accessibility of the registers (privileged vs. non-privileged mode) are
summarized in FIGURE 6-4.

The SPARC V9 architecture provides for up to 31 state registers, 24 of which are classified
as ASRs, numbered from 7 through 31. The eight State Registers, 0 through 7, are defined by
the SPARC V9 architecture.

32-bit Multiply/Divide (YP) State Register 0

The Y register is deprecated; it is provided only for compatibility with previous versions of
the architecture. It should not be used in new SPARC V9 software. It is recommended that all
instructions that reference the Y register (that is, SI\/ULD, SI\/ULCCD, UI\/ULD, UIVULCCD,
MULSccP sDi VP, sDi VeeP, ubl VP, UDl VeeP, RDYP, and WRYP) be avoided.

The low-order 32 bits of the Y register, illustrated in FIGURE 6-7, contain the more significant
word of the 64-bit product of an integer multiplication, as a result of either a 32-bit integer
multiply (SMJL D smuLccP, uMuLP, UI\/ULCCD) instruction or an integer multiply step
(MJLScc) instruction. The Y register also holds the more significant word of the 64-bit
dividend for a 32-bit integer divide (SDI VP, SDI VecP, uDI VP, UDI VecP) instruction.

_ product<63:32> or dividend<63:32>

63

6.6.2

6-96

32 31 0]

FIGURE 6-7 Y Register

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as zero.
The Y register is read and written with the RDYP and WRYP instructions, respectively.

Integer Unit Condition Codes State Register 2 (CCR)

The Condition Codes Register (CCR), shown in FIGURE 6-8, holds the integer condition
codes.

The CCR is accessible using Read and Write State Register instructions (RDCCR and
WRCCR) in non-privileged or privileged mode.

UltraSPARC Ill Cu User’'s Manual < January 2004

6.6.2.1

CCR Xce icc

7 4 3 0

FIGURE 6-8 Condition Codes Register

CCR Condition Code Fields (xcc and i cC)

All instructions that set integer condition codes set both the xcc and i cc fields. The xcc
condition codes indicate the result of an operation when viewed as a 64-bit operation. The
i cc condition codes indicate the result of an operation when viewed as a 32-bit operation.
For example, if an operation results in the 64-bit value 0000 0000 FFFF FFFF ¢, the 32-bit
result is negative (i CC.N is set to one) but the 64-bit result is nonnegative (XCC.N is set to
Zero).

Each of the 4-bit condition code fields is composed of four 1-bit subfields, as shown in
FIGURE 6-9.

XCC: 7 6 5 4 64-bit Interpretation
icc:. 3 2 1 0 32-bit Interpretation

FIGURE 6-9 Integer Condition Codes (CCR_i cc and CCR_xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the last
instruction that modified the integer condition codes; 1 = negative, 0 = non-negative.

The z bits indicate whether the ALU result was zero for the last instruction that modified the
integer condition codes; 1 = zero, 0 = nonzero.

The Vv bits signify whether the ALU result was within the range of (was representable in)
64-bit (xcc) or 32-bit (i cc) two’s-complement notation for the last instruction that modified
the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a two’s-complement carry (or borrow) occurred during the last
instruction that modified the integer condition codes. Carry is set on addition if there is a
carry out of bit 63 (xcc) or bit 31 (i cc). Carry is set on subtraction if there is a borrow into
bit 63 (xcc) or bit 31 (i cc); 1 = carry, 0 = no carry.

Chapter 6 Registers 6-97

6.6.3

6.6.4

6-98

Condition Codes

These bits are modified by the arithmetic and logical instructions, the names of which end
with the letters “cc” (for example, ANDcc) and by the WRCCR instruction. They can be
modified by a DONE or RETRY instruction, which replaces these bits with the CCR field of
the TSTATE register. The BPcc and Tcc instructions may cause a transfer of control based
on the values of these bits. The MOVcC instruction can conditionally move the contents of an
integer register based on the state of these bits. The FMOVccC instruction can conditionally
move the contents of a floating-point register according to the state of these bits.

CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes, which indicate the results of an integer
operation, with both of the operands and the result considered to be 64 bits wide.

CCR_integer_cond_codes (icc)

Bits 3 through 0 are the IU condition codes, which indicate the results of an integer
operation, with both of the operands and the result considered to be 32 bits wide. In addition
to the BPcc and Tcc instructions, the Bi cC instruction may also cause a transfer of control
based on the values of these bits.

Address Space Identifier (ASI) Register ASR 3

The ASI Register (FIGURE 6-10) specifies the ASI to be used for load and store alternate
instructions that use the “r s1 + si mml3” addressing form.

Non-privileged (user-mode) software may write any value into the ASI register; however,
values with bit 7 equal to zero select restricted ASIs. When a non-privileged instruction
makes an access that uses an ASI with bit 7 equal to zero, a privileged_action exception is
generated.

ASI

7 0

FIGURE 6-10 Address Space Identifier Register

TICK Register (TICK) ASR4

See Section 6.7.4, “Timer State Registers: ASRs 4, 23, 24, 25” for more details.

UltraSPARC Ill Cu User’'s Manual < January 2004

6.6.5

6.6.6

6.6.6.1

Program Counters State Register 5

The program counter (PC) contains the address of the instruction currently being executed.
The next program counter (NPC) holds the address of the next instruction to be executed if a
trap does not occur. The low-order two bits of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer
instruction is known as the delay instruction. This delay instruction is executed (unless the
control transfer instruction annuls it) before control is transferred to the target. During
execution of the delay instruction, the NPC points to the target of the control transfer
instruction, and the PC points to the delay instruction. See Chapter 7, “Instruction Types” for
more details.

The PC is used implicitly as a destination register by CALL, Bi cc, BPcc, BPr, FBf cc,
FBPf cc, JMPL, and RETURN instructions. It can be read directly by a RDPC instruction.

Floating-Point Registers State (FPRS) Register 6

The Floating-point Registers State (FPRS) Register, shown in FIGURE 6-11, holds control
information for the floating-point register file. Mode and status information about the
Floating-point unit (FPU) is presented in Section 6.9.1.

This register is readable and writable using the read and write state register instructions
RDFPRS and WRFPRS when the processor is in non-privileged or privileged mode.

FPRS FEF|DU | DL

2 1 0

FIGURE 6-11 Floating-Point Registers State Register

FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a
floating-point instruction causes a fp_disabled trap. If this bit is set but the PSTATE. PEF bit
is not set, then executing a floating-point instruction causes a fp_disabled trap; that is, both
FPRS. FEF and PSTATE. PEF must be set to enable floating-point operations.

Chapter 6 Registers 6-99

6.6.6.2

6.6.6.3

FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f 32—f 62. It
is set whenever any of the upper floating-point registers is modified. The processor may set it
pessimistically; it may be set whenever a floating-point instruction is issued, even though that
instruction never completes and no output register is modified. The dirty bit may be set by
instructions that the processor executes but does not complete due to wrong branch
prediction. The DU bit is cleared only by software.

FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f 0—f 31. It is set
whenever any of the lower floating-point registers is modified. The processor may set it
pessimistically; it may be set whenever a floating-point instruction is issued, even though that
instruction never completes and no output register is modified. The DL bit is cleared only by
software.

6.7

6.7.1

6-100

Ancillary State Registers: ASRs 16-25

The SPARC V9 architecture provides for optional ancillary state registers (ASRs) in addition
to the six state registers defined for all SPARC V9 processors and already described.

An ASR is read and written with the RDASR and WRASR instructions, respectively. Access to
a particular ASR may be privileged or non-privileged. A RDASR or WRASR instruction is
privileged if the accessed register is privileged.

All the state and ancillary state registers are summarized in TABLE 6-6. Some of the registers
descriptions are presented below.

Dispatch Control Register (DCR) ASR 18

The DCR provides control over the dispatch unit and branch prediction logic. The DCR also
provides factory test equipment with access to internal logic states using the OBSDATA bus
interface.

The DCR is a read/write register. Unused bits read as zero and should be written only with
zero or values previously read from them. The DCR is a privileged register; attempted access
by non-privileged (user) code causes a privileged_opcode trap. POR value is xxxx.xx0x5.

The DCR is illustrated in FIGURE 6-12 and described in TABLE 6-9.

UltraSPARC Ill Cu User’'s Manual < January 2004

‘ DPE ‘ 0BS ‘ BPE ‘RPE ‘SI ‘ IPE‘ IFPOE‘MS |

63 14 13 12 11 6 5 4 3 2 1 0
FIGURE 6-12 Dispatch Control Register (ASR 18)
TABLE 6-9 DCR Bit Description

Bit Field Type Description

63:14 — Reserved.

13:12 DPE Data Cache Parity Error Enable - If cleared, no parity checking at the Data Cache
SRAM arrays (Data, Physical Tag, and Snoop Tag arrays) will be done. It also implies
no Dcache_Parity_error trap (TT 0x071) will ever be generated. However, parity bits are
still generated automatically and correctly by HW.

11:6 OBSDATA These bits are used to select the set of signals driven on the OBSDATA<9:0> pins of the
processor for factory test purposes.

Branch and Return Control

5 BPE Branch Prediction Enable. When BPE = 1, conditional branches are predicted through
internal hardware. When BPE = 0, all branches are predicted not taken. After power-on
reset initialization, this bit is set to zero. This bit is also automatically set to zero on any
trap causing RED_st at e entry (but not cleared when privileged code enters
RED_st at e by setting the RED bit in PSTATE).

4 RPE Return Address Prediction Enable. When RPE = 0, the return address prediction stack is

disabled. Even when encountering a JMPL instruction, instruction fetch will continue on
a sequential path until the return address is generated and a mispredict is signalled.
When RPE = 1, the processor may attempt to predict the target address of JMPL
instructions and prefetch subsequent instructions accordingly.

After power-on reset initialization, this bit is set to zero. This bit is also automatically
set to zero on any trap causing a RED_st at e entry (but left unchanged when privileged
code enters RED_st at e by setting PSTATE. RED).

Instruction Dispatch Control

3

SI

Single Issue Disable. When S| = 0, only one instruction will be outstanding at a time.
Superscalar instruction dispatch is disabled, and only one instruction is executed at a
time. When SI = 1, normal pipelining is enabled. The processor can issue new
instructions prior to the completion of previously issued instructions.

After power-on reset initialization, this bit is set to zero. This bit is also automatically
set to zero on any trap causing RED_st at e entry (but left unchanged when privileged
code enters RED_st at e by setting PSTATE.RED).

Chapter 6

Registers 6-101

TABLE 6-9 DCR Bit Description (Continued)

Bit Field Type Description

2 IPE Instruction Cache Parity Error Enable - If cleared, no parity checking at the Instruction
Cache SRAM arrays (Data, Physical Tag, and Snoop Tag arrays) will be done. It also
implies no Icache_Parity_error trap (TT 0x072) will ever be generated. However, parity
bits are still generated automatically and correctly by HW.

1 IFPOE Interrupt Floating-point Operation Enable. The IFPOE bit enables system software to
take interrupts on floating-point instructions. When set, the processor forces a
fp_disabled trap when an interrupt occurs on floating-point code.

0 MS Multiscalar dispatch enable. When MS = 0, the processor operates in scalar mode,
issuing and executing one instruction at a time. Pipelined operation is still controlled by
the SI bit. M5 = 1 enables superscalar (normal) instruction issue.

After power-on reset initialization, this bit is set to zero. The bit is also automatically set
to zero on any trap causing RED_st at e entry (but left unchanged when privileged
code enters RED_st at e by setting PSTATE. RED).
Note — Both IPE and DPE will default to 0 (disable) after power-on or system reset.
Interrupt Floating-Point Operation Enable (Bit 1)
The | FPCE bit enables system software to take interrupts on floating-point instructions. This
enable bit is cleared by hardware at power-on. System software must set the bit as needed.
When this bit is enabled, the UltraSPARC III Cu processor forces a fp_disabled trap when an
interrupt occurs on FP-only code. The trap handler is then responsible for checking whether
the floating-point is indeed disabled. If it is not, the trap handler then enables interrupts to
take the pending interrupt.
Note — This behavior deviates from SPARC V9 trap priorities in that interrupts are of lower
priorities than the other two types of floating-point exceptions (fp_exception_ieee_754,
fp_exception_other).
This mechanism is triggered for a floating-point instruction only if none of the
approximately twelve preceding instructions across the two integer, load/store, and branch
pipelines are valid, under the assumption that they are better suited to take the interrupt
(only one trap entry/exit).
Upon entry, the handler must check both TSTATE. PEF and FPRS. FEF bits. If
TSTATE. PEF =1 and FPRF. FEF = 1, the handler has been entered because of an
interrupt, either interrupt_vector or interrupt_level. In such a case:
The fp_disabled handler should enable interrupts (that is, set PSTATE. | E = 1); then,
issue an integer instruction (for example, add %g0, %g0, %g0). An interrupt is
triggered on this instruction.
6-102 UltraSPARC Ill Cu User’'s Manual < January 2004

6.7.2

The processor then enters the appropriate interrupt handler (PSTATE. | E is turned off
here) for the type of interrupt.

At the end of the handler, the interrupted instruction is a RETRY after returning from
the interrupt. The add %g0, %g0, %g0 is a RETRY.

The fp_disabled handler then returns to the original process with a RETRY.

The “interrupted” FPop is then retried (taking a fp_exception_ieee_754 or
fp_exception_other at this time if needed).

Graphics Status Register (GSR) ASR 19

The GSR is used with the VIS Instruction Set.

The GSR is accessible in non-privileged mode. It can be read and written using the RDASR
and V\RASR state register instructions.

Accesses to the GSR cause a fp_disabled trap if PSTATE. PEF or FPRS. FEF is zero.

The GSR is illustrated in FIGURE 6-13 and described in TABLE 6-10.

MASK

— IM [IRND — SCALE ALIGN

63

32

31 28 27 26 25 24 8 7 3 2 0

FIGURE 6-13 Graphic Status Register (ASR 19)

TABLE 6-10 GSR Bit Description

Bit Field Description

63:32 MASK<31:0> |This field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 Reserved.

27 IM Interval Mode: When | M= 1, the values in FSR. RD and FSR. NS are
ignored; the processor operates as if FSR. NS = 0 and rounds floating-point
results according to GSR. | RND.

26:25 IRND<1:0> IEEE Std 754-1985 rounding direction to use in Interval Mode

(GSR. | M= 1), as follows:

IRND Round toward

0 INearest (even if tie)
1 0

2 + o

3 - ©

When GSR. | M= 1, the value in GSR. | RND overrides the value in FSR. RD.

Chapter 6

Registers 6-103

TABLE 6-10 GSR Bit Description (Continued)

Bit Field Description
24:8 Reserved.
7:3 SCALE<4:0> |Shift count in the range 0-31, used by the PACK instructions for formatting.
2:0 ALIGN<2:0> |Least three significant bits of the address computed by the last executed
AL| GNADDRESS or ALl GNADDRESS_ LI TTLE instruction.
6.7.3 Software Interrupt State Registers:

ASRs 20, 21, and 22

Three registers are used to control software interrupts: SOFTI NT, SET_SOFTI NT, and
CLR_SOFTI NT. Bits written to the SOFTI NT register will cause traps to the level the trap is
enabled. The SOFTI NT register can be written to directly using ASR 22, or indirectly using
the SET_SOFTI NT and CLR_SOFTI NT registers as described in this section.

All three registers are accessible only in privileged mode. The SOFTI NT register is accessed
using the RD and WR state register access instructions. The SET_SOFTI NT and
CLR_SOFTI NT registers are written using the WR state register access instruction. See
TABLE 6-11 and FIGURE 6-14 for more details.

TABLE 6-11

Register-Window State Registers

Soft Interrupt Register ASR # Name and Description Privileged Access Instructions
SOFTINT 22 Software Interrupt Register RDSOFTINIT

WRSOFTINT
SET_SOFTINT 20 Set Software Interrupt register bits. WRSOFTINIT_SET
CLR_SOFTINT 21 Clear Software Interrupt register bits. WRSOFTINIT_CLR

SOFTI NT

SET_SOFTI NT

CLR_SOFTI NT

| _ | IM | INT_LEVEL ,TMl
63 17 16 15 10
| Reads zero, writes ignored. Sets bits in SOFTINT. |
63 17 16 0
| Reads zero, writes ignored. | Clears bits in SOFTINT. |
63 17 16 0

FIGURE 6-14 SOFTI NT, SET_SOFTI NT, and CLR_SOFTI NT Register Formats

6-104

UltraSPARC Ill Cu User’'s Manual < January 2004

SOFTINT Register

The operating system uses the SOFTI NT to schedule interrupts. The field definitions are
described in TABLE 6-12.

TABLE 6-12 SOFTI NT Bit Descriptions

Bit Field Description
16 SM When the STI CK_COMPARE. | NT_DI S bit is zero (system tick compare is enabled) and
(STICK_INT) its STI CK_CMPR field matches the value in the STI CK register, then the SMfield in
SOFTINT is set to one and a Level-14 interrupt is generated. See Section 6.7.4, “Timer
State Registers: ASRs 4, 23, 24, 25” for details.

15:1 INT_LEVEL When a bit is set within this field (bits 15:1), an interrupt is caused at the corresponding
interrupt level. Note that | NT_LEVEL<15> is shared by Level-15 interrupt and PI C
overflow interrupt.

0 ™ When the TI CK_COMPARE.I NT_DI S bit is zero (that is, tick compare is enabled) and its

(TICK_INT) Tl CK_CMPR field matches the value in the Tl CK register, then the TMfield in the

SOFTINT register is set to one and a Level-14 interrupt is generated. See
“TICK_COMPARE Register” for details.

SET_SOFTINT Register

The SET_SOFTI NT register is written to set bits in the SOFT| NT register to set a bit in that
register. When a bit in the SET_SOFTI NT register is set to a one, the corresponding bit in
the SOFTI NT is set.

CLR_SOFTINT Register

The CLR_SOFTI NT register is written in privileged mode using the WR write state register
instruction to clear bits in the SOFTI NT register. When a bit in the CLR_SOFTI NT register
is set to a one, the corresponding bit in the SOFTI NT register is cleared.

Chapter 6

Registers 6-105

6.7.4

Timer State Registers: ASRs 4, 23, 24, 25

The processor has two timers. The TICK timer is driven by the CPU clock. The STICK timer
is driven by the system clock. Four registers are used to implement the timer and support the
timer interrupts.

TABLE 6-13 Timer State Registers

ASR #
Soft Interrupt Register (base 10) Name and Description Access Instructions
TICK 4 TICK register Depends
TICK_COMPARE 23 TICK Compare register State Register Instructions in privileged mode
STICK 24 STICK register Depends
STICK_COMPARE 25 STICK Compare register State Register Instructions in privileged mode
TICK NPT COUNTER
63 62 0
TICK_COMPARE INT_DIS TICK_CMPR
63 62 0
STICK NPT COUNTER
63 62 0
STICK_COMPARE INT_DIS TICK_CMPR
63 62 0
FIGURE 6-15 Timer State Registers
TICK Register
The TI CK register is a 63-bit counter that counts processor clock cycle.
In privileged mode, the Tl CK register is always readable using either the RDPR (privileged
read) or RDTI CK (state register read) instructions. The Tl CK register is always writable in
privileged mode using the WRPR (privileged write) instruction; there is no VWRTI CK (state
register write) instruction.
The TI CK. NPT bit (bit 63) selects the non-privileged mode readability. If TI CK. NPT =0,
then the Tl CK register is readable in non-privileged mode using the RDTICK state register
read instruction. When Tl CK. NPT = 1, an attempt by software to read the Tl CK register in
non-privileged mode causes a privileged_action exception. Software operating in
non-privileged mode can never write to the Tl CK register.
6-106 UltraSPARC Ill Cu User’'s Manual < January 2004

TI CK. NPT is set to one by a power-on reset trap. The value of TI CK. COUNTER is reset
after a power-on reset trap.

After the Tl CK register is written, reading the Tl CK register returns a value incremented (by
one or more) from the last value written, rather than from some previous value of the counter.
The number of counts between a write and a subsequent read does not accurately reflect the
number of processor cycles between the write and the read. Software may rely only on
read-to-read counts of the Tl CK register for accurate timing, not on write-to-read counts.

Note — The Tl CK register is unaffected by any reset other than a power-on reset.

Programming Note — Tl CK. NPT may be used by a secure operating system to control
access by user software to high accuracy timing information. The operation of the timer
might be emulated by the trap handler, which could read Tl CK. count er and change the
value to lower its accuracy.

TICK_COMPARE Register

The TI CK_COMPARE register causes the processor to generate a trap when the TI CK
register reaches the value in the TI CK_COMPARE register and the | NT_DI S bit is zero. If
the | NT_DI S bit is one, then no interrupt is generated.

When the Tl CK_CMPR field exactly matches the TI CK. COUNTER field and | NT_DI S=0,
then a Tl CK_I NT is posted in the SOFTI NT register. This has the effect of posting a
Level-14 interrupt to the processor when the processor has Pl L register value less than
fourteen and PSTATE.| E register field 1.

Programming Note — The Level-14 interrupt handler must check the SOFTI NT<14>, TM
(TI CK_I NT) , and SM(STI CK_I NT) fields of the SOFTI NT register to determine the
source or sources of the Level-14 interrupt.

In privileged mode, the TI CK_COMPARE register is always accessible using the state register
read and write instructions. The TI CK_COWPARE register is not accessible in non-privileged
mode. Non-privileged accesses to this register causes a privileged_opcode trap.

STICK Register

The STI CK register is a 63-bit counter that increments at a rate determined by the system
clock.

Chapter 6 Registers 6-107

The STI CK register is always accessible in privileged mode using the RDSTICK and
WRSTICK state register instructions.

The STI CK. NPT bit (bit 63) selects the non-privileged mode readability. If

STI CK. NPT = 0, then the STI CK register is readable in non-privileged mode using the
RDSTICK state register read instruction. When STI CK. NPT = 1, an attempt by software to
read the STI CK register in non-privileged mode causes a privileged_action exception.
Software operating in non-privileged mode can never write to the STI CK register.

STI CK. NPT bit is set to one by a power-on reset trap. The value of STI CK. COUNTER is
cleared after a power-on reset trap.

After the STI CK register is written, reading the STI CK register returns a value incremented
(by one or more) from the last value written, rather than from some previous value of the
counter.

Note — The STI CK register is unaffected by any reset other than a power-on reset.

STICK_COMPARE Register

The STI CK_COMPARE register causes the processor to generate a trap when the STl CK
register reaches the value in the STI CK_COMPARE register and the | NT_DI S bit is zero. If
the | NT_DI S bit is one, then no interrupt is generated.

The STI CK_COVMPARE is only accessible in privileged mode. Accesses to this register in
non-privileged mode causes a privileged_opcode trap.

When STI CK_CMPR field exactly matches STI CK. COUNTER field and | NT_DI S= 0, then
a TlI CK_I NT is posted in the SOFTI NT register. This has the effect of posting a Level-14
interrupt to the processor when the processor has Pl L register value less than fourteen and
PSTATE.| E register field 1.

Programming Note — The Level-14 interrupt handler must check SOFTI NT<14>,
TI CK_I NT, and STI CK_| NT to determine the source of the Level-14 interrupt.

After a power-on reset trap, the | NT_DI S bit is set to one (disabling system tick compare
interrupts), and the ST CK_CMPR value is set to zero.

6-108 UltraSPARC Ill Cu User’'s Manual < January 2004

6.8

6.8.1

6.8.1.1

Privileged Registers

The privileged registers are described in this section. The privileged registers are visible only
to software running in privileged mode (PSTATE. PRI V = 1). Privileged registers are written
with the WRPR instruction and read with the RDPR instruction.

Refer to FIGURE 6-5 for more details.

Trap Stack Privileged Registers 0 through 3

The four trap stack registers (TPC, TNPC, TSTATE, and TT) form a group of registers that

are shadowed for each of the five trap levels. Each instance of the registers save the state of
key integer unit parameters at each trap level. FIGURE 6-16 shows the format for this register
group. This figure is followed by a description of each register. FIGURE 6-17 shows how the

register stack responds to an event example.

The group of trap stack registers contain state information from the previous trap level. The
registers include values from the program counter (PC), the next program counter (NPC), the
trap state (TSTATE) register (a group of fields comprising the contents of the CCR, ASI ,
CWP, and PSTATE registers), and the trap type (TT) register containing the value of the trap
that caused entry into the current trap level.

Common Attributes

There are MAXTL = 5 instances of the trap control registers, but only one group is accessible
at any time. The current value in the TL register determines which instance of the trap
control registers are accessible.

All trap control registers are accessible in privileged mode. An attempt to read or write any
of these registers in non-privileged mode causes a privileged_opcode exception.

An attempt to read or write any of these registers when TL = 0 causes an illegal_instruction
exception.

Chapter 6 Registers 6-109

6.8.1.2

6-110

TPC PC from trap while in trap level 00
53 71 0

TNPC nPC from trap while in trap level 00
53 7T 0

TSTATE CCR ASI PSTATE CWP
39 32 31 24 19 8 7 0

TT Trap Type
8 0

FIGURE 6-16 Trap State Register Format

Trap Program Counter

The Trap Program Counter (TPC) contains the PC from the previous trap level.

Trap Next Program Counter

The Trap Next Program Counter (TNPC) register is the NPC from the previous trap level.

Trap State Register

The Trap State (TSTATE) Register contains the state from the previous trap level, comprising
the contents of the CCR, ASI , CWP, and PSTATE registers from the previous trap level.

Trap Type

The Trap Type (TT) register normally contains the trap type of the trap that caused entry to
the current trap level.

Trap Stack Operation

The trap stack and an event example are shown in FIGURE 6-17.

UltraSPARC Ill Cu User’'s Manual < January 2004

6.8.1.3

6.8.2

Event Example

1
2
3
4
5
6

= = ~— —

Processoris at TL = 1

Processor traps

Current PC, nPC, etc. written into TL = 1 group
TL incremented to 2

Processor returns from Trap

TL = 1 group is written to PC, nPC, etc.

Trap Stack

TL=2
TL=1
TL=0 [1rc 3
TNPC]
TSTATE —
T =]

FIGURE 6-17 Trap Stack and Event Example

Effects of Reset and Normal Operation

The effects of reset on each register are shown in TABLE 6-14. During normal operation, the
trap stack register values defined for the trap levels above the current one are undefined.

TABLE 6-14 Trap Stack Register Power-On and Normal Operation

Trap Control

During Normal Operation, for n greater

TT[1] to TT[4] are undefined
TT[S] =001 16

Register After Power-on Reset than the current trap level (n > TL)
TPC TPC[0] = TPC[n] is undefined
TPC[1] to TPC[5] are undefined
TNPC TPC[0] = TNPC[#] is undefined
TNPC[1] to TNPC[5] are undefined
TSTATE TPC[0] = TSTATE[#n] is undefined
TSTATE[1] to TSTATE[5] are undefined
TT TPC[0] = Reset Trap Type TT[n] is undefined

Trap Base Address (TBA) Privileged Register 5

The TBA register, shown in FIGURE 6-18, provides the upper 49 bits of the address used to
select the trap vector for a trap. The TBA register is accessible using read and write
privileged register instructions. The lower 15 bits of the TBA always read as zero, and writes
to them are ignored.

Chapter 6

Registers

6-111

Trap Base Address 000 0000 0000 0000

63 15 14 0
FIGURE 6-18 Trap Base Address Register
The full address for a trap vector is specified by the contents in the TBA, TL, and TT[TL]
registers at the time the trap is taken, as shown in FIGURE 6-19.

TBA<63:15> TL>0 TTt. [00000

63 15 14 13 5 4 0
FIGURE 6-19 Trap Vector Address Format
TL>O0 bit
The “TL > 0” bit is zero if TL = 0 when the trap was taken, and one if TL > 0 when the trap
was taken. This implies that there are two trap tables: one for traps from TL = 0 and one for
traps from TL > 0. See Chapter 12, “Traps and Trap Handling” for more details on trap
vectors.
TTTL ﬁeld
The TTy field is written with the contents of the TT register representing the new trap level
that is being taken.

6.8.3 Processor State (PSTATE) Privileged Register 6
The PSTATE register (FIGURE 6-20) holds the current state of the processor. There is only
one instance of the PSTATE register. The PSTATE register is copied to a 12-bit field in the
TSTATE register of the trap stack. See Chapter 12, “Traps and Trap Handling” for more
details.
PSTATE| IG |MG | CLE| TLE MM RED|PEF | AM |PRIV| IE | AG
1" 10 9 8 7 6 5 4 3 2 1 0
FIGURE 6-20 PSTATE Fields
6-112 UltraSPARC Ill Cu User’'s Manual < January 2004

6.8.3.1

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to
the next instruction executed. The privileged RDPR and WRPR instructions are used to read
and write all the bits in the PSTATE, respectively.

Subsections on page 113 through page 114 describe the fields contained in the PSTATE

register.

Global Register Set Selection - 1G, MG, AG bits

The UltraSPARC III Cu processor provides Interrupt and MMU Global Register sets in
addition to the two global register sets (normal and alternate) specified by SPARC V9. The
currently active set of global registers is specified by the AG, | G, and MG bits and are set and
cleared according to the events listed in TABLE 6-15.

Note — The | G MG and AG fields are saved on the trap stack along with the rest of the

PSTATE Register.

TABLE 6-15 PSTATE Global Register Selection Events

PSTATE Settings
Event Globals Selected for Use AG IG MG
DONE, RETRY [1] Global Registers encoded in 0 0 0
TSTATE register (Previous
Global Registers before most
recent trap)
fast_instruction_access_MMU_miss, MMU Global registers 0 0 1
fast_data_access__MMU_miss,
fast_data_access_protection,
data_access_exception,
instruction_access_exception
interrupt_vector_trap Interrupt Global registers 0 1 0
Reserved [2] 0 1 1
Write to privileged register (WPR) that modifies | Any Global Register X X X
AG, IG or MG bits in PSTATE register
Any trap other than those listed above Alternate Global registers 1 0 0
Reserved. 1 0 1
Reserved. 1 1 0
Reserved. 1 1 1

1. Since PSTATE is preserved in the TSTATE register when a trap occurs, the previous value of these bits are normally restored

upon return from a trap (via DONE or RETRY instruction).

2. AWRPRto PSTATE, using a reserved combination of AG | G and MGbit values, causes an illegal_instruction exception.

Chapter 6

Registers

6-113

6-114

Executing a DONE or RETRY instruction restores the previous {AG | G MG} state before the
trap is taken. Programmers can also set or clear these three bits by writing to the PSTATE
register with a WRPR instruction.

Note — Attempting to use the “wr pr %pst at e” instruction to set a reserved encoding for
I G MG, and AG (more than one of these bits set) results in an illegal_instruction exception.
However, the processor does not check for a reserved encoding when writing directly to the
TSTATE register. Hence, executing a DONE or RETRY with an invalid AG | G MG bit
combination may result in an undefined behavior of the processor.

Compatibility Note — UltraSPARC III Cu processors support two more sets (privileged
only) of eight 64-bit global registers compared to the UltraSPARC II family: interrupt
globals and MMU globals. These additional registers are called the trap globals. Two 1-bit
fields, PSTATE. | Gand PSTATE. MG, were added to the PSTATE register to select which set
of global registers to use.

PSTATE _interrupt_globals (IG)

When PSTATE. | G= 1, the processor interprets integer register numbers in the range 0-7 as
referring to the interrupt global register set. See the Note on page 114. When an
interrupt_vector trap (trap type = 60,¢) is taken, processor sets | G and clears AG and MG,

PSTATE_MMU_globals (MG)

When PSTATE. MG= 1, the processor interprets integer register numbers in the range 0-7 as

referring to the MMU global register set.

The processor sets MG and clears | Gand AG when any of the following traps are taken:
fast_instruction_access_MMU_miss trap (trap type = 6414—67¢)
fast_data_access_MMU_miss trap (trap type = 68145—6B4)
fast_data_access_protection trap (trap type = 6C;5—6F ()
data_access_exception trap (trap type = 30;¢)

instruction_access_exception trap (trap type = 08¢)

PSTATE _alternate_globals (AG)

When PSTATE. AG= 1, the processor interprets integer register numbers in the range 0— 7 as
referring to the alternate global register set.

UltraSPARC Ill Cu User’'s Manual < January 2004

6.8.3.2

6.8.3.3

6.8.3.4

If an exception is taken and it does not set another global bit, then the processor defaults to
the Alternate Global register set by setting AG and clearing | Gand MG,

PSTATE_current_little_endian (CLE)

When PSTATE. CLE = 1, all data reads and writes using an implicit ASI are performed in
little-endian byte order with an ASI of ASI _PRI MARY_LI TTLE. When PSTATE. CLE =0,
all data reads and writes using an implicit ASI are performed in big-endian byte order with
an ASI of ASI _PRI MARY. Instruction accesses are always big-endian.

PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the
PSTATE. TLE bit is copied into PSTATE. CLE in the new PSTATE register. This behavior
allows system software to have a different implicit byte ordering than the current process.
Thus, if PSTATE. TLE is set to one, data accesses using an implicit ASI in the trap handler
are little-endian. The original state of PSTATE. CLE is restored when the original PSTATE
register is restored from the trap stack.

PSTATE_mem_model (MM)

The processor supports Total Store Order (TSO), only. The 2-bit field in the PSTATE.MM is
hardwired to 00 indicating TSO mode. See TABLE 6-16 for MM Encodings.

TABLE 6-16 MM Encodings

MM Value SPARC V9
00 Total Store Order (TSO)
01 Reserved
10 Reserved
11 Reserved

Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are

ordered with respect to earlier loads and stores. Thus, loads can bypass earlier stores but
cannot bypass earlier loads; stores cannot bypass earlier loads and stores. Programs that
execute correctly in either PSO or RMO will execute correctly in the TSO model.

Chapter 6 Registers 6-115

6.8.3.5

6.8.3.6

6.8.3.7

6-116

PSTATE_RED_state (RED)

PSTATE. RED (Reset, Error, and Debug state) is set whenever the UltraSPARC III Cu
processor takes a RED state disrupting or nondisrupting trap. The IU sets PSTATE. RED
when any hardware reset occurs. It also sets PSTATE. RED when a trap is taken while
TL = (MAXTL - 1). Software can exit RED_st at e by the following method:

Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE and
clears PSTATE. RED if it was zero in the stacked copy.

Note — Software can also exit the RED_st at e by writing a zero to PSTATE. RED with a
WRPR instruction. However, this method is not recommended due to potential side-effects
and unpredictable behavior.

PSTATE_enable_floating-point (PEF)

When set to one, the PEF bit enables the FPU, which allows privileged software to manage
the FPU. For the FPU to be usable, both PSTATE. PEF and FPRS. FEF must be set.
Otherwise, any floating-point instruction that tries to reference the FPU causes a fp_disabled
trap.

PSTATE_address_mask (AM)

When PSTATE. AM= 1, the high-order 32 bits of any virtual addresses for instruction and
data are cleared to zero in the following cases:

Before data addresses are sent out of the processor

Before addresses are sent to the MMU

For instruction accesses to all caches

Before being stored to a general-purpose register for CALL, JMPL, and RDPC instructions
Before being stored to TPC[n] and TNPC[#] when a trap occurs

When an ASI _PHYS_* ASI is used in a load or store instruction, the setting of
PSTATE. AMis ignored and the full 64-bit address is used. (See ASI 144,
ASI _PHYS_USE_EC, for an example).

When PSTATE. AM= 1, the processor writes the full 64-bit program counter value (upper 32
bits are forced to be zero) to the destination register of a CALL, JMPL, or RDPC instruction.

When PSTATE. AM=1 and a trap occurs, the processor writes the full 64-bit program
counter value to TPC[TL] .

When PSTATE. AM=1 and a synchronous exception occurs, the processor writes the full
64-bit address to the Data Synchronous Fault Address Register (D- SFAR).

UltraSPARC Ill Cu User’'s Manual < January 2004

6.8.3.8

6.8.3.9

6.8.4

6.8.5

When PSTATE. AM=1 and an asynchronous exception occurs, the processor writes the full
64-bit address to the Data Asynchronous Fault Address Register (D- AFAR).

The PSTATE. AMbit must be set when 32-bit software is executed.

PSTATE_privileged_mode (PRIV)

When PSTATE. PRI V = 1, the processor is in privileged mode. This bit is controlled by
events in the processor and can be explicitly set.

PSTATE_interrupt_enable (IE)

When PSTATE. | E= 1, the processor can accept interrupts.

Trap Level (TL) Privileged Register 7

The trap level register, shown in FIGURE 6-21, specifies the current trap level. TL = 0 is the
normal (nontrap) level of operation. TL > 0 implies that one or more traps are being
processed. The maximum valid value that the TL register may contain is MAXTL =5, which
is always equal to the number of supported trap levels beyond Level-0. See Chapter 12,
“Traps and Trap Handling” for more details about the TL register.

TL TL

FIGURE 6-21 Trap Level Register

Programming Note — Writing the TL register with a value greater than MAXTL (five for
UltraSPARC III Cu) causes the value MAXTL to be written. Writing the TL register with a
wrpr % | instruction does not alter any other processor state; that is, it is not equivalent to
taking or returning from a trap.

Processor Interrupt Level (PIL) Privileged Register 8

The processor interrupt level (Pl L), illustrated in FIGURE 6-22, is the interrupt level above
which the processor will accept an interrupt. Interrupt priorities are mapped so that interrupt
Level-2 has greater priority than interrupt Level-1, and so on.

Chapter 6 Registers 6-117

6.8.6

PIL PIL
3 0

FIGURE 6-22 Processor Interrupt Level Register

On SPARC V8 processors, the Level-15 interrupt is considered to be nonmaskable; therefore,
it has different semantics from other interrupt levels. SPARC V9 processors do not treat
Level-15 interrupts differently from other interrupt levels.

Register-Window State Privileged Registers 9
through 13

The state of the register window is determined by a set of privileged registers that are read
and written by privileged mode software using the RDPR and WRPR instructions, respectively.
In addition, these privileged registers are modified by instructions related to register
windowing and are used to generate traps that allow supervisor software to spill, fill, and
clean the register window sets.

Register-window management is described in a separate chapter.

TABLE 6-17 Register-Window State Privileged Registers

Value

Register-Window State Registers Range Description

Current Window Pointer State Register 9: The CWP register is a counter that identifies

the current window into the set of integer registers. See

CWP 0to7 | Chapter 12, “Traps and Trap Handling” for information on
> S how hardware manipulates the CWP register.
Saveable Window Sets State Register 10: The CANSAVE register contains the
number of register sets following CWP that are not in use and
CANSAVE 010 6 | are available to be allocated by a SAVE instruction without
> 5 generating a window spill exception.

6-118

UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 6-17 Register-Window State Privileged Registers (Continued)

Register-Window State Registers

Value
Range

Description

Restorable Window Sets

CANRESTORE

0to7

State Register 11: The CANRESTORE register contains the
number of register sets preceding CWP that are in use by the
current program and can be restored (by the RESTORE
instruction) without generating a window fill exception.

Clean Window Sets

CLEANWIN

0to6

State Register 12: The CLEANW N register contains the
number of windows that can be used by the SAVE instruction
without causing a clean_window exception.

Other Window Sets

OTHERWIN

0to7

State Register 13: The OTHERW N register contains the
count of register sets that will be spilled/filled by a separate
set of trap vectors based on the contents of WSTATE_OTHER.
If OTHERW N is zero, register sets are spilled/filled by use of
trap vectors based on the contents of WSTATE_NORMAL.
The OTHERW N register can be used to split the register sets
among different address spaces and handle spill/fill traps
efficiently by use of separate spill/fill vectors.

Note — The CWP, CANSAVE, CANRESTORE, OTHERW N, and CLEANW N registers contain
values in the range 0 to 7 or 0 to 6 as indicated in TABLE 6-17. The effect of writing a value
greater than indicated to any of these registers is undefined. The values programmed into
these registers must combine into a consistent set of numbers that will work.

Note — The most significant 61 bits of all these registers are set to zero. When any are

written, the most significant 61 bits are ignored.

Compatibility Note — The following differences between the SPARC V8 and SPARC V9
architectures are visible only to privileged software; they are invisible to non-privileged
software.

1. In the SPARC V9 architecture, SAVE increments CWP and RESTORE decrements CWP. In
the SPARC V8 architecture, the opposite is true: SAVE decrements PSR. CWP and RESTORE
increments PSR. CVP.

2. PSR. CWP in the SPARC V8 architecture is changed on each trap. In the SPARC V9
architecture, CWP is affected only by a trap caused by a window fill or spill exception.

Chapter 6 Registers 6-119

6.8.7

6.8.8

6-120

Clean Windows (CLEANWIN) Register Note

The CLEANW N register counts the number of register window sets that are “clean” with
respect to the current program, that is, register sets that contain only zeroes, valid addresses,
or valid data from that program. Registers in these windows need not be cleaned before they
can be used. The count includes the register sets that can be restored (the value in the
CANRESTORE register) and the register sets following CWP that can be used without
cleaning. When a clean window is requested (by a SAVE instruction) and none is available, a
clean_window exception occurs to cause the next window to be cleaned.

Programming Note — CLEANW N must never be set to a value greater than six. Setting
CLEANW N greater than six would violate the register window state definition. Notice that
the hardware does not enforce this restriction; it is up to Supervisor software to keep the
window state consistent.

Window State (WSTATE) Privileged Register 14

The WSTATE register, shown in FIGURE 6-23, specifies bits that are inserted into T Ty <4:2>
on traps caused by window spill and fill exceptions.

This register is read/write by using the RDPR and WRPR privileged instructions.

These bits are used to select one of eight different window spill and fill handlers. If
OTHERW N= 0 at the time a trap is taken because of a window spill or window fill
exception, then the WSTATE. NORMAL bits are inserted into TT[TL] field of the Trap Vector
Address. Otherwise, the WSTATE. OTHER bits are inserted into TT[TL] .

WSTATE OTHER NORMAL

5 3 2 0

FIGURE 6-23 WSTATE Register

Version (VER) Privileged Register 31

The version register, shown in FIGURE 6-24, specifies the fixed parameters pertaining to a
particular processor implementation and mask set.

The VER register is read-only, readable by the RDPR privileged instruction.

UltraSPARC Ill Cu User’'s Manual < January 2004

manufacturer = 003E4¢

impl

mask 0000 0000 | maxtl =5 [000| maxwin =7

63 48 47

FIGURE 6-24 Version Register

VER.manuf Field

32 31 24 23 16 15

87 5 4

0

The VER. manuf field contains our 16-bit manufacturer code, 003E 4, which is our JEDEC
semiconductor manufacturer code.

VER.impl Field

The VER. i npl field uniquely identifies the processor implementation or class of

software-compatible implementations of the architecture. TABLE 6-18 shows the processor
implementation codes.

TABLE 6-18 Processor Implementation Codes

Processor VER.impl
UltraSPARC 1 001044
UltraSPARC 11 00116
UltraSPARC Ili 001244
UltraSPARC Ile 00134
UltraSPARC III Cu 001544

VER. mask Field

The VER. mask specifies the current mask set revision and is chosen by the implementor. It

generally increases numerically with successive releases of the processor but does not

necessarily increase by one for consecutive releases. TABLE 6-19 lists the UltraSPARC III Cu

Processor Mask Version.

TABLE 6-19 UltraSPARC III Cu Processor Mask Version Codes

Mask Version VER.mask
TO_1.x 4’hl
TO_2.x 4°h2

Chapter 6 Registers

6-121

VER.maxtl Field

The VER. maxt | value, 5, is the maximum number of trap levels supported by the
processor.

VER.maxwin Field

The VER. maxwi n value, 7, is the maximum number of Integer Unit register windows that
access the NW NDOWS = 8 window register sets.

6.9

6.9.1

Special Access Register

Floating-Point Status Register (FSR)

The FSRregister fields, illustrated in FIGURE 6-24, contain FPU mode and status information.
Section 6.6.6, “Floating-Point Registers State (FPRS) Register 6” presents state information
about the FPU.

The FSR is accessible using special load and store opcodes. They work in privileged and
non-privileged mode. The lower 32 bits of the FSR are read and written by the STFSRP and
LDFSRP floating-point instructions; all 64 bits of the FSR are read and written by the
STXFSR and LDXFSR floating-point instructions, respectively. FIGURE 6-25 illustrates the
FSR fields.

The ver,ftt,and reserved (“—”) fields are not modified by LDFSR or LDXFSR, which
are read-only fields.

— fce3 | fcc2 | feet

63 38 37 36 35 34 33 32
RD | — TEM NS| — ver ftt 0 |—| fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

6-122

FIGURE 6-25 FSR Fields Reserved Bits

UltraSPARC Ill Cu User’'s Manual < January 2004

6.9.1.1

Reserved Bits

Bits 63—38, 29-28, 21-20, and 12 are reserved. When read by an STXFSR instruction, these
bits shall read as zero. Software should issue LDXFSR instructions only with zero values in
these bits, unless the values of these bits are exactly those derived from a previous STXFSR.

The subsections on pages page 123 through page 131 describe the remaining fields in the
FSR

FSR_fp_condition_codes (fcc0, fccl, fec2, fcel)

The four sets of floating-point condition code fields are labeled f ccO, f cc1, f cc2, and
fcc3.

Compatibility Note — SPARC V9 architecture’s f ccO is the same as SPARC V8
architecture’s f cc.

The f ccO field consists of bits 11 and 10 of the FSR, f cc1 consists of bits 33 and 32,

f cc2 consists of bits 35 and 34, and f cc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the f ccn fields in the
FSR, as selected by the instruction. The f ccn fields can be read and written by STXFSR and
LDXFSR instructions, respectively. The f ccO field can also be read and written by STFSR
and LDFSR, respectively. FBf cc and FBPf cc instructions base their control transfers on
these fields. The MOVcc and FMOVcc instructions can conditionally copy a register, based on
the state of these fields.

In TABLE 6-20, f,.;; and f,.,, correspond to the single, double, or quad values in the
floating-point registers specified by a floating-point compare instruction’s r s1 and r s2
fields. The question mark (?) indicates an unordered relation, which is true if either f..; or 1.,
is a signalling NaN (SNaN) or a quiet NaN (QNaN). If FCMP or FCMPE generates a

fp_exception_ieee_754 exception, then f ccn is unchanged. TABLE 6-20 shows the

floating-point condition codes Fields of FSR.

TABLE 6-20 Floating-Point Condition Codes (f ccn) Fields of FSR

IContent of fccn Indicated Relation

0 Jrs1 =Jrs2

1 Jrs1 <Jrs2

2 frs] >frs2

B frs1 ? frs2 (unordered)

Chapter 6 Registers 6-123

6.9.1.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 6-21 shows the rounding direction fields.

TABLE 6-21 Rounding Direction (RD) Field of FSR

RD Round Toward

Nearest (even, if tie)

1 0
2 + o0
3 — 00

If GSR. | M= 1, then the value of FSR. RD is ignored and floating-point results are instead
rounded according to GSR. | RND.

6.9.1.3 FSR_nonstandard_fp (NS)

The NS bit allows the processor to flush a subnormal floating-point value to zero. If a
floating-point add/subtract operation results in a subnormal value and FSR. NS = 1, the value
is replaced by a floating-point zero value of the same sign. This replacement is usually
performed in hardware. However, for the following cases when a subnormal value is
generated in the course of the instruction and FSR. NS =1, a fp_exception_other exception
with FSR. f t t =2 (unfinished_FPop) is taken and trap handler software is expected to
replace the subnormal value with a zero value of the appropriate sign:

FADD of numbers with opposite signs
FSUB of numbers with the same signs
FDTOS

The effects of FSR. NS =1 are as follows:

If a floating-point source operand is subnormal, it is replaced by a floating-point zero
value of the same sign (instead of causing an exception).

If a floating-point operation generates a subnormal value, the value is replaced with a
floating-point zero value of the same sign.

This is implemented by performing the replacement in hardware, and sometimes cause a
fp_exception_other exception with FSR. f t t =2 (unfinished_FPop) so that trap handler
software can perform the replacement.

If GSR. | M= 1, then the value of FSR. NS is ignored and the processor operates as if
FSR. NS =0.

6-124 UltraSPARC Ill Cu User’'s Manual < January 2004

6.9.1.4

6.9.1.5

FSR_version (ver)
For the UltraSPARC III family of processors, the value in FSR. ver is zero.

Version number 7 is reserved to indicate that no hardware floating-point controller is present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

FSR_floating-point_trap_type (fit)

When a floating-point exception trap occurs, ft t (bits 16 through 14 of the FSR) identifies
the cause of the exception, the “floating-point trap type.” Several conditions can cause a
floating-point exception trap. After a floating-point exception occurs, the f t t field encodes
the type of the floating-point exception until an STFSR or FPop is executed.

The f tt field can be read by the LDFSR and LDXFSR instructions. The STFSR and STXFSR
instructions do not affect f t t because this field is read-only.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR) to
determine the floating-point trap type. STFSR and STXFSR clears the f t t bit after the store
completes without error. If the store generates an error and does not complete, f t t remains
unchanged.

Programming Note — Neither LDFSR nor LDXFSR can be used for the purpose of
clearing f t t, since both leave f t t unchanged. However, executing a non-trapping FPop,
such as “f rovs 96 0, % O, ” prior to returning to non-privileged mode will zero f t t . The
ftt remains valid until the next FPop instruction completes execution.

The f tt field encodes the floating-point trap type according to TABLE 6-22.

Note — The value “7” is reserved for future expansion.

TABLE 6-22 Floating-Point Trap Type (f t t) Field of FSR

ftt Trap Type Trap Vector
0 None No trap taken
1 IEEE_754_exception fp_exception_ieee_754
2 unfinished_FPop fp_exception_other
3 unimplemented_F Pop fp_exception_other
4 sequence_error Reserved, unimplemented

Chapter 6 Registers 6-125

6-126

TABLE 6-22 Floating-Point Trap Type (f t t) Field of FSR (Conti nued)

ftt Trap Type Trap Vector

5 hardware_error Reserved, unimplemented
6 invalid_fp_register Reserved, unimplemented
7 Reserved Reserved, unimplemented

IEEE_754_exception, unfinished_FPop, and unimplemented_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by system
software.

When a floating-point trap occurs, the following results are observed by user software:
1. The value of aexc is unchanged. See Section 6.9.1.6 for details of aexc.

2. The value of cexc is unchanged, except for an IEEE_754_exception, where a bit
corresponding to the trapping exception is set. The unfinished_FPop,
unimplemented_FPop, sequence_error, and invalid_fp_register floating-point trap types
do not affect cexc. See Section 6.9.1.6 for details of cexc.

3. The source and destination registers are unchanged.
4. The value of f ccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an IEEE_754_exception or after recovery from an
unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap handler
reflects the exception causing the trap.

In the cases of fp_exception_other exceptions with unfinished_FPop or unimplemented_FPop
trap types that do not subsequently generate IEEE traps, the recovery software should define
cexc, aexc, and the destination registers or f cCs, as appropriate.

ftt =IEEE_754_exception. The IEEE_754_exception floating-point trap type indicates
the occurrence of a floating-point exception conforming to IEEE Std 754-1985. The
exception type is encoded in the cexc field.

The aexc and f ccs fields and the destination f register are not affected by an
IEEE_754_exception trap.

ftt = unfinished_FPop. The unfinished_FPop floating-point trap type indicates that the
processor was unable to generate correct results or that exceptions as defined by

IEEE Std 754-1985 have occurred. Where exceptions have occurred, the cexc field is
unchanged.

UltraSPARC Ill Cu User’'s Manual < January 2004

The conditions under which a fp_exception_other exception with floating-point trap type of
unfinished_FPop can occur are implementation dependent. The standard (recommended) set
of conditions is listed in TABLE 6-23. An implementation may cause fp_exception_other with

unfinished_FPop under a different (but specified) set of conditions.

TABLE 6-23 Standard Conditions in Which unfinished_FPop Trap Type Can Occur

1 Subnormal (SBN) Operand 2 Subnormal (SBN) Operands Result/Non-SBN Operand
FPU Operation IM=10rNS=0 IM=1o0or NS=0 IM=10rNS=0
f adds Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS =x)
NaN (either operand)
f subs Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS =x)
NaN (either operand)
faddd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS =x)
NaN (either operand)
f subd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS =x)
NaN (either operand)
ful s Unfinished trap if Unfinished trap -25<Er<=1
- result not zero — result not zero
fdivs Unfinished trap Unfinished trap 25 <Er<=1
fsmul d Unfinished trap Unfinished trap None
frul d Unfinished trap if Unfinished trap if 54 <Er<=1
- result not zero = result not zero
fdivd Unfinished trap Unfinished trap -54 <Er<=1
fsqrts Unfinished trap N/A None
fsqgrtd Unfinished trap N/A None
fstoi Unfinished trap N/A - 231 <= res < 23!, Infinity, NaN
f dt oi Unfinished trap N/A - 23! <= res < 23!, Infinity, NaN
f st ox Unfinished trap N/A [result| >= -252, Infinity, NaN
f dt ox Unfinished trap N/A |result] >= -252, Infinity, NaN
fitos N/A N/A - 222 <= operand < 2%2
f xt os N/A N/A - 2%2 <= operand < 2?2
fitod N/A N/A None
f xt od N/A N/A - 231 <= operand < 2°!

Chapter 6

Registers

6-127

TABLE 6-23 Standard Conditions in Which unfinished_FPop Trap Type Can Occur (Continued)

1 Subnormal (SBN) Operand

2 Subnormal (SBN) Operands

Result/Non-SBN Operand

FPU Operation IM=10r NS=0 IM=10rNS=0 IM=10rNS=0
FSTOD Unfinished trap N/A NaN
FDTOS Unfinished trap N/A fi fv, fu, sbn (IM = NS =x), NaN

Note:Er <- Biased Exponent of the result before rounding
Ei <- Biased Exponent of input operand
fi <- Invalid(Infinity - Infinity, Infinity*0, 0/0, Infinity/Infinity)
fv <- OverflowEr >= 2047(DP) or 255(SP) but not exact infinity
fu <- Underflow0 < [result| < 21922(DP) or 2-'26(SP)
sbnormal(sbn): [number| = 271022 * (significand x 272) (DP) or 27120 * (significand x 272%) (SP)
{-54 <Er<1 (DP)or -25 <Er<1 (SP)}

6.9.1.6

6-128

ftt = unimplemented_FPop. The unimplemented_FPop floating-point trap type indicates
that the processor decoded an FPop that it does not implement. In this case, the cexc field
is unchanged.

All quad FPops variations set f t t = unimplemented_FPop.

Floating-Point Exceptions Control and Status

There are three FSR register fields used to control and status the events associated with
floating-point exceptions.

FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions
that can be indicated in the current_exception field (cexc). See FIGURE 6-26 for an
illustration. If a floating-point operate instruction generates one or more exceptions and the
TEMbit corresponding to any of the exceptions is one, then this condition causes a
fp_exception_ieee_754 trap. A TEMbit value of zero prevents the corresponding exception
type from generating a trap.

NVM | OFM [UFM | DZM | NXM

27 26 25 24 23
FIGURE 6-26 Trap Enable Mask (TEM) Fields of FSR

UltraSPARC Ill Cu User’'s Manual < January 2004

FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-point
exception traps are disabled through the TEMfield. See FIGURE 6-27 for an illustration. After
an FPop completes with f t t =0, the TEMand cexc fields are logically ANDed together. If
the result is nonzero, aexc is left unchanged and a fp_exception_ieee_754 trap is generated;
otherwise, the new cexc field is ORed into the aexc field and no trap is generated. Thus,
while (and only while) traps are masked, exceptions are accumulated in the aexc field.

This field is also written with the appropriate value when an LDFSR or LDXFSR instruction
is executed.

nva | ofa ufa | dza | nxa

9 8 7 6 5

FIGURE 6-27 Accrued Exception Bits (aexc) Fields of FSR

FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception
causes the corresponding bit to be cleared. See FIGURE 6-28 for an illustration.

nvc | ofc ufc | dzc | nxc

4 3 2 1 0

FIGURE 6-28 Current Exception Bits (cexc) Fields of FSR

Note — If the FPop traps and software emulate or finish the instruction, the system software
in the trap handler is responsible for creating a correct FSR. cexc value before returning to
a non-privileged program.

The cexc bits are set as described in Section 6.9.1.7, “Floating-Point Exception Fields” by
the execution of an FPop that either does not cause a trap or causes a fp_exception_ieee_754
exception with FSR. f t t = [EEE_754_exception. An IEEE_754_exception that traps shall
cause exactly one bit in FSR. cexc to be set, corresponding to the detected IEEE Std
754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also cause an
"inexact" condition. For overflow and underflow conditions, FSR. cexc bits are set and
trapping occurs as follows:

Chapter 6 Registers 6-129

6-130

An IEEE 754 overflow condition (of) occurs:

If OFM= 0 and NXM= 0, the cexc. of ¢ and cexc. nxc bits are both set to one, the
other three bits of cexc are set to zero, and a fp_exception_ieee_754 trap does not
occur.

If OFM= 0 and NXM= 1,the cexc. nxc bit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee_754 trap does occur.

If OFM= 1, the cexc. of ¢ bit is set to one, the other four bits of cexc are set to zero,
and a fp_exception_ieee_754 trap does occur.

An IEEE 754 underflow condition (uf) occurs:

If UFM= 0 and NXM= 0, the cexc. uf ¢ and cexc. nxc bits are both set to one, the
other three bits of cexc are set to zero, and a fp_exception_ieee_754 trap does not
occur.

If UFM= 0 and NXM= 1, the cexc. nxc bit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee_754 trap does occur.

If UFM= 1, the cexc. uf c bit is set to one, the other four bits of cexc are set to zero,
and a fp_exception_ieee_754 trap does occur.

€y,

The behavior is summarized in TABLE 6-24 (where “x” indicates “don’t care”):

TABLE 6-24 Setting of FSR.cexc Bits

Current
Exception(s) Trap Enable Exception
Detected in FP | Mask bits bits (in
Operation (in FSR.TEM) fp_exception_ FSR.cexc)
ieee_754
of [uf | nx OFM [UFM [NXM | Trap Occurs? ofc | ufc [nxc | Notes
- - - X X X No 0 0 0
- - 1 X X 0 No 0 0 1
- 1 1 X 0 0 No 0 1 1 ()
1 - 1 0 X 0 No 1 0 1 2)
- - 1 X X 1 Yes 0 0 1
- 1 1 X 0 1 Yes 0 0 1
- 1 - X 1 X Yes 0 1 0
- 1 1 X 1 X Yes 0 0 0
1 - 1 1 X X Yes 1 0 0 2)
1 - 1 0 X 1 Yes 0 0 1 2)
Notes:
(1) When the underflow trap is disabled (UFM = 0), underflow is always accompanied by
inexact.
(2) Overflow is always accompanied by inexact.

UltraSPARC Ill Cu User’'s Manual < January 2004

6.9.1.7

If the execution of an FPop causes a trap other than fp_exception_ieece_754, FSR. cexc is
left unchanged.

Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following
definitions of the floating-point exception conditions (per IEEE Std 754-1985):

FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example, 0.0 + 0.0 and o — o
are invalid; 1 = invalid operand(s), 0 = valid operand(s).

FSR_overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magnitude
than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest
normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:
If UFM= 0, underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

If UFM= 1,underflow occurs if a nonzero result is tiny.

SPARC V9 allows underflow to be detected either before or after rounding. The
UltraSPARC III Cu processor detects underflow before rounding.

FSR_division-by-zero (dzc, dza)

X + 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Note — 0.0 + 0.0 does not set the dzc or dza bits.

Chapter 6 Registers 6-131

FSR_inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result;
1 = inexact result, 0 = exact result.

Programming Note — Software must be capable of simulating the operation of the FPU
in order to properly handle the unimplemented_FPop, unfinished_FPop, and
IEEE_754_exception floating-point trap types. Thus, a user application program always sees
an FSR that is fully compliant with IEEE Std 754-1985.

6.10 ASI Mapped Registers

In this section, we describe the Data Cache Unit Control Register and Data Watchpoint
registers (virtual address data watchpoint and physical address data watchpoint).

6.10.1 Data Cache Unit Control Register (DCUCR)

ASI 45, (ASI _DCU_CONTROL_REG STER), VA =04

The DCUCR contains fields that control several memory related hardware functions. The
functions include instruction, prefetch, write and data caches, MMUs, and watchpoint
setting.

After a power-on reset (POR), all fields of DCUCR are set to zero. After a WDR, XIR, or
SIR, all fields of DCUCR defined in this section are set to zero.

The DCUCR is illustrated in FIGURE 6-29 and described in TABLE 6-25. In the table, the field
definitions and bits are grouped by function rather than by strict bit sequence.

6-132 UltraSPARC Ill Cu User’'s Manual < January 2004

—_ CP | CV| ME RE| PE|HPE|SPE | SL| WE| PM VM | PR|PW| VR [VW — DM | IM | DC | IC
63 50 49 48 47 46 45 44 43 42 41 40 3332 25 24 23 22 21 20 4 3 2 1 0
FIGURE 6-29 DCU Control Register Access Data Format (ASI 45,¢)
TABLE 6-25 DCUCR Bit Field Descriptions (1 of 3)

Bits Field Type | Description Note

63:50, reserved RW

20:4

MMU Control

49 CP RW | Cacheability of PA. CP determines the physical cacheability of memory | 1
accesses when the -MMU or D-MMU is disabled (I M= 0 or DM= 0).
The TTE.E (side-effect) bit is set to the complement of CP when MMUs
are enabled; 1 = cacheable, 0 = non-cacheable.

48 Ccv RW | Cacheability of VA. CV determines the virtual cacheability of memory
accesses when the D-MMU is disabled (DM = 0);
1 = cacheable, 0 = non-cacheable.

3 DM D-MMU Enable. 1f DM= 0, the D-MMU is disabled (pass-through mode)
Note: When the MMU/TLB is disabled, a virtual address is passed
through as a physical address.

2 M I-MMU Enable. If | M= 0, the I-MMU is disabled (pass-through mode).

Store Queue Control

47 ME RW | Non-cacheable Store Merging Enable. If cleared, no merging of
non-cacheable, non-side-effect store data will occur. Each non-cacheable
store will generate a system bus transaction.

46 RE RAW Bypass Enable. If cleared, no bypassing of data from the store

queue to a dependent load instruction will occur. All load instructions
will have their RAW predict field cleared.

Prefetch Control

45

PE

Prefetch Cache Enable. If prefetch is disabled by clearing the PE bit, all
references to the P-cache are handled as P-cache misses. If cleared, the
P-cache does not generate any hardware prefetch requests to the
L2-cache. Software prefetch instructions are not affected by this bit.

44

HPE

Prefetch Cache Hardware Prefetch Enable.

43

SPE

Software Prefetch Enable. Clear to disable prefetch instructions. When
disabled, software prefetch instructions do no generate a request to the
L2-cache or the system interface. They will continue to be issued to the
pipeline, where they will be treated as NOPs.

Chapter 6

Registers

6-133

TABLE 6-25 DCUCR Bit Field Descriptions (2 of 3)

Bits

Field

| Type | Description

Note

Second Load Control

42

SL

Second Load Steering Enable. 1f cleared, all load type instructions will be
steered to the MS pipeline and no floating-point load type instructions
will be issued to the AO or Al pipelines.

I-cache, D-cache, and W-cache Control

41

WE

Write Cache Enable. If zero, all W-cache references will be handled as
W-cache misses. Each store queue entry will perform an RMW
transaction to the L2-cache, and the W-cache will be maintained in a
clean state. Software is required to flush the W-cache (force it to a clean
state) before setting this bit to zero.

DC

Data Cache Enable. The DCis used to enable/disable the operation of the
data cache closest to the processor (D-cache); DC= 1 enables the
D-cache and DC = 0 disables it. When DC = 0, memory accesses (loads,
stores, atomic load-stores) are satisfied by caches lower in the cache
hierarchy.

When the data cache is disabled, its contents are not updated. When the
D-cache is re-enabled, any D-cache lines still marked as “valid” may be
inconsistent with the state of memory or other caches. In that case,
software must handle any inconsistencies by flushing the inconsistent
lines from the D-cache.

IC

Instruction Cache Enable. The | Cis used to enable/disable the operation
of the instruction cache closest to the processor (I-cache); | C=1 enables
the I-cache and | C= 0 disables it. When | C= 0, instruction fetches are
satisfied by caches lower in the cache hierarchy.

When the instruction cache is disabled, its contents are not updated.
When the I-cache is re-enabled, any I-cache lines still marked as “valid”
may be inconsistent with the state of memory or other caches. In that
case, software must handle any inconsistencies by invalidating the
inconsistent lines in the I-cache.

Watchpoint Control

40:33

PM<7:0>

DCU Physical Address Data Watchpoint Mask. The Physical Address
Data Watchpoint Register contains the physical address of a 64-bit
word to be watched. The 8-bit Physical Address Data Watch Point
Mask controls which byte(s) within the 64-bit word should be
watched. If all eight bits are cleared, the physical watchpoint is
disabled. If the watchpoint is enabled and a data reference overlaps
any of the watched bytes in the watchpoint mask, then a physical
watchpoint trap is generated. Watchpoint behavior for a Partial Store
instruction may differ.

Please see the VMfield description in the table.

6-134

UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 6-25 DCUCR Bit Field Descriptions (3 of 3)

Bits

Field

Type

Description

Note

32:25

VM<7:0>

DCU Virtual Address Data Watchpoint Mask. The Virtual Address Data
Watchpoint Register contains the virtual address of a 64-bit word to be
watched. This 8-bit mask controls which byte(s) within the 64-bit word
should be watched. If all eight bits are cleared, then the virtual
watchpoint is disabled. If watchpoint is enabled and a data reference
overlaps any of the watched bytes in the watchpoint mask, then a virtual
watchpoint trap is generated.

VA/PA data watchpoint byte mask examples are shown below.

Least Significant 3 Bits of
Watchpoint Mask Address of Bytes Watched
(PMand VM) 7654 3210

0016 Watchpoint disabled
016 0000 0001
3216 0011 0010
FFiq 1111 1111

4

24,23

PR, PW

DCU Physical Address Data Watchpoint Enable. If PR (PW is one, then
a data read (write) that matches the range of addresses in the Physical
Watchpoint Register causes a watchpoint trap. If both PR and PWare set,
a watchpoint trap will occur on either a read or write access.

22,21

VR, VW

DCU Virtual Address Data Watchpoint Enable. 1f VR (VW is one, then a
data read (write) that matches the range of addresses in the Virtual
Watchpoint Register causes a watchpoint trap. If both VR and VWare set,
a watchpoint trap will occur on either a read or write access.

. The CP and CV bits of DCUCR must be changed with care. It is recommended that a MEMBAR #SY NC be executed before and after
CP or CV is changed. Also, software must manage cache states to be consistent before and after CP or CV is changed.

. Prefetch is enabled in the UltraSPARC III Cu processor. Both hardware prefetch and software prefetch for data to the P-cache are valid only
for floating-point load instructions and are not valid for integer load instructions.

. Both hardware prefetch and second load unit may not be enabled at the same time. Enabling both may cause incorrect program behavior.

. Watchpoint exceptions on Partial Store instruction occur conservatively. The DCUCR.VM masks are only checked for nonzero value
(watchpoint disabled). The byte store mask (r[rs2]) in the Partial Store instruction is ignored, and a watchpoint exception can occur even if
the mask is zero (that is, no store will take place).

Chapter 6

Registers

6-135

6.10.2

6-136

Data Watchpoint Registers

UltraSPARC III Cu processors implement “break-before” watchpoint traps. When the address
of a data access matches a preset physical or virtual watchpoint address, instruction
execution is stopped immediately before the watched memory location is accessed.

TABLE 6-26 lists ASIs that are affected by the two watchpoint traps.

TABLE 6-26 ASIs Affected by Watchpoint Traps

Data Watchpoint If Watchpoint If

ASI Type ASI Range MMU Matching VA Matching PA
Translating ASIs 041671116’ 18]671916’ 24167 On Y Y

2Cy4, Off N Y

7016=7116, 7816-7916, 8016
Bypass ASIs 141671516’ 1C1671D16 - N Y
Non-translating ASIs | 3014—6F 6, 7216=7716, TA16— | — N N

TF ¢

For 128-bit (quad) atomic load and 64-byte block load and store instructions, a watchpoint
trap is generated only if the watchpoint overlaps the lowest address eight bytes of the access.

To avoid trapping infinitely, software should emulate the instruction that caused the trap and
return from the trap by using a DONE instruction or turn off the watchpoint before returning
from a watchpoint trap handler.

Two 64-bit data watchpoint registers provide the means to monitor data accesses during
program execution. When Virtual/Physical Data Watchpoint is enabled, the virtual/physical
addresses of all data references are compared against the content of the corresponding
watchpoint register. If a match occurs, a VA_watchpoint or PA_watchpoint trap is signalled
before the data reference instruction is completed. The virtual address watchpoint trap has
higher priority than the physical address watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses. Each zero bit
in the byte mask causes the comparison to ignore the corresponding byte in the address.
These watchpoint byte masks and the watchpoint enable bits reside in the DCUCR.

Virtual Address Data Watchpoint Register
ASI 58167 VA = 3816
Name: VA Data Watchpoint Register

FIGURE 6-30 illustrates the Virtual Address Watchpoint Register,
where: DB_VA is the most significant 61 bits of the 64-bit virtual data watchpoint address.

UltraSPARC Ill Cu User’'s Manual < January 2004

DB_VA ‘ — |

63 32 0

FIGURE 6-30 VA Data Watchpoint Register Format

Physical Address Data Watchpoint Register
ASI 5816’ VA:4016

Name: PA Data Watchpoint Register

FIGURE 6-31 illustrates the PA Data Watchpoint Register,

where: DB_PA is the most significant 61 bits of the physical data watchpoint address. The
width of an UltraSPARC III Cu physical address is 43 bits.

DB_PA ‘ — |
63 32 0

FIGURE 6-31 PA Data Watchpoint Register Format

Compatibility Note — The UltraSPARC III Cu processor supports a 43-bit physical
address space. Software is responsible for writing a zero-extended 64-bit address into the PA
Data Watchpoint register.

Data Watchpoint Reliability

The processor supports watchpoint comparison on the MS (memory) pipeline; any second
issue (Ax pipeline) floating-point loads will not trigger a watchpoint. For reliable use of the
watchpoint mechanism, the second floating-point load feature must be disabled using
DCUCR.SL.

Chapter 6 Registers 6-137

6-138 UltraSPARC Ill Cu User’'s Manual < January 2004

CHAPTER

7

Instruction Types

Instructions are accessed by the processor from memory and are executed, annulled, or

trapped. Instructions are discussed in seven general categories. The processor instructions are

described in the following sections:

Learning the Instructions

Introduction

Memory Addressing for Load and Store Instructions

Integer Execution Environment
Floating-Point Execution Environment

VIS Execution Environment

Data Coherency Instructions

Register Window Management Instructions
Program Control Transfer Instructions
Trap Base Address (TBA) Register

Prefetch Instructions

Reference Section

Instruction Summary Table by Category

Integer Execution Environment Instructions
Floating-Point Execution Environment Instructions
VIS Execution Environment Instructions

Data Coherency Instructions

Register-Window Management Instructions

Program Control Transfer Instructions

7-139

Data Prefetch Instructions
Instruction Formats and Fields
Reserved Opcodes and Instruction Fields

Big/Little-endian Addressing

7.1

Introduction

The processor’s RISC architecture is defined primarily by the SPARC V9 architecture. The
UltraSPARC II processors were the first to extend the SPARC V9 architecture with new
instructions and additional logic units. The UltraSPARC III Cu processor further extends this
instruction execution environment.

The UltraSPARC III Cu processor provides backward compatibility for SPARC application
programs. Upgraded system software is required. Noteworthy enhancements to the processor
include greater capability in the execution units to improved instruction scheduling, new VIS
instructions to reduce the length of code sequences, and data prefetch instructions to provide
the compiler with ways to improve cache hit rates.

Our compiler and other software development tools take advantage of the new instruction
features to increase parallel execution, reduce code size, and achieve shorter instruction
execution latencies.

7.2

7-140

Memory Addressing for Load and Store
Instructions

The SPARC V9 architecture uses big-endian byte order by default; the address of a
quadword, doubleword, word, or halfword is the address of its most significant byte.
Increasing the address means decreasing the significance of the unit being accessed. All
instruction accesses are performed using big-endian byte order. The SPARC V9 architecture
also can support little-endian byte order for data accesses only; the address of a quadword,
doubleword, word, or halfword is the address of its least significant byte. Increasing the
address means increasing the significance of the unit being accessed.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.2.1

7.2.2

7.2.3

Integer Unit Memory Alignment Requirements

Halfword accesses are aligned on 2-byte boundaries; word accesses (which include
instruction fetches) are aligned on 4-byte boundaries; extended-word and doubleword
accesses are aligned on 8-byte boundaries. An improperly aligned address in a load, store, or
load-store instruction causes a trap to occur, with possible exceptions.

Programming Note — By settingi =1 and r s1 =0, you can access any location in the
lowest or highest 4 KB of an address space without using a register to hold part of the
address.

FP/VIS Memory Alignment Requirements

Extended word and doubleword (64-bit) accesses must be aligned on 8-byte boundaries,
quadword accesses must be aligned on 16-byte boundaries, and Block load (BLD) and Block
store (BST) accesses must be aligned on 64-byte boundaries.

All references are 32, 64, or 128 bits. They must be naturally aligned to their data width in
memory except for double-precision floating-point values, which may be aligned on word
boundaries. However, if so aligned, doubleword loads/stores may not be used to access them,
resulting in less efficient and nonatomic accesses.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with the following exceptions:

A LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned causes a LDDF_mem_address_not_aligned exception.

A STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned causes a STDF_mem_address_not_aligned exception.

Byte Order Addressing Conventions (Endianess)

The processor uses big-endian byte order for all instruction accesses and, by default, for data
accesses. It is possible to access data in little-endian format by using load and store alternate
instructions that support little-endian data structures. It is also possible to change the default
byte order for implicit data accesses.

See Section 7.13, “Big/Little-endian Addressing” for details.

Chapter 7 Instruction Types 7-141

7.2.4

7-142

Address Space Identifiers

Versions of load/store instructions, the load and store alternate instructions, can specify an
8-bit address space identifier (ASI) to go along with the load/store data instruction.

The load and store alternate instructions have three sources of ASIs:
Explicit immediate of instruction
ASI Register reference
Hardcode to the instruction
Supervisor software (privileged mode) uses ASIs to access special, protected registers, such

as MMU, cache control, and processor state registers, and other processor or
system-dependent values.

ASIs are also used to modify the function of many instructions. This overloading of load/
store instructions provide partial store, block load/store, and atomic memory access
operations.

Chapter 8, “Address Space Identifiers” describes the ASIs in more detail. The chapter
summary table associates ASI values to specific instructions.

Implicit ASI Value

Load and store instructions provide an implicit ASI value of ASI _PRI MARY,

ASI _PRI MARY_LI TTLE, ASI _NUCLEUS, or ASI _NUCLEUS_LI TTLE. Load and store
alternate instructions provide an explicit ASI, specified by the i mm_asi instruction field
when i =0, or the contents of the ASI register when i = 1.

Privileged and Non-privileged ASIs

ASIs 004 through 7F | ¢ are restricted; only privileged software is allowed to access them. An
attempt to access a restricted ASI by non-privileged software results in a privileged_action
exception. ASIs 804 through FF 4 are unrestricted; software is allowed to access them
whether the processor is operating in privileged or non-privileged mode.

Compatibility Note — The SPARC V9 architecture provides the basic framework and
defines the required ASIs for the processor. Other ASIs are defined (and sometimes
redefined) for a specific processor or family of processors as allowed by the SPARC V9
architecture.

UltraSPARC Ill Cu User’'s Manual < January 2004

Implementation Note — The processor decodes all eight bits of each ASI specifier. In
addition, the processors redefine certain ASIs as appropriate for a specific processor.

7.2.5 Maintaining Data Coherency

The processor’s memory architecture requires some software intervention to provide data
coherency during program execution. These requirements are discussed in Chapter 9,
“Memory Models” using the FLUSH and Section 7.6, “Data Coherency Instructions”
describes MEMBAR instructions.

The two types of data coherency instructions are needed to flush the cache for self-modifying
code and to write data buffers out to memory.

7.3 Integer Execution Environment

7.3.1 IU Data Access Instructions

Load, store, and atomic instructions are the only instructions that access memory. All the IU
data access instructions, except the compare and store (CASx) use either two r registers or
SIMM13, a signed 13-bit immediate value, to calculate a 64-bit, byte-aligned memory
address. Compare and Swap uses a single r register to specify a 64-bit memory address.
Section 7.4.2, “FPU/VIS Data Access Instructions” discusses floating-point register load and
store instructions.

The CPU appends an ASI to the 64-bit address used with all the data access instructions.

Note — In addition to the large physical main memory, the processor has many memory
mapped control, status, and diagnostic registers that are accessed using load and store
instructions with an appropriate ASI value.

The destination field of the data access instruction specifies an r or f (single, double/
extended, or quadword) register that supplies the data for a store or that receives the data
from a load.

Chapter 7 Instruction Types 7-143

7.3.1.1

7.3.1.2

7.3.1.3

7-144

Load and Store Instructions

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and
doubleword (64-bit) accesses. Some versions of integer load instructions perform sign
extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit destination register.

Move Instruction

There is no explicit integer move instruction. A move instruction can be easily synthesized
by adding, subtracting or ORing a zero with a register and pointing the result to another
register. The zero can come as a register input (such as % O that has a value zero in
SPARC V9) or as an immediate input to the instruction.

Conditional Move Instructions

Based on Integer (icc/xcc) and Floating-point (fcc) Condition Codes

This subsection describes two instructions that copy the contents of one register to another
register within the same register file: one instruction for moving within the integer register
file and another for moving within the floating-point register file.

MOVcc Instruction
If a specified icc/xce or fecc condition is satisfied, then the MOVCC instruction copies the
contents of any integer to a destination integer register.

FMOVcc Instruction

If a specified icc/xcc or fcc condition is satisfied, then the FMOVCC instruction copies the
contents of any floating-point register to a destination floating-point register.

(A similar set of conditional move instructions are based on an integer register value. These
conditional move instructions are described in the next section).

The condition code to test is specified in the instruction and may be any of the conditions
allowed in conditional delayed control transfer instructions. This condition is tested against
1 of the 6 sets of condition codes (i cc, xcc, fccO,fccl, fcc2, andf cc3), as specified
by the instruction.

For example:

frovdg % cc2, %20, % 22

UltraSPARC Ill Cu User’'s Manual < January 2004

moves the contents of the double-precision floating-point register % 20 to register % 22 if
floating-point condition code number 2 (f cC2) indicates a greater-than relation

(FSR. fcc2=2). If f cc2 does not indicate a greater-than relation (FSR. f cc2 # 2), then
the move is not performed.

The MOVcc and FMOVcC instructions can be used to eliminate some branches in programs.
In most situations, branches will take more clock cycles than the MOVcc or FMOVcc
instructions.

For example, the following C statement:
if (A>B) X =1; else X = 0;
can be coded as

cnp %0, %2 ' (A >B)
or %90, 0, %3 I set X =0
novg %%cc, %90,1, %3 ! overwite Xwith 1if A>B

which eliminates the need for a branch.

Based on Integer Register Value

There are separate versions for the IU and floating-point unit (FPU) register files:

MOVr Instruction

If the contents of an integer register satisfy a specified condition, then the MOVr instruction
copies the contents of any integer register to a destination integer register.

FMOVTr Instruction

If the contents of an integer register satisfy a specified condition, then the FMOVr instruction
copies the contents of any floating-point register to a destination floating-point register.

The conditions to test are enumerated in TABLE 7-1.

TABLE 7-1 MOVr and FMOVr Test Conditions

Condition Symbol Description

NZ z0 Nonzero

Z =0 Zero

Lz <0 Less than zero

LEZ <0 Less than or equal to zero
GZ >0 Greater than zero

GEZ >0 Greater than or equal to zero

Any of the integer registers may be tested for one of the conditions, and the result used to
control the move. For example,

Chapter 7 Instruction Types 7-145

7.3.1.4

7-146

nmovrnz %2, %4, %6

moves integer register 9% 4 to integer register % 6 if integer register % 2 contains a nonzero
value.

MOVr and FMOVr can be used to eliminate some branches in programs or can emulate
multiple unsigned condition codes by using an integer register to hold the result of a
comparison.

Atomic Instructions

CASA/CASXA, SWAP, and LDSTUB are special atomic memory access instructions that
concurrent processes use for synchronization and memory updates.

The SWAP and LDSTUB instructions can optionally access alternate space. (The CASA
instruction always accesses alternate memory spaces). If the ASI specified for any alternate
form of these instructions is a privileged ASI (value 80,4), then the processor must be in
privileged mode to access it.

Atomic Quad Load Instruction (LDDA with ASI xx)

The atomic quad load instruction supplies an indivisible quadword (16-byte) load that is
important in system software programs.

Compare and Swap Atomic Instruction (CASA)

Anr register specifies the value that is compared with the value in memory at the computed
address. CASA accesses words, and CASXA accesses doublewords.

If the values are equal (memory location and r register), then the destination field specifies
the r register that is to be exchanged atomically with the addressed memory location.

If the values are unequal, then the destination field specifies the r register that was to receive
the value at the addressed memory location; in this case, the addressed memory location
remains unchanged.

Swap Atomic Instruction (SWAPP)

The destination register identifies the r register to be exchanged atomically with the
calculated memory location. SWAP accesses words.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.3.2

7.3.2.1

7.3.2.2

Load-Store Unsigned Byte (LDSTUB)

The LDSTUB instruction reads a byte from memory and writes ones to the location read.
LDSTUB accesses bytes.

IU Arithmetic Instructions

The integer arithmetic instructions are generally triadic register address instructions that
compute a result of a function of two source operands. They either write the result into the
destination register r [r d] or discard it. One of the source operands is always r [r s1] . The
other source operand depends on the i bit in the instruction. If i = 0, then the operand is
r{rs2].1Ifi =1, then the operand is the immediate constant sSi nL0O, si mmlL1, or

si ml3 sign-extended to 64 bits.

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and
shift operations. One exception is the SETHI instruction that can be used in combination with
another arithmetic or logical instruction to create a 32-bit constant in an r register.

Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes
(i cc and Xcc) as a side-effect; the other does not affect the condition codes.

Integer Add and Subtract Instructions

Sixty-four bit arithmetic is performed on two r registers to generate a 64-bit result. The i cc
and Xcc condition codes can optionally be set.

Tagged Integer Add and Subtract Instructions

The tagged arithmetic instructions assume that the least significant two bits of each operand
are a data-type tag. These instructions set the integer condition code (i ¢C) and extended
integer condition code (Xxcc) overflow bits on 32-bit (i cc) or 64-bit (xcc) arithmetic
overflow.

Appendix A “Instruction Definitions” describes the tagged instructions.

If either of the two operands has a nonzero tag or if 32-bit arithmetic overflow occurs, tag
overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the CCR. i cc. V
bit; if 64-bit arithmetic overflow occurs, then they set the CCR. xcc. V bit.

The xcc overflow bit is not affected by the tag bits.

Chapter 7 Instruction Types 7-147

7.3.2.3

7.3.2.4

7.3.2.5

7.3.3

7.3.3.1

7.3.4

7-148

The trapping versions (TADDcc TV, TSUBccTV) are deprecated. See Section A.70.16,
“Tagged Add and Trap on Overflow” and Section A.70.17, “Tagged Subtract and Trap on
Overflow” for details.

Integer Multiply and Divide Instructions

The integer multiply instruction performs a 64 x 64 — 64-bit operation; the integer divide
instructions perform 64 + 64 — 64-bit operations. For compatibility with SPARC V8§,

32 x 32 — 64-bit multiply instructions, 64 + 32 — 32-bit divide instructions, and the
multiply step instruction are provided. Division by zero causes a division_by_zero exception.

Some versions of the 32-bit multiply and divide instructions set the condition codes.

Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI) writes a 22-bit
constant from the instruction into bits 31 through 10 of the destination register. It clears the
low-order 10 bits and high-order 32 bits, and it does not affect the condition codes. It is
primarily used to construct constants in registers.

Integer Shift Instructions

Shift logical instructions (SLL, SRL) shift an r register left or right by an immediate
constant in the instruction or by the amount pre-loaded in an r register.

IU Logic Instructions

ADD, ANDN, OR, ORN, XOR, XNOR Instructions

These are standard logic operations that work on all 64 bits of the register. The instructions
can optionally set the integer condition codes (i cc/ xcc).

IU Compare Instructions

A special comparison instruction for integer values is not needed since it is easily
synthesized with the “subtract and set condition codes” (SUBcC) instruction.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.3.5

7.3.5.1

7.3.5.2

7.3.5.3

7.3.5.4

7.3.5.5

IU Miscellaneous Instructions

Interval Arithmetic Mode Instruction (STAM) (VIS II)

The Set Interval Arithmetic Mode (STAM) instruction sets the interval arithmetic mode fields
in the GSR.

Align Address Instruction

The ALIGNADDR instruction takes two r registers and adds them together. The three least
significant bits are forced to zero.

The ALIGNADDRL instruction supports little-endian data structures by taking the two
I registers, adding them together, and placing the two’s-complement of the three least
significant bits of the result and storing them in the 3-bit GSR.ALIGN field.

Population of Ones Count

A population opcode is defined but not implemented in hardware; instead, a trap is generated.

Privileged Register Access Instructions

The privileged register access instructions read and write another group of state and status
registers called privileged registers. These registers are visible only to privileged software.
The read privileged register instruction moves the privileged register contents into an

I register. The write privileged register instruction moves the contents of an r register into
the selected privileged register.

State Register Access Instructions

The state register instructions access program-visible state and status registers. The read state
register instruction moves the state register contents into an r register. The write state
register instruction moves the contents of an r register into the selected state register.

Some state registers can only be accessed in privileged mode, others in either privileged or
non-privileged mode. Some registers have access bits to restrict their availability as desired
by the privileged software.

Chapter 7 Instruction Types 7-149

7.4

7.4.1

7-150

Floating-Point Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for
floating-point and fixed-point data formats and the execution pipelines for floating-point and
VIS instructions.

This execution unit is a single unit that may be referred to any one of the following,
depending on the textual context:

Floating-point Unit (FPU)

Floating-point and Graphics Unit (FGU)

VIS Execution Unit (VIS)

FPU/VIS

Note — The instructions associated with the FPU/VIS execution unit are divided between
floating-point and VIS execution environments, but otherwise uses the same hardware
pipelines.

Floating-Point Operate Instructions

Floating-point operate (FPop) instructions perform all floating-point calculations; they are
register-to-register instructions that operate on the floating-point registers. Like arithmetic,
logical, and shift instructions, FPops compute a result that is a function of one or two source
operands. Specific floating-point operations are selected by a subfield of the FPop1/FPop2
instruction formats.

FPops are generally triadic register address instructions. They compute a result that is a
function of one or two source operands and place the result in one or more destination
f registers, with two exceptions:

Floating-point convert operations, which use one source and one destination operand.
Floating-point compare operations, which do not write to an f register but update one of
the f ccn fields of the FSR instead.

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2 opcodes and
does not include branches based on the floating-point condition codes (FBf ccPand
FBPf cc) or the load/store floating-point instructions.

If PSTATE. PEF = 0 or FPRS. FEF = 0, then any instruction, including an FPop instruction,
that attempts to access an FPU register generates a fp_disabled exception.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.4.2

7.4.2.1

7.4.2.2

All FPop instructions clear the f t t field and set the cexc field unless they generate an
exception. Floating-point compare instructions also write one of the f ccn fields. All FPop
instructions that can generate IEEE exceptions set the cexc and aexc fields unless they
generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr (s,d,q), and
FNEG(s,d,q) cannot generate IEEE exceptions; therefore, they clear cexc and leave aexc
unchanged.

Note — The processor may indicate that a floating-point instruction did not produce a
correct IEEE Std 754-1985 result by generating a fp_exception_other exception with

FSR. f tt = unfinished_FPop or unimplemented FPop. In this case, privileged software must
emulate any functionality not present in the hardware.

The processor does not implement quad-precision floating-point operations in hardware.
Instead, these operations cause a fp_exception_other trap with
FSR. ftt =unimplemented_FPop, and the system software emulates quad operations.

FPU/VIS Data Access Instructions

Floating-point load and store instructions support word, doubleword, and quadword memory
accesses.

There are no move instructions to move data directly between the integer and floating-point
register files.

Load Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to
alternate address spaces. Data loaded into a register that is not 64 bits is filled with zeroes in
the high-order bits.

Store Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to
alternate address spaces.

Chapter 7 Instruction Types 7-151

7.4.2.3

7.4.2.4

7.4.3

7.4.3.1

7.43.2

7.4.3.3

7.4.3.4

7-152

Block Load and Store Instructions

Block load and store access eight consecutive doublewords. The LDDFA instruction is used
with the various ASIs to specify a type of block transaction. The LDDFA instruction is
specified with ASIs 70, 71, 78, 79, FO, F1, F8, F9, E0, and E1 to select between primary and
secondary D-MMU contexts, little-endian and big-endian, privileged and non-privileged, and
a set of block commit store ASIs.

Conditional Move Instructions

The FP/VIS conditional move instructions are described with the IU conditional move
instructions, Section 7.3.1.3.

FP Arithmetic Instructions

Single-precision and double-precision FP is executed in hardware. Quad precision (128-bit)
instructions are recognized by the CPU and trapped so they can be emulated in software.

Absolute Value and Negate Instructions

These instructions modify the sign of the floating-point operand.

Add and Subtract Instructions

These instruction use standard IEEE operation.

Multiply Instructions

These instructions use standard IEEE operation with some exceptions.

Square Root and Divide Instructions
The square root and divide instructions begin their execution in the FGM pipeline and block

new instructions from entering until the result is nearly ready to leave the pipeline and be
written to the register file.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.4.4

7.44.1

7.4.4.2

7.4.4.3

7.4.5

7.4.6

7.4.6.1

7.4.6.2

FP Conversion Instructions

The following FP conversions are supported. Conversions do not generate f cc condition
codes.

Floating-Point to Integer

All floating-point precision to word and double/extended word integer conversions are
supported.

Integer to Floating-Point

Word and double/extended word integer to all floating-point precision number conversions
are supported.

Floating-Point to Floating-Point

All floating-point precision to all floating-point precision number conversions are supported.

FP Compare Instructions

The same precision operands are compared and the f cc condition codes are set.

FP Miscellaneous Instructions

Load and Store FSR Register

The FSR register is accessed by load and store instructions into and out of the floating-point
register file.

Data Alignment Instruction

The data alignment instruction FALIGNDATA concatenates two registers (16 bytes) and
stores a contiguous block of eight of these bytes starting at the offset stored in the
GSR.ALIGN field.

Chapter 7 Instruction Types 7-153

7.5

7.5.1

7.5.1.1

7.5.1.2

7-154

VIS Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for
floating-point and fixed-point data formats and the execution pipelines for floating-point and
VIS instructions.

This execution unit is a single unit that may be referred to any one of the following,
depending on the textual context:

Floating-point Unit (FPU)

Floating-point and Graphics Unit (FGU)

VIS Execution Unit (VIS)

FPU/VIS

Note — The instructions associated with the FPU/VIS execution unit are divided between
floating-point and VIS execution environments, but otherwise uses the same hardware
pipelines.

VIS Pixel Data Instructions

Array Instruction

These instructions convert three-dimensional (3D) fixed-point addresses to a blocked byte
address.

Byte Mask and Shuffle Instructions

Byte Mask instruction adds two integer registers and stores the result in the integer register.
The least significant 32 bits of the result are stored in a special field.

Byte Shuffle concatenates the two 64-bit floating-point registers to form a 16-byte value.
Bytes in the concatenated value are numbered from most significant to least significant, with
the most significant byte being byte 0.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.5.1.3

7.5.1.4

7.5.1.5

7.5.1.6

7.5.2

7.5.2.1

Edge Handling Instructions

These instructions handle the boundary conditions for parallel pixel scan line loops, where
the address of the next pixel to render and the address of the last pixel in the scan line is
provided.

Pixel Packing Instructions

These instructions convert multiple values in a source register to a lower precision fixed or
pixel format and store the resulting values in the destination register. Input values are clipped
to the dynamic range of the output format. Packing applies a scale factor to allow flexible
positioning of the binary point.

Expand and Merge Instructions

Expand takes four 8-bit unsigned integers, converts each integer to a 16-bit fixed-point value,
and stores the four resulting 16-bit values in a 64-bit floating-point register.

Merge interleaves four corresponding 8-bit unsigned values to produce a 64-bit value in the
64-bit floating-point destination register. This instruction converts from packed to planar
representation when it is applied twice in succession.

Pixel Distance Instruction

Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers. The
corresponding 8-bit values in the source registers are subtracted. The sum of the absolute
value of each difference is added to the integer in the 64-bit floating-point destination
register. The result is stored in the destination register. Typically, this instruction is used for
motion estimation in video compression algorithms.

VIS Fixed-Point 16-bit and 32-bit Data Instructions

Partitioned Add and Subtract Instructions

The standard versions of these instructions perform four 16-bit or two 32-bit partitioned adds
or subtracts between the corresponding fixed-point values contained in the source operands.

The single-precision versions of these instructions perform two 16-bit or one 32-bit
partitioned add(s) or subtract(s); only the low 32 bits of the destination register are affected.

Chapter 7 Instruction Types 7-155

7.5.2.2

7.52.3

7.5.3

7.53.1

7.53.2

7.5.3.3

Partitioned Multiply Instructions

These instructions multiply signed and unsigned registers of different sizes and place the
results in different types of destination registers.

Pixel Compare Instruction

Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source registers
are compared. The 4-bit or 2-bit results are stored in the least significant bits in the integer
destination register. Signed comparisons are used.

VIS Logic Instructions

Fill with Ones and Zeroes Instruction

These instructions perform a zero fill or a one fill.

Source Copy

These instructions perform a source copy.

AND, OR, NAND, NOR, and XNOR Instructions

These instructions perform the logical operations.

7.6

7-156

Data Coherency Instructions

The processor implements a Total Store Ordering (TSO) that provides the majority of data
coherency support in hardware. Two instructions are used with this model to synchronize the
data for memory operations to insure the latest data is accessed for load instructions and
DMA activity.

Chapter 9, “Memory Models” discusses TSO in detail.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.6.1

7.6.2

7.6.3

FLUSH Instruction Cache Instruction

The FLUSH instruction is used to flush the caches out to main memory. The MEVMBAR
instruction is used to flush the various data buffers in the CPU out to data coherent domain.

Self-modifying code (storable in the unified L2-cache) requires the use of the FLUSH
instruction.

Note — The FLUSHW instruction flushes the window registers and is not related to the
FLUSH command for the instruction cache.

MEMBAR (Memory Synchronization) Instruction

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order
and completion of memory references. Ordering MEMBARS induce a partial ordering between
sets of loads and stores and future loads and stores. Sequencing MENBARSs exert explicit
control over completion of loads and stores (or other instructions). Both barrier forms are
encoded in a single instruction, with subfunctions bit encoded in an immediate field.

Store Barrier Instruction

Note — STBAR is also supported, but this instruction is deprecated and should not be used
in newly developed software.

7.7

Register Window Management Instructions

Register window instructions manage the register windows. SAVE and RESTORE are
non-privileged and cause a register window to be pushed or popped. FLUSHWis
non-privileged and causes all of the windows except the current one to be flushed to memory.
SAVED and RESTORED are used by privileged software to end a window spill or fill trap
handler.

The instructions that manage register windows include:

Chapter 7 Instruction Types 7-157

SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window
by incrementing the CWP register.

RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP
register.

SAVEDY Instruction

The SAVED instruction is used by a spill trap handler to indicate that a window spill has
completed successfully. It increments CANSAVE.

RESTOREDY Instruction

The RESTORED instruction is used by a fill trap handler to indicate that a window has been
filled successfully. It increments CANRESTORE.

Flush Register Windows Instruction

The FLUSHW instruction cleans register windows of the data from other processes to insure
a secure execution environment.

7.8

7-158

Program Control Transfer Instructions

Control transfer instructions (CTIs) include PC-relative branches and calls, register-indirect
jumps, and conditional traps. Most of the CTIs are delayed; that is, the instruction
immediately following a CTI in logical sequence is dispatched before the control transfer to
the target address is completed. Note that the next instruction in logical sequence may not be
the instruction following the CTI in memory.

The instruction following a delayed CTI is called a delay instruction. A bit in a delayed CTI
(the annul bif) can cause the delay instruction to be annulled (that is, to have no effect) if the
branch is not taken (or in the “branch always” case if the branch is taken).

UltraSPARC Ill Cu User’'s Manual < January 2004

7.8.1

Compatibility Note — SPARC V8 specified that the delay instruction was always fetched,
even if annulled, and an annulled instruction could not cause any traps. SPARC V9 does not
require the delay instruction to be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and
return (RETURN) instructions use a register-indirect target address. They compute their target
addresses either as the sum of two r registers or as the sum of an r register and a 13-bit
signed immediate value. The “branch on condition codes without prediction” instruction
provides a displacement of +8 MB; the “branch on condition codes with prediction”
instruction provides a displacement of £1 MB; the “branch on register contents” instruction
provides a displacement of +128 KB; and the CALL instruction’s 30-bit word displacement
allows a control transfer to any address within +2 GB (£231 bytes).

Note — The return from privileged trap instructions (DONE and RETRY) get their target
address from the appropriate TPC or TNPC register.

Control Transfer Instructions (CTIs)

The following are the basic CTI types:

Conditional branch (Bi ccP, BPcc, BPr, FBf ccP, FBPf cc)

Unconditional branch

Call and link (CALL)

Jump and link (JMPL, RETURN)

Return from trap (DO\IEP, RETRYP)

Trap (Tcc, ILLTRAP)

No Operation (NOP, SIR when in non-privileged mode)
A CTI functions by changing the value of the next program counter (NPC) or by changing
the value of both the program counter (PC) and the NnPC. When only the nPC is changed, the
effect of the transfer of control is delayed by one instruction. Most control transfers are of
delayed variety. The instruction following a delayed CTI is said to be in the delay slot of the
CTI. Some CTI (branches) can optionally annul, that is, not execute, the instruction in the

delay slot, depending upon whether the transfer is taken or not taken. Annulled instructions
have no effect upon the program-visible state, nor can they cause a trap.

Chapter 7 Instruction Types 7-159

7-160

Programming Note — The annul bit increases the likelihood that a compiler can find a
useful instruction to fill the delay slot after a branch, thereby reducing the number of
instructions executed by a program. For example, the annul bit can be used to move an
instruction from within a loop to fill the delay slot of the branch that closes the loop.

Likewise, the annul bit can be used to move an instruction from either the “else” or “then”
branch of an “if-then-else” program block to the delay slot of the branch that selects between
them. Since a full set of conditions is provided, a compiler can arrange the code (possibly
reversing the sense of the condition) so that an instruction from either the “else” branch or
the “then” branch can be moved to the delay slot.

Use of annulled branches provided some benefit in older, single-issue SPARC
implementations. The UltraSPARC III Cu processor is a superscalar SPARC implementation
in which the only benefit of annulled branches might be a slight reduction in code size.
Therefore, the use of annulled branch instructions is no longer encouraged.

TABLE 7-2 defines the value of the PC and the value of the nPC after execution of each
instruction. Conditional branches have two forms: branches that test a condition (including
branch-on-register), represented in the table by Bcc (same as Bi cc), and branches that are
unconditional, that is, always or never taken, represented in the table by B. The effect of an
annulled branch is shown in the table through explicit transfers of control, rather than
fetching and annulling the instruction.

UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 7-2 Control Transfer Characteristics
Instruction Group Address Form Delayed | Taken Annul Bit | New PC New nPC
Non-CTlIs — — — — nPC nPC+4
Bcc PC-relative Yes Yes 0 nPC EA
Bcc PC-relative Yes No 0 nPC nPC+4
Bcc PC-relative Yes Yes 1 nPC EA
Bcc PC-relative Yes No 1 nPC+4 nPC+ 8
B PC-relative Yes Yes 0 nPC EA
B PC-relative Yes No 0 nPC nPC+4
B PC-relative Yes Yes 1 EA EA+4
B PC-relative Yes No 1 nPC+4 nPC+ 8
CALL PC-relative Yes — — nPC EA
JMPL, RETURN Register-indirect Yes — — nPC EA
DONE Trap state No — — TNPC[TL] TNPC[TL] +4
RETRY Trap state No — — TPC[TL] TNPC[TL]
Tcc Trap vector No Yes — EA EA+4
Tcc Trap vector No No — nPC nPC+ 4

Chapter 7

The effective address (EA) in TABLE 7-2, specifies the target of the control transfer
instruction. The EA is computed in different ways, depending on the particular instruction.

PC-relative effective address — A PC-relative EA is computed by sign extending the
instruction’s immediate field to 64 bits, left-shifting the word displacement by two bits to
create a byte displacement, and adding the result to the contents of the PC.

Register-indirect effective address — A register-indirect EA computes its target address
aseitherr[rsl] +r[rs2] ifi =0, orr[rsl] +sign_ext(sinmil3) ifi =1.

Trap vector effective address — A trap vector EA first computes the software trap
number as the least significant 7 bits of r[rs1] +r[rs2] if

i =0, or as the least significant 7 bits of r [r S1] + sw_trap# ifi = 1. The trap level,
TL, is incremented. The hardware trap type is computed as 256 + sw_trap# and stored in
TT[TL] . The EA is generated by concatenation of the contents of the TBA register, the
“TL > 0” bit, and the contents of TT[TL] .

Trap state effective address — A trap state EA is not computed but is taken directly from
either TPC[TL] or TNPC[TL] .

Instruction Types 7-161

7.8.1.1

7.8.1.2

7.8.1.3

7-162

Compatibility Note — The SPARC V8 architecture specified that the delay instruction
was always fetched, even if annulled, and that an annulled instruction could not cause any
traps. The SPARC V9 architecture does not require the delay instruction to be fetched if it is
annulled.

The SPARC V8 architecture left undefined the result of executing a delayed conditional
branch that had a delayed control transfer in its delay slot. For this reason, programmers
should avoid such constructs when backward compatibility is an issue.

Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is
zero, the instruction in the delay slot is always executed. If the annul bit is one, the
instruction in the delay slot is not executed unless the conditional branch is taken.

Note — The annul behavior of a taken conditional branch is different from that of an
unconditional branch.

Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is
“always”; it never transfers control if its specified condition is “never.” If the annul bit is
zero, then the instruction in the delay slot is always executed. If the annul bit is one, then the
instruction in the delay slot is never executed.

Note — The annul behavior of an unconditional branch is different from that of a taken
conditional branch.

CALL/JMPL and RETURN Instructions

CALL

The CALL instruction writes the contents of the PC, which points to the CALL instruction
itself, into r [15] (out register 7) and then causes a delayed transfer of control to a
PC-relative effective address. The value written into r [15] is visible to the instruction in the
delay slot.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.8.1.4

7.8.1.5

When PSTATE. AM= 1, the value of the high-order 32 bits is transmitted to r [15] by the
CALL instruction.

Jump and Link

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction
itself, into r [r d] and then causes a register-indirect delayed transfer of control to the
address given by “r[rsl] + r[rs2]”or “r[rsl] + asigned immediate value.” The
value written into r [r d] is visible to the instruction in the delay slot.

When PSTATE. AM= 1, the value of the high-order 32 bits transmitted to r [r d] by the
JMPL instruction is zero.

RETURN

The RETURN instruction is used to return from a trap handler executing in non-privileged
mode. RETURN combines the control transfer characteristics of a JMPL instruction with r [0]
specified as the destination register and the register-window semantics of a RESTORE
instruction.

DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap.
These instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to re-execute it. DONE returns
to the instruction pointed to by the value of NPC associated with the instruction that caused
the trap, that is, the next logical instruction in the program. DONE presumes that the trap
handler did whatever was requested by the program and that execution should continue.

Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the
current state of the condition code register specified by its cc field; otherwise, it executes as
a NOP. If the trap is taken, it increments the TL register, computes a trap type that is stored
in TT[TL], and transfers to a computed address in the trap table pointed to by TBA.

A Tcc instruction can specify 1 of 128 software trap types. When a Tcc is taken, 256 plus
the seven least significant bits of the sum of the Tcc’s source operands is written to TT[TL].
The only visible difference between a software trap generated by a TccC instruction and a
hardware trap is the trap number in the TT register. See Chapter 12, “Traps and Trap
Handling” for more information.

Chapter 7 Instruction Types 7-163

7.8.1.6

7.8.1.7

Programming Note — Tcc can be used to implement breakpointing, tracing, and calls to
supervisor software. TCC can also be used for runtime checks, such as out-of-range array
index checks or integer overflow checks.

ILLTRAP

The ILLTRAP instruction causes an illegal_instruction exception.

NOP

A NOP instruction occupies the entire (single) instruction group and performs no visible
work.

NOP Instruction

There are other instructions that also result in an operation that has no visible effect:
SIR instruction executed in non-privileged mode
SHUTDOWN instruction executed in privileged mode

There are other instructions that appear to be a NOP as long as they do not affect the
condition codes.

7.9

7-164

Prefetch Instructions

The prefetch instruction is used to request that data be fetched from memory and put into the
cache(s) if not already there for use in the floating-point and VIS execution environment. A
subsequent load, if properly scheduled, can expect the data to more likely be in the cache,
reducing the number of times the pipeline must recycle and thus improving performance.

The destination field of a PREFETCH instruction (f cn) is used to encode the prefetch type.
The PREFETCHA instruction supports accesses to alternate space.

PREFETCH accesses at least 64 bytes. Refer to Appendix A, “Prefetch Data” on page 560
for further details.

UltraSPARC Ill Cu User’'s Manual < January 2004

7.10 Instruction Summary Table by Category

A summary of instructions are categorized in TABLE 7-3.

7.10.1 Instruction Superscripts
INSTRUCTION? Instruction must execute in privileged mode.
INSTRUCTION Instruction can execute in privileged or non-privileged mode
7.10.2 Instruction Mnemonics Expansion
INSTRUCTION{_A} means INSTRUCTION, INSTRUCTION_A

INSTRUCTION_(A,B,C) means INSTRUCTION_A, INSTRUCTION_B, and
INSTRUCTION_C

7.10.3 Instruction Grouping Rules
Chapter 4, “Instruction Execution” explains instruction grouping rules in detail.

Execution Latency

All instructions execute within the pipeline except the following:
FSQRT (floating-point square root)
FPDIVx (floating-point divide)
The latency of these instructions depend on the precision of the floating-point values. Some

instructions execute early in the pipeline and have special bypass abilities. Chapter 4,
“Instruction Execution” explains execution latencies in detail.

7.10.4 Table Organization

The Instruction Summary Table has the following main sections:
Integer Execution Environment (TABLE 7-3)

Data access, Arithmetic, Logic, Compare, Miscellaneous instructions

Chapter 7 Instruction Types 7-165

Floating-point Execution Environment (TABLE 7-4)
FP/VIS data access, FP arithmetic/logic/compare/miscellaneous
VIS Execution Environment (TABLE 7-5)
VIS pixel and fixed-point arithmetic/logic
Data Coherency Instructions (TABLE 7-6)
Register-window Management Instructions (TABLE 7-7)
Program Control Transfer Instructions (TABLE 7-8)
Prefetch Instructions (TABLE 7-9)
Shaded areas indicate instructions that are completely deprecated (entire row) or always

privileged (cell holding instruction name). Deprecated and privilege status is identified with
a P or P superscript, respectively.

7.10.5 Integer Execution Environment Instructions

TABLE 7-3 Instruction Summary for the Integer Execution Environment (7 of 3)

Instruction Description ‘ Notes
Integer Execution Environment
IU Data Access Instructions ASI Load
B= byte; H= halfword; W=word; (hex)
LDDP Load integer double word No
LDDAD- PAST Load integer double word from alternate
space
LDDAMSI Atomic quad load 24, 2C
LDS(B,H,W) Load signed extended byte, halfword, or |No
word:
Memory - IU register
LDX Load extended (double) word No
LDXATAST Load extended (double) word from
alternate space
LDS(B,H,W)APAST Load signed extended byte, halfword, or
word from alternate space
LDSTUB Load-store (atomic) unsigned byte: No
Memory - IU register & Compare logic;
1U register — Memory (conditional)
LDSTUBAPAST Load-store (atomic) unsigned byte (see
LDSTUB) in alternate space
LDU(B,H,W) Load unsigned byte, halfword, word:
Memory - IU register

7-166 UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 7-3 Instruction Summary for the Integer Execution Environment (2 of 3)

Instruction Description Notes
LDUB,H,W)AST Load unsigned byte, halfword, word from
alternate space
ST(B,H,W,DP,X) Store byte, halfword, word, double, or
extended word:
IU register - Memory
ST(B,H,W,DP x)ATAS! Store byte, halfword, word, double, or
extended word in alternate space
MOVcce Conditional move based on icc/fcc: 1
IU register — IU register
MOVr Conditional move based on IU register 2
value:
1U register — IU register
CASATAST CASXATAS Atomic Compare and Swap word/double 3,4,5
word in alternate space:
Memory - Compare logic
Memory « (conditional) Working
register
SWAPP{AD: PASTY Atomically swap optionally with alternate
space:
1U register -~ Memory
IU Arithmetic Instructions
S= signed; U= unsigned; X= 64-bit (otherwise 32)
ADD{cc} Integer add
ADDC{cc} Integer add with carry
SUB{cc} Integer subtract, optionally setting icc/xcc
SUBC{cc} Integer subtract with carry optionally
setting icc/xcc
MULX Signed or unsigned 64-bit multiply
(S,UMUL{cc}P Signed/unsigned integer multiply
optionally setting icc/xcc
UDIVX Unsigned 64-bit integer divide
SDIVX Signed 64-bit integer divide
(S,U)DIV{cc}P Signed/unsigned 32-bit integer divide
optionally setting icc/xcc
SETHI Modify highest 22 bits of low word in IU
register:
Immediate — IU register (partial)
SLL{X} Shift left logical (32/64-bit)
SRL{X} Shift right logical (32/64-bit)
SRA{X} Shift right arithmetic (32/64-bit)
TADDcc{TVP} Tagged add and modify icc optionally
trap on overflow
Chapter 7 Instruction Types 7-167

7-168

TABLE 7-3 Instruction Summary for the Integer Execution Environment (3 of 3)

Instruction

Description

Notes

TSUBcc{TVP}

Tagged subtract and modify icc optionally
trap on overflow

IU Logic Instructions

AND({cc} Logical AND, optionally setting icc/xcc
ANDN({cc} Logical AND-not, optionally setting icc/
xce

OR({cc} Logical OR, optionally setting icc/xcc
ORN{cc} Logical OR-not, optionally setting icc/xcc
XOR({cc} Logical XOR, optionally setting icc/xcc
XNOR{cc} Logical XNOR, optionally setting icc/xcc

IU Miscellaneous Instructions

SIAM

ALIGNADDRESS{_LITTLE}

Calculates aligned address

POPC

Defined to count the number of ones in
register, unimplemented (causes an illegal
instruction execution which traps to
software for emulation)

RDPRY Read privileged register
WRPRY Write privileged register
RDASRPASR Read ancillary state register (ASR) - see

below. Privileged mode required for
privileged ASRs.

RDYP, RDCCR, RDASI, RDPC,
RDFPRS, RDPCRP,
RDPICPPCR-PRIV R DDCRP,
RDGSR, RDSOFTINT?,
RDTICKPNPT RDSTICKPNPT,
RDTICK_CMPRP,
RDSTICK_CMPR?

Read state and ancillary state registers:

- If PCR.PRIV field is one, then PIC
register access requires privileged mode.

- If {TICK|STICK}.NPT field is zero,
then TICK/STICK register reads require
privileged mode.

WRASRPASK

Write ancillary state register (ASR);
Privileged mode required for privileged
ASRs.

WRYP, WRCCR, WRASI,
WRFPRS, WRPCRP,
WRPICPPCR-PRIV R DCRP,
WRGSR, WRSOFTINT?,
WRSOFTINT_CLR?,
WRSOFTINT_SET",
WRSTICKPNPT WRTICK_CMPRP,
WRSTICK_CMPR?

Read state and ancillary state registers:

- If PCR.PRIV field is one, then PIC
register access requires privileged mode.

- If STICK.NPT field is zero, then STICK
register writes require privileged mode.

1. A simple register-to-register move is accomplished by using the OR instruction with r [0] .

UltraSPARC Ill Cu User’'s Manual < January 2004

2. Load (LD) and store (ST) instructions are provided with many size formats (byte, word, double word, etc.) and most can be
specified with an alternate space identifier (ASI).

3. The “r” refers to value in r registers.
4. The cc refers to settings of the integer condition codes.

5. The conditional move instructions (integer and floating-point) are influenced by the condition codes of either execution unit to
facilitate moves in one type of execution unit based on the condition codes of the other or of those within the execution unit.

Chapter 7 Instruction Types 7-169

7.10.6

7-170

TABLE 7-4 Instruction Summary for the Floating-Point Execution Environment

Floating-Point Execution Environment Instructions

Reference

Instruction Description Pages Notes
FP/VIS Data Access Instruction ASI Load
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped) (hex)
LD{D}F Load word (or double word): No

Memory — FPU register
LD{D}FAPAST Load word (or double word) from

alternate space:

Memory — FPU register
LDDFA Block load 64 bytes:

Memory — FPU registers
LDDFA Load short:

Memory — FPU register
LDQF Load quadword: No

Memory — FPU register
LDQFAPAST Load quadword from alternate space: No

Memory — FPU register
ST(F,DF,QF) Store word, double, or quad word to No

memory:

FPU register -~ Memory
ST(F,DF,QF) AT Store word, double, or quad word to

memory using alternate memory space.
STDFA Block store 64 bytes: uses ASIs 70, 71, 78, 79,

Fo, F1, F8, F9,
EO0, E1

STDFA Short FP store: uses ASIs D(0:3)y4,

D(8:B)¢
STDFA Partial store FPU: uses ASIs C(0:5)y,

C(8:D)16
FMOV(s,d,q) FPU - FPU register No
FMOV(s,d,q)cc Conditional move, IU or FPU condition |[No

codes:

FPU - FPU register
FMOV(s,d,q)r Conditional move, IU or FPU register No

value: FPU - FPU register

FP Arithmetic Instructions

s= 32-bit; d= 64-bit; q= 128-bit (q is trapped)

FABS(s,d,q) FP absolute value
FNEG(s,d,q) Change FP sign
FADD(s,d,q) FP add
FSUB(s,d,q) FP subtract

UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 7-4 Instruction Summary for the Floating-Point Execution Environment (Continued)

Reference
Instruction Description Pages Notes
FMUL(s,d,q) FP multiply
FdMULq FP multiple doubles to quadword
FsMULd FP multiple singles to doubleword
FDIV(s,d,q) FP division
FSQRT¢s,d,q) FP square root

FP Conversion Instructions

s= 32-bit; d= 64-bit; q= 128-bit (q is trapped); i= integer word; x= double

(or extended) word

F(s,d,q)TOi Floating-point to integer word
F(s,d,9)TOx Floating-point to integer double word
F(s,d,q9)TO(s,d,q) Floating-point to floating-point
FiTOgs,d,q) Integer word to floating-point
FxTO(s,d,q) Integer double (or extended) word to

floating-point

FP Compare Instructions

FCMPs,d,q)

FP compare of like precision, sets fcc
condition codes

FCMPE(s,d,q)

Same as FCMP, but an exception is
generated if unordered

FP Miscellaneous Instructions

LDFSRP

Load FSR into FP reg file:
FSR - FPU register (lower 32-bit)

LDXFSR Load FSR into FP reg file:
FSR - FPU register (64-bit)
STFSRP Store FSR register:
FPU (lower 32-bit) - FSR register
STXFSR Store FSR register:
FPU - FSR register
FALIGNDATA Concatenates two 64-bit registers into one

based on GSR.ALIGN

Chapter 7

Instruction Types

7-171

7.10.7 VIS Execution Environment Instructions

TABLE 7-5 Instruction Summary for the VIS Execution Environment

Instruction Description

Reference
Pages

Notes

VIS Data Access Instructions

Refer to Section 7.10.6, “Floating-Point Execution Environment Instructions”
of the Instruction Summary Table.

VIS Pixel Data Instructions
L= little-endian; N= fcc not modified; S= 32-bit (otherwise 64-bit);

ARRAY 8,16,32) 3D-array addressing

BMASK Writes the GSR.MASK field

BSHUFFLE Permute bytes as specified by
GSR.MASK field.

EDGES,16,32) Edge handling instructions

(LN,LN)

FEXPAND Pixel data expansion

FPMERGE Pixel merge

FPACK(16,32,FIX) Pixel packing

PDIST Pixel component distance

VIS Fixed-point 16/32-bit Data Instructions

FPADD(16,32){S} Fixed-point add, 16- or 32-bit operands,
32/64-bit register

FPSUB(16,32){S} Fixed-point subtract, 16- or 32-bit
operands, 32/64-bit register

FMULS8x16 8x16 partitioned multiply

FMULS8x16(AU,AL) 8x16 Upper/Lower a partitioned multiply

FMULS(su,SL)x16 8x16 Upper/Lower partitioned multiply

FMULDS(SU,SL)x16 8x16 Upper/Lower partitioned multiply

FCMP(GT,LE,NE,EQ)(16,32) Fixed-point compare (also known as
“pixel compare”)

VIS Logic Instructions
S= 32-bit (otherwise 64-bit)

FSRC(1,2){S} Copy source

FONE{S} Fill with ones (32/64-bit)

FZERO{S} Fill with zeroes (32/64-bit)

FAND{S} Logical AND (32/64-bit)

FANDNOT(1,2){S} Logical AND with a source inverted
(32/64-bit)

FOR{S} Logical OR (32/64-bit)

FNAND{S} Logical NAND (32/64-bit)

FNOR({S} Logical NOR (32/64-bit)

7-172 UltraSPARC Ill Cu User’'s Manual < January 2004

7.10.8

7.10.9

TABLE 7-5 Instruction Summary for the VIS Execution Environment (Continued)

Reference
Instruction Description Pages Notes
FORNOT(1,2){S} Logical OR with a source inverted
(32/64-bit)
FNOT(1,2){S} Logical inversion of source bits
(32/64-bit)
FXNOR({S} Logical XNOR (32/64-bit)
FXOR{S} Logical XOR (32/64-bit)
Data Coherency Instructions
TABLE 7-6 Instruction Summary for Data Coherency
Reference
Instruction Description Pages Notes
Data Coherency Instructions
FLUSH Flush instruction cache
MEMBAR Memory barrier
STBARP Store barrier
Register-Window Management Instructions
TABLE 7-7 Instruction Summary for Register-Window Management
Reference
Instruction Description Pages Notes

Register-Window Management Instructions

SAVE Save caller’s window
SAVED? Window has been saved
RESTORE Restore caller’s window
RESTORED? Window has been restored
FLUSHW Flush register windows

Chapter 7

Instruction Types

7-173

7.10.10 Program Control Transfer Instructions

TABLE 7-8 Instruction Summary for Program Control Transfer

Reference

Instruction Description Pages Notes
Program Control Transfer Instructions
icc/xce= integer condition codes (32/64-bit); fcc= FP condition codes
BiccP Conditional branch on icc/xcc
BPcc Conditional branch on icc/xcc with

branch prediction
BPr Conditional branch on IU reg value with

branch prediction
CALL Call and link
DONE" Return from Trap
FBfccP Conditional branch on fcc
FBPfcc Conditional branch on fcc with branch

prediction
ILLTRAP Causes illegal_instruction trap
JMPL Jump and link
NOP No operation
RETRY" Return from trap entry
RETURN Return (jump and link)
SHUTDOWNY Intended for low power mode, but is a

NOP in the processor
SIRFNOP Software initiated reset: a NOP when

executed in non-privileged mode
Tce Trap on icc/xcc

7.10.11 Data Prefetch Instructions
TABLE 7-9 Instruction Summary Table
Reference

Instruction Description Pages Notes

Prefetch Instructions

PREFETCH Tells processor to fetch data

PREFETCHAPAST Tells processor to fetch data from
alternate memory space

7-174 UltraSPARC Ill Cu User’'s Manual < January 2004

7.11 Instruction Formats and Fields

Instructions are encoded in four major 32-bit formats and several minor formats, as shown in
FIGURE 7-1, FIGURE 7-2, and FIGURE 7-3.

Format I (op = 1): CALL

op disp30

31 30 29 0

Format 2 (op = 0): SETH| and Branches (Bi cc, BPcc, BPr, FBf cc, FBPf cc)

op rd op2 imm22
op |a cond op2 disp22
op |a cond op2 ccllecO| p disp19
op [a] 0| rcond op2 d16hi | p rs1 d16lo
31 30 29 28 25 24 22 21 20 19 18 14 13 0

FIGURE 7-1 Summary of Instruction Formats: Formats 1 and 2

Chapter 7 Instruction Types 7-175

7-176

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr , MEMBAR, Prefetch, Load, and Store

op rd op3 rs1 i=0| — rs2
op rd op3 rs1 i=1 simm13
op fen op3 rs1 i=0| — rs2
op fen op3 rs1 i=1 simm13
op — op3 rs1 i=0) — rs2
op — op3 rs1 i=1 simm13
op rd op3 rs1 i=0[rcond — rs2
op rd op3 rs1 i=1| rcond simm10
op rd op3 rs1 i=1 — rs2
op rd op3 rs1 i=1 — cmask mmask
op rd op3 rs1 i=0 imm_asi rs2
op impl-dep op3 impl-dep
op rd op3 rs1 i=0| x — rs2
op rd op3 rs1 i=1|x=0| — shcnt32
op rd op3 rs1 i=1[x=1 — shent64
op rd op3 — opf rs2
op 000 (cctfccO op3 rs1 opf rs2
op rd op3 rs1 opf rs2
op rd op3 rs1 _
op fen op3 _
op fen op3 _

31 30 29 25 24 19 18 14 13 12 11 10 9 7 6 5 4 3

FIGURE 7-2 Summary of Instruction Formats: Format 3

UltraSPARC Ill Cu User’'s Manual < January 2004

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and TcC

op rd op3 rs1 i=0|cc|ccO — rs2

op rd op3 rs1 i=1|cc1[ccO] simm11

op rd op3 cc2| cond i=0|cc1|ccOl — rs2
op rd op3 cc2 cond i=1{cc1|ccO simm11

op rd op3 rs1 i=1[ccfccO) — ccOsw_trap#
op rd op3 rs1 0 rcond opf_low rs2

op rd op3 0 cond opf_cc opf_low rs2

31 30 29 25 24 19 18 17 14 13 12 11 10 9 765 4 0

FIGURE 7-3 Summary of Instruction Formats: Format 4

The instruction fields are interpreted as described in TABLE 7-10.

TABLE 7-10 Instruction Field Interpretation (7 of 3)

Field

Description

a

The a bit annuls the execution of the following instruction if the branch is conditional and not

taken, or if it is unconditional and taken.

cc2,ccl, ccO

cc2, ccl, and ccO specify the condition codes (i cc, xcc, fccO,fccl, fcc2, fcc3)tobe
used in the following instructions:
+ Branch on Floating-point Condition Codes with Prediction Instructions (FBPf cc)
» Branch on Integer Condition Codes with Prediction (BPcc)
» Floating-point Compare Instructions (FCMP and FCMPE)

* Move Integer Register If Condition Is Satisfied (MOVcc)

* Move Floating-point Register If Condition Is Satisfied (FMOVcc)

+ Trap on Integer Condition Codes (Tcc)

In instructions such as Tcc that do not contain the cc2 bit, the missing cc2 bit takes on a

default value.

cmask This 3-bit field specifies sequencing constraints on the order of memory references and the
processing of instructions before and after a MEMBAR instruction.

cond This 4-bit field selects the condition tested by a branch instruction.

diéhi, d16l o These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-relative

displacement for a branch-on-register-contents with prediction (BPr) instruction.

Chapter 7

Instruction Types

7-177

TABLE 7-10 Instruction Field Interpretation (2 of 3)

Field Description

di sp19 This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an integer
branch-with-prediction (BPcc) instruction or a floating-point branch-with-prediction (FBPf cc)
instruction.

di sp22, di sp30 These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative displacements for a
branch or call, respectively.

fcn This 5-bit field provides additional opcode bits to encode the DONE, RETRY, and PREFETCH(A)
instructions.

i The i bit selects the second operand for integer arithmetic and load/store instructions. If i =0,
then the operand is r [r s2] . If i = 1, then the operand is si nmLO, si mMML1, or si M3,
depending on the instruction, sign-extended to 64 bits.

i mg2 This 22-bit field is a constant that SETHI places in bits 31:10 of a destination register.

i mm_asi This 8-bit field is the ASI in instructions that access alternate space.

mrask This 4-bit field imposes order constraints on memory references appearing before and after a
MEMBAR instruction.

op, op2 These 2-bit and 3-bit fields encode the three major formats and the Format 2 instructions.

op3 This 6-bit field (together with one bit from op) encodes the Format 3 instructions.

opf This 9-bit field encodes the operation for a floating-point operate (FPop) instruction.

opf _cc Specifies the condition codes to be used in FMOVcc instructions. See field ccO, cc1, and cc2
for details.

opf _| ow This 6-bit field encodes the specific operation for a Move Floating-Point Register if condition is
satisfied (FMOVcc) or Move Floating-Point Register if contents of integer register match
condition (FMOVr) instruction.

p This 1-bit field encodes static prediction for BPcc and FBPf cc instructions; branch prediction
bit (p) encodings are shown below.

P Branch Prediction
0 Predict that branch will not be taken
1 Predict that branch will be taken

rcond This 3-bit field selects the register-contents condition to test for a move, based on register
contents (MOVr or FMOVr) instruction or a Branch on Register Contents with Prediction (BPr)
instruction.

rd This 5-bit field is the address of the destination (or source) r or f register(s) for a load,
arithmetic, or store instruction.

rsi This 5-bit field is the address of the first r or f register(s) source operand.

rs2 This 5-bit field is the address of the second r or f register(s) source operand with i = 0.

shcnt 32 This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt 64 This 6-bit field provides the shift count for 64-bit shift instructions.

si mm0 This 10-bit field is an immediate value that is sign-extended to 64 bits and used as the second
ALU operand for a MOVr instruction when i = 1.

simml This 11-bit field is an immediate value that is sign-extended to 64 bits and used as the second
ALU operand for a MOVcc instruction when i = 1.

7-178 UltraSPARC Ill Cu User’'s Manual < January 2004

TABLE 7-10 Instruction Field Interpretation (3 of 3)

Field Description

si mml3 This 13-bit field is an immediate value that is sign-extended to 64 bits and used as the second
ALU operand for an integer arithmetic instruction or for a load/store instruction when i = 1.

SW_trap# This 7-bit field is an immediate value that is used as the second ALU operand for a Trap on
Condition Code instruction.

X The x bit selects whether a 32-bit or 64-bit shift will be performed.

7.12

7.12.1

Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned causes a trap,

specifically:

Attempting to execute a reserved FPop (floating-point opcode) causes a
fp_exception_other exception (with FSR. f t t = unimplemented_FPop).

Attempting to execute any other reserved opcode causes an illegal_instruction exception.

Attempting to execute an FPop with a nonzero value in a reserved instruction field causes
a fp_exception_other exception (with FSR. ftt = Lmimplemented_FPop).1

Attempting to execute a Tcc instruction with a nonzero value in a reserved instruction
field causes an illegal_instruction exception.

Attempting to execute any other instruction with a nonzero value in a reserved instruction
field causes an illegal_instruction exception.1

Summary of Unimplemented Instructions

Certain SPARC V9 instructions are not implemented in hardware in the processor. Executing
any of these instructions results in the behavior described in TABLE 7-11.

TABLE 7-11 Processor Actions on Unimplemented Instructions

Instructions Trap Taken Processor-Specific Behavior |Operating System Response
Quad FPops (including|fp_exception_other FSR. f tt = unimplemented_F |Emulates Instruction
FdMULQ) Pop

POPC illegal_instruction None Emulates Instruction

RDPR FQ illegal_instruction None Skips instruction and returns
LDQF illegal_instruction None Emulates Instruction

STQF illegal_instruction None Emulates Instruction

1. Although it is recommended that this exception is generated, an UltraSPARC IIT Cu User’s Manual implementation may
ignore the contents of reserved instruction fields (in instructions other than Tcc).

Chapter 7

Instruction Types

7-179

If a trap does not occur and the instruction is not a control transfer, the next program
counter (NPC) is copied into the PC, and the nPC is incremented by four (ignoring overflow,
if any). If the instruction is a control transfer instruction, the NPC is copied into the PC and
the target address is written to NPC. Thus, the two program counters provide for a
delayed-branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address
space identifier (ASI) to the 64-bit memory address. Load/store alternate instructions (see
Section 7.2.4, “Address Space Identifiers”) can provide an arbitrary ASI with their data
addresses or can use the ASI value currently contained in the ASI register.

7.13

7.13.1

7-180

Big/Little-endian Addressing

The processor uses big-endian byte order for all instruction accesses and, by default, for data
accesses.

It is possible to access data in little-endian format by using selected ASIs. See Chapter 8,
“Address Space Identifiers” for details.

It is also possible to change the default byte order for implicit data accesses.

Big-endian Addressing Convention
Within a multiple-byte integer, the byte with the smallest address is the most significant; a

byte’s significance decreases as its address increases. The big-endian addressing conventions
are illustrated in FIGURE 7-4 and described below the figure.

UltraSPARC Ill Cu User’'s Manual < January 2004

Byte Address
Halfword Address<0> = 0 1
| 15 8|7 0|
Word Address<1:0> = 00 01 10 11
[31 24]23 16]15 8]7 o]
Doubleword/ Address<2:0> = 000 001 010 011
Extended word [63 56 55 48[47 4039 32]
Address<2:0> = 100 101 110 111
[31 24] 23 16[15 8] 7 0]
Quadword Address<3:0> = 0000 0001 0010 0011
[127 120] 119 112111 104]103 96|
Address<3:0> = 0100 0101 0110 0111
[95 88] 87 80[79 72[71 64]
Address<3:0> = 1000 1001 1010 1011
[63 56] 55 48[47 4039 32]
Address<3:0> = 1100 1101 1110 1111
[31 24]23 16]15 8] 7 0]

FIGURE 7-4 Big-endian Addressing Conventions

big-endian byte

big-endian halfword

big-endian word

big-endian doubleword
or extended word

Chapter 7

A load/store byte instruction accesses the addressed byte in both big-endian and
little-endian modes.

For a load/store halfword instruction, 2 bytes are accessed. The most significant byte
(bits 15-8) is accessed at the address specified in the instruction; the least significant
byte (bits 7-0) is accessed at the address + 1.

For a load/store word instruction, 4 bytes are accessed. The most significant byte
(bits 31-24) is accessed at the address specified in the instruction; the least significant
byte (bits 7-0) is accessed at the address + 3.

For a load/store extended or floating-point load/store double instruction, 8 bytes are
accessed. The most significant byte (bits 63—56) is accessed at the address specified in
the instruction; the least significant byte (bits 7-0) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two big-endian
words are accessed. The word at the address specified in the instruction corresponds to
the even register specified in the instruction; the word at address + 4 corresponds to the
following odd-numbered register.

Instruction Types 7-181

big-endian quadword For a load/store quadword instruction, 16 bytes are accessed. The most significant byte
(bits 127 —120) is accessed at the address specified in the instruction; the least
significant byte (bits 7—0) is accessed at the address + 15.

7.13.2

Little-endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a
byte’s significance increases as its address increases. The little-endian addressing
conventions are illustrated in FIGURE 7-5 and defined below the figure.

Byte

Halfword

Word

Doubleword/
Extended word

Quadword

Address
Address<0> = 0 1

[7 0[15 8]
Address<1:0> = 00 01 10 11

|7 0|15 8|23 1631 24|
Address<2:0> = 000 001 010 011

|7 0[15 8|23 16|31 24|
Address<2:0> = 100 101 110 111

[39 32[47 40] 55 48] 63 56
Address<3:0> = 0000 0001 0010 0011

|7 0[15 8|23 16|31 24|
Address<3:0> = 0100 0101 0110 0111

[39 32[47 40] 55 48]63 56]
Address<3:0> = 1000 1001 1010 1011

|7 64|79 72| 87 8095 88|
Address<3:0> = 1100 1101 1110 1111

[103 96] 111 104] 119 112] 127 120

FIGURE 7-5 Little-endian Addressing Conventions

little-endian byte

little-endian modes.

little-endian halfword

A load/store byte instruction accesses the addressed byte in both big-endian and

For a load/store halfword instruction, 2 bytes are accessed. The least significant byte

(bits 7-0) is accessed at the address specified in the instruction; the most significant
byte (bits 15-8) is accessed at the address + 1.

7-182

UltraSPARC Ill Cu User’'s Manual < January 2004

little-endian word For a load/store word instruction, 4 bytes are accessed. The least significant byte
(bits 7-0) is accessed at the address specified in the instruction; the most significant
byte (bits 31-24) is accessed at the address + 3.

little-endian doubleword
or extended word For a load/store extended or floating-point load/store double instruction, 8 bytes are
accessed. The least significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 63—56) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/'STD), two little-endian
words are accessed. The word at the address specified in the instruction corresponds to
the even register in the instruction; the word at the address specified in the instruction
plus four corresponds to the following odd-numbered register. With respect to
little-endian memory, an LDD (STD) instruction behaves as if it is composed of two
32-bit loads (stores), each of which is byte-swapped independently before being
written into each destination register (memory word).

little-endian quadword For a load/store quadword instruction, 16 bytes are accessed. The least significant byte
(bits 7-0) is accessed at the address specified in the instruction; the most significant
byte (bits 127—120) is accessed at the address + 15.

Chapter 7 Instruction Types 7-183

7-184 UltraSPARC Ill Cu User’'s Manual < January 2004

CHAPTER 8

Address Space Identifiers

The address space identifiers (ASIs) are described in the following sections:
ASI Introduction
ASI Heredity
ASI Groups
Instructions Associated with the ASIs
Using ASIs
List of ASI Definitions
Special Memory Access ASIs

8.1 ASI Introduction

Every instruction fetch, data load, or data store operation is specified by a 64-bit virtual
address. In the SPARC architecture, there is always an ASI along with the virtual address. In
most cases the ASI is implicit, but can be explicitly specified when appropriate. The ASI can
provide rules for how the Memory Management Unit (MMU) should translate a virtual
address to a physical address. The ASI can provide attributes for how an operation should be
performed. The ASI can also be used to address internal state of the processor.

SPARC Compatibility Note — The SPARC V9 architecture has also extended the limit
of virtual addresses from 32-bit (SPARC V8) to 64-bit for each address space. The

SPARC V9 architecture supports 32-bit addressing through masking of the upper 32 bits to
zero when the address mask (AM) bit in the PSTATE register is set.

Every instruction fetch, load or store address in the processor has an 8-bit ASI appended to
the virtual address (VA). The VA plus the ASI fully specify the address. These address
spaces map to main memory, the processor subsystems, and internal control, status, and

8-185

8.1.1

8.1.2

8.1.3

8.1.4

8.1.5

8-186

diagnostics registers (CSRs) within a processor. These ASIs are internal to the processor and
are not visible outside. ASIs can create special transactions on internal processor busses and
assert special internal control signals.

For instruction fetches and data loads or stores that do not use the load or store alternate
instructions, the ASI is an implicit ASI generated by the hardware. If a load alternate or store
alternate instruction is used, the value of the ASI can be specified in the %@si register or as
an immediate value in the instruction.

Load/Store Instructions

Not all load/store instructions have explicit ASIs.

Processor State

Privileged versus non-privileged mode affects the way some ASIs are interpreted.

Default ASIs

Default ASIs are precoded. They are selected based on privileged/non-privileged mode.

Non-Translating and Bypassing ASIs

Non-translating and bypassing ASIs use the VA for the PA. The bypassing ASIs select the
processor control, status, and diagnostic registers and RAM arrays for diagnostic purposes.
Non-translating ASIs essentially use the VA to address main memory, the system, and
memory mapped control, status, and diagnostic registers.

Sometimes, bypassing ASIs are included when referring to non-translating ASIs.

Datapath

The datapath supports byte swapping for endianess and variable length data sizes from single
bytes (partial store) to 64-byte blocks (block load/store). FIGURE 8-1 shows the datapath and
logic for ASIs.

UltraSPARC Ill Cu User’'s Manual < January 2004

Load/Store

FIGURE 8-1

Chapter 8

ASI Source and Function Conceptual Diagram

i »| CPU
Instruction Y
] Working
Registers
OPcode | Operands| i | ASI CONCEPTUAL
S I logic DIAGRAM
Data
i i > Datapath
%asi register , ASl value . Sooeatn
> Iy size
Default ASI \
A
CPU Mode
Privileged/ ‘
Non-Privileged } Y
Mode
@ \i
C>
Nucleus —» Y
Context
Primary —» <> EMU
logic Cache/Memory
Secondary —p o
Memory Mapped
D-MMU I/O <
v Y1 PA
_»
TLB
VA
Virtual > / E -
Address >
v PA_»! csrs -
Data
Translating Control, Status, and
Diagnostic
Non-translating/Bypass Registers;
RAM array access
for diagnostics.
(in-pipeline)

Address Space Identifiers 8-187

8.2

8.2.1

8.2.2

8-188

ASI Heredity

FIGURE 8-2, illustrates how the ASIs are defined at different processor architectural levels.
The most universal ASIs are defined by the SPARC V9 architecture. The next level is defined
for all processors based on the UltraSPARC III Family of processors. The last level defines
ASIs belonging to a particular processor.

SPARC V9
ASls

UltraSPARC IIl Family

ASIs + UltraSPARC Il Cu Specific ASls

FIGURE 8-2 ASI Groups

ASIs defined by common architecture definitions should work across the processors within
that family. All SPARC V9 architecture defined ASIs will work on all processors defined by
the SPARC V9 architecture including all UltraSPARC processors, but an ASI defined for a
specific processor will not necessarily work on other SPARC V9 processors.

SPARC V9 ASIs

The SPARC V9 architecture defines a set of required ASIs for SPARC V9 processors. These
ASIs are supported in all UltraSPARC processors. Some of the ASIs have been deprecated in
favor of newer ASIs that take advantage of the 64-bit architecture.

UltraSPARC UltraSPARC III Family ASIs

The UltraSPARC UltraSPARC III Family currently contains processors similar to the
UltraSPARC III Cu processor. All SPARC V9 ASIs will work for the
UltraSPARC UltraSPARC III Family of processors.

UltraSPARC Ill Cu User’'s Manual < January 2004

8.2.3

UltraSPARC III Cu Specific ASIs

The UltraSPARC III Cu processor specific ASIs are also defined. ASI 4A ¢ is an example of
how one ASI is defined differently for the Sun Fireplane interconnect in the

UltraSPARC III Cu processor. All UltraSPARC UltraSPARC III Family ASIs will work with
the UltraSPARC III Cu processor. TABLE 8-1 lists processor specific ASIs.

TABLE 8-1 Processor Specific ASIs

ASI

Value UltraSPARC il Cu

4A Fireplane Interconnect CSRs
72 Memory Control Unit CSRs

8.3

ASI Groups

The ASI is evenly divided into restricted and unrestricted halves, defined by the SPARC V9.
ASIs in the range 00;4—7F ¢ are restricted. ASIs in the range 80,4—FF ¢ are unrestricted. An
attempt to access a restricted ASI in non-privileged mode causes a privileged_action trap.

Normal or translating ASIs cause the CPU’s VA to be translated to a physical one by the
MMU. Non-translating, or bypassing ASls, cause the CPU to not translate the VA; instead,
the MMU passes the lower 43 bits of the CPU’s virtual addresses as 43-bit physical
addresses.

Access restrictions and translating abilities are summarized in TABLE 8-2.

ASIs can be grouped together to help understand the nature of the ASIs. The ASIs that map
to a PA are targeted toward physical memory, memory mapped CSRs, and the processor’s
subsystem, depending on the VA and the ASI value.

The UltraSPARC III Cu processor implements the standard SPARC V9 ASIs and many
processor specific ASIs for endian support and address CSR registers.

Chapter 8 Address Space Identifiers 8-189

8-190

Processor Compatibility Note — In TABLE §-2, text in bold means the ASI was not
implemented in UltraSPARC I or UltraSPARC II. Text with strike-through means the ASI
was implemented in UltraSPARC I or UltraSPARC II but not in the UltraSPARC III Family.

TABLE 8-2 ASI Summary Table
Translating VA to | Special Architecture
ASI Values Destination PA Operations Definition
Restricted, Accessible in Privileged Mode Only
SPARC V9 and
04h, 0Ch . UltraSPARC 111
Translating Family
10h, 11h SPARC V9
14h, 15h Physical Address Bypassing Ultr§SPARC I
Family
18h, 19h Translating SPARC V9
1Ch, 1Dh Bypassing
24h, 2Ch Translating UltraSPARC 111
30-34h, 38-3Ch, 40-44h, | . Family
45-49h
4Ah CSR (Bus i/f) Non-translating gllltraSPARC i
4B-4Eh, 50-5Fh, 60h, 66h, CSR
67h, 68h, 6Eh, 6Fh UltraSPARC 111
. . Block Family
70h, 71h Physical Address | Translating Load/Store
72h CSR (MCU) Non-translating IéiltraSPARC i
74-75h, 76h, 77h CSR Non-translating
. . Block
78h, 79h Physical Address | Translating Load/Store
7Eh, 7Fh CSR Non-translating
Non-Restricted, Accessible in Privileged or Non-privileged Mode
80h, 81h, 82h, 83h, 88h,
89h, 8Ah, 8Bh SPARC VO
C0-C5h, C8-CDh Partial Store
Physical Address | Translatin,
DO0-D3h, D8-DBh Y & Short FP UltraSPARC 11T
Load/Store .
Family
EOh, Elh, FOh, F1h, F8h, Block
Foh Load/Store

UltraSPARC Ill Cu User’'s Manual < January 2004

8.4

8.4.1

8.4.2

8.4.3

Instructions Associated with the ASIs

ASIs are used with load and store instructions. Their usage and restrictions are described in
TABLE 8-4. Additional information is described in Section 8.5, “Using ASIs.”

Block Load and Block Store ASIs

Block load (BLD) and block store (BST) operations are generated by using the LDDFA and
STDFA instructions with the 70,4, 71,6, 7816, 7916, EO14, E14, FO1, F14¢, F8}4, and F9,4 ASIs.

If the operand address is not 64-byte aligned, then a mem_address_not_aligned exception is
generated.

If these ASIs are used with any other instruction, then a data_access_exception is generated
and mem_address_not_aligned is not generated.

Partial Store ASIs

Partial store operations are generated by using the STDFA instruction with the C0;c—C5¢
and C816*CD16 ASIS

If the operand address is not 8-byte aligned, then a mem_address_not_aligned exception is
generated and if i =1 in the instruction, then an illegal_instruction exception is generated
instead.

If these ASIs are used with any other instruction, then a data_access_exception exception is
generated and neither a mem_address_not_aligned nor a illegal_instruction (fori = 1) is
generated.

Short Floating-Point Load and Store ASIs

Short floating-point load and store operations are generated by using the LDDFA and STDFA
instructions with the D0;4—D3¢ and D8,4,-DB4 ASIs to load and store byte and halfword
values in the floating-point registers.

If the data is not aligned, then a mem_address_not_aligned is generated.

If these ASIs are used with any other instruction, a data_access_exception is generated and
mem_address_not_aligned will not be generated.

Chapter 8 Address Space Identifiers 8-191

8.4.3.1

Halfword Alignment

If the operand address for a D24, D34, DA 4, or DBy¢ ASI (halfword) is not halfword
aligned, then a mem_address_not_aligned exception is generated.

8.5

8.5.1

8.5.2

8.5.3

8-192

Using ASIs

Data Widths

The ASIs for the UltraSPARC III Cu processor and the entire UltraSPARC UltraSPARC 111
Family of processors are accessible using 64-bit LDXA, STXA, LDDFA, and STDFA
instructions, except where noted. SPARC V9 ASIs are accessible using aligned 8-, 16-, 32-
and 64-bit load and store (read and write) instructions, except where noted. The
UltraSPARC UltraSPARC III Family of processors and specific implementations require
64-bit aligned accesses, except where noted.

Operand Alignment

Addresses must align to the boundary of the data width. TABLE 8-3 shows the data size and
address offset for operand alignment.

TABLE 8-3 Operand Alignment

Data Size Address Offset (binary)
Halfword XXXX.XXX0
Word xxxX.xx00
Double word (8 bytes) xxxx.x000
Quad word (16 bytes) xxxx.0000
Block (64 bytes) xx00.0000

Common Exceptions

Using ASIs improperly will generate one of the following exceptions in the CPU.

UltraSPARC Ill Cu User’'s Manual < January 2004

8.5.3.1

8.5.3.2

8.5.3.3

data_access_exception

When the wrong instruction is used with an ASI, a data_access_exception is generated. This
is sometimes referred to as the invalid_ASI_exception.

mem_address_not_aligned

When the address operand does not align to the boundary of the data size, a
mem_address_not_aligned exception is generated.

privileged_action

If a restricted, privileged mode only ASI is accessed in non-privileged mode, then a
privileged_mode_exception is generated.

8.6

List of ASI Def