
TMS320C20x
User’s Guide

Literature Number: SPRU127C
April 1999

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1999, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

This user’s guide describes the architecture, hardware, assembly language
instructions, and general operation of the TMS320C20x† digital signal proces-
sors (DSPs). This manual can also be used as a reference guide for develop-
ing hardware and/or software applications. In this document, ’C20x† refers to
any of the TMS320C20x devices, except where device-specific information is
explicitly stated. When device-specific information is given, the device name
may be abbreviated; for example, TMS320C203 will be abbreviated as ’C203.
This manual covers ’C203, ’LC203, ’C206, ’LC206, and ’F206 devices. For
pinouts, electrical characteristics, and timing diagrams, refer to the data
sheets of the individual devices.

How to Use This Manual

Chapter 1, Introduction, summarizes the TMS320 family of products and then
introduces the key features of the TMS320C20x generation of that family.
Chapter 2, Architectural Overview, summarizes the ’C20x architecture, provid-
ing information about the CPU, bus structure, memory, on-chip peripherals,
and scanning logic.

If you are reading this manual to learn about the ’C209, Chapter 11 is important
for you. There are some notable differences between the ’C209 and other
’C20x devices, and Chapter 11 explains these differences. In addition, it shows
how to use this manual to get a complete picture of the ’C209.

The following table points you to major topics.

† The generic name ’2xx refers to all DSPs using the 2xLP DSP core. This user guide revision uses ’20x, a subset of ’2xx, to specifi-
cally reference the ’C/LC203, ’F206, and the C/LC206.

How to Use This Manual

iv

For this information: Look here:

Addressing modes (for addressing data
memory)

Chapter 6, Addressing Modes

Assembly language instructions Chapter 7, Assembly Language
Instructions

Assembly language instructions of
TMS320C1x, ’C2x, ’C20x, and ’C5x
compared

Appendix C,
TMS320C1x/C2x/C2xx/C5x
Instruction Set Comparison

Boot loader Chapter 4, Memory and I/O Spaces

Clock generator Chapter 8, On-Chip Peripherals

CPU Chapter 3, Central Processing Unit

Custom ROM from TI Appendix E, Submitting ROM Codes
to TI

Emulator Appendix F, Design Considerations for
Using XDS510 Emulator

Features Chapter 1, Introduction
Chapter 2, Architectural Overview

Input/output ports Chapter 4, Memory and I/O Spaces

Interrupts Chapter 5, Program Control

Memory configuration Chapter 4, Memory and I/O Spaces

Memory interfacing Chapter 4, Memory and I/O Spaces

On-chip peripherals Chapter 8, On-Chip Peripherals

Pipeline Chapter 5, Program Control

Program control Chapter 5, Program Control

Program examples Appendix D, Program Examples

Program-memory address generation Chapter 5, Program Control

Registers summarized Appendix A, Register Summary

Serial ports Chapter 9, Synchronous Serial Port
Chapter 10, Asynchronous Serial Port

Stack Chapter 5, Program Control

Status registers Chapter 5, Program Control

Timer Chapter 8, On-Chip Peripherals

TMS320C209 differences and
similarities

Chapter 11, TMS320C209

Wait-state generator Chapter 8, On-Chip Peripherals

Notational Conventions

vRead This First

Notational Conventions

This document uses the following conventions:

� Program listings and program examples are shown in a special type-
face .

Here is a segment of a program listing:

OUTPUT LDP #6 ;select data page 6
BLDD #300, 20h ;move data at address 300h to 320h
RET

� In syntax descriptions, bold portions of a syntax should be entered as
shown; italic portions of a syntax identify information that you specify. Here
is an example of an instruction syntax:

BLDD source, destination

BLDD is the instruction mnemonic, which must be typed as shown. You
specify the two parameters, source and destination.

� Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you do
not type the brackets themselves. You separate each optional operand
from required operands with a comma and a space. Here is a sample syn-
tax:

BLDD source, destination [, ARn]

BLDD is the instruction. The two required operands are source and des-
tination, and the optional operand is ARn. AR is bold and n is italic; if you
choose to use ARn, you must type the letters A and R and then supply a
chosen value for n (in this case, a value from 0 to 7). Here is an example:

BLDD *, #310h, AR3

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Notational Conventions / Information About Cautions

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

This section describes related TI documents that can be ordered by calling
the Texas Instruments Literature Response Center at (800) 477–8924. When
ordering, please identify the document by its title and literature number.

The following data sheets contain the electrical and timing specifications for
the TMS320C20x devices, as well as signal descriptions and pinouts for all of
the available packages:

� TMS320C20x data sheets (literature number SPRS025 and SPRS065)
� TMS320F20x data sheet (literature number SPRS050). This data sheet

covers the TMS320F20x devices that have on-chip flash memory.

The books listed below provide additional information about using the
TMS320C2xx devices and related support tools, as well as more general in-
formation about using the TMS320 family of DSPs.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started
Guide (literature number SPRU121) describes how to install the
TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly
language tools and the C compiler for the ’C1x, ’C2x, ’C2xx, and ’C5x de-
vices. The installation for MS-DOS , OS/2 , SunOS , and Solaris
systems is covered.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-
erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature
number SPRU024) describes the ’C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the ’C2x, ’C2xx, and ’C5x genera-
tions of devices.

TMS320C2xx PC Emulator Installation Guide (literature number SPRU152)
describes the installation of the XDS510 PC emulator and the C source
debugger for OS/2 and MS-Windows operating systems.

TMS320C2xx C Source Debugger User’s Guide (literature number
SPRU151) tells you how to invoke the ’C2xx emulator and simulator ver-
sions of the C source debugger interface. This book discusses various
aspects of the debugger interface, including window management, com-
mand entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

Related Documentation From Texas Instruments

viiRead This First

TMS320C2xx Simulator Getting Started (literature number SPRU137)
describes how to install the TMS320C2xx simulator and the C source
debugger for the ’C2xx. The installation for MS-DOS , PC-DOS ,
SunOS , Solaris , and HP-UX systems is covered.

TMS320C2xx Emulator Getting Started Guide (literature number
SPRU209) tells you how to install the Windows 3.1 and Windows 95
versions of the ’C2xx emulator and C source debugger interface.

XDS51x Emulator Installation Guide (literature number SPNU070)
describes the installation of the XDS510 , XDS510PP , and
XDS510WS emulator controllers. The installation of the XDS511
emulator is also described.

JTAG/MPSD Emulation Technical Reference (literature number SPDU079)
provides the design requirements of the XDS510 emulator controller,
discusses JTAG designs (based on the IEEE 1149.1 standard), and
modular port scan device (MPSD) designs.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Digital Signal Processing Applications with the TMS320 Family, Vol-
umes 1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017)
Volumes 1 and 2 cover applications using the ’C10 and ’C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors as well as the ’C30 floating-point processor.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125). Presents solutions to common design problems using ’C2x,
’C3x, ’C4x, ’C5x, and other TI DSPs.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Related Articles

viii

Related Articles

“A Greener World Through DSP Controllers”, Panos Papamichalis, DSP &
Multimedia Technology, September 1994.

“A Single-Chip Multiprocessor DSP for Image Processing—TMS320C80”,
Dr. Ing. Dung Tu, Industrie Elektronik, Germany, March 1995.

“Application Guide with DSP Leading-Edge Technology”, Y. Nishikori, M. Hat-
tori, T. Fukuhara, R.Tanaka, M. Shimoda, I. Kudo, A.Yanagitani, H. Miyaguchi,
et al., Electronics Engineering, November 1995.

“Approaching the No-Power Barrier”, Jon Bradley and Gene Frantz, Electronic
Design, January 9, 1995.

“Beware of BAT: DSPs Add Brilliance to New Weapons Systems”, Panos Pa-
pamichalis, DSP & Multimedia Technology, October 1994.

“Choose DSPs for PC Signal Processing”, Panos Papamichalis, DSP & Multi-
media Technology, January/February 1995.

“Developing Nations Take Shine to Wireless”, Russell MacDonald, Kara
Schmidt and Kim Higden, EE Times, October 2, 1995.

“Digital Signal Processing Solutions Target Vertical Application Markets”, Ron
Wages, ECN, September 1995.

“Digital Signal Processors Boost Drive Performance”, Tim Adcock, Data Stor-
age, September/October 1995.

“DSP and Speech Recognition, An Origin of the Species”, Panos Papamichal-
is, DSP & Multimedia Technology, July 1994.

“DSP Design Takes Top-Down Approach”, Andy Fritsch and Kim Asal, DSP
Series Part III, EE Times, July 17, 1995.

“DSPs Advance Low-Cost ‘Green’ Control”, Gregg Bennett, DSP Series Part
II, EE Times, April 17, 1995.

“DSPs Do Best on Multimedia Applications”, Doug Rasor, Asian Computer
World, October 9–16, 1995.

“DSPs: Speech Recognition Technology Enablers”, Gene Frantz and Gregg
Bennett, I&CS, May 1995.

“Easing JTAG Testing of Parallel-Processor Projects”, Tony Coomes, Andy
Fritsch, and Reid Tatge, Asian Electronics Engineer, Manila, Philippines, No-
vember 1995.

Related Articles

ixRead This First

“Fixed or Floating? A Pointed Question in DSPs”, Jim Larimer and Daniel
Chen, EDN, August 3, 1995.

“Function-Focused Chipsets: Up the DSP Integration Core”, Panos Papa-
michalis, DSP & Multimedia Technology, March/April 1995.

“GSM: Standard, Strategien und Systemchips”, Edgar Auslander, Elektronik
Praxis, Germany, October 6, 1995.

“High Tech Copiers to Improve Images and Reduce Paperwork”, Karl Guttag,
Document Management, July/August 1995.

“Host-Enabled Multimedia: Brought to You by DSP Solutions”, Panos Papa-
michalis, DSP & Multimedia Technology, September/October 1995.

“Integration Shrinks Digital Cellular Telephone Designs”, Fred Cohen and
Mike McMahan, Wireless System Design, November 1994.

“On-Chip Multiprocessing Melds DSPs”, Karl Guttag and Doug Deao, DSP Se-
ries Part III, EE Times, July 18, 1994.

“Real-Time Control”, Gregg Bennett, Appliance Manufacturer, May 1995.

“Speech Recognition”, P.K. Rajasekaran and Mike McMahan, Wireless De-
sign & Development, May 1995.

“Telecom Future Driven by Reduced Milliwatts per DSP Function”, Panos Pa-
pamichalis, DSP & Multimedia Technology, May/June 1995.

“The Digital Signal Processor Development Environment”, Greg Peake, Em-
bedded System Engineering, United Kingdom, February 1995.

“The Growing Spectrum of Custom DSPs”, Gene Frantz and Kun Lin, DSP Se-
ries Part II, EE Times, April 18, 1994.

“The Wide World of DSPs, ” Jim Larimer, Design News, June 27, 1994.

“Third-Party Support Drives DSP Development for Uninitiated and Experts
Alike”, Panos Papamichalis, DSP & Multimedia Technology, December
1994/January 1995.

“Toward an Era of Economical DSPs”, John Cooper, DSP Series Part I, EE
Times, Jan. 23, 1995.

Trademarks

x

Trademarks

TI, 320 Hotline On-line, XDS510, XDS510PP, XDS510WS, and XDS511 are
trademarks of Texas Instruments Incorporated.

HP-UX is a trademark of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

PAL is a registered trademark of Advanced Micro Devices, Inc.

OS/2, PC, and PC-DOS are trademarks of International Business Machines
Corporation.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

If You Need Assistance

xiRead This First

If You Need Assistance. . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

Contents

xiii

Contents

1 Introduction 1-1.
Summarizes the features of the TMS320 family of products and presents typical applications.
Describes the TMS320C20x DSP and lists its key features.
1.1 TMS320 Family 1-2.
1.2 TMS320C20x Generation 1-4.
1.3 Key Features of the TMS320C20x 1-5.

2 Architectural Overview 2-1.
Summarizes the TMS320C20x architecture. Provides information about the CPU, bus struc-
ture, memory, on-chip peripherals, and scanning logic.
2.1 ’C20x Bus Structure 2-3.
2.2 Central Processing Unit 2-5.
2.3 Memory and I/O Spaces 2-7.
2.4 Program Control 2-10.
2.5 On-Chip Peripherals 2-11.
2.6 Scanning-Logic Circuitry 2-13.

3 Central Processing Unit 3-1.
Describes the TMS320C20x CPU. Includes information about the central arithmetic logic unit,
the accumulator, the shifters, the multiplier, and the auxiliary register arithmetic unit. Concludes
with a description of the status register bits.
3.1 Input Scaling Section 3-3.
3.2 Multiplication Section 3-5.
3.3 Central Arithmetic Logic Section 3-8.
3.4 Auxiliary Register Arithmetic Unit (ARAU) 3-12.
3.5 Status Registers ST0 and ST1 3-15.

4 Memory and I/O Spaces 4-1.
Describes the configuration and use of the TMS320C20x memory and I/O spaces. Includes
memory/address maps and descriptions of the HOLD (direct memory access) operation and
the on-chip bootloader.
4.1 Overview of the Memory and I/O Spaces 4-2.
4.2 Program Memory 4-5.
4.3 Local Data Memory 4-7.
4.4 Global Data Memory 4-11.
4.5 I/O Space 4-14.
4.6 Direct Memory Access Using the HOLD Operation 4-18.
4.7 Device-Specific Information 4-22.
4.8 ’C203 Bootloader 4-30.
4.9 ’C206/LC206 Bootloader 4-39.

Contents

xiv

5 Program Control 5-1.
Describes the TMS320C20x hardware and software features used in controlling program flow,
including program-address generation logic and interrupts. Also describes the reset operation
and power-down mode.

5.1 Program-Address Generation 5-2.
5.2 Pipeline Operation 5-7.
5.3 Branches, Calls, and Returns 5-8.
5.4 Conditional Branches, Calls, and Returns 5-10.
5.5 Repeating a Single Instruction 5-14.
5.6 Interrupts 5-15.
5.7 Reset Operation 5-35.
5.8 Power-Down Mode 5-40.

6 Addressing Modes 6-1.
Describes the operation and use of the TMS320C20x data-memory addressing modes.

6.1 Immediate Addressing Mode 6-2.
6.2 Direct Addressing Mode 6-4.
6.3 Indirect Addressing Mode 6-9.

7 Assembly Language Instructions 7-1.
Describes the TMS320C20x assembly language instructions in alphabetical order. Begins with
a summary of the TMS320C20x instructions.

7.1 Instruction Set Summary 7-2.
7.2 How To Use the Instruction Descriptions 7-12.
7.3 Instruction Descriptions 7-20.

8 On-Chip Peripherals 8-1.
Introduces the TMS320C20x on-chip peripherals. Describes the clock generator, the
CLKOUT1-pin control register, the timer, the wait-state generator, and the general-purpose I/O
pins.

8.1 Control of On-Chip Peripherals 8-2.
8.2 Clock Generator 8-4.
8.3 CLKOUT1-Pin Control (CLK) Register 8-7.
8.4 Timer 8-8.
8.5 Wait-State Generator 8-15.
8.6 General-Purpose I/O Pins 8-18.

9 Synchronous Serial Port 9-1.
Describes the operation and control of the TMS320C20x on-chip synchronous serial port.

9.1 Overview of the Synchronous Serial Port 9-2.
9.2 Components and Basic Operation 9-3.
9.3 Controlling and Resetting the Port 9-8.
9.4 Managing the Contents of the FIFO Buffers 9-15.
9.5 Transmitter Operation 9-16.

Contents

xv

9.6 Receiver Operation 9-22.
9.7 Troubleshooting 9-25.
9.8 Enhanced Synchronous Serial Port (ESSP) 9-29.
9.9 ESSP Pins 9-30.
9.10 ESSP Registers 9-32.
9.11 ESSP Register Programming Considerations 9-40.

10 Asynchronous Serial Port 10-1.
Describes the operation and control of the TMS320C20x on-chip asynchronous serial port.
10.1 Overview of the Asynchronous Serial Port 10-2.
10.2 Components and Basic Operation 10-3.
10.3 Controlling and Resetting the Port 10-7.
10.4 Transmitter Operation 10-19.
10.5 Receiver Operation 10-20.

11 TMS320C209 11-1.
Describes how the TMS320C209 differs from other TMS320C20x devices and is a central re-
source for all the TMS320C209-specific control registers and configuration information.
11.1 ’C209 Versus Other ’C20x Devices 11-2.
11.2 ’C209 Memory and I/O Spaces 11-5.
11.3 ’C209 Interrupts 11-10.
11.4 ’C209 On-Chip Peripherals 11-15.

A Register Summary A-1.
Is a concise, central resource for information about the TMS320C20x on-chip registers. In-
cludes addresses, reset values, and descriptive illustrations for the registers.
A.1 Addresses and Reset Values A-2.
A.2 Register Descriptions A-4.

B TMS320F206 Flash Serial Loader B-1.
Discusses the TMS320F206 Flash Serial Loader.
B.1 TMS320F206 Flash Serial Loader Features B-2.
B.2 Functional Description B-3.
B.3 Serial Loader Code B-6.

C TMS320C1x/C2x/C20x/C5x Instruction Set Comparison C-1.
Discusses the compatibility of program code among the following devices: TMS320C1x,
TMS320C2x, TMS320C20x, and TMS320C5x.
C.1 Using the Instruction Set Comparison Table C-2.
C.2 Enhanced Instructions C-5.
C.3 Instruction Set Comparison Table C-6.

D Program Examples D-1.
Presents examples of assembly language programs for the TMS320C20x, primarily examples
for the on-chip peripherals.
D.1 About These Program Examples D-2.
D.2 Shared Program Code D-5.
D.3 Task-Specific Program Code D-8.
D.4 Introduction to Generating Bootloader Code D-23.

Contents

xvi

E Submitting ROM Codes to TI E-1.
Explains the process for submitting custom program code to TI for designing masks for the on-
chip ROM on a TMS320 DSP.

F Design Considerations for Using XDS510 Emulator F-1.
Describes the JTAG emulator cable and how to construct a 14-pin connector on your target sys-
tem and how to connect the target system to the emulator.

F.1 Designing Your Target System’s Emulator Connector (14-Pin Header) F-2.
F.2 Bus Protocol F-4.
F.3 Emulator Cable Pod F-5.
F.4 Emulator Cable Pod Signal Timing F-6.
F.5 Emulation Timing Calculations F-7.
F.6 Connections Between the Emulator and the Target System F-10.
F.7 Physical Dimensions for the 14-Pin Emulator Connector F-14.
F.8 Emulation Design Considerations F-16.

G Glossary G-1.
Explains terms, abbreviations, and acronyms used throughout this book.

Figures

xvii

Figures

2–1 Overall Block Diagram of the ’C20x 2-2.
2–2 Bus Structure Block Diagram 2-4.
3–1 Block Diagram of the Input Scaling, Central Arithmetic Logic, and

Multiplication Sections of the CPU 3-2.
3–2 Block Diagram of the Input Scaling Section 3-3.
3–3 Operation of the Input Shifter for SXM = 0 3-4.
3–4 Operation of the Input Shifter for SXM = 1 3-4.
3–5 Block Diagram of the Multiplication Section 3-5.
3–6 Block Diagram of the Central Arithmetic Logic Section 3-8.
3–7 Shifting and Storing the High Word of the Accumulator 3-11.
3–8 Shifting and Storing the Low Word of the Accumulator 3-11.
3–9 ARAU and Related Logic 3-12.
3–10 Status Register ST0 3-15.
3–11 Status Register ST1 3-15.
4–1 Interface With External Program Memory 4-6.
4–2 Pages of Data Memory 4-7.
4–3 Interface With External Local Data Memory 4-10.
4–4 GREG Register Set to Configure 8K for Global Data Memory 4-12.
4–5 Global and Local Data Memory for GREG = 11100000 4-12.
4–6 Using 8000h–FFFFh for Local and Global External Memory 4-13.
4–7 I/O Address Map for the ’C20x 4-14.
4–8 I/O Port Interface Circuitry 4-17.
4–9 HOLD Deasserted Before Reset Deasserted 4-20.
4–10 Reset Deasserted Before HOLD Deasserted 4-21.
4–11 ’C203 Address Map 4-23.
4–12 TMS320C206, TMS320LC206 Memory Map Configurations 4-26.
4–13 TMS320F206 Memory Map Configuration 4-28.
4–14 PMST Register Selection for RD 4-29.
4–15 Simplified Block Diagram of Bootloader Operation 4-30.
4–16 Connecting the EPROM to the Processor 4-31.
4–17 Storing the Program in the EPROM 4-33.
4–18 Program Code Transferred From 8-Bit EPROM to 16-Bit RAM 4-35.
4–19 Interrupt Vectors Transferred First During Boot Load 4-36.
4–20 Program Memory Status (PMST) Register – (I/O space FFE4h) 4-40.
4–21 Enhanced ’C206 Bootloader Options 4-42.
4–22 Boot-load Flowchart 4-43.

Figures

xviii

4–23 Destination Address Space for Programs in Program Memory 4-44.
4–24 16-Bit Word Transfer 4-47.
4–25 Host-’C206 Interface for SSP Boot-load Option 4-48.
4–26 Figure 9. 8-Bit Word Transfer 4-49.
4–27 16-Bit Source Address for Parallel EPROM Boot Mode 4-51.
4–28 Handshake Protocol 4-53.
4–29 16-Bit Entry Address for Warm-Boot Mode 4-54.
5–1 Program-Address Generation Block Diagram 5-2.
5–2 A Push Operation 5-5.
5–3 A Pop Operation 5-6.
5–4 4-Level Pipeline Operation 5-7.
5–5 INT2/INT3 Request Flow Chart 5-18.
5–6 Maskable Interrupt Operation Flow Chart 5-20.
5–7 ’C20x Interrupt Flag Register (IFR) — Data-Memory Address 0006h 5-21.
5–8 ’C20x Interrupt Mask Register (IMR) — Data-Memory Address 0004h 5-23.
5–9 ’C20x Interrupt Control Register (ICR) — I/O-Space Address FFECh 5-26.
5–10 Nonmaskable Interrupt Operation Flow Chart 5-29.
5–11 Direct Addressing Context Save 5-33.
5–12 Indirect Addressing Context Save 5-34.
6–1 Instruction Register Contents for Example 6–1 6-2.
6–2 Two Words Loaded Consecutively to the Instruction Register in Example 6–2 6-3.
6–3 Pages of Data Memory 6-4.
6–4 Instruction Register (IR) Contents in Direct Addressing Mode 6-5.
6–5 Generation of Data Addresses in Direct Addressing Mode 6-5.
6–6 Instruction Register Content in Indirect Addressing 6-12.
7–1 Bit Numbers and Their Corresponding Bit Codes for BIT Instruction 7-45.
7–2 Bit Numbers and Their Corresponding Bit Codes for BITT Instruction 7-47.
7–3 LST #0 Operation 7-87.
7–4 LST #1 Operation 7-88.
8–1 Using the Internal Oscillator 8-4.
8–2 Using an External Oscillator 8-5.
8–3 ’C20x CLK Register — I/O-Space Address FFE8h 8-7.
8–4 Timer Functional Block Diagram 8-8.
8–5 ’C20x Timer Control Register (TCR) — I/O-Space Address FFF8h 8-11.
8–6 ’C20x Wait-State Generator Control Register (WSGR) —

I/O-Space Address FFFCh 8-16.
8–7 BIO Timing Diagram Example 8-19.
9–1 Synchronous Serial Port Block Diagram 9-3.
9–2 2-Way Serial Port Transfer With External Frame Sync and External Clock 9-5.
9–3 Synchronous Serial Port Control Register (SSPCR) — I/O-Space FFF1h 9-8.
9–4 Burst Mode Transmission With Internal Frame Sync and

Multiple Words in the Buffer 9-17.
9–5 Burst Mode Transmission With External Frame Sync 9-18.
9–6 Continuous Mode Transmission With Internal Frame Sync 9-20.

Figures

xix

9–7 Continuous Mode Transmission With External Frame Sync 9-21.
9–8 Burst Mode Reception 9-23.
9–9 Continuous Mode Reception 9-24.
9–10 Test Bits in the SSPCR 9-25.
9–11 Synchronous Serial Port Status (SSPST) Register — I/O address FFF2h 9-32.
9–12 Synchronous Serial Port Multichannel (SSPMC) Register — FFF3h 9-34.
9–13 Synchronous Serial Port Count (SSPCT) Register — FFFBh 9-38.
9–14 Typical Four-Channel Codec Interface 9-41.
9–15 Four-Channel 8-Bit CODEC Interface Timing Example 9-41.
9–16 Four-Channel 16-Bit CODEC Interface Timing Example 9-42.
10–1 Asynchronous Serial Port Block Diagram 10-3.
10–2 Typical Serial Link Between a ’C20x Device and a Host CPU 10-6.
10–3 Asynchronous Serial Port Control Register (ASPCR) —

I/O-Space Address FFF5h 10-7.
10–4 I/O Status Register (IOSR) — I/O-Space Address FFF6h 10-10.
10–5 Example of the Logic for Pins IO0–IO3 10-15.
10–6 Data Transmit 10-19.
10–7 Data Receive 10-20.
11–1 ’C209 Address Maps 11-6.
11–2 ’C209 Interrupt Flag Register (IFR) — Data-Memory Address 0006h 11-12.
11–3 ’C209 Interrupt Mask Register (IMR) — Data-Memory Address 0004h 11-13.
11–4 ’C209 Timer Control Register (TCR) — I/O Address FFFCh 11-16.
11–5 ’C209 Wait-State Generator Control Register (WSGR) — I/O Address FFFFh 11-18.
B–1 ’F206 Memory Map and Serial Port Connections B-2.
B–2 TMS320F206 Flash Serial Loader – ’F206 Level 1 Flow Chart B-5.
D–1 Procedure for Generating Executable Files D-2.
E–1 TMS320 ROM Code Submittal Flow Chart E-2.
F–1 14-Pin Header Signals and Header Dimensions F-2.
F–2 Emulator Cable Pod Interface F-5.
F–3 Emulator Cable Pod Timings F-6.
F–4 Emulator Connections Without Signal Buffering F-10.
F–5 Emulator Connections With Signal Buffering F-11.
F–6 Target-System-Generated Test Clock F-12.
F–7 Multiprocessor Connections F-13.
F–8 Pod/Connector Dimensions F-14.
F–9 14-Pin Connector Dimensions F-15.
F–10 Connecting a Secondary JTAG Scan Path to a Scan Path Linker F-17.
F–11 EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns F-21.
F–12 Suggested Timings for the EMU0 and EMU1 Signals F-22.
F–13 EMU0/1 Configuration With Additional AND Gate to Meet Timing

Requirements of Greater Than 25 ns F-23.
F–14 EMU0/1 Configuration Without Global Stop F-24.
F–15 TBC Emulation Connections for n JTAG Scan Paths F-25.

Tables

xx

Tables

1–1 Typical Applications for TMS320 DSPs 1-3.
1–2 ’C20x Generation Summary 1-4.
2–1 Program and Data Memory on the TMS320C20x Devices 2-7.
2–2 Serial Ports on the ’C20x Devices 2-12.
3–1 Product Shift Modes for the Product-Scaling Shifter 3-7.
3–2 Bit Fields of Status Registers ST0 and ST1 3-16.
4–1 Pins for Interfacing With External Memory and I/O Spaces 4-3.
4–2 Data Page 0 Address Map 4-8.
4–3 Global Data Memory Configurations 4-11.
4–4 On-Chip Registers Mapped to I/O Space 4-16.
4–5 ’C203 Program-Memory Configuration Options 4-24.
4–6 ’C203 Data-Memory Configuration Options 4-25.
4–7 PMST Register Bit Descriptions 4-40.
4–8 Bootloader-Pin Configuration 4-41.
5–1 Program-Address Generation Summary 5-3.
5–2 Address Loading to the Program Counter 5-4.
5–3 Conditions for Conditional Branches, Calls, and Returns 5-10.
5–4 Groupings of Conditions 5-11.
5–5 ’C20x Interrupt Locations and Priorities 5-16.
5–6 ’C20x IFR — Data-Memory Address 0006h Bit Descriptions 5-21.
5–7 ’C20x IMR — Data-Memory Address 0004h Bit Descriptions 5-23.
5–8 ’C20x ICR — I/O-Space Address FFECh Bit Descriptions 5-26.
5–9 Reset Values of On-Chip Registers Mapped to Data Space 5-37.
5–10 Reset Values of On-Chip Registers Mapped to I/O Space 5-37.
5–11 Reset Conditions for the ’C206/’LC206 5-38.
6–1 Indirect Addressing Operands 6-10.
6–2 Effects of the ARU Code on the Current Auxiliary Register 6-13.
6–3 Field Bits and Notation for Indirect Addressing 6-14.
7–1 Accumulator, Arithmetic, and Logic Instructions 7-4.
7–2 Auxiliary Register Instructions 7-7.
7–3 TREG, PREG, and Multiply Instructions 7-8.
7–4 Branch Instructions 7-9.
7–5 Control Instructions 7-9.
7–6 I/O and Memory Instructions 7-11.
7–7 Product Shift Modes 7-37.
7–8 Product Shift Modes 7-167.

Tables

xxi

8–1 Peripheral Register Locations and Reset Conditions 8-2.
8–2 ’C20x Input Clock Modes 8-6.
8–3 ’C20x TCR — I/O Space Address FFF8h Bit Descriptions 8-11.
8–4 ’C20x WSGR — I/O Space Address FFFCh Bit Descriptions 8-16.
8–5 Setting the Number of Wait States With the ’C20x WSGR Bits 8-17.
9–1 SSP Interface Pins 9-4.
9–2 SSPCR — I/O-Space Address FFF1h Bit Descriptions 9-9.
9–3 Selecting Transmit Clock and Frame Sync Sources 9-13.
9–4 Run and Emulation Modes 9-26.
9–5 TMS320C20x Enhanced Synchronous Serial Port Interface Signals 9-30.
9–6 ESSP Registers 9-32.
9–7 SSPST Register — I/O address FFF2h Bit Descriptions 9-33.
9–8 SSPMC Register — FFF3h Bit Descriptions 9-35.
9–9 Typical CLKX/FSX Rates and Their Prescaler Values 9-38.
9–10 Options/Functions for Burst Mode and Continuous Mode 9-43.
9–11 Serial Port Configuration – Burst Mode 9-44.
9–12 Serial Port Configuration – Continuous Mode 9-45.
10–1 Asynchronous Serial Port Interface Pins 10-4.
10–2 ASPCR — I/O Space Address FFF5h Bit Descriptions 10-7.
10–3 IOSR — I/O Space Address FFF6h Bit Descriptions 10-10.
10–4 Common Baud Rates and the Corresponding BRD Values 10-14.
10–5 Configuring Pins IO0–IO3 with ASPCR Bits CIO0–CIO3 10-16.
10–6 Viewing the Status of Pins IO0–IO3 With IOSR Bits IO0–IO3 and DIO0–DIO3 10-17.
11–1 ’C209 Program-Memory Configuration Options 11-8.
11–2 ’C209 Data-Memory Configuration Options 11-9.
11–3 ’C209 On-Chip Registers Mapped to I/O Space 11-9.
11–4 ’C209 Interrupt Locations and Priorities 11-10.
11–5 ’C209 IFR — Data Memory Address 0006h Bit Descriptions 11-12.
11–6 ’C209 IMR — Data Memory Address 0004h Bit Descriptions 11-13.
11–7 ’C209 Input Clock Modes 11-16.
11–8 ’C209 TCR — I/O Address FFFCh Bit Descriptions 11-16.
11–9 ’C209 WSGR — I/O Address FFFFh Bit Descriptions 11-18.
A–1 Reset Values of the Status Registers A-2.
A–2 Addresses and Reset Values of On-Chip Registers Mapped to Data Space A-2.
A–3 Addresses and Reset Values of On-Chip Registers Mapped to I/O Space A-2.
C–1 Symbols and Acronyms Used in the Instruction Set Comparison Table C-3.
C–2 Summary of Enhanced Instructions C-5.
D–1 Shared Programs in This Appendix D-3.
D–2 Task-Specific Programs in This Appendix D-3.
F–1 14-Pin Header Signal Descriptions F-3.
F–2 Emulator Cable Pod Timing Parameters F-6.

Examples

xxii

Examples

4–1 An Interrupt Service Routine Supporting INT1 and HOLD 4-19.
6–1 RPT Instruction Using Short-Immediate Addressing 6-2.
6–2 ADD Instruction Using Long-Immediate Addressing 6-3.
6–3 Using Direct Addressing with ADD (Shift of 0 to 15) 6-7.
6–4 Using Direct Addressing with ADD (Shift of 16) 6-7.
6–5 Using Direct Addressing with ADDC 6-8.
6–6 Selecting a New Current Auxiliary Register 6-12.
6–7 No Increment or Decrement 6-15.
6–8 Increment by 1 6-15.
6–9 Decrement by 1 6-16.
6–10 Increment by Index Amount 6-16.
6–11 Decrement by Index Amount 6-16.
6–12 Increment by Index Amount With Reverse Carry Propagation 6-16.
6–13 Decrement by Index Amount With Reverse Carry Propagation 6-16.
D–1 Generic Command File (c203.cmd) D-5.
D–2 Header File With I/O Register Declarations (init.h) D-6.
D–3 Header File With Interrupt Vector Declarations (vector.h) D-7.
D–4 Implementing Simple Delay Loops (delay.asm) D-8.
D–5 Testing and Using the Timer (timer.asm) D-9.
D–6 Testing and Using Interrupt INT1 (intr1.asm) D-10.
D–7 Implementing a HOLD Operation (hold.asm) D-11.
D–8 Testing and Using Interrupts INT2 and INT3 (intr23.asm) D-12.
D–9 Asynchronous Serial Port Transmission (uart.asm) D-13.
D–10 Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm) D-14.
D–11 Testing and Using Automatic Baud-Rate Detection on

Asynchronous Serial Port (autobaud.asm) D-16.
D–12 Testing and Using Asynchronous Serial Port Delta Interrupts (bitio.asm) D-18.
D–13 Synchronous Serial Port Continuous Mode Transmission (ssp.asm) D-20.
D–14 Using Synchronous Serial Port With Codec Device (ad55.asm) D-21.
D–15 Linker Command File D-24.
D–16 Hex Conversion Utility Command File D-24.
F–1 Key Timing for a Single-Processor System Without Buffers F-8.
F–2 Key Timing for a Single- or Multiple-Processor System With

Buffered Input and Output F-8.
F–3 Key Timing for a Single-Processor System Without Buffering (SPL) F-19.
F–4 Key Timing for a Single- or Multiprocessor-System With

Buffered Input and Output (SPL) F-19.

1-1Introduction

Introduction

The TMS320C20x (’C20x) is one of several fixed-point generations of DSPs
in the TMS320 family. The ’C20x is source-code compatible with the
TMS320C2x. Much of the code written for the ’C2x can be reassembled to run
on a ’C20x device. In addition, the ’C20x generation is upward compatible with
the ’C5x generation of DSPs.

Topic Page

1.1 TMS320 Family 1-2.

1.2 TMS320C20x Generation 1-4.

1.3 Key Features of the TMS320C20x 1-5.

Chapter 1

TMS320 Family

 1-2

1.1 TMS320 Family

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs have an architecture de-
signed specifically for real-time signal processing. The following characteris-
tics make this family the ideal choice for a wide range of processing applica-
tions:

� Flexible instruction sets
� High-speed performance
� Innovative parallel architectures
� Cost effectiveness

1.1.1 History, Development, and Advantages of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the “Product of the Year” title. The next
generation devices continue meeting new performance levels for TI DSPs.

Devices within a generation of the TMS320 family have the same CPU struc-
ture but different on-chip memory and peripheral configurations. Spin-off de-
vices use new combinations of on-chip memory and peripherals to satisfy a
wide range of needs in the worldwide electronics market. By integrating
memory and peripherals onto a single chip, TMS320 devices reduce system
cost and save circuit board space.

TMS320 Family

1-3Introduction

1.1.2 Typical Applications for the TMS320 Family

Table 1–1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems such as filtering and vocoding. They also support complex
applications that often require multiple operations to be performed simulta-
neously.

Table 1–1. Typical Applications for TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D rotation
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 28 800-bps modems
Adaptive equalizers
ADPCM transcoders
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech applications
Voice mail

TMS320C20x Generation

1-4

1.2 TMS320C20x Generation

Texas Instruments uses static CMOS integrated-circuit technology to fabricate
the TMS320C20x DSPs. The architectural design of the ’C20x is based on that
of the ’C5x. The operational flexibility and speed of the ’C20x and ’C5x are a
result of an advanced, modified Harvard architecture (which has separate
buses for program and data memory), a multilevel pipeline, on-chip peripher-
als, on-chip memory, and a highly specialized instruction set. The ’C20x per-
forms up to 40 MIPS (million instructions per second).

The ’C20x generation offers the following benefits:

� Enhanced TMS320 architectural design for increased performance and
versatility

� Modular architectural design for fast development of additional spin-off
devices

� Advanced IC processing technology for increased performance

� Fast and easy performance upgrades for ’C1x and ’C2x source code,
which is upward compatible with ’C20x source code

� Enhanced instruction set for faster algorithms and for optimized high-level
language operation

� New static design techniques for minimizing power consumption

Table 1–2 provides an overview of the basic features of the ’C20x DSPs.

Table 1–2. ’C20x Generation Summary

Cycle Operating
On-Chip Memory MEM Serial Ports I/O

Device

Cycle
Time
(ns)

Operating
Voltage
(Vdd) RAM ROM Flash

Off-
Chip Sync Async PAR DMA Timers Package

TMS320C203 25/35/50 5V 544 – – 192K 1 1 64K x 16 Ext. 1 100 TQFP†

TMS320LC203 50 3.3V 544 – – 192K 1 1 64K x 16 Ext. 1 100 TQFP†

TMS320F206 50 5V 4.5K – 32K 192K 1 1 64K x 16 Ext. 1 100 TQFP†

TMS320C209 35/50 5V 4.5K 4K – 192K – – 64K x 16 Ext. 1 80 TQFP†

TMS320C206 25 3.3V 4.5K 32K – 192K 1 1 64K x 16 Ext. 1 100 TQFP†

TMS320LC206 25 3.3V 4.5K 32K – 192K 1 1 64K x 16 Ext. 1 100 TQFP†

† TQFP = Thin quad flat pack

Key Features of the TMS320C20x

1-5Introduction

1.3 Key Features of the TMS320C20x

Key features on the various ’C20x devices are:

� Speed:

� 50-, 35-, or 25-ns execution time of a single-cycle instruction

� 20, 28.5, or 40 MIPS

� Code compatibility with other TMS320 fixed-point devices:

� Source-code compatible with all ’C1x and ’C2x devices

� Upward compatible with the ’C5x devices

� Memory:

� 224K words of addressable memory space (64K words of program
space, 64K words of data space, 64K words of I/O space, and 32K
words of global space)

� 544 words of dual-access on-chip RAM (288 words for data and 256
words for program/data)

� 32K words on-chip ROM or 32K words on-chip flash memory (on
’C206 and ’F206)

� 4K words of single-access on-chip RAM (on ’C206 and ’F206)

� CPU:

� 32-bit arithmetic logic unit (CALU)

� 32-bit accumulator

� 16-bit × 16-bit parallel multiplier with 32-bit product capability

� Three scaling shifters

� Eight 16-bit auxiliary registers with a dedicated arithmetic unit for
indirect addressing of data memory

� Program control:

� 4-level pipeline operation

� 8-level hardware stack

� User-maskable interrupt lines

Key Features of the TMS320C20x

1-6

� Instruction set:

� Single-instruction repeat operation

� Single-cycle multiply/accumulate instructions

� Memory block move instructions for better program/data
management

� Indexed-addressing capability

� Bit-reversed indexed-addressing capability for radix-2 FFTs

� On-chip peripherals:

� Software-programmable timer

� Software-programmable wait-state generator for program, data, and
I/O memory spaces

� Oscillator and phase-locked loop (PLL) to implement clock options:
×1, ×2, ×4, and ÷2 (only ×2 and ÷2 available on ’C209)

� CLK register for turning the CLKOUT1 pin on and off (not available on
’C209)

� Synchronous serial port (not available on ’C209)

� Asynchronous serial port (not available on ’C209)

� On-chip scanning-logic circuitry (IEEE Standard 1149.1) for emulation
and testing purposes

� Power:

� 5- or 3.3-V static CMOS technology

� Power-down mode to reduce power consumption

� Packages:

� 100-pin TQFP (thin quad flat pack)

� 80-pin TQFP for the ’C209

2-1Architectural Overview

Architectural Overview

This chapter provides an overview of the architectural structure and
components of the ’C20x. The ’C20x DSPs use an advanced, modified
Harvard architecture that maximizes processing power by maintaining
separate bus structures for program memory and data memory. The three
main components of the ’C20x are the central processing unit (CPU), memory,
and on-chip peripherals.

Figure 2–1 shows an overall block diagram of the ’C20x.

Note:

All ’C20x devices use the same central processing unit (CPU), bus structure,
and instruction set, but the ’C209 has some notable differences. For
example, although certain peripheral control registers have the same names
on all ’C20x devices, these registers are located at different I/O addresses
on the ’C209. See Chapter 11 for a detailed description of the differences on
the ’C209.

Topic Page

2.1 ’C20x Bus Structure 2-3.

2.2 Central Processing Unit 2-5.

2.3 Memory and I/O Spaces 2-7.

2.4 Program Control 2-10.

2.5 On-Chip Peripherals 2-11.

2.6 Scanning-Logic Circuitry 2-13.

Chapter 2

 2-2

Figure 2–1. Overall Block Diagram of the ’C20x

Program
control

PRDB

PRDB

DRDB

DRDB

DWEB

DRAB

DWAB

PAB

DWEB

Stack 8 × 16

MUX

MSTACKPAR

NPAR

MUX

PC

ROM/flash

SARAM

DARAM
B0

DARAM
B1, B2

ST0

IMR

IFR

GREG

ST1

MUX

Input shifter

Multiplier
16 × 16TREG MUX

PREG

Product shifter

Accumulator

Output shifter

Auxiliary
registers
8 × 16

CALU

ARAU

MUX

MUXMUX

MUX

AR0

DRAB

DWAB

PAB

Note: The I/O-mapped (peripheral) registers are not part of the core; they are accessed as shown in Figure 2–2 on page 2-4.

Architectural Overview

’C20x Bus Structure

2-3Architectural Overview

2.1 ’C20x Bus Structure

Figure 2–2 shows a block diagram of the ’C20x bus structure. The ’C20x inter-
nal architecture is built around six 16-bit buses:

� PAB. The program address bus provides addresses for both reads from
and writes to program memory.

� DRAB. The data-read address bus provides addresses for reads from
data memory.

� DWAB. The data-write address bus provides addresses for writes to data
memory.

� PRDB. The program read bus carries instruction code and immediate
operands, as well as table information, from program memory to the CPU.

� DRDB. The data read bus carries data from data memory to the central
arithmetic logic unit (CALU) and the auxiliary register arithmetic unit
(ARAU).

� DWEB. The data write bus carries data to both program memory and data
memory.

Having separate address buses for data reads (DRAB) and data writes
(DWAB) allows the CPU to read and write in the same machine cycle.

Separate program and data spaces allow simultaneous access to program
instructions and data. For example, while data is multiplied, a previous product
can be added to the accumulator, and, at the same time, a new address can
be generated. Such parallelism supports a set of arithmetic, logic, and bit-ma-
nipulation operations that can all be performed in a single machine cycle. In
addition, the ’C20x includes control mechanisms to manage interrupts, re-
peated operations, and function/subroutine calls.

All ’C20x devices share the same CPU and bus structure; however, each de-
vice has different on-chip memory configurations and on-chip peripherals.

’C20x Bus Structure

 2-4

Figure 2–2. Bus Structure Block Diagram

B0
DARAM

ROM/
flash

SARAM B1, B2
DARAM

Memory
mapped
registers

PAB

DRAB

DWAB

PRDB

DRDB

DWEB

Control bus

External
signals

Memory
control

MULTI_DSP

CLOCK/PLL

Interrupts

JTAG/TEST

Central processing unit (CPU)

Auxiliary
registers

registers
Status

ARAU

CALU

Accumulator

Multiplier

Product
shifter

Input
shifter

PREG

TREG

Output
shifter

External
address bus

External
data bus

Synchronous
serial port

Timer

Wait-state
generator

UART

On-chip peripherals/
registers mapped to

I/O space

Other I/O-mapped
registers

Central Processing Unit

2-5Architectural Overview

2.2 Central Processing Unit

The CPU is the same on all the ’C20x devices. The ’C20x CPU contains:

� A 32-bit central arithmetic logic unit (CALU)
� A 32-bit accumulator
� Input and output data-scaling shifters for the CALU
� A 16-bit × 16-bit multiplier
� A product-scaling shifter
� Data-address generation logic, which includes eight auxiliary registers

and an auxiliary register arithmetic unit (ARAU)
� Program-address generation logic

2.2.1 Central Arithmetic Logic Unit (CALU) and Accumulator

The ’C20x performs 2s-complement arithmetic using the 32-bit CALU. The
CALU uses 16-bit words taken from data memory or derived from an immedi-
ate instruction, or it uses the 32-bit result from the multiplier. In addition to arith-
metic operations, the CALU can perform Boolean operations.

The accumulator stores the output from the CALU; it can also provide a second
input to the CALU. The accumulator is 32 bits wide and is divided into a high-
order word (bits 31 through 16) and a low-order word (bits 15 through 0).
Assembly language instructions are provided for storing the high- and low-
order accumulator words to data memory.

2.2.2 Scaling Shifters

The ’C20x has three 32-bit shifters that allow for scaling, bit extraction, ex-
tended arithmetic, and overflow-prevention operations:

� Input data-scaling shifter (input shifter). This shifter left shifts 16-bit input
data by 0 to 16 bits to align the data to the 32-bit input of the CALU.

� Output data-scaling shifter (output shifter). This shifter can left shift output
from the accumulator by 0 to 7 bits before the output is stored to data
memory. The content of the accumulator remains unchanged.

� Product-scaling shifter (product shifter). The product register (PREG) re-
ceives the output of the multiplier. The product shifter shifts the output of
the PREG before that output is sent to the input of the CALU. The product
shifter has four product shift modes (no shift, left shift by one bit, left shift
by four bits, and right shift by 6 bits), which are useful for performing multi-
ply/accumulate operations, performing fractional arithmetic, or justifying
fractional products.

Central Processing Unit

 2-6

2.2.3 Multiplier

The on-chip multiplier performs 16-bit × 16-bit 2s-complement multiplication
with a 32-bit result. In conjunction with the multiplier, the ’C20x uses the 16-bit
temporary register (TREG) and the 32-bit product register (PREG). The TREG
always supplies one of the values to be multiplied. The PREG receives the re-
sult of each multiplication.

Using the multiplier, TREG, and PREG, the ’C20x efficiently performs funda-
mental DSP operations such as convolution, correlation, and filtering. The ef-
fective execution time of each multiplication instruction can be as short as one
CPU cycle.

2.2.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indi-
rect addressing (see Chapter 6, Addressing Modes) to access data memory.
The ARAU is supported by eight auxiliary registers (AR0 through AR7), each
of which can be loaded with a 16-bit value from data memory or directly from
an instruction word. Each auxiliary register value can also be stored to data
memory. The auxiliary registers are referenced by a 3-bit auxiliary register
pointer (ARP) embedded in status register ST0.

Memory and I/O Spaces

2-7Architectural Overview

2.3 Memory and I/O Spaces

The ’C20x memory is organized into four individually selectable spaces: pro-
gram, local data, global data, and I/O. These spaces form an address range
of 224K words.

All ’C20x devices include 288 words of dual-access RAM (DARAM) for data
memory and 256 words of data/program DARAM. Depending on the device,
it may also have data/program single-access RAM (SARAM) and read-only
memory (ROM) or flash memory. Table 2–1 shows how much ROM, flash
memory, DARAM, and SARAM are available on the different ’C20x devices.

Table 2–1. Program and Data Memory on the TMS320C20x Devices

Memory Type ’C203 ’C206† ’F206 ’C209

ROM (words) – 32K – 4K

Flash memory (words) – – 32K –

DARAM (words) 544 544 544 544

Data (words) 288 288 288 288

Data/program (words) 256 256 256 256

SARAM (words) – 4K 4K 4K

† ’C206 refers to the ’C206/’LC206 unless specified otherwise.

The ’C20x also has CPU registers that are mapped in data memory space and
peripheral registers that are mapped in on-chip I/O space. The ’C20x memory
types and features are introduced in the sections following this paragraph. For
more details about the configuration and use of the ’C20x memory and I/O
space, see Chapter 4, Memory and I/O Space.

2.3.1 Dual-Access On-Chip RAM

All ’C20x devices have 544 words × 16-bits of on-chip DARAM, which can be
accessed twice per machine cycle. This memory is primarily intended to hold
data but, when needed, can also hold programs. It can be configured in one
of two ways:

� All 544 words are configured as data memory.

� 288 words are configured as data memory, and 256 words are configured
as program memory.

Because DARAM can be accessed twice per cycle, it improves the speed of
the CPU. The CPU operates within a four-cycle pipeline. In this pipeline, the

Memory and I/O Spaces

2-8

CPU reads data on the third cycle and writes data on the fourth cycle. However,
DARAM allows the CPU to write and read in one cycle; the CPU writes to
DARAM on the master phase of the cycle and reads from DARAM on the slave
phase. For example, suppose two instructions, A and B, store the accumulator
value to DARAM and load the accumulator with a new value from DARAM.
Instruction A stores the accumulator value during the master phase of the CPU
cycle, and instruction B loads the new value to the accumulator during the
slave phase. Because part of the dual-access operation is a write, it only ap-
plies to RAM.

2.3.2 Single-Access On-Chip Program/Data RAM

Some of the ’C20x devices have 4K 16-bit words of single-access RAM
(SARAM). The addresses associated with the SARAM can be used for both
data memory and program memory and are software- or hardware-configur-
able (depending on the device) to either external memory or the internal
SARAM. When configured as external, these addresses can be used for off-
chip data and program memory. Code can be booted from off-chip ROM and
then executed at full speed once it is loaded into the on-chip SARAM. Because
the SARAM can be mapped to program and/or data memory, the SARAM al-
lows for more flexible address mapping than the DARAM block.

SARAM is accessed only once per CPU cycle. When the CPU requests multi-
ple accesses, the SARAM schedules the accesses by providing a not-ready
condition to the CPU and then executing the accesses one per cycle. For ex-
ample, if the instruction sequence involves storing the accumulator value and
then loading a value to the accumulator, it would take two cycles to complete
in SARAM, compared to one cycle in DARAM.

2.3.3 Factory-Masked On-Chip ROM

’C206/’LC206 devices feature an on-chip, 32K 16-bit words of programmable
ROM. The ROM can be selected during reset by driving the MP/MC pin low.
If the ROM is not selected, the device starts its execution from off-chip
memory.

If you want a custom ROM, you can provide the code or data to be pro-
grammed into the ROM in object file format, and Texas Instruments will gener-
ate the appropriate process mask to program the ROM. See Appendix E for
details on how to submit ROM code to Texas Instruments.

Memory and I/O Spaces

2-9Architectural Overview

2.3.4 Flash Memory

Some of the ’C20x devices feature on-chip blocks of flash memory, which is
electronically erasable and programmable, and non-volatile. Each block of
flash memory will have a set of control registers that allow for erasing, pro-
gramming, and testing of that block. The flash memory blocks can be selected
during reset by driving the MP/MC pin low. If the flash memory is not selected,
the device starts its execution from off-chip memory. For a further description
on the TMS320F2xx flash devices and how they are used, please refer to the
flash technical reference, TMS320F2xx Flash Memory Technical Reference
(literature number SPRU282).

Program Control

2-10

2.4 Program Control

Several features provide program control:

� The program controller of the CPU decodes instructions, manages the
pipeline, stores the status of operations, and decodes conditional opera-
tions. Elements involved in program control are the program counter, the
status registers, the stack, and the address-generation logic.

� Software mechanisms used for program control include branches, calls,
conditional instructions, a repeat instruction, reset, and interrupts.

For descriptions of these program control features, see Chapter 5, Program
Control.

Program Control

On-Chip Peripherals

2-11Architectural Overview

2.5 On-Chip Peripherals

All the ’C20x devices have the same CPU, but different on-chip peripherals are
connected to their CPUs. The on-chip peripherals featured on the ’C20x de-
vices are:

� Clock generator (an oscillator and a phase lock loop circuit)
� CLK register for turning the CLKOUT1 pin on and off
� Timer
� Wait-state generator
� General-purpose input/output (I/O) pins
� Synchronous serial port
� Asynchronous serial port

2.5.1 Clock Generator

The clock generator consists of an internal oscillator and an internal phase lock
loop (PLL) circuit. The clock generator can be driven internally by connecting
the DSP to a crystal resonator circuit, or it can be driven by an external clock
source. The PLL circuit generates an internal CPU clock by multiplying the
clock source by a specified factor. Thus, you can use a clock source with a low-
er frequency than that of the CPU. The clock generator is discussed in section
8.2, on page 8-4.

2.5.2 CLKOUT1-Pin Control (CLK) Register

The ’C20x CLK register controls whether the master clock output signal
(CLKOUT1) is available at the CLKOUT1 pin.

2.5.3 Hardware Timer

The ’C20x features a 16-bit down-counting timer with a 4-bit prescaler. Timer
control bits can stop, start, reload, and determine the prescaler count for the
timer. For more information, see section 8.4,Timer, on page 8-8.

2.5.4 Software-Programmable Wait-State Generator

Software-programmable wait-state logic is incorporated (without any external
hardware) for interfacing with slower off-chip memory and I/O devices. The
’C209 wait-state generator generates zero or one wait states; the wait-state
generator on other ’C20x devices generates zero to seven wait states. For
more information, see section 8.5, Wait-State Generator, on page 8-15.

On-Chip Peripherals

2-12

2.5.5 General-Purpose I/O Pins

The ’C20x has pins that provide general-purpose input or output signals. All
’C20x devices have a general-purpose input pin, BIO, and a general-purpose
output pin, XF. Except for the ’C209, the ’C20x devices also have pins IO0, IO1,
IO2, and IO3, which are connected to corresponding bits (IO0–IO3) mapped
into the on-chip I/O space. These bits can be individually configured as inputs
or outputs. For more information on the general-purpose pins, see section 8.6,
on page 8-18.

2.5.6 Serial Ports

The serial ports available on the ’C20x vary by device, but two types of serial
ports are represented: synchronous and asynchronous. See Table 2–2 for the
number of each kind on the various ’C20x devices. The sections following the
table provide an introduction to the two types of serial ports.

Table 2–2. Serial Ports on the ’C20x Devices

Serial Ports ’C203 ’C206 ’F206 ’C209

Synchronous 1 1 1 –

Asynchronous 1 1 1 –

Synchronous serial port (SSP)

The ’C20x synchronous serial port (SSP) communicates with codecs, other
’C20x devices, and external peripherals. The SSP offers:

� Two four-word-deep first in, first out (FIFO) buffers that have interrupt-gen-
erating capabilities.

� Burst and continuous transfer modes.

� A wide range of operation speeds when external clocking is used.

If internal clocking is used, the speed is fixed at 1/2 of the internal DSP clock
frequency. For more information on the SSP, see Chapter 9.

Asynchronous serial port (ASP)

The ’C20x asynchronous serial port (ASP) communicates with asynchronous
serial devices. The ASP has a maximum transfer rate of 250,000 characters
per second (assuming it uses10 bits to transmit each 8-bit character). The ASP
also has logic for automatic baud detection, which allows the ASP to lock to
the incoming data rate. All transfers through the asynchronous serial port use
double buffering. See Chapter 10, Asynchronous Serial Port, for more in-
formation.

Scanning-Logic Circuitry

2-13Architectural Overview

2.6 Scanning-Logic Circuitry

The ’C20x has JTAG scanning-logic circuitry that is compatible with IEEE
Standard 1149.1. This circuitry is used for emulation and testing purposes
only. The serial scan path is used to perform operational tests on the on-chip
peripherals. The internal scanning logic provides access to all of the on-chip
resources. Thus, the serial-scan pins and the emulation pins on ’C20x devices
allow on-board emulation. However, on all ’C20x devices, the serial scan path
does not have boundary scan logic. Appendix F provides information to help
you meet the design requirements of the Texas Instruments XDS510 emula-
tor with respect to IEEE-1149.1 designs and discusses the XDS510 cable.

Scanning-Logic Circuitry

3-1

Central Processing Unit

This chapter describes the main components of the central processing unit
(CPU). First, this chapter describes three fundamental sections of the CPU
(see Figure 3–1):

� Input scaling section
� Multiplication section
� Central arithmetic logic section

The chapter then describes the auxiliary register arithmetic unit (ARAU), which
performs arithmetic operations independently of the central arithmetic logic
section. The chapter concludes with a description of status registers ST0 and
ST1, which contain bits for determining processor modes, addressing pointer
values, and indicating various processor conditions and arithmetic logic re-
sults.

Topic Page

3.1 Input Scaling Section 3-3.

3.2 Multiplication Section 3-5.

3.3 Central Arithmetic Logic Section 3-8.

3.4 Auxiliary Register Arithmetic Unit (ARAU) 3-12.

3.5 Status Registers ST0 and ST1 3-15.

Chapter 3

3-2

Figure 3–1. Block Diagram of the Input Scaling, Central Arithmetic Logic, and
Multiplication Sections of the CPU

32

Input shifter (32 bits)

16

32

Output shifter (32 bits)

32

C Accumulator

CALU

32

32

MUX

32

16

MUX MUX

16 16

PREG

Multiplier
16 × 16

16

Data write bus (DWEB)

Data read bus (DRDB)

TREG

1616

Program read bus (PRDB)

16

16

1
1

Product shifter (32 bits)

16

Central arithmetic logic
section

Multiplication
section

31 016 15

32

1

Input scaling
section

1

Central Processing Unit

Input Scaling Section

3-3Central Processing Unit

3.1 Input Scaling Section

A 32-bit input data-scaling shifter (input shifter) aligns a 16-bit value coming
from memory to the 32-bit CALU. This data alignment is necessary for data-
scaling arithmetic as well as aligning masks for logical operations. The input
shifter operates as part of the data path between program or data space and
the CALU and, thus, requires no cycle overhead. Described directly below are
the input, the output, and the shift count of the input shifter. Throughout the dis-
cussion, refer to Figure 3–2.

Figure 3–2. Block Diagram of the Input Scaling Section

Input shifter (32 bits)

16

32

16

MUX

31 016 15

Input scaling
section

16

From data memory (DRDB)
From program memory (PRDB)

To CALU

Input . Bits 15 through 0 of the input shifter accept a 16-bit input from either of
two sources (see Figure 3–2):

� The data read bus (DRDB). This input is a value from a data memory loca-
tion referenced in an instruction operand.

� The program read bus (PRDB). This input is a constant value given as an
instruction operand.

Output . After a value has been accepted into bits 15 through 0, the input shifter
aligns the16-bit value to the 32-bit bus of the CALU as shown in Figure 3–2.
The shifter shifts the value left 0 to 16 bits and then sends the 32-bit result to
the CALU.

During the left shift, unused LSBs in the shifter are filled with zeros, and unused
MSBs in the shifter are either filled with zeros or sign extended, depending on
the value of the sign-extension mode bit (SXM) of status register ST1.

Input Scaling Section

 3-4

Shift count . The shifter can left-shift a 16-bit value by 0 to 16 bits. The size
of the shift (or the shift count) is obtained from one of two sources:

� A constant embedded in the instruction word. Putting the shift count in the
instruction word allows you to use specific data-scaling or alignment op-
erations customized for your program code.

� The four LSBs of the temporary register (TREG). The TREG-based shift
allows the data-scaling factor to be determined dynamically so that it can
be adapted to the system’s performance.

Sign-extension mode bit. For many but not all instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, the output of the input shifter is sign extended.
Figure 3–3 shows an example of an input value shifted left by 8 bits for
SXM = 0. The MSBs of the value passed to the CALU are zero filled.
Figure 3–4 shows the same shift but with SXM = 1. The value is sign extended
during the shift.

Figure 3–3. Operation of the Input Shifter for SXM = 0

Output value
after left shift of 8

(SXM = 0)

X X X X A F 1 1

16

Input shifter
accepting the

value 32

0 0 A F 1 1 0 0

A F 1 1

Figure 3–4. Operation of the Input Shifter for SXM = 1

Output value
after left shift of 8

(SXM = 1)

X X X X A F 1 1

16

Input shifter
accepting the

value 32

F F A F 1 1 0 0

A F 1 1

Multiplication Section

3-5Central Processing Unit

3.2 Multiplication Section

The ’C20x uses a 16-bit × 16-bit hardware multiplier that can produce a signed
or unsigned 32-bit product in a single machine cycle. As shown in Figure 3–5,
the multiplication section consists of:

� The 16-bit temporary register (TREG), which holds one of the multipli-
cands

� The multiplier, which multiplies the TREG value by a second value from
data memory or program memory

� The 32-bit product register (PREG), which receives the result of the multi-
plication

� The product shifter, which scales the PREG value before passing it to the
CALU.

Figure 3–5. Block Diagram of the Multiplication Section

32

MUX

PREG

Multiplier
16 × 16

16

TREG

Product shifter (32 bits)

Multiplication
section

From data memory

16

From data
memory

16

From program memory

16

To CALU

32

From data memory

16

16
To data memory

To high word
of PREG

3.2.1 Multiplier

The 16-bit × 16-bit hardware multiplier can produce a signed or unsigned
32-bit product in a single machine cycle. The two numbers being multiplied are
treated as 2s-complement numbers, except during unsigned multiplication
(MPYU instruction). Descriptions of the inputs and output of the multiplier fol-
low.

Multiplication Section

3-6

Inputs . The multiplier accepts two 16-bit inputs:

� One input is always from the 16-bit temporary register (TREG). The TREG
is loaded before the multiplication with a data-value from the data read bus
(DRDB).

� The other input is one of the following:

� A data-memory value from the data read bus (DRDB).
� A program memory value from the program read bus (PRDB).

Output . After the two 16-bit inputs are multiplied, the 32-bit result is stored in
the product register (PREG). The output of the PREG is connected to the 32-bit
product-scaling shifter. Through this shifter, the product may be transferred
from the PREG to the CALU or to data memory (by the SPH and SPL instruc-
tions).

3.2.2 Product-Scaling Shifter

The product-scaling shifter (product shifter) facilitates scaling of the product
register (PREG) value. The shifter has a 32-bit input connected to the output
of the PREG and a 32-bit output connected to the input of the CALU.

Input . The shifter has a 32-bit input connected to the output of the PREG.

Output . After the shifter completes the shift, all 32 bits of the result can be
passed to the CALU, or 16 bits of the result can be stored to data memory.

Shift Modes . This shifter uses one of four product shift modes, summarized
in Table 3–1. As shown in the table, these modes are determined by the prod-
uct shift mode (PM) bits of status register ST1. In the first shift mode (PM = 00),
the shifter does not shift the product at all before giving it to the CALU or to data
memory. The next two modes cause left shifts (of one or four), which are useful
for implementing fractional arithmetic or justifying products. The right-shift
mode shifts the product by six bits, enabling the execution of up to 128 consec-
utive multiply-and-accumulate operations without causing the accumulator to
overflow. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there.

Note:

The right shift in the product shifter is always sign extended, regardless of
the value of the sign-extension mode bit (SXM) of status register ST1.

Multiplication Section

3-7Central Processing Unit

Table 3–1. Product Shift Modes for the Product-Scaling Shifter

ÁÁ
ÁÁ

PMÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Shift ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Comments
ÁÁ
ÁÁ

00ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

No shift ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Product sent to CALU or data write bus (DWEB) with no shift
ÁÁ
ÁÁ
ÁÁ

01
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Left by 1 shift
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Removes the extra sign bit generated in a 2s-complement
multiply to produce a Q31 product†

ÁÁ
ÁÁ
ÁÁ
ÁÁ

10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Left by 4 bits
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Removes the extra four sign bits generated in a 16-bit × 13-bit
2s-complement multiply to produce a Q31 product† when
multiplying by a 13-bit constant

ÁÁ
ÁÁ
ÁÁ
ÁÁ

11ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Right by 6 bitsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scales the product to allow up to 128 product accumulations
without overflowing the accumulator. The right shift is always
sign extended, regardless of the value of the sign-extension
mode bit (SXM) of status register ST1.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† A Q31 number is a binary fraction in which there are 31 digits to the right of the binary point
(the base 2 equivalent of the base 10 decimal point).

Central Arithmetic Logic Section

 3-8

3.3 Central Arithmetic Logic Section

Figure 3–6 shows the main components of the central arithmetic logic section,
which are:

� The central arithmetic logic unit (CALU), which implements a wide range
of arithmetic and logic functions.

� The 32-bit accumulator (ACC), which receives the output of the CALU and
is capable of performing bit shifts on its contents with the help of the carry
bit (C). Figure 3–6 shows the accumulator’s high word (ACCH) and low
word (ACCL).

� The output shifter, which can shift a copy of either the high word or low
word of the accumulator before sending it to data memory for storage.

Figure 3–6. Block Diagram of the Central Arithmetic Logic Section

ACCH

32

32

Output shifter (32 bits)

32

C ACCL

CALU

MUXCentral arithmetic logic
section

32

From product shifter
From input shifter

3232

To data memory

16

Central Arithmetic Logic Section

3-9Central Processing Unit

3.3.1 Central Arithmetic Logic Unit (CALU)

The central arithmetic logic unit (CALU), implements a wide range of arithme-
tic and logic functions, most of which execute in a single clock cycle. These
functions can be grouped into four categories:

� 16-bit addition
� 16-bit subtraction
� Boolean logic operations
� Bit testing, shifting, and rotating.

Because the CALU can perform Boolean operations, you can perform bit ma-
nipulation. For bit shifting and rotating, the CALU uses the accumulator. The
CALU is referred to as central because there is an independent arithmetic unit,
the auxiliary register arithmetic unit (ARAU), which is described in section 3.4.
A description of the inputs, the output, and an associated status bit of the CALU
follows.

Inputs . The CALU has two inputs (see Figure 3–6):

� One input is always provided by the 32-bit accumulator.

� The other input is provided by one of the following:

� The product-scaling shifter (see section 3.2.2)
� The input data-scaling shifter (see section 3.1)

Output . Once the CALU performs an operation, it transfers the result to the
32-bit accumulator, which is capable of performing bit shifts of its contents. The
output of the accumulator is connected to the 32-bit output data-scaling shifter.
Through the output shifter, the accumulator’s upper and lower 16-bit words
can be individually shifted and stored to data memory.

Sign-extension mode bit. For many but not all instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, sign extension is enabled.

3.3.2 Accumulator

Once the CALU performs an operation, it transfers the result to the 32-bit accu-
mulator, which can then perform single-bit shifts or rotations on its contents.
Each of the accumulator’s upper and lower 16-bit words can be passed to the
output data-scaling shifter, where it can be shifted, and then stored in data
memory. Status bits and branch instructions associated with the accumulator
are discussed directly below.

Central Arithmetic Logic Section

 3-10

Status bits . Four status bits are associated with the accumulator:

� Carry bit (C). C (bit 9 of status register ST1) is affected during:

� Additions to and subtractions from the accumulator:

C = 0 When the result of a subtraction generates a borrow.

When the result of an addition does not generate a carry.
(Exception: When the ADD instruction is used with a shift of 16
and no carry is generated, the ADD instruction has no affect on
C.)

C = 1 When the result of an addition generates a carry.

When the result of a subtraction does not generate a borrow.
(Exception: When the SUB instruction is used with a shift of 16
and no borrow is generated, the SUB instruction has no effect
on C.)

� Single-bit shifts and rotations of the accumulator value. During a left
shift or rotation, the most significant bit of the accumulator is passed to
C; during a right shift or rotation, the least significant bit is passed to C.

� Overflow mode bit (OVM). OVM (bit 11 of status register ST0) determines
how the accumulator will reflect arithmetic overflows. When the processor
is in overflow mode (OVM = 1) and an overflow occurs, the accumulator
is filled with one of two specific values:

� If the overflow is in the positive direction, the accumulator is filled with
its most positive value (7FFF FFFFh).

� If the overflow is in the negative direction, the accumulator is filled with
its most negative value (8000 0000h).

� Overflow flag bit (OV). OV is bit 12 of status register ST0. When no accu-
mulator overflow is detected, OV is latched at 0. When overflow (positive
or negative) occurs, OV is set to 1 and latched.

� Test/control flag bit (TC). TC (bit 11 of status register ST1) is set to 0 or 1
depending on the value of a tested bit. In the case of the NORM instruction,
if the exclusive-OR of the two MSBs of the accumulator is true, TC is set
to 1.

A number of branch instructions are implemented based on the status of bits
C, OV, and TC, and on the value in the accumulator (as compared to zero). For
more information about these instructions, see section 5.4, Conditional
Branches, Calls, and Returns, on page 5-10.

Central Arithmetic Logic Section

3-11Central Processing Unit

3.3.3 Output Data-Scaling Shifter

The output data-scaling shifter (output shifter) has a 32-bit input connected to
the 32-bit output of the accumulator and a 16-bit output connected to the data
bus. The shifter copies all 32-bits of the accumulator and then performs a left
shift on its content; it can be shifted from zero to seven bits, as specified in the
corresponding store instruction. The upper word (SACH instruction) or lower
word (SACL instruction) of the shifter is then stored to data memory. The con-
tent of the accumulator remains unchanged.

When the output shifter performs the shift, the MSBs are lost and the LSBs are
zero filled. Figure 3–7 shows an example in which the accumulator value is
shifted left by four bits and the shifted high word is stored to data memory.
Figure 3–8 shows the same accumulator value shifted left by 6 bits and then
the shifted low word stored.

Figure 3–7. Shifting and Storing the High Word of the Accumulator

Data-memory
location

0 0 F 0 F 0 A 1

0 F 0 F 0 A 1 0

32

Output shifter
(left shift by 4 bits)

Accumulator

16

0 F 0 F

Figure 3–8. Shifting and Storing the Low Word of the Accumulator

Data-memory
location

0 0 F 0 F 0 A 1

3 C 3 C 2 8 4 0

32

Output shifter
(left shift by 6 bits)

Accumulator

16

2 8 4 0

Auxiliary Register Arithmetic Unit (ARAU)

3-12

3.4 Auxiliary Register Arithmetic Unit (ARAU)

The CPU also contains the auxiliary register arithmetic unit (ARAU), an arith-
metic unit independent of the central arithmetic logic unit (CALU). The main
function of the ARAU is to perform arithmetic operations on eight auxiliary reg-
isters (AR7 through AR0) in parallel with operations occurring in the CALU.
Figure 3–9 shows the ARAU and related logic.

Figure 3–9. ARAU and Related Logic

16

3

16

16

16

16

16

16

16

16

Data write bus (DWEB)

ARAU

ARB

3

8LSBs

3LSBs
Instruction register

MUX

Data read bus (DRDB)

MUX

ARP

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

16

16

3

Data-read address bus (DRAB)

Data-write address bus (DWAB)

16

Auxiliary Register Arithmetic Unit (ARAU)

3-13Central Processing Unit

The eight auxiliary registers (AR7–AR0) provide flexible and powerful indirect
addressing. Any location in the 64K data memory space can be accessed us-
ing a 16-bit address contained in an auxiliary register. For the details of indirect
addressing, see section 6.3 on page 6-9.

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register ST0 with a value from 0 through 7. The ARP can be
loaded as a primary operation by the MAR instruction (which only performs
modifications to the auxiliary registers and the ARP) or by the LST instruction
(which can load a data-memory value to ST0 by way of the data read bus,
DRDB). The ARP can be loaded as a secondary operation by any instruction
that supports indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rent auxiliary register is used as the address at which the data-memory access
will take place. The ARAU passes this address to the data-read address bus
(DRAB) if the instruction requires a read from data memory, or it passes the
address to the data-write address bus (DWAB) if the instruction requires a
write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the
ARAU, which implements unsigned 16-bit arithmetic.

3.4.1 ARAU and Auxiliary Register Functions

The ARAU performs the following operations:

� Increments or decrements an auxiliary register value by 1 or by an index
amount (by way of any instruction that supports indirect addressing)

� Adds a constant value to an auxiliary register value (ADRK instruction) or
subtracts a constant value from an auxiliary register value (SBRK instruc-
tion). The constant is an 8-bit value taken from the eight LSBs of the
instruction word.

� Compares the content of AR0 with the content of the current AR and puts
the result in the test/control flag bit (TC) of status register ST1 (CMPR
instruction). The result is passed to TC by way of the data write bus
(DWEB).

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operations is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: During processing of the NORM
instruction, the auxiliary register and/or ARP modification is done during the

Auxiliary Register Arithmetic Unit (ARAU)

 3-14

execute phase of the pipeline. For information on the operation of the pipeline,
see section 5.2 on page 5-7.

In addition to using the auxiliary registers to reference data-memory address-
es, you can use them for other purposes. For example, you can:

� Use the auxiliary registers to support conditional branches, calls, and re-
turns by using the CMPR instruction. This instruction compares the con-
tent of AR0 with the content of the current AR and puts the result in the
test/control flag bit (TC) of status register ST1.

� Use the auxiliary registers for temporary storage by using the LAR instruc-
tion to load values into the registers and the SAR instruction to store AR
values to data memory.

� Use the auxiliary registers as software counters, incrementing or decre-
menting them as necessary.

Status Registers ST0 and ST1

3-15Central Processing Unit

3.5 Status Registers ST0 and ST1

The ’C20x has two status registers, ST0 and ST1, which contain status and
control bits. These registers can be stored to and loaded from data memory,
thus allowing the status of the machine to be saved and restored for subrou-
tines.

The LST (load status register) instruction writes to ST0 and ST1, and the SST
(store status register) instruction reads from ST0 and ST1 (with the exception
of the INTM bit, which is not affected by the LST instruction). Many of the indi-
vidual bits of these registers can be set and cleared using the SETC and CLRC
instructions. For example, the sign-extension mode is set with SETC SXM and
cleared with CLRC SXM.

Figure 3–10 and Figure 3–11 show the organization of status registers ST0
and ST1, respectively. Several bits in the status registers are reserved; they
are always read as logic 1s. The other bits are described in alphabetical order
in Table 3–2.

Figure 3–10. Status Register ST0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARP OV OVM
ÉÉÉ
ÉÉÉ

1† INTM DP

R/W–x R/W–0 R/W–x R/W–1 R/W–x

Note: R = Read access; W = Write access; value following dash (–) is value after reset (x means value not affected by reset).

† This reserved bit is always read as 1. Writes have no effect on it.

Figure 3–11.Status Register ST1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARB CNF TC SXM C
ÉÉ
ÉÉ1

†
ÉÉÉ
ÉÉÉ1†
ÉÉ
ÉÉ1†
ÉÉ
ÉÉ1

† XF
ÉÉ
ÉÉ1†
ÉÉ
ÉÉ1

† PM

R/W–x R/W–0 R/W–x R/W–1 R/W–1 R/W–1 R/W–00

Note: R = Read access; W = Write access; value following dash (–) is value after reset (x means value not affected by reset).

† These reserved bits are always read as 1s. Writes have no effect on them.

Status Registers ST0 and ST1

 3-16

Table 3–2. Bit Fields of Status Registers ST0 and ST1

Name Description

ARB Auxiliary register pointer buffer. Whenever the auxiliary register pointer (ARP) is loaded, the
previous ARP value is copied to the ARB, except during an LST (load status register) instruction.
When the ARB is loaded by an LST instruction, the same value is also copied to the ARP.

ARP Auxiliary register pointer. This 3-bit field selects which auxiliary register (AR) to use in indirect
addressing. When the ARP is loaded, the previous ARP value is copied to the ARB register, except
during an LST (load status register) instruction. The ARP may be modified by memory-reference
instructions using indirect addressing, and by the MAR (modify auxiliary register) and LST
instructions. When the ARB is loaded by an LST instruction, the same value is also copied to the
ARP. For more details on the use of ARP in indirect addressing, see section 6.3, Indirect Addressing
Mode, on page 6-9.

C Carry bit . This bit is set to 1 if the result of an addition generates a carry, or cleared to 0 if the result
of a subtraction generates a borrow. Otherwise, it is cleared after an addition or set after a
subtraction, except if the instruction is ADD or SUB with a 16-bit shift. In these cases, ADD can only
set and SUB only clear the carry bit, but cannot affect it otherwise. The single-bit shift and rotate
instructions also affect this bit, as well as the SETC, CLRC, and LST instructions. The conditional
branch, call, and return instructions can execute based on the status of C. C is set to 1 on reset.

CNF On-chip DARAM configuration bit . This bit determines whether reconfigurable dual-access
RAM blocks are mapped to data space or to program space. The CNF bit may be modified by the
SETC CNF, CLRC CNF, and LST instructions. Reset clears the CNF bit to 0. For more information
about CNF and the dual-access RAM blocks, see Chapter 4, Memory and I/O Spaces.

CNF = 0 Reconfigurable dual-access RAM blocks are mapped to data space.

CNF = 1 Reconfigurable dual-access RAM blocks are mapped to program space.

DP Data page pointer. When an instruction uses direct addressing, the 9-bit DP field is concatenated
with the 7 LSBs of the instruction word to form a full 16-bit data-memory address. For more details,
see section 6.2, Direct Addressing Mode, on page 6-4. The LST and LDP (load DP) instructions
can modify the DP field.

INTM Interrupt mode bit . This bit enables or disables all maskable interrupts. INTM is set and cleared
by the SETC INTM and CLRC INTM instructions, respectively. INTM has no effect on the
nonmaskable interrupts RS and NMI or on interrupts initiated by software. INTM is unaffected by
the LST (load status register) instruction. INTM is set to 1 when an interrupt trap is taken (except
in the case of the TRAP instruction) and at reset.

INTM = 0 All unmasked interrupts are enabled.

INTM = 1 All maskable interrupts are disabled.

OV Overflow flag bit. This bit holds a latched value that indicates whether overflow has occurred in
the CALU. OV is set to 1 when an overflow occurs in the CALU. Once an overflow occurs, the OV
bit remains set until it is cleared by a reset, a conditional branch on overflow (OV) or no overflow
(NOV), or an LST instruction .

Status Registers ST0 and ST1

3-17Central Processing Unit

Table 3–2. Bit Fields of Status Registers ST0 and ST1 (Continued)

Name Description

OVM Overflow mode bit. OVM determines how overflows in the CALU are handled. The SETC and
CLRC instructions set and clear this bit, respectively. An LST instruction can also be used to modify
OVM.

OVM = 0 Results overflow normally in the accumulator.

OVM = 1 The accumulator is set to either its most positive or negative value upon encountering
an overflow. (See section 3.3.2, Accumulator.)

PM Product shift mode. PM determines the amount that the PREG value is shifted on its way to the
CALU or to data memory. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there. PM is loaded by the SPM and LST instructions. The
PM bits are cleared by reset.

PM = 00 The multiplier’s 32-bit product is passed to the CALU or to data memory with no shift.

PM = 01 The output of the PREG is left shifted one place (with the LSBs zero filled) before
being passed to the CALU or to data memory.

PM = 10 The output of the PREG is left shifted four bits (with the LSBs zero filled) before being
passed to the CALU or to data memory.

PM = 11 This mode produces a right shift of six bits, sign extended.

SXM Sign-extension mode bit. SXM does not affect the basic operation of certain instructions. For
example, the ADDS instruction suppresses sign extension regardless of SXM. This bit is set by the
SETC SXM instruction and cleared by the CLRC SXM instruction, and may be loaded by the LST
instruction. SXM is set to 1 by reset.

SXM = 0 This mode suppresses sign extension.

SXM = 1 In this mode, data values that are shifted in the input shifter are sign extended before
they are passed to the CALU.

TC Test/control flag bit. The TC bit is set to 1 if a bit tested by BIT or BITT is a 1, if a compare condition
tested by CMPR exists between the current auxiliary register and AR0, or if the exclusive-OR
function of the two MSBs of the accumulator is true when tested by a NORM instruction. The
conditional branch, call, and return instructions can execute based on the condition of the TC bit.
The TC bit is affected by the BIT, BITT, CMPR, LST, and NORM instructions.

XF XF pin status bit . This bit determines the state of the XF pin, which is a general-purpose output
pin. XF is set by the SETC XF instruction and cleared by the CLRC XF instruction. XF can also be
modified with an LST instruction. XF is set to 1 by reset.

4-1Memory and I/O Spaces

Memory and I/O Spaces

This chapter describes the ’C20x memory configuration options and the
address maps of the individual ’C20x devices. It also illustrates typical ways
of interfacing the ’C20x with external memory and external input/output (I/O)
devices.

Each ’C20x device has a 16-bit address line that accesses four individually
selectable spaces (224K words total):

� A 64K-word program space
� A 64K-word local data space
� A 32K-word global data space
� A 64K-word I/O space

Also available on select ’C20x devices are an on-chip bootloader and a HOLD
operation. The on-chip bootloader allows a ’C20x to boot software from an
external source to a 16-bit external RAM at reset. The HOLD operation allows
a ’C20x to give external devices direct memory access to external program,
data, and I/O spaces.

Topic Page

4.1 Overview of the Memory and I/O Spaces 4-2.

4.2 Program Memory 4-5.

4.3 Local Data Memory 4-7.

4.4 Global Data Memory 4-11.

4.5 I/O Space 4-14.

4.6 Direct Memory Access Using the HOLD Operation 4-18.

4.7 Device-Specific Information 4-22.

4.8 ’C203 Bootloader 4-30.

4.9 ’C206/LC206 Bootloader 4-39.

Chapter 4

Overview of the Memory and I/O Spaces

4-2

4.1 Overview of the Memory and I/O Spaces

The ’C20x address map is organized into four individually selectable spaces:

� Program memory (64K words) contains the instructions to be executed,
as well as immediate data used during program execution.

� Local data memory (64K words) holds data used by the instructions.

� Global data memory (32K words) shares data with other processors or
serves as additional data space. Addresses in the upper 32K words
(8000h–FFFFh) of local data memory can be used for global data memory.

� Input/output (I/O) space (64K words) interfaces to external peripherals
and contains registers for the on-chip peripherals.

These spaces provide a total address range of 224K words. The ’C20x
includes a considerable amount of on-chip memory to aid in system
performance and integration and a considerable amount of addresses that can
be used for external memory and I/O devices.

The advantages of operating from on-chip memory are:

� Higher performance than external memory (because the wait states
required for slower external memories are avoided)

� Lower cost than external memory

� Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a
larger address space.

The ’C20x design is based on an enhanced Harvard architecture. The ’C20x
memory spaces are accessible on three parallel buses—the program address
bus (PAB), the data-read address bus (DRAB), and the data-write address bus
(DWAB). Because the operations of the three buses are independent, it is
possible to access both the program and data spaces simultaneously. Within
a given machine cycle, the central arithmetic logic unit (CALU) can execute as
many as three concurrent memory operations.

Overview of the Memory and I/O Spaces

4-3Memory and I/O Spaces

4.1.1 Pins for Interfacing to External Memory and I/O Spaces

Four pin types are used for interfacing to external memory and I/O space.
Table 4–1 describes the main types as:

� External buses. Sixteen signals (A15–A0) are available for passing an
address from the ’C20x to another device. Sixteen signals (D15–D0) are
available for transferring a data value between the ’C20x and another
device.

� Select signals. These signals can be used by external devices to
determine when the ’C20x is requesting access to off-chip locations, and
whether that request is for data, program, global, or I/O space.

� Read/write signals. These signals indicate to external devices the
direction of a data transfer (to the ’C20x or from the ’C20x).

� Request/control signals. The input request signals (BOOT, MP/MC,
RAMEN, READY, and HOLD) effect a change in the operation of the
’C20x. The output HOLDA is the response to HOLD.

Table 4–1. Pins for Interfacing With External Memory and I/O Spaces

Pin(s) Description

External buses A15–A0 The 16 lines of the external address bus. This bus can address up to 64K
words of external memory or I/O space.

D15–D0 The 16 bidirectional lines of the external data bus. This bus carries data
to and from external memory or I/O space.

Select signals DS Data memory select pin. The ’C20x asserts DS to indicate an access to
external data memory (local or global).

BR Bus request pin. The ’C20x asserts both BR and DS to indicate an access
to global data memory.

PS Program memory select pin. The ’C20x asserts PS to indicate an access
to external program memory.

IS I/O space select pin. The ’C20x asserts IS to indicate an access to
external I/O space.

STRB External access active strobe. The ’C20x asserts STRB during accesses
to external program, data, or I/O space.

Overview of the Memory and I/O Spaces

 4-4

Table 4–1. Pins for Interfacing With External Memory and I/O Spaces (Continued)

DescriptionPin(s)

Read/write
signals

R/W Read/write pin. This pin indicates the direction of transfer between the
’C20x and external program, data, or I/O space.

RD Read select pin. The ’C20x asserts RD to request a read from external
program, data, or I/O space.

WE Write enable pin. The ’C20x asserts WE to request a write to external
program, data, or I/O space.

Request/control
signals

BOOT Boot-load pin. This pin is only on devices that have the on-chip
bootloader. If BOOT is low during a hardware reset, the ’C20x transfers
code from EPROM in global data memory to RAM in external program
memory.

MP/MC Microprocessor/microcomputer pin. This pin is only on devices with
on-chip non-volatile program memory. The level on this pin is tested at
reset. If MP/MC is high, the device is in microprocessor mode (the reset
vector is fetched from external memory). If MP/MC is low, the device is
in microcomputer mode (the reset vector is fetched from on-chip
memory).

RAMEN Single-access RAM enable pin. On ’C20x devices with on-chip
single-access RAM, when this pin is high, the RAM is enabled; when this
pin is low, the RAM is disabled.

READY External device ready pin (for generating wait states externally). When
this pin is driven low, the ’C20x waits one CPU cycle and then tests
READY again. After READY is driven low, the ’C20x does not continue
processing until READY is driven high. If READY is not used, it should
be kept high. For a ’C20x device with a bootloader, READY must be high
at boot time.

HOLD HOLD operation request pin. An external device can request control of
the external buses by asserting HOLD. After the ’C20x (along with proper
software logic) asserts HOLDA, the external device controls the buses
until it deasserts HOLD.

HOLDA HOLD acknowledge pin. The ’C20x (with assistance from proper
program code) asserts HOLDA to acknowledge that HOLD has been
asserted and places its external buses in high impedance.

Program Memory

4-5Memory and I/O Spaces

4.2 Program Memory

Program-memory space holds the code for applications; it can also hold table
information and constant operands. The program-memory space addresses
up to 64K 16-bit words. Every ’C20x device contains a DARAM block B0 that
can be configured as program memory or data memory. Other on-chip
program memory may be SARAM and ROM or flash memory. For information
on configuring on-chip program-memory blocks, see section 4.7.

4.2.1 Interfacing With External Program Memory

The ’C20x can address up to 64K words of external program memory. While
the ’C20x is accessing the on-chip program-memory blocks, the external
memory signals PS and STRB are in the high state. The external buses are
active only when the ’C20x is accessing locations within the address ranges
mapped to external memory. An active PS signal indicates that the external
buses are being used for program memory. Whenever the external buses are
active (when external memory or I/O space is being accessed), the ’C20x
drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast
access time. If fast memory is not available, or if speed is not a serious
consideration, you can use the the READY signal and/or the on-chip wait-state
generator to create wait states.

Figure 4–1 shows an example of interfacing to external program memory. In
the figure, 8K × 16-bit static memory is interfaced to the ’C20x using two
8K × 8-bit RAMs.

Obtain the Proper Timing Information

When interfacing memory with high-speed ’C20x devices, refer to
the data sheet for that ’C20x device for the required access, delay,
and hold times.

Program Memory

 4-6

Figure 4–1. Interface With External Program Memory

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

PS
RD
WE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

WE
RD
CE

WE
RD
CE

8K � 8 RAM

8K � 8 RAM

’C20x DSP
D0
D1
D2
D3
D4
D5
D6
D7

D8
D9

D10
D11
D12
D13
D14
D15

Local Data Memory

4-7Memory and I/O Spaces

4.3 Local Data Memory

The local data-memory space addresses up to 64K 16-bit words. Every ’C20x
device has three on-chip DARAM blocks: B0, B1, and B2. Block B0 has 256
words that are configurable as either data locations or program locations.
Blocks B1 (256 words) and B2 (32 words) have a total of 288 words that are
available for data memory only. Some ’C20x devices, in addition to the three
DARAM blocks, have an on-chip SARAM block that can be used for program
and/or data memory. Section 4.7 tells how to configure these memory blocks.

Data memory can be addressed with either of two addressing modes: direct-
addressing mode or indirect-addressing mode. Addressing modes are
described in detail in Chapter 6.

When direct addressing is used, data memory is addressed in blocks of 128
words called data pages. Figure 4–2 shows how these blocks are addressed.
The entire 64K of data memory consists of 512 data pages labeled 0 through
511. The current data page is determined by the value in the 9-bit data page
pointer (DP) in status register ST0. Each of the 128 words on the current page
is referenced by a 7-bit offset, which is taken from the instruction that is using
direct addressing. Therefore, when an instruction uses direct addressing, you
must specify both the data page (with a preceding instruction) and the offset
(in the instruction that accesses data memory).

Figure 4–2. Pages of Data Memory

’C20x Data Memory

Page 0: 0000h–007Fh

Page 1: 0080h–00FFh

Page 2: 0100h–017Fh

Page 511: FF80h–FFFFh

.

000 0000

OffsetDP value

0000 0000 0

111 11110000 0000 0
0000 0000 1

0000 0000 1

1111 1111 1

1111 1111 1

000 0000

111 1111

000 0000

111 1111

0000 0001 0

000 0000

111 1111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.0000 0001 0

..

.

..

. ..
.

..

.

..

.

..

. ..
.

Local Data Memory

4-8

4.3.1 Data Page 0 Address Map

Table 4–2 shows the address map of data page 0 (addresses 0000h–007Fh).
Note the following:

� Three memory-mapped registers can be accessed with zero wait states:

� Interrupt mask register (IMR)
� Global memory allocation register (GREG)
� Interrupt flag register (IFR)

� The test/emulation reserved area is used by the test and emulation
systems for special information transfers.

Do Not Write to Test/Emulation Addresses

Writing to the test/emulation addresses can cause the device to
change its operational mode and, therefore, affect the operation of
an application.

� The scratch-pad RAM block (B2) includes 32 words of DARAM that
provide for variable storage without fragmenting the larger RAM blocks,
whether internal or external. This RAM block supports dual-access
operations and can be addressed with any data-memory addressing
mode.

Table 4–2. Data Page 0 Address Map

Address Name Description

0000h–0003h – Reserved

0004h IMR Interrupt mask register

0005h GREG Global memory allocation register

0006h IFR Interrupt flag register

0023h–0027h – Reserved

002Bh–002Fh – Reserved for test/emulation

0060h–007Fh B2 Scratch-pad RAM (DARAM B2)

Local Data Memory

4-9Memory and I/O Spaces

4.3.2 Interfacing With External Local Data Memory

While the ’C20x is accessing the on-chip local data-memory blocks and
memory-mapped registers, the external memory signals DS and STRB are in
the high state. The external buses are active only when the ’C20x is accessing
locations within the address ranges mapped to external memory. An active DS
signal indicates that the external buses are being used for data memory.
Whenever the external buses are active (when external memory or I/O space
is being accessed) the ’C20x drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast
access time. If fast memory is not available, or if speed is not a serious
consideration, you can use the the READY signal and/or the on-chip wait-state
generator to create wait states.

Figure 4–3 shows an example of interfacing to external data memory. In the
figure 8K × 16-bit static memory is interfaced to the ’C20x using two 8K × 8-bit
RAMs. The RAM devices must have fast access times if the internal instruction
speed is to be maintained.

Obtain the Proper Timing Information

When interfacing memory with high-speed ’C20x devices, refer to
the data sheet for that ’C20x device for the required access, delay,
and hold times.

Local Data Memory

4-10

Figure 4–3. Interface With External Local Data Memory

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

DS
RD
WE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

WE
RD
CE

WE
RD
CE

8K � 8 RAM

8K � 8 RAM

’C20x DSP
D0
D1
D2
D3
D4
D5
D6
D7

D8
D9

D10
D11
D12
D13
D14
D15

Global Data Memory

4-11Memory and I/O Spaces

4.4 Global Data Memory

Addresses in the upper 32K words (8000h–FFFFh) of local data memory can
be used for global data memory. The global memory allocation register
(GREG) determines the size of the global data-memory space, which is
between 0 and 32K words. The GREG is connected to the eight LSBs of the
internal data bus and is memory-mapped to data-memory location 0005h.
Table 4–3 shows the allowable GREG values and shows the corresponding
address range set aside for global data memory. Any remaining addresses
within 8000h–FFFFh are available for local data memory.

Note:

Choose only the GREG values listed in Table 4–3. Other values lead to
fragmented memory maps.

Table 4–3. Global Data Memory Configurations

GREG Value Local Memory Global Memory

High Byte Low Byte Range Words Range Words

XXXX XXXX 0000 0000 0000h–FFFFh 65 536 – 0

XXXX XXXX 1000 0000 0000h–7FFFh 32 768 8000h–FFFFh 32 768

XXXX XXXX 1100 0000 0000h–BFFFh 49 152 C000h–FFFFh 16 384

XXXX XXXX 1110 0000 0000h–DFFFh 57 344 E000h–FFFFh 8 192

XXXX XXXX 1111 0000 0000h–EFFFh 61 440 F000h–FFFFh 4 096

XXXX XXXX 1111 1000 0000h–F7FFh 63 488 F800h–FFFFh 2 048

XXXX XXXX 1111 1100 0000h–FBFFh 64 512 FC00h–FFFFh 1 024

XXXX XXXX 1111 1110 0000h–FDFFh 65 024 FE00h–FFFFh 512

XXXX XXXX 1111 1111 0000h–FEFFh 65 280 FF00h–FFFFh 256

Note: X = Don’t care

Global Data Memory

4-12

As an example of configuring global memory, suppose you want to designate
8K addresses as global addresses. You would write the 8-bit value 111000002
to the eight LSBs of the GREG (see Figure 4–4). This would designate ad-
dresses E000h–FFFFh of data memory as global data addresses (see
Figure 4–5).

Figure 4–4. GREG Register Set to Configure 8K for Global Data Memory

8 MSBs 8 LSBs

X X X X X X X X 1 1 1 0 0 0 0 0

(Don’t cares) Set for 8K of global data memory

Figure 4–5. Global and Local Data Memory for GREG = 11100000

Data Memory Map

FFFFh

8000h

0000h

Upper 32K × 16
(local and/or global)

7FFFh

Lower 32K × 16
(always local)

GREG = 11100000

Global (8K × 16)

Local (24K × 16)

E000h
DFFFh

8000h

FFFFh

Global Data Memory

4-13Memory and I/O Spaces

4.4.1 Interfacing With External Global Data Memory

When a program accesses any data-memory address, the ’C20x drives the
DS signal low. If that address is within a range defined by the GREG as global,
BR and DS are asserted. Because BR differentiates local and global
accesses, you can use the GREG to extend data memory by up to 32K.
Figure 4–6 shows two external RAMs that are sharing data-memory
addresses 8000h–FFFFh. Overlapping addresses must be reconfigured
with the GREG in order to be toggled between local memory and
global memory. For example, in the system of Figure 4–6, when
GREG = XXXXXXXX000000002 (no global memory), the local data RAM is
fully accessible; when GREG = XXXXXXXX100000002 (all global memory),
the local data RAM is not accessible.

Figure 4–6. Using 8000h–FFFFh for Local and Global External Memory

Local data RAM
8000h–FFFFh

A15–A0A15–A0

’C20x

D15–D0 D15–D0

OE

CE

RD

BR

16

16

A15–A0

D15–D0

CE

WEWE

DS

16

16

OE

WE

Global data RAM
8000h–FFFFh

I/O Space

4-14

4.5 I/O Space

The ’C20x supports an I/O address range of 64K 16-bit words. Figure 4–7
shows the ’C20x I/O address map.

Figure 4–7. I/O Address Map for the ’C20x

FFFFh

’C20x I/O
0000h

FF00h

External

FEFFh

reserved addresses
registers and
I/O-mapped

FF10h
FF0Fh

Reserved for
test/emulation

On-chip space

I/O Space

4-15Memory and I/O Spaces

The map has three main sections of addresses:

� Addresses 0000h–FEFFh allow access to off-chip peripherals typically
used in DSP applications, such as digital-to-analog and analog-to-digital
converters.

� Addresses FF00h–FF0Fh are mapped to on-chip I/O space. These
addresses are reserved for test purposes and should not be used.

� Addresses FF10h–FFFFh are also mapped to on-chip I/O space. These
addresses are used for other reserved space and for the on-chip
I/O-mapped registers. For ’C20x devices other than the ’C209, Table 4–4
lists the registers mapped to on-chip I/O space. For the I/O-mapped
registers on the ’C209, see section 11.2, on page 11-5.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
I/O addresses FF00h–FF0Fh or any reserved I/O address in the
range FF10–FFFFh (that is, any address not designated for an
on-chip peripheral.)

I/O Space

 4-16

Table 4–4. On-Chip Registers Mapped to I/O Space

I/O Address Name Description

FFE4h PMST Program memory status register

FFE8h CLK CLK register

FFECh ICR Interrupt control register

FFF0h SDTR Synchronous serial port transmit and receive register

FFF1h SSPCR Synchronous serial port control register

FFF2h SSPST Synchronous serial port status register

FFF3h SSPMC Synchronous serial port multichannel register

FFF4h ADTR Asynchronous serial port transmit and receive register

FFF5h ASPCR Asynchronous serial port control register

FFF6h IOSR Input/output status register

FFF7h BRD Baud rate divisor register

FFF8h TCR Timer control register

FFF9h PRD Timer period register

FFFAh TIM Timer counter register

FFFBh SSPCT Synchronous serial port counter register

FFFCh WSGR Wait-state generator control register

Note: This table does not apply to the ’C209. For the I/O-mapped registers on the ’C209,
see section 11.2 on page 11-5.

4.5.1 Accessing I/O Space

All I/O words (external I/O ports and on-chip I/O registers) are accessed with
the IN and OUT instructions. Accesses to external parallel I/O ports are
multiplexed over the same address and data buses for program and
data-memory accesses. These accesses are distinguished from external
program and data-memory accesses by IS going low. The data bus is 16 bits
wide; however, if you use 8-bit peripherals, you can use either the higher or
lower eight lines of the data bus to suit a particular application.

You can use RD with chip-select logic to generate an output-enable signal for
an external peripheral. You can also use the WE signal with chip-select logic
to generate a write-enable signal for an external peripheral. As an example of
interfacing to external I/O space, Figure 4–8 shows interface circuitry for eight
input bits and eight output bits. Note that the decode section is simplified if
fewer I/O ports are used.

I/O Space

4-17Memory and I/O Spaces

Figure 4–8. I/O Port Interface Circuitry

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

A0
A1
A2

A3

D0
D1
D2
D3
D4
D5
D6
D7

IS
WE

1
2
3

6
4
5

18
16
14
12
9
7
5
3

3
4
7
8

13
14
17
18
11
15 V

A
B
C

G1
G2A
G2B

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4
1G
2G

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

15
14
13
12
11
10
9
7

2
4
6
8
11
13
15
17

1
19

Port 0
Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 7

Input bit 0
Input bit 1
Input bit 2
Input bit 3
Input bit 4
Input bit 5
Input bit 6
Input bit 7

Output bit 0
Output bit 1
Output bit 2
Output bit 3
Output bit 4
Output bit 5
Output bit 6
Output bit 7

2
5
6
9
12
15
16
19

D1
D2
D3
D4
D5
D6
D7
D8

CLK
CLR

’C20x DSP
74AC138

I/O port address decoder

74AC244
8-bit input port at I/O

address 0000h

5 V

74AC273
8-bit output latch

at I/O address 0001h

Direct Memory Access Using the HOLD Operation

4-18

4.6 Direct Memory Access Using the HOLD Operation

The ’C20x HOLD operation allows direct-memory access to external program,
data, and I/O spaces. The process is controlled by two signals:

� HOLD. An external device can drive the HOLD/INT1 pin low to request
control over the external buses. If the HOLD/INT1 interrupt line is enabled,
this triggers an interrupt.

� HOLDA. In response to a HOLD interrupt, software logic can cause the
processor to issue a HOLD acknowledge (HOLDA pin low), to indicate that
it is relinquishing control of its external lines. Upon HOLDA, the external
address signals (A15–A0), data signals (D15–D0), and memory-control
signals (PS, DS, BR, IS, STRB, R/W, RD, WE) are placed in high
impedance.

Following a negative edge on the HOLD/INT1 pin, if interrupt line HOLD/INT1
is enabled, the CPU branches to address 0002h (this branch could also be
accomplished with an INTR 1 instruction). Here the CPU fetches the interrupt
vector and follows it to the interrupt service routine. If you wish to use this
routine for HOLD operations and also for the interrupt INT1, the tasks carried
out by this routine will depend on the value of the MODE bit:

� MODE = 1. When the CPU detects a negative edge on HOLD/INT1, it
finishes executing the current instruction (or repeat operation) and then
forces program control to the interrupt service routine. The interrupt
service routine, after successfully testing for MODE = 1, performs the
tasks for INT1.

� MODE = 0. Interrupt line INT1 is both negative- and positive-edge
sensitive. When the CPU detects the negative edge, it finishes executing
the current instruction (or repeat operation) and then forces program
control to the interrupt service routine. This routine, after successfully
testing for MODE = 0, executes an IDLE instruction. Upon IDLE, HOLDA
is asserted and the external lines are placed in high impedance. Only after
detecting a rising edge on the HOLD/INT1 pin, the CPU exits the IDLE
state, deasserts HOLDA, and returns the external lines to their normal
states.

Example 4–1 shows an interrupt service routine that tests the MODE bit and
acts accordingly. Note that the IDLE instruction should be placed inside the
interrupt service routine to issue HOLDA. Also note that the interrupt program
code disables all maskable interrupts except HOLD/INT1 to allow safe
recovery of HOLDA and the buses. Any other sequence of CPU code will
cause undesirable bus control and is not recommended. (Interrupt operation
is explained in detail in section 5.6 on page 5-15.)

Direct Memory Access Using the HOLD Operation

4-19Memory and I/O Spaces

Example 4–1. An Interrupt Service Routine Supporting INT1 and HOLD

.mmregs ;Include c2xx memory-mapped registers.
ICR .set 0FFECh ;Define interrupt control register in I/O space.
ICRSHDW .set 060h ;Define ICRSHDW in scratch pad location.

* Interrupt vectors *

reset B main ;0 – reset , Branch to main program on reset.
Int1h B int1_hold ;1 – external interrupt 1 or HOLD.

.space 40*16 ;Fill 0000 between vectors and main program.
main: SPLK #0001h,imr ;Enable HOLD/INT1 interrupt line.

CLRC INTM
wait: B wait

*********Interrupt service routine for HOLD logic*****************************

int1_hold:
; Perform any desired context save.

LDP #0 ;Set data-memory page to 0.
IN ICRSHDW, ICR ;Save the contents of ICR register.
LACL #010h ;Load accumulator (ACC) with mask for MODE bit.
AND ICRSHDW ;Filter out all bits except MODE bit.
BCND int1, neq ;Branch if MODE bit is 1, else in HOLD mode.
LACC imr, 0 ;Load ACC with interrupt mask register.
SPLK #1, imr ;Mask all interrupts except interrupt1/HOLD.
IDLE ;Enter HOLD mode. Issues HOLDA, and puts

;buses in high impedance. Wait until
;rising edge is seen on HOLD/INT1 pin.

SPLK #1, ifr ;Clear HOLD/INT1 flag in interrupt flag register
;to prevent re-entering HOLD mode.

SACL imr ;Restore interrupt mask register.

; Perform necessary context restore.

CLRC INTM ;Enable all interrupts.
RET ;Return from HOLD interrupt.

int1: NOP ;Replace these NOPs with desired int1 interrupt
NOP ;service routine.

; Perform necessary context restore.
CLRC INTM ;Enable all interrupts.
RET ;Return from interrupts.

Direct Memory Access Using the HOLD Operation

4-20

Here are three valid methods for exiting the IDLE state, thus deasserting
HOLDA and restoring the buses to normal operation:

� Cause a rising edge on the HOLD/INT1 pin when MODE = 0.

� Assert system reset at the reset pin.

� Assert the nonmaskable interrupt NMI at the NMI pin.

If reset or NMI occurs while HOLDA is asserted, the CPU will deassert HOLDA
regardless of the level on the HOLD/INT1 pin. Therefore, to avoid further
conflicts in bus control, the system hardware logic should restore HOLD to a
high state.

4.6.1 HOLD During Reset

The HOLD logic can be used to put the buses in a high-impedance state at
power-on or reset. This feature is useful in extending the DSP memory control
to external processors. If HOLD is driven low during reset, normal reset
operation occurs internally, but HOLDA will be asserted, placing all buses and
control lines in a high-impedance state. Upon release of both HOLD and RS,
execution starts from program location 0000h.

Either of the following conditions will cause the processor to deassert HOLDA
and return the buses to a normal state:

� HOLD is deasserted before reset is deasserted. See Figure 4–9. This is
the normal recovery condition after a HOLD operation. After the HOLD
signal goes high, the HOLDA signal will be deasserted, and the buses will
assume normal states.

Figure 4–9. HOLD Deasserted Before Reset Deasserted

RS

HOLD

HOLDA

Direct Memory Access Using the HOLD Operation

4-21Memory and I/O Spaces

� Reset is deasserted before HOLD is deasserted. See Figure 4–10. The
CPU will deassert HOLDA regardless of the HOLD signal after the 16 clock
cycles required for normal reset operation. Along with the HOLDA signal,
the buses will assume normal states. The external system hardware logic
should restore the HOLD signal to a high state to avoid conflicts in HOLD
logic.

Figure 4–10. Reset Deasserted Before HOLD Deasserted

RS

HOLD

HOLDA

Direct Memory Access Using the HOLD Operation

Device-Specific Information

4-22

4.7 Device-Specific Information

For ’C20x devices other than the ’C209, this section mentions the presence
or absence of the bootloader and HOLD features, shows address maps, and
explains the contents and configuration of the program-memory and data-
memory maps. For details about the memory and I/O spaces of the ’C209, see
section 11.2 on page 11-5.

4.7.1 TMS320C203 Address Maps and Memory Configuration

The ’C203 has a ’C20x on-chip bootloader and supports the ’C20x HOLD
operation. Figure 4–11 shows the ’C203 address map.

The on-chip program and data memory available on the ’C203 consists of:

� DARAM B0 (256 words, for program or data memory)
� DARAM B1 (256 words, for data memory)
� DARAM B2 (32 words, for data memory)

Device-Specific Information

4-23Memory and I/O Spaces

Figure 4–11.’C203 Address Map

FFFFh

’C203 Program ’C203 Data

FFFFh

0800h

0400h
03FFh

0300h
02FFh

0200h
01FFh

0080h
007Fh

0060h
005Fh

0000h

External

DARAM B1§
On-chip

Reserved (CNF = 1)
B0‡ (CNF = 0);

On-chip DARAM

Reserved

DARAM B2
On-chip

reserved addresses
registers and

Memory-mapped
0000h

FDFFh
FE00h

External (CNF = 0)
Reserved (CNF = 1);

External

FEFFh
FF00h

FFFFh

On-chip DARAM
B0† (CNF = 1);

External (CNF = 0)

Reserved
07FFh

003Fh
Interrupts (external)

’C203 I/O
0000h

External

reserved addresses
registers and
I/O-mapped

External
(local and/or global)

FF00h
FEFFh

FF10h
FF0Fh

Reserved for
test/emulation

8000h
7FFFh

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh
are referred to here as reserved when CNF = 1.

‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are
referred to here as reserved.

§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to here as
reserved.

Device-Specific Information

 4-24

DARAM blocks B1 and B2 are fixed, but DARAM block B0 may be mapped to
program space or data space, depending on the value of the CNF bit (bit 12
of status register ST1):

� CNF = 0. B0 is mapped to data space and is accessible at data addresses
0200h–02FFh. Note that the addressable external program memory
increases by 512 words.

� CNF = 1. B0 is mapped to program space and is accessible at program
addresses FF00h–FFFFh.

At reset, CNF = 0.

Table 4–5 shows the program-memory options for the ’C203; Table 4–6 lists
the data-memory options. Note these facts:

� Program-memory addresses 0000h–003Fh are used for the interrupt
vectors.

� Data-memory addresses 0000h–005Fh contain on-chip memory-mapped
registers and reserved memory.

� Two other on-chip data-memory ranges are always reserved:
0080h–01FFh and 0400h–07FFh.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
any addresses labeled Reserved. This includes any data-memory
address in the range 0000h–005Fh that is not designated for an
on-chip register and any I/O address in the range FF00h–FFFFh
that is not designated for an on-chip register.

Table 4–5. ’C203 Program-Memory Configuration Options

CNF DARAM B0 External Reserved

0 – 0000h–FFFFh –

1 FF00h–FFFFh 0000h–FDFFh FE00h–FEFFh

Device-Specific Information

4-25Memory and I/O Spaces

Table 4–6. ’C203 Data-Memory Configuration Options

CNF
DARAM B0

(hex)
DARAM B1

(hex)
DARAM B2

(hex)
External

(hex)
Reserved

(hex)

0 0200–02FF 0300–03FF 0060–007F 0800–FFFF 0000–005F

0080–01FF

0400–07FF

1 – 0300–03FF 0060–007F 0800–FFFF 0000–005F

0080–02FF

0400–07FF

4.7.2 TMS320C206/LC206 Address Maps and Memory Configuration

The ’C206/’LC206 have an on-chip bootloader in ROM. Figure 4–12 shows
addresses for the ’C206/’LC206 memory map. The on-chip program and data
memory available on the ‘C206/’LC206 consists of:

� ROM (32K words, for program memory)
� DARAM B0 (256 words, for program or data memory)
� DARAM B1 (256 words, for data memory)
� DARAM B2 (32 words, for data memory)

The ’C206/’LC206 includes 544 x 16 words of dual-access RAM (DARAM), 4K
x 16 single-access RAM (SARAM), and 32K x 16 program ROM memory. The
PON and DON bits select the SARAM (4K) mapping in program, data or both.
At reset, these bits are 11, mapping the SARAM in both program and data
memory.

At reset, if the MP/MC is held high, the device is in microprocessor mode and
the program address branches to 0000h (external program space). The
MP/MC pin status is latched in the PMST register (bit 0). As long as this bit
remains high, the device is in microprocessor mode. PMST register bits can
be read and modified in software. If bit 0 is written 0, the device enters
microcomputer mode and transfers control to the on-chip ROM at 0000h.

Device-Specific Information

 4-26

Figure 4–12. TMS320C206, TMS320LC206 Memory Map Configurations

Interrupt vectors

External

On-chip
SARAM 4K

Internal (PON = 1)
External (PON = 0)

External

Reserved
(CNF = 1)†

External (CNF = 0)

On-chip DARAM
B0 (CNF = 1)†

External (CNF = 0)

0000

003F
0040

7FFF
8000

8FFF
9000

FDFF
FE00

FEFF
FF00

FFFF

Interrupt vectors

A-law table

On-chip
SARAM 4K

Internal (PON = 1)
External (PON = 0)

External

Reserved
(CNF = 1)

External (CNF = 0)

On-chip DARAM
B0 (CNF = 1)

External (CNF = 0)

0000

003F
0040

7FFF
8000

8FFF
9000

FDFF
FE00

FEFF
FF00

FFFF

Bootloader code

µ-law table

Unused

Reserved for
ROM test code

7EFF
7F00

On-chip ROM¶ (32K)

On-chip DARAM
B0 (CNF = 0)‡

Reserved
(CNF = 1)

0000

005F
0060

02FF
0300

07FF
0800

17FF
1800

FFFF

Reserved

03FF
0400

Memory-mapped
registers and

reserved
addresses

On-chip
DARAM B2

On-chip
DARAM B1§

Reserved

On-chip
SARAM 4K

Internal (DON = 1)
External (DON = 0)

External

007F
0080

01FF
0200

0000

FEFF
FF00

FF0F
FF10

FFFF

External
I/O space

On-chip I/O
peripheral
registers

Reserved
for test

Program Program Data I/O SpaceHex Hex Hex Hex

External if MP/MC = 1 Internal if MP/MC = 0

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh
are referred to here as reserved when CNF = 1.

‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are
referred to here as reserved.

§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. Addresses 0400h–04FFh are referred to here as reserved.

¶ Standard ROM devices will come with boot code and the A-law, µ-law table.

Device-Specific Information

4-27Memory and I/O Spaces

4.7.3 TMS320F206 Address Maps and Memory Configuration

The ’F206 has an on-chip serial loader in flash EEPROM. Figure 4–13 shows
addresses for the ‘F206 memory map. The on-chip program and data memory
available on the ‘F206 consists of:

� Flash EEPROM (32K words, for program memory)
� DARAM B0 (256 words, for program or data memory)
� DARAM B1 (256 words, for data memory)
� DARAM B2 (32 words, for data memory)

The ’F206 includes 544 x 16 words of dual-access RAM (DARAM), 4K x 16
single-access RAM (SARAM), and 32K x 16 program flash EEPROM memory.
The PON and DON bits select the SARAM (4K) mapping in program, data or
both. At reset, these bits are 11, mapping the SARAM in both program and data
memory.

At reset, if the MP/MC is held high, the device is in microprocessor mode and
the program address branches to 0000h (external program space). The
MP/MC pin status is latched in the PMST register (bit 0). As long as this bit
remains high, the device is in microprocessor mode. PMST register bits can
be read and modified in software. If bit 0 is written 0, the device enters
microcomputer mode and transfers control to the on-chip flash memory
(0000h–7FFFh).

4.7.4 Flash Memory (EEPROM)

Flash EEPROM provides an attractive alternative to masked ROM. Like ROM,
flash memory is non-volatile but has the added benefit of being electrically
erasable and programmable without having to be removed from the target
system. This “in-target” reprogrammability makes flash devices an attractive
choice in the areas of prototyping, early field-testing and single-chip
applications. Other key features of the flash include zero wait-state access and
single 5-V power supply. The ’F206 incorporates two 16K x 16-bit flash
EEPROM modules which provide a contiguous 32K x 16-bit array in program
space. For further details on flash memory and programming, refer to the flash
technical reference, TMS320F20x/F24x DSP Embedded Flash Memory Tech-
nical Reference (literature number SPRU282).

Device-Specific Information

 4-28

Figure 4–13. TMS320F206 Memory Map Configuration

On-chip 16K Flash (1)
(MP/MC = 0)

External
(MP/MC = 1)

On-chip SARAM
4K Internal
(PON = 1)
External

(PON = 0)

ProgramHex

On-chip 16K
Flash (0)

(MP/MC = 0)

External
(MP/MC = 1)

0000

003F
0040

FDFF
FE00

FFFF

Interrupt
vectors

FF00
FEFF

External

8FFF
9000

Data

0000

005F
0060

0400

0500

FFFF

Memory-mapped
registers and

Reserved

17FF

02FF

I/O SpaceHex
0000

FEFF
FF00

FFFF

FF10
FF0F

Reserved
for
test

On-chip I/O
peripheral
registers

On-chip
DARAM B2

Reserved

007F

00FF
0100

01FF
0200

03FF

0080

External
I/O space

3FFF

7FFF

4000

8000

On-chip DARAM B0
(CNF = 1)†

also mapped at
(0FF00–0FFFFh)

External
(CNF = 0)

On-chip DARAM B0
(CNF = 1)†

also mapped at
(0FE00–0FEFFh)

External
(CNF = 0)

On-chip DARAM B0
(CNF = 0)‡

also mapped at
(0200–02FFh)

Reserved
(CNF = 1)

On-chip DARAM B0
(CNF = 0)‡

also mapped at
(0100–01FFh)

Reserved
(CNF = 1)

On-chip DARAM B1§

also mapped at
(0400–04FFh)

0300

0800

1800

On-chip
DARAM B1§

also mapped at
(0300–03FFh)

Reserved

On-chip SARAM 4K
(DON = 1)
External

(DON = 0)

External

07FF

04FF

Hex

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh
are referred to here as reserved when CNF = 1.

‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are
referred to here as reserved.

§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to here as
reserved.

Device-Specific Information

4-29Memory and I/O Spaces

4.7.5 PMST Register in the ’206 Family

The PMST register provides improved memory interface options. This feature
is in ’F206/LC206/C206 devices only. All the ’C20x DSP devices have critical
external memory interface timings. At higher clock speeds, the existing RD
signal is too delayed to be used as output enable for memory devices. In order
to achieve a glueless zero wait state memory interface, RD signal has been
provided with a software control bit. This bit (bit 15, FRDN) in PMST register
(FFE4h) can select R/W as the new read signal (pin 45) instead of RD signal.
Choosing R/W is necessary only if RD is incapable of supporting a zero wait
state memory interface.

Figure 4–14. PMST Register Selection for RD

PMST (FFE4h)

Bit 15

R/W

RD

FRDN

RD pin

Notes: 1) RD is enabled at reset.

2) R/W is the RD pin signal for fast memory interface if FRDN is enabled .

’C203 Bootloader

4-30

4.8 ’C203 Bootloader

This section applies to the ’C203’s on-chip bootloader, which boots software
from an 8-bit external ROM to a 16-bit external RAM at reset (see
Figure 4–15). The source for your program is an external ROM located in
external global data memory. The destination for the boot-loaded program is
RAM in the program space. The main purpose of the bootloader is to provide
you with the ability to use low-cost, simple-to-use 8-bit EPROMs with the 16-bit
’C20x.

Figure 4–15. Simplified Block Diagram of Bootloader Operation

’C203

16
RAM

(program destination)

Written starting at
address 0000h

8
EPROM

(program source)

Mapped in global data
memory space

The code for the bootloader is stored on chip. Using the bootloader requires
several steps: choosing an EPROM, connecting and programming the
EPROM, enabling the bootloader program, and finally, booting.

4.8.1 Choosing an EPROM

The code that you want boot-loaded must be stored in non-volatile external
memory; usually, this code is stored in an EPROM. Most standard EPROMs
can be used. At reset, the processor defaults to the maximum number of
software wait states to accommodate slow EPROMs.

The maximum size for the EPROM is 32K words × 8 bits, which
accommodates a program of up to 16K words � 16 bits. However, you could
use the bootloader to load your own boot software to get around this limit or
to perform a different type of boot.

Recommended EPROMs include the 27C32, 27C64, 27C128, and 27C256.

’C203 Bootloader

4-31Memory and I/O Spaces

4.8.2 Connecting the EPROM to the Processor

To map the EPROM into the global data space at address 8000h, make the
following connections between the processor and the EPROM (refer to
Figure 4–16):

� Connect the address lines of the processor and the EPROM (see lines
A14–A0 in the figure).

� Connect the data lines of the processor and the EPROM (see lines D7–D0
in the figure).

� Connect the processor’s RD pin to the EPROM output enable pin (OE in
the figure).

� Connect the processor’s BR pin to the EPROM chip enable pin (CE in the
figure).

Notes:

1) If the EPROM is smaller than 32K words × 8 bits, connect only the
address pins that are available on the EPROM.

2) When the bootloader accesses global memory, along with BR, DS is
driven low. Design your system so that the DS signal does not initiate un-
desired accesses to data memory during the boot loads.

Figure 4–16. Connecting the EPROM to the Processor

EPROM

D7–D0D7–D0

’C203

A14–A0 A14–A0

OE

CE

RD

BR

(27C256)

8

15

’C203 Bootloader

4-32

4.8.3 Programming the EPROM

Texas Instruments fixed-point development tools provide the utilities to
generate the boot ROM code. The on-chip boot ROM is located at address
FF00h and it is only accessible by the CPU during the boot-load process. After
boot loading is complete, the boot ROM is removed from the memory map.
(For an introduction to the procedure for generating bootloader code, see
Appendix D, Program Examples.) However, should you need to do the
programming, use the following procedure.

Store the following to the EPROM:

� Destination address. Store the destination address in the first two bytes
of the EPROM—store the high-order byte of the destination address at
EPROM address 8000h and store the low-order byte at EPROM address
8001h.

� Program length. Store N (the length of your program in words) in the next
two bytes in EPROM. Use this calculation to determine N:

N = ((number of bytes to be transferred)/2) – 1

Store the high-order N byte at EPROM address 8002h and the low-order N
byte at EPROM address 8003h.

� Program. Store the program, one byte at a time, beginning at EPROM
address 8004h.

Each word in the program must be divided into two bytes in the EPROM;
store the high-order byte first and store the low-order byte second. For
example, if the first word is 813Fh, you would store 81h into the first byte (at
8004h) and 3Fh into the second byte (at 8005h). Then, you would store the
high byte of the next word at address 8006h.

Notes:

1) Do not include the first four bytes of the EPROM in your calculation of
the length (N). The bootloader uses N beginning at the fifth byte of the
EPROM.

2) Make sure the first part of the program on the EPROM contains code for
the reset and interrupt vectors. These vectors must be stored in the
destination RAM first, so that they can be fetched from program-memory
addresses 0000h–003Fh. The reset vector will be fetched from 0000h.
For a list of all the assigned vector locations, see section 5.6.2, Interrupt
Table, on page 5-16.

’C203 Bootloader

4-33Memory and I/O Spaces

Figure 4–17 shows how to store a 16-bit program into the 8-bit EPROM. A
subscript h (for example, on Word1h) indicates the high-byte and a subscript
l (for example, on Word1l) indicates the low byte.

Figure 4–17. Storing the Program in the EPROM
16-Bit Program 8-Bit EPROM

15 8 7 0 Address 7 0

Word1h Word1l 8000h Destinationh

Word2h Word2l 8001h Destinationl

•. • 8002h Length Nh

• • 8003h Length Nl

• • 8004h Word1h

Wordnh Wordnl 8005h Word1l

8006h Word2h

8007h Word2l

• •

• •

• •

nnnEh Wordnh

nnnFh Wordnl

4.8.4 Enabling the Bootloader

To enable the bootloader, tie the BOOT pin low and reset the device. The
BOOT pin is sampled only at reset. If you do not want to use the bootloader,
tie BOOT high before initiating a reset.

Three main conditions occur at reset that ensure proper operation of the
bootloader:

� All maskable interrupts are globally disabled (INTM bit = 1).
� On-chip DARAM block B0 is mapped to data space (CNF bit = 0).
� Seven wait states are selected for program and data spaces.

After a hardware reset, the processor either executes the bootloader software
or skips execution of the bootloader, depending on the level on the BOOT pin:

� If BOOT is low, the processor branches to the location of the on-chip
bootloader program (FF00h).

� If BOOT is high, the processor begins program execution at the address
pointed to by the reset vector at address 0000h in program memory.

’C203 Bootloader

 4-34

4.8.5 Bootloader Execution

Once the EPROM has been programmed and installed, and the bootloader
has been enabled, the processor automatically boots the program from
EPROM at startup. If you need to reboot the processor during operation, bring
the RS pin low to cause a hardware reset.

When the processor executes the bootloader, the program first enables the full
32K words of global data memory by setting the eight LSBs of the GREG
register to 80h. Next, the bootloader copies your program from the EPROM
in global data space to the RAM in program space through a five step process
(refer to Figure 4–18):

1) The bootloader loads the first two bytes from the EPROM and uses this
word as the destination address for the code. (In Figure 4–18, the
destination is 0000h.)

2) The bootloader loads the next two bytes to determine the length of the
code.

3) The bootloader transfers the next two bytes. It loads the high byte first and
the low byte second, combines the two bytes into one word, stores the new
word in the destination memory location, and then causes an increment
in the source and destination addresses.

4) The bootloader checks to see if the end of the program has been reached:

� If the end is reached, the bootloader goes on to step 5.
� If the end is not reached, the bootloader repeats steps 3 and 4.

5) The bootloader disables the entire global memory and then forces a
branch to the reset vector at address 0000h in program memory. Once the
bootloader finishes operation, the processor switches the on-chip
bootloader out of the memory map.

Note:

During the boot load, data is read using the low-order eight data lines
(D7–D0). The upper eight data lines are not used by the bootloader code.

’C203 Bootloader

4-35Memory and I/O Spaces

Figure 4–18. Program Code Transferred From 8-Bit EPROM to 16-Bit RAM
8-Bit EPROM 16-Bit RAM

Address 7 0 Address 15 8 7 0

8000h Destinationh = 00h 0000h Word1h Word1l

8001h Destinationl = 00h • Word2h Word2l

8002h Length Nh • • . •

8003h Length Nl • • •

8004h Word1h nnnEh • •

8005h Word1l nnnFh Wordnh Wordnl

8006h Word2h

8007h Word2l

• •

• •

• •

nnnEh Wordnh

nnnFh Wordnl

The ’C203 fetches its interrupt vectors from program-memory locations
0000h–003Fh (the reset vector is fetched from 0000h). Make sure that the
interrupt vectors are stored at the top of the EPROM, so that they will be
transferred to addresses 0000h–003Fh in the RAM (see Figure 4–19). Each
interrupt vector is a branch instruction, which requires four 8-bit words, and
there is space for 32 interrupt vectors. Therefore, the first 128 words to be
transferred from the EPROM should be the interrupt vectors.

Note:

In the ’C203, the on-chip boot ROM is located at program address FF00h.
It is accessed by the CPU only during the bootload process. After bootload-
ing is complete, the boot ROM is removed from the memory map.

’C203 Bootloader

 4-36

Figure 4–19. Interrupt Vectors Transferred First During Boot Load

8000h

8-bit EPROM
in global data memory

16-bit RAM
in program memory

0000h

003Fh8001h

Destinationh (00)

Destinationl (00)

Length Nh

Length Nl

8002h

8003h

Interrupt vectors

Program code

Interrupt vectors

Program code

nnnFh

nnnFh

8004h

8083h

8084h

0040h

’C203 Bootloader

4-37Memory and I/O Spaces

4.8.6 Bootloader Program

**
* TMS320C20x Bootloader Program *
* *
* This code sets up and executes bootloader code that loads program *
* code from location 8000h in external global data space and transfers it *
* to the destination address specified by the first word read from locations *
* 8000h and 8001h. *
**

.length 60
GREG .set 5h ; The GREG Register
SRC .set 8000h ; Source address
DEST .set 60h ; Destination address
LENGTH .set 61h ; Code length
TEMP .set 62h ; Temporary storage
HBYTE .set 63h ; Temporary storage for upper half of 16–bit word
CODEWORD .set 64h ; Hold program code word

.sect ”bootload”
*
* Initialization
*
BOOT LDP #0 ; Set the data page to 0 (load DP with 0)

SPLK #2E00h,TEMP ; Set ARP = 1, OVM = 1, INTM = 1, DP = 0
LST #0,TEMP
SPLK #21FCh,TEMP ; Set ARB = 1, CNF = 0, SXM = 0, XF = 1, PM = 0
LST #1,TEMP
SPLK #80h,GREG ; Designate locations 8000–FFFFH as global data

; space
* *
* BOOT LOAD FROM 8–BIT MEMORY. MOST SIGNIFICANT BYTE IS FIRST *
* *
*
* Determine destination address
*
ADDR LAR AR1,#SRC ; AR1 points to global address 8000h

LACC *+,8 ; Load ACC with high byte shifted left by 8 bits
SACL HBYTE ; Store high byte
LACL *+ ; Load ACC with low byte of destination
AND #0FFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16-bit

; destination address
SACL DEST ; Store destination address

*
* Determine length of code to be transferred
*
LEN LACC *+,8 ; Load ACC with high byte shifted left by 8 bits

SACL HBYTE ; Store high byte
LACL *+ ; Load ACC with low byte of length
AND #0FFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16-bit length
SACL LENGTH ; Store length
LAR AR0,LENGTH ; Load AR0 with length to be used for BANZ

’C203 Bootloader

4-38

*
* Transfer code
*
LOOP LACC *+,8 ; Load ACC with high byte of code shifted by 8 bits

SACL HBYTE ; Store high byte
LACL *+,AR0 ; Load ACC with low byte of code
AND #0FFH ; Mask off upper 24 bits
OR HBYTE ; OR ACC with high byte to form 16-bit code word
SACL CODEWORD ; Store code word
LACL DEST ; Load destination address
TBLW CODEWORD ; Transfer code to destination address
ADD #1 ; Add 1 to destination address
SACL DEST ; Save new address
BANZ LOOP,AR1 ; Determine if end of code is reached
SPLK #0,GREG ; Disable entire global memory
INTR 0 ; Branch to reset vector and execute code.

.END

Note:

The INTR instruction in the bootloader program causes the processor to
push a return address onto the stack, but the device does not use a RET to
return to this address. Therefore, your program must execute a POP
instruction to get the address off the stack.

’C206/LC206 Bootloader

4-39Memory and I/O Spaces

4.9 ’C206/LC206 Bootloader

This section describes the bootloader options available on the TMS320C206
and TMS320LC206. Several boot-load options are available on these devices.
You can choose the option required by external pin configurations and an 8-bit
word input from I/O address 0000h. The bootloader provides the flexibility of
loading any executable code into the program memory of the DSP. Your code
can be transferred to the DSP program memory from any one of the following
external sources:

� 8/16-bit transfer through the synchronous serial port (SSP)
� 8-bit transfer through the asynchronous synchronous serial port (ASP)
� 8/16-bit EPROM
� 8/16-bit parallel port mapped to I/O space address 0001h of the DSP

Additionally, a warm boot is also supported.

4.9.1 Boot-load Options

The main function of the bootloader is to transfer user code from an external
source to the program memory at power-up. The TMX320C206/LC206
provides several ways to download code to accommodate varying system
requirements. To ensure compatibility, the ’C206 bootloader supports the
original ‘C203 boot-load mode. The EXT8 pin (pin 1) of the ’C206/’LC206 is
sampled during startup to determine whether to perform the ‘C203 boot-load
or the enhanced 206 boot-load options. are to be performed. Unlike the ‘C203
bootloader, the ’C206 bootloader can load multiple sections of user code in
different segments of memory. In all boot-load modes, the processor
automatically branches to the beginning your code, once boot loading is
complete.

There are two possible scenarios for the TMS320C206/LC206 during startup
based on the condition of the EXT8 pin:

� EXT8 = low: This invokes the original ‘C203 style bootloader, which boot
loads from an external 8-bit EPROM.

� EXT8 = high: This invokes the enhanced ’C206 bootloader, which
supports the following boot-load options:
� Synchronous serial port, 8/16 bit
� UART/asynchronous serial port, 8 bit
� External parallel EPROM, 8/16 bit
� Parallel I/O boot, 8/16 bit using BIO and XF for handshaking
� Warm boot

The option to be executed is determined by reading the word at I/O address
0000h. The lower 8-bits of the word specify which bootloader option to use.

’C206/LC206 Bootloader

 4-40

4.9.2 Bootloader Operation

If the MP/MC pin is sampled low during a hardware reset, execution begins at
location 0000h of the on-chip ROM. This location contains a branch instruction
to the start of the bootloader program. The level of the EXT8 pin is read via bit
3 (LEVEXT8) in the PMST register (FFE4h in I/O space). If EXT8 pin is read
high, the bootloader checks the boot selection word at location 0000h in I/O
space and determines which booting method to execute. If EXT8 pin is read
low, control passes by default to 8-bit EPROM boot (‘C203 style bootloader).
This allows upward compatibility from TMS320C203. Figure 4–20 shows the
PMST register. Table 4–7 describes the function of the PMST register bits.
Table 4–8 shows bootloader pin configuration.

Figure 4–20. Program Memory Status (PMST) Register – (I/O space FFE4h)

15 14 4 3 2 1 0

FRDN Reserved LEVEXT8 DON PON MP/MC

R/W 0 R R/W R/W R/W

Table 4–7. PMST Register Bit Descriptions

Bit Name
Value at
Reset Function

15 FRDN 0 At reset, this bit is 0, which enables enhanced RD signal. If high, the
inverted R/W is active.

14–4 Reserved 0 These bits are not used.

3 LEVEXT8 x Bit 3 (a read-only bit) latches in the state of EXT8 pin at reset. If low, the
on-chip bootloader uses ‘C203 style boot load. If high, the enhanced
’C206 bootloader is used.

2 DON 1 See below.

1 PON 1 Bit 1 and bit 2 configure the SARAM mapping either in program memory,
data memory or both. At reset these bits are 11.

DON (bit 2) PON (bit 1)

0 0 SARAM not mapped, address in external memory

0 1 SARAM in program memory at 0x8000h

1 0 SARAM in data memory at 0x800h

1 1 SARAM in program and data memory (reset value)

0 MP/MC x Bit 0 latches in the state of MP/MC at reset. This bit can also be written
to switch between Microprocessor (1) or Microcomputer (0) modes.

’C206/LC206 Bootloader

4-41Memory and I/O Spaces

Table 4–8. Bootloader-Pin Configuration

MP/MC EXT8 Option Mode(s)

0 0 Use ‘C203 style bootloader 1

0 1 Use ’C206 enhanced bootloader 2 to 9

1 0 EXT8 has no effect –

1 1 EXT8 has no effect –

The bootloader sets up the CPU status registers as follows:

� On-chip DARAM block B0 is mapped into program space (CNF = 1).

� On-chip SARAM block is mapped into program and data space
(PON = 1, DON=1).

Note that both DARAM and SARAM memory blocks are enabled in program
memory space; this allows you to transfer code to on-chip program memory.

At reset, interrupts are globally disabled (INTM = 1). Entire program and data
memory spaces are enabled with seven wait states.

4.9.3 ’C206 Enhanced Bootloader (EXT8 High - Modes 2 to 9)

The bootloader reads the I/O port address 0000h by driving the I/O strobe (IS)
signal low. The lower eight bits of the word read from I/O port address 0000h
specify the mode of transfer; the higher eight bits are ignored. This
boot-routine-selection (BRS) word determines the boot mode. The BRS word
uses a 6-bit source address field (SRCE_AD) in parallel EPROM mode and
a 6-bit entry address field (ADDR_bb) in warm-boot mode to arrive at the
starting address of the code.

Figure 4–21 lists the available boot-load options and the corresponding values
for the boot-routine-selection word at I/O address 0000h. This word could be
set by a DIP switch.

Figure 4–22 shows the available boot-load options in flow chart form.

’C206/LC206 Bootloader

 4-42

Figure 4–21. Enhanced ’C206 Bootloader Options

BRS word @ I/O 0000h Boot Load Option Mode

xxxxxxxx xxx0 0000 8-bit serial SSP, external FSX, CLKX 2

xxxxxxxx xxx0 0100 16-bit serial SSP, external FSX,CLKX 3

xxxxxxxx xxx0 1000 8-bit parallel I/O 4

xxxxxxxx xxx0 1100 16-bit parallel I/O 5

xxxxxxxx xxx1 0000 8-bit ASP /UART 6

xxxxxxxx SRCE AD01 8-bit EPROM 7

xxxxxxxx SRCE AD10 16-bit EPROM 8

xxxxxxxx ADDR bb11 Warm-boot 9

’C206/LC206 Bootloader

4-43Memory and I/O Spaces

Figure 4–22. Boot-load Flowchart

No

(Bit 2 of BRS = 1)

synchronous
Perform 16-bit

serial load

(Bit 2 of BRS = 0)

Yes
Perform 8-bit
synchronous
serial load

No

8-bit

BRS = 0?)

synchronous

(Bit 2 of
serial load

Yes

8-bit
parallel I/O

Perform

No Perform 16-bit

(Bit 2 of BRS = 1)
parallel I/O

BRS = 0?)
(Bit 2 of

parallel I/O?
8-bit

Yes
Parallel

(Bit 3 of
BRS = 1?)

I/O load?

Yes

Yes

serial load
asynchronous

Perform UART/
16-bit

EPROM

Perform

Yes YesYes

Perform

EPROM
8-bit

No

Warm boot
(2 LSBs = 11)

No No
EPROM?

(2 LSBs = 10?)

16-bit

boot loading
C203 style

Perform

No

Yes

8-bit
EPROM?

(2 LSBs = 01?)

Serial/

load?

 BRS = 00?)
(2 LSBs of

parallel

C203
style

loader?
(LEVEXT8 = 0?)

Start

BRS = 1?)
 (Bit 4 of
serial load?

asynchronous
UART/

’C206/LC206 Bootloader

 4-44

Figure 4–23 provides the memory map of program address spaces that are
accessible through the bootloader. For modes other than 1, memory locations
from 0000h to 7FFFh are not available for loading code, since that space is
occupied by ROM. However, this limitation can be overcome by modifying the
memory map in your own boot code.

Figure 4–23. Destination Address Space for Programs in Program Memory

External RAM

SARAM

Boot ROM

FFFFh

Reserved

0000h

External

’C203 Bootloader
B0 in PM

B0 in PM

FF00h
FEFFh Reserved

SARAM
8000h
7FFFh

9000h
8FFFh

External RAM

FE00h
FDFFh

Caution: Locations 8000h - 807Fh in SARAM are reserved for the second interrupt vector table as mentioned in section 5.
Exercise caution while moving code into this area.

Memory locations available for boot loading user code.

9000h
8FFFh

0000h

8000h
7FFFh

FFFFh

FF00h
FEFFh

FE00h
FDFFh

’C206 Bootloaders
(Other than Mode 1)

’C203 style Bootloader
(Mode 1)

’C206/LC206 Bootloader

4-45Memory and I/O Spaces

4.9.4 Interrupt Vectoring

Interrupt vectors stored in the on-chip ROM have hard coded addresses to the
on-chip SARAM starting at address 8000h in program space. When an
interrupt occurs, a branch is made to the corresponding interrupt vector
located in the on-chip ROM at addresses (0000h–0040h). A branch instruction
then transfers program control to the second interrupt vector table in the
on-chip SARAM. You must initialize the second interrupt vector table. This
table is used to allow remappable interrupt vectors. See the following code for
initializing interrupt vectors in the SARAM.

Remapped interrupt vectors for TMS320C206, TMS320LC206

int1_holdv .set 8000h ; User maskable interrupt #1
int2_3v .set 8002h ; User maskable interrupts #2 & #3
tintv .set 8004h ; Timer interrupt vector
rintv .set 801Ah ; SSP receive interrupt vector
xintv .set 8032h ; SSP transmit interrupt vector
txrxintv .set 804Eh ; UART port Tx/Rx interrupt vector
trapv .set 8050h ; Software trap vector
nmiv .set 8052h ; Non-maskable interrupt vector
swi8v .set 8054h ; Software interrupt vectors begin...
swi9v .set 8056h
swi10v .set 8058h ; (Note:If these interrupts are unused
swi11v .set 805Ah ; these memory locations may be
swi12v .set 805Ch ; used for other purposes.)
swi13v .set 805Eh
Si14v .set 8060h
swi15v .set 8062h
swi16v .set 8064h
swi20v .set 8066h
swi21v .set 8068h
swi22v .set 806Ah
swi23v .set 806Ch
swi24v .set 806Eh
swi25v .set 8070h
swi26v .set 8072h
swi27v .set 8074h
swi28v .set 8076h
swi29v .set 8078h
swi30v .set 807Ah
swi31v .set 807Ch
reserved .set 807Eh

’C206/LC206 Bootloader

 4-46

4.9.5 Synchronous Serial Port (SSP) Boot Mode

In this mode, the synchronous serial port control register (SSPCR) is
configured for 16-bit or 8-bit word transfer. The data shift clock and frame sync
must be supplied by the external device to the ’C206/’LC206.

� 16-Bit Word Serial Transfer (Mode 3)

If the 16-bit word transfer is selected , the first 16-bit word received by the
’C206 from the serial port specifies the destination address
(Destination16) of code in program memory. The next 16-bit word specifies
the length (Length16) of the actual code that follows. These two 16-bit
words are followed by N number of code words to be transferred to
program memory. Note that the number of 16-bit words specified by the
parameter N does not include the first two 16-bit words received
(Destination16 and Length16). After the specified number of code words
are transferred to program memory, the ’C206 checks to see if there are
any more sections to be transferred. If there are additional sections to be
transferred, the bootloader proceeds to transfer them in exactly the same
way as the first section. After transferring all the sections, the ’C206
branches to the first destination address. The length N is defined as:

N = (Number of 16-bit words) - 1

If, after transferring all the N words of a section, the ’C206 receives a 0000,
it signals the end of user code. If any word other than 0000 is read, it
indicates that one or more sections is following and the word read is
treated as the destination address of the next section. Refer to
Figure 4–24 for the format of data transfer in 16-bit mode.

’C206/LC206 Bootloader

4-47Memory and I/O Spaces

Figure 4–24. 16-Bit Word Transfer

DESTINATION1

LENGTH of first section (N1)

CODE(1) of length N1

DESTINATION2

LENGTH of second section (N2)

CODE(2) of length N2

DESTINATIONN

LENGTH of Nth section (NN)

CODE(N) of length NN

0000 to end program

Legend :

Destination16 16-bit destination address

Length16 16-bit word that specifies the length of the code (N) that follows

Code(N)16 N number of 16-bit words to be transferred (actual code)

� 8-Bit Word Serial Transfer (Mode 2)

If the 8-bit word transfer is selected , a higher-order byte and a lower-order
byte form a 16-bit word. The first 16-bits received by the ’C206 from the
serial port specify the destination address (Destinationh and Destinationl)
of code in program memory. The next 16-bits specify the length (Lengthh
and Lengthl) of the actual code that follows. These two 16-bit words are
followed by N number of code words to be transferred to program memory.
Note that the number of 16-bit words specified by the parameter N does
not include the first four bytes (first two 16-bit words) received (Destination
and Length). After the specified number of code words are transferred to
program memory, the ’C206 checks to see if there are any more sections
to be transferred. If there are additional sections to be transferred, the
bootloader proceeds to transfer them in exactly the same way as the first
section. After transferring all the sections, the ’C206 branches to the first
destination address. The length N is defined as:

N = (Number of 16-bit words) - 1

or

’C206/LC206 Bootloader

 4-48

N = (Number of bytes to be transferred/2) - 1

If, after transferring all the N words of a section, the ’C206 receives a 0000, it
signals the end of user code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4–26 for the format of
data transfer in 8-bit mode. Figure 4–25 shows the connection details for SSP
boot-load option.

Figure 4–25. Host-’C206 Interface for SSP Boot-load Option

Host ’C206

CLKX CLKX

CLKR

FSX

FSR

DX

DR

CLKR

FSR

FSX

DR

DX

’C206/LC206 Bootloader

4-49Memory and I/O Spaces

Figure 4–26. Figure 9. 8-Bit Word Transfer

DESTINATION1h

DESTINATION1l

LENGTHh of first section (N1h)

LENGTHl of first section (N1l)

CODE(1)h

CODE(1)l

DESTINATION2h

DESTINATION2l

LENGTHh of second section (N2h)

LENGTHl of second section (N2l)

CODE(2)h

CODE(2)l

DESTINATIONNh

DESTINATIONNl

LENGTHh of Nth section

LENGTHl of Nth section

CODE(N)h

CODE(N)l

0000 to end program

Legend :

Destinationh High byte of destination address

Destinationl Low byte of destination address

Lengthh High byte that specifies the length of the code (N) that follows

Lengthl Low byte that specifies the length of the code (N) that follows

Code (N)h High byte of N number of 16-bit words to be transferred

Code (N)l Low byte of N number of 16-bit words to be transferred

’C206/LC206 Bootloader

 4-50

4.9.6 UART/Asynchronous Serial Port (ASP) Boot Mode (Mode 6)

This mode is extremely useful to transfer user code to the ’206 through an
asynchronous serial port such as the RS-232 port available in personal
computers. The data packet format in this mode is similar to that of
synchronous serial port (SSP) boot mode, with the exception that only 8-bit
transfers are supported. The DSPHEX utility is used to convert the COFF file
(*.out) of the user to a hex file suitable for UART bootloading. For more
information about the DSPHEX utility, refer to TMS320C1x/C2x/C20x/C5x
Assembly Language Tools User’s Guide (literature number SPRU018D).

The ’206 senses the baud rate of the incoming data and automatically updates
its baud-rate register. To make this happen, the host must transmit the ASCII
character “a” (or “A”) in the very beginning of the data transfer. ’C206 boot code
echoes “a” on baud lock and then prepares itself to receive user code. The
DSPHEX utility does not automatically add the ASCII value of the character
“a” in the hex file it creates. You can do this with the help of any ASCII editor.
While editing the hex file, you must also make sure that the last word of the file
is 0000h in order to transfer control to the user code after boot loading. The
options for the DSPHEX utility can be either specified on the command line or
with the help of a command file. A sample command file for the DSPHEX utility
is given below:

/* DSPHEX command file to generate hex file from .out file */
/* suitable for UART bootloader */

usercode.out /* Replace with the actual name of user code */
–a /* ASCII- hex format */
–o usercode.hex /* Replace with the reqd. name of user code */
-byte /* default */
–order MS /* default */
–memwidth 8
–romwidth 8

SECTIONS
{ .text : boot }

4.9.7 Parallel EPROM Boot Mode

The parallel EPROM boot mode is used when code is stored in EPROMs (8-bit
or 16-bit wide). The code is transferred from external global data memory
(starting at the source address) to program memory (starting at the destination
address). The six MSBs of the source address are specified by the SRCE_AD
field of the boot routine selection word. A 16-bit source address is formed with
the help of this SRCE_AD field as shown in Figure 4–27. The boot-load code
initializes the GREG register to external global data memory space
8000h–0FFFFh. The ’C206/’LC206 transfers control to the source address
after disabling global data memory.

’C206/LC206 Bootloader

4-51Memory and I/O Spaces

Figure 4–27. 16-Bit Source Address for Parallel EPROM Boot Mode

15 10 9 0

SRCE_AD 0 0 0 0 0 0 0 0 0 0

Source address

Note: SRCE_AD = 6-bit page address

� 16-Bit EPROM Transfer (Mode 8)

If the 16-bit mode is selected, boot code is read in 16-bit words starting at
the source address. After every read operation, the source address
changes by an increment of 1 . The first 16-bit word read from the source
address specifies the destination address (Destination16) of code in
program memory. The next 16-bit word specifies the length (Length16) of
the actual code that follows. These two 16-bit words are followed by N
number of code words to be transferred to program memory. Note that the
number of 16-bit words specified by the parameter N does not include the
first two 16-bit words received (Destination16 and Length16). After the
specified number of code words are transferred to program memory, the
’C206 checks to see if there are any more sections to be transferred. If
there are additional sections to be transferred, the bootloader proceeds
to transfer them in exactly the same way as the first section. After
transferring all the sections, the ’C206 branches to the first destination
address. The length N is defined as:

N = (Number of 16-bit words) - 1

If, after transferring all the N words of a section, the ’C206 receives a 0000,
it signals the end of code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4–24 for the format
of data transfer in 16-bit mode.

Note: There is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that
if the destination is in external memory (for example, fast SRAM), there is
enough time to turn off the source memory (for example, EPROM) before
the write operation is performed.

� 8-Bit EPROM Transfer (Mode 7)

If the 8-bit mode is selected, two consecutive memory locations (starting
at the source address) are read to form a 16-bit word. The high-order byte
of the 16-bit word is followed by the low-order byte. Data is read from the

’C206/LC206 Bootloader

 4-52

lower eight data lines, ignoring the higher byte on the data bus. The first
16-bit word specifies the destination address (Destinationh and
Destinationl) of code in program memory. The next 16-bit word specifies
the length Lengthh and Lengthl) of the actual code that follows. These two
16-bit words are followed by N number of code words to be transferred to
program memory. Note that the number of 16-bit words specified by the
parameter N does not include the first four bytes (first two 16-bit words)
received (Destination and Length). After the specified number of code
words are transferred to program memory, the ’C206 checks to see if there
are any more sections to be transferred. If there are additional sections to
be transferred, the bootloader proceeds to transfer them in exactly the
same way as the first section. After transferring all the sections, the ’C206
branches to the first destination address. The length N is defined as:

N = (Number of 16-bit words) - 1
or
N = (Number of bytes to be transferred/2) - 1

If, after transferring all the N words of a section, the ’C206 receives a 0000, it
signals the end of user code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4–26 for the format of
data transfer in 8-bit mode.

Note: There is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), there is enough
time to turn off the source memory (for example, EPROM) before the write
operation is performed.

4.9.8 Parallel I/O Boot Mode (Mode 4 - 8 Bit, Mode 5 - 16 Bit)

The parallel I/O boot mode asynchronously transfers code from I/O port at
address 0001h to internal or external program memory. Each word can be 16
bits or 8 bits long and follows the same sequence outlined in parallel EPROM
mode. The ’C206/’LC206 communicates with the external device using the
BIO and XF lines for handshaking. This allows a slower host processor to
communicate with the ’C206/’LC206 by polling/driving the XF and BIO lines.
The handshake protocol shown in Figure 4–28 must be used to successfully
transfer each word via I/O port 0001h.

If the 8-bit boot mode is selected, two consecutive 8-bit words are read to form
a 16-bit word. The high-order byte of the 16-bit word is followed by the
low-order byte. Data is read from the lower eight data lines of I/O port 0001h,
ignoring the higher byte on the data bus.

’C206/LC206 Bootloader

4-53Memory and I/O Spaces

A data transfer is initiated by the host, driving the BIO pin low. When the BIO
pin goes low, the ’C206 inputs the data from I/O address 0001h, drives the XF
pin high to indicate to the host that the data has been received and then writes
the input data to the destination address. The ’C206 then waits for the BIO pin
to go low before driving the XF pin low. The low status of the XF line can then
be polled by the host for the next data transfer.

There is at least a 4-instruction-cycle delay between the XF rising edge and
a write operation to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), the host
processor has enough time to turn off the data buffers before the write
operation is performed. The ’C206 accesses the external bus only when XF
is high.

Figure 4–28. Handshake Protocol

BIO

XF

1 2 3 4 5

Notes: 1) Host requests data transfer to ’C206 by making BIO low.

2) ’C206 reads in the data through I/O port 1 and makes XF high. Bootloader program loops until BIO becomes high.

3) After BIO is made high, bootloader acknowledges by making XF low indicating that it is ready for new data.

4) Bootloader program loops until BIO becomes low. XF continues to be low.

5) When BIO becomes low, it signals the host request for the transmission of the next word and the whole sequence
repeats until all words are transferred.

4.9.9 Warm-Boot Mode (Mode 9)

The warm-boot operation does not move any code. It is useful to branch to your
code if the code has already been transferred to internal or external program
memory by other boot-load methods. This mode is used only if a “warm” device
reset is required. Since warm-boot mode can be invoked only in the microcom-
puter mode, the first section of your code can reside only from 8000h onwards
in program memory, as 0000h to 7FFFh is occupied by ROM. The six MSBs
of the entry address are specified by the ADDR_bb field of the boot routine
selection word (Figure 4–21). A 16-bit entry address is defined by this
ADDR_bb field as shown in Figure 4–29. Since bits 0 – 9 are zero, the starting

’C206/LC206 Bootloader

 4-54

address must lie on 400 word boundaries (x000h, x400h, x800h and xC00h).
During initial boot load, the destination address of your code is stored in a
memory variable in B2 RAM. The warm-boot routine uses this address to
transfer control to the user code. If your application overwrites this memory
location, then the address your code must be specified in the BRS word for
warm-boot to function. The ’C206/’LC206 transfers control to the entry
address after disabling global data memory.

Figure 4–29. 16-Bit Entry Address for Warm-Boot Mode

15 10 9 0

ADDR_bb 0 0 0 0 0 0 0 0 0 0

Entry address

Note: ADDR_bb = 6-bit page address in 400h word boundaries

4.9.10 ’C203 Style Bootloader (EXT8 Low – Mode 1)

The ’C206 bootloader supports the ’C203 style bootloader when the EXT8 pin
is tied low. However, there are some differences between the original ’C203
device bootloader and the ’C203 style bootloader option supported in the
’C206. This paragraph applies to the ’C203 device bootloader only. The
bootloader option in the TMS320C203 device has a fixed destination address
for the user code. This address must be 0000h, as the interrupt vector table
must be modified first. The reset vector (0000h in program memory) must be
initialized to point to the beginning of the user code. Other interrupt vectors
may need to be setup depending on the user application. After the user code
is boot loaded (for example, application code transferred to external program
memory), INTR 0 instruction is invoked by the bootloader. This transfers
program control to your code. The boot source address (the address at which
your code is stored in external non-volatile memory) is fixed at 8000h in global
memory space.

The bootloader in TMX320C206/LC206 devices features an 8-bit boot option
from external non-volatile memory (EPROM) to external SRAM or internal
memory at reset if MP/MC pin is sampled low and EXT8 pin is tied low during
a hardware reset. This mode is similar in operation to the original ’C203 device
bootloader except during the final branch. There is no INTR 0 instruction,
rather program control branches to the address specified by the accumulator.

The maximum size of the EPROM can be 32K x 8 to yield 16K x 16 of program
memory. However, you could boot your own bootloader, which would perform
a function as desired. The bootloader begins loading from a fixed source
address 8000h in external global data space and begins transferring to the

’C206/LC206 Bootloader

4-55Memory and I/O Spaces

destination address in program space defined by you. This destination
address is defined by the first two bytes of the EPROM. The destination
address is not constrained to be 0000h as in the case of ’C203 device and can
be any valid program address. However, you may need to modify the interrupt
vector table.

At reset, interrupts are globally disabled, INTM = 1, B0 is mapped to program
space, CNF = 1, and seven wait states are selected for program and data
spaces. The boot-load code initializes the GREG register to external global
data memory space 8000h–FFFFh. The operation of this mode is similar to
8-bit EPROM transfer (’C206 boot mode 7).

Note: The assembly source code for the ’C206 bootloader is available on the
web at www.ti.com under ’C20x DSPs .

’C206/LC206 Bootloader

 4-56

4.9.11 Bootloader Program
*
* TMS320C206/TMS320LC206 Bootloader Program
* Revision 1.0, 12/18/97
*
* Revision 1.2, 6/29/98
*
* 1.1 changes
* 1. Fix 16 bit EPROM load, need pointer for counter
* 2. Fix branching in serial I/O from EQ to TC
* 3. Change original 8 bit boot from using INTR 0 to a BACC instruction
* and copy boot routine to B0. This allows code to be copied to
* address 0x0h after switching to microprocessor mode.
* 4. Set CNF = program space.
* 5. Add lacl in parallel 16 bit routine to load TEMP
* 6. Change TEMP to TEMP1 for 8 bit parallel I/O.
*
*
* 1.2 Changes
* 1. Change the branch address to 0xFF18 due to incorrect copy.
* 2. Changed address for DMOV on warm boot
*
* Objective: This bootloader has a total of 9 options and is backward
* compatible to the original ’203 bootloader.
*
* Operation: Given the MP/MC pin is low at reset, the bootloader program
* stored in the on–chip ROM determines which method of booting
 is to be used.
* First, the program decides if the old method of 8 bit EPROM
* boot is to be used. If not it continues by reading I/O port
* zero via the LEVEXT8 bit in the PMST register which is a direct
* representation of pin 1 (EXT8).
*
* Below are the options for reading I/O port 0:
*
* 16 BIT DATA BUS
*
* 8 bit SSP XXXX XXXX XXX0 0000
* 16 bit SSP XXXX XXXX XXX0 0100
* 8 bit parallel I/O XXXX XXXX XXX0 1000
* 16 bit parallel I/O XXXX XXXX XXX0 1100
* ASP XXXX XXXX XXX1 0000
* 8 bit EPROM XXXX XXXX SRC. ..01
* 16 bit EPROM XXXX XXXX SRC. ..10
* Warm boot XXXX XXXX ADR. ..11
*
* Interrupt Vectoring: Interrupt vectors stored in the on–chip ROM have hard
* coded addresses to the on–chip SARAM starting at
* address 0x8000 in program space.
*
* Multiple sections booting: The bootloader allows multiple sections of
* program code to be copied via any of the options
* except the old style ’203 bootloader.

’C206/LC206 Bootloader

4-57Memory and I/O Spaces

* The first section copied is assumed to be the
* entry point to the program once all section(s)
* have been copied.
*
* Note: B2PA_3 stores the address where execution begins from, after all
* sections have been loaded
**** Use C206BOOT.CMD file for linking *****
 .copy ”sldrv201.h” ; Variable and register declaration

SRC .set 8000h ; source address
DEST .set 60h ; destination address
DEST1 .set 331h
LENGTH .set 61h ; code length
TEMP .set 62h ; temporary register
HBYTE .set 63h ; temporary storage for upper half of
 ; 16–bit word
TEMP1 .set 68h
CODEWORD .set 64h ; hold program code word
CODEWORD1 .set 330h ; hold address for copy for oldboot routine
brs .set 65h ; Boot Selection Word
SOURCE .set 66h
DEST2 .set 67h
b0 .set 0Fh
b1 .set 0Eh
b2 .set 0Dh
b3 .set 0Ch
b4 .set 0Bh

* Interrupt vectors for TMS320C206, TMS320LC206
*
int1_holdv .set 8000h ; external interrupt vectors
int2_3v .set 8002h ;
tintv .set 8004h ; timer interrupt vector
rintv .set 801Ah ; receive interrupt vector
xintv .set 8032h ; transmit interrupt vector
txrxintv .set 804Eh ; UART port interrupt vector
trapv .set 8050h ; software trap vector
nmiv .set 8052h ; non–maskable interrupt vector
swi8v .set 8054h ; software interrupt vectors
swi9v .set 8056h ;
swi10v .set 8058h ; (Note: If these interrupts are unused
swi11v .set 805Ah ; these data memory locations can be
swi12v .set 805Ch ; assigned to other purposes.)
swi13v .set 805Eh ; Software interrupt vectors
swi14v .set 8060h ; | |
swi15v .set 8062h ; | |
swi16v .set 8064h ; V V
swi20v .set 8066h ;
swi21v .set 8068h ;
swi22v .set 806Ah ;
swi23v .set 806Ch ;
swi24v .set 806Eh ;
swi25v .set 8070h ;

’C206/LC206 Bootloader

 4-58

swi26v .set 8072h ;
swi27v .set 8074h ;
swi28v .set 8076h ;
swi29v .set 8078h ;
swi30v .set 807Ah ;
swi31v .set 807Ch ;
reserved .set 807Eh

 .sect ”vectors”

reset B boot ; 0 – power on reset
int1h B int1_holdv ; 1 – external interrupt 1 or HOLD
int23 B int2_3v ; 2 – external interrupts 2 or 3
tint B tintv ; 3 – timer interrupt
rint B rintv ; 4 – synchronous serial port receive interrupt
xint B xintv ; 5 – synchronous serial port transmit interrupt
txrx B txrxintv ; 6 – asynchronous serial port transmit and

; receive interrupt
res B reserved ; 7 – reserved for emulation
swi8 B swi8v ; 8 – software interrupt
swi9 B swi9v ; 9 – software interrupt
swi10 B swi10v ; 10 – software interrupt
swi11 B swi11v ; 11 – software interrupt
swi12 B swi12v ; 12 – software interrupt
swi13 B swi13v ; 13 – software interrupt
swi14 B swi14v ; 14 – software interrupt
swi15 B swi15v ; 15 – software interrupt
swi16 B swi16v ; 16 – software interrupt
trap B trapv ; 17 – software trap
nmi B nmiv ; 18 – non–maskable interrupt
res1 B reserved ; 19 – Reserved
swi20 B swi20v ; 20 – software interrupt
swi21 B swi21v ; 21 – software interrupt
swi22 B swi22v ; 22 – software interrupt
swi23 B swi23v ; 23 – software interrupt
swi24 B swi24v ; 24 – software interrupt
swi25 B swi25v ; 25 – software interrupt
swi26 B swi26v ; 26 – software interrupt
swi27 B swi27v ; 27 – software interrupt
swi28 B swi28v ; 28 – software interrupt
swi29 B swi29v ; 29 – software interrupt
swi30 B swi30v ; 30 – software interrupt
swi31 B swi31v ; 31 – software interrupt

.sect ”bootload”

* Initialization
boot LDP #0

SPLK #2E00H,TEMP ; ARP = 1, OVM = 1, INTM = 1, DP = 0
LST #0,TEMP ; B0 is in PM
SPLK #31FCH,TEMP ; ARB = 1, CNF = 1, SXM = 0
LST #1,TEMP ; XF = 1, PM = 0 , B0––>Prog.memory

**

’C206/LC206 Bootloader

4-59Memory and I/O Spaces

* Determine if old or new boot method *
**

IN TEMP,PMST ; Read level of EXT8 pin.
BIT TEMP,b3 ; Test LEVEXT8 bit.
BCND OLDBOOT,NTC ; Branch to 8–bit EPROM boot.

; nextsect = 0 FDEST = 1
splk #0,nextsect ; flag for determining if new section exists
splk #1,FDEST ; FLAG to determine address of code entry

* *
* Read Configuration Byte *
* *

IN brs,0h ; read I/O port 0 (I/O 0 ––>65h)
LACC brs,8 ; Shifted BRS word ––> ACC
AND #0FC00h ; throw away 2 LSBs
SACL SOURCE ; save as source address

; b15.....b10 b9 b8 0000 0000 ––>SOURCE
LACL brs ; BRS ––>ACC
AND #3 ; if 2 LSBs == 00
BCND ser_io,eq ; use serial or parallel I/O or ASP

; At this stage, b1 b0 can be 01,10 or 11
sub #2 ; if 2 LSBs == 01
bcnd PAR08,lt ; load from 8–bit memory (EPROM)

; if 2 LSBs == 10
bcnd PAR16,eq ; load from 16–bit memory (EPROM)

; else 2 LSBs == 11
* *
* Warm–boot, simply branch to source address *
* *
warmboot

dmov SOURCE ; dest <–– src
splk #0, GREG
lacl DEST2
BACC

looper splk #0,GREG
LACL B2PA_3 ; load code entry into accumulator
BACC ; branch to address and execute program

OLDBOOT
* COPY TO BO MEMORY, SWITCH TO MP MODE, THEN CONTINUE TO BOOT
*

LAR AR7,#300h ;AR7 => B1 (300h)
MAR *,AR7 ;ARP => AR7

*
* MOVE THE CODE BLOCK

RPT #(CODE_END–CODE–1) ; c203 bootloader is copied in B1
BLPD #CODE,*+ ; BLOCK move from PM to DM

* ; Code is copied in DM from 300h
LDP #6 ; DP ––> 300h
LAR AR0, #(CODE_END–CODE–1) ; AR0 is the counter
LAR AR1, #300h ; Source address––>AR1
MAR *,AR1
LACL –#0FF00h ; Destination is FF00h in Prog.memory
SACL DEST1

COPY LACL *+,AR0 ; c203 bootloader is copied in FF00h

’C206/LC206 Bootloader

 4-60

SACL CODEWORD1
LACL DEST1
TBLW CODEWORD1
ADD #1
SACL DEST1
BANZ COPY,AR1
SPLK #0FF18h, 0h ; fix to modify loop return address
LACL #0FF24h ; Write FF18h in FF24h of Prog.memory
TBLW 300h ; This is required to patch the ”loop”
MAR *,AR1 ; address in the original c203 bootloader
LDP #0 ; after relocation to FF00h
B 0FF00h

* *
* BOOT LOAD FROM 8–BIT MEMORY, MS BYTE IS FIRST *
* *
*
* change to MP mode from MC mode
CODE
 SPLK 0007h, TEMP ; set to microprocessor mode
 OUT TEMP,PMST ; write to PMST register, SARAM mapped in
 ; program and data (SARAM is internal)
*
* Determine destination address
*
 SPLK #80h,GREG ; LOCATIONS 8000–FFFFH are in global data space
 LAR AR1,#SRC ; AR1 points to Global address 8000h
 LACC *+,8 ; Load ACC with high byte and shift 8 bits
 SACL HBYTE ; store high byte
 LACL *+ ; load ACC with low byte of destination
 AND #0FFH ; Mask off upper 24 bits.
 OR HBYTE ; OR ACC with high byte to form 16 bit
 ; destination address
 SACL DEST ; store destination address in PM
 SACL B2PA_3 ; (71h – Program start address)
*
* Determine length of code to be transferred
*
 LACC *+,8 ; Load ACC with high byte and shift 8 bits
 SACL HBYTE ; store high byte
 LACL *+ ; load ACC with low byte of length
 AND #0FFH ; Mask off upper 24 bits.
 OR HBYTE ; or ACC with hbyte to form 16 bit length
 SACL LENGTH ; store length
 LAR AR0,LENGTH ; load aro with length to be used for banz
*
* Transfer code
*
LOOP LACC *+,8 ; Load ACC with high byte of code & shift 8 bits
 SACL HBYTE ; store high byte
 LACL *+,AR0
 AND #0FFH ;
 OR HBYTE ; OR ACC with hbyte to form 16 bit code word
 SACL CODEWORD
 LACL DEST

’C206/LC206 Bootloader

4-61Memory and I/O Spaces

 TBLW CODEWORD
 ADD #1
 SACL DEST
 BANZ LOOP,AR1 ; determine if end of code is reached
 splk #0,GREG ; Remove global memory
 LACL B2PA_3 ; load code entry into ACCumulator
 BACC ; branch to address and execute program
CODE_END

PAR08: ;******************* 8–BIT EPROM BOOTLOADER CODE BEGINS *************
* Determine destination address
*
 SPLK #80h,GREG ; LOCATIONS 8000–FFFFH are in global data space
 LAR AR1,SOURCE ; AR1 points to starting address of EPROM in
 ; global memory space
TOP LACC *+,8 ; Load ACC with high byte and shift 8 bits
 SACL HBYTE ; store high byte
 LACL *+ ; load ACC with low byte of destination
 AND #0FFH ; Mask off upper 24 bits.
 OR HBYTE ; OR ACC with high byte to form 16 bit
 ; destination address ––> ACC
 bit FDEST,15 ; FDEST = 1 in first pass
 bcnd skip5,ntc
 splk #0, FDEST ; FDEST = 0 from second pass
 SACL B2PA_3 ; Save final destination address to jump to.
skip5 SACL DEST ; Store destination address
 bit nextsect,15 ; check to see if through at least one section
 bcnd cont1,ntc ; nextsect = 0 in first pass
 lacl DEST
 and #0FFFFh
 bcnd looper,eq ; if word is 0000h, booting is done
 splk #0,nextsect
cont1
*
* Determine length of code to be transferred
*
 LACC *+,8 ; Load ACC with high byte and shift 8 bits
 SACL HBYTE ; store high byte
 LACL *+ ; load ACC with low byte of length
 AND #0FFH ; Mask off upper 24 bits.
 OR HBYTE ; OR ACC with high byte to form 16 bit length
 SACL LENGTH ; store length
 LAR AR0,LENGTH ; load AR0 with length to be used for banz
*
* Transfer code
*
LOOP1 LACC *+,8 ; Load ACC with high byte of code & shift 8 bits
 SACL HBYTE ; store high byte
 LACL *+,AR0
 AND #0FFH
 OR HBYTE ; OR ACC with hbyte to form 16 bit code word
 SACL CODEWORD
 LACL DEST
 TBLW CODEWORD

’C206/LC206 Bootloader

 4-62

 ADD #1
 SACL DEST
 BANZ LOOP1,AR1 ; determine if end of code is reached
 call B2_init ; reinitialize for next section
 splk #1, nextsect ; flag to check for another section
 B TOP
*** 8–bit EPROM bootloader code ends ***
PAR16: ; *************** 16–bit EPROM BOOTLOADER CODE BEGINS ****************
* Determine destination address
*
 SPLK #80h,GREG ; LOCATIONS 8000–FFFFH are in global data space
 LAR AR1,SOURCE ; AR1 points to starting address of EPROM in
 ; global memory space
TOP1 LACC *+ ; Load ACC with destination address
 bit FDEST,15 ; FDEST = 1 in first pass
 bcnd skip2,ntc
 splk #0, FDEST ; FDEST = 0 from second pass
 SACL B2PA_3 ; save final destination address to jump to
skip2 SACL DEST ; store destination address
 bit nextsect,15 ; nextsect = 0 in first pass
 bcnd cont2,ntc
 lacl DEST
 and #0FFFFh
 bcnd looper,eq
 splk #0,nextsect
cont2
*
* Determine length of code to be transferred
*
 LACC *+ ; Load ACC with length of section
 SACL LENGTH ; store length
 LAR AR0,LENGTH ; load aro with length to be used for banz
*
* Transfer code
*
LOOP2 LACC *+, AR0 ; Load ACC with high byte of code
 SACL CODEWORD
 LACL DEST
 TBLW CODEWORD
 ADD #1
 SACL DEST
 BANZ LOOP2,AR1 ; determine if end of code is reached
 call B2_init ; reinitialize for next section
 splk #1, nextsect ; flag to check for another section
 B TOP1
*** 16–bit EPROM bootloader code ends ***
ASP: ; *********** ASYNCH. SERIAL PORT (UART) BOOTLOADER CODE BEGINS **********
* Function: 2xx Serial loader module by polling DR bit *
* *
* Receive data format : *
* Header : *
* start address 1st word *
* Program code/length 2nd word *
* Program code/data from 3rd word *

’C206/LC206 Bootloader

4-63Memory and I/O Spaces

* After data load the PC jumps to the *
* Destination/Load/Run address. *
* UART initialization with autobaud enable

 ldp #0
 splk #0c0a0h,B2S_0 ; reset the UART by writing 0
 out B2S_0, aspcr ; Enable Auto baud detect & Rcv interrupt
 splk #0e0a0h,B2S_0 ; CAD=1, 1 stop bit
 out B2S_0,aspcr
 splk #4fffh,B2S_0 ; Clear ADC & BI bits
 out B2S_0,iosr ; enable auto baud
uart: in B2S_0,iosr
 bit B2S_0,7 ; check DR bit to see if any new character
 bcnd uart,ntc ; is available in the ADTR
 in B2S_0,aspcr
 bit B2S_0,10 ; Check CAD =1
 bcnd nrcv,ntc ; If 0 , start receive, autobaud done
 in B2S_1,iosr ; load input status from iosr
 bit B2S_1,1 ; check if auto baud bit is set,else return
 bcnd nauto,ntc ; and wait for Auto baud detect receive
 splk #4000h,B2S_1 ; Auto baud detect done
 out B2S_1,iosr ; clear ADC
 splk #0e080h,B2S_1
 out B2S_1, aspcr ; Disable CAD bit/ auto baud
 in B2S_1,adtr ; Dummy read to discard ”a”
 out B2S_1,adtr ; Echo back ”a”
nauto: in B2S_1,adtr ; Dummy read to clear UART rx buffer
 b skip1 ; Exit and wait for ”a”
skip1: splk #6600h,B2S_0
 out B2S_0,iosr ; Clear all Interrupt sources
 B uart
nrcv:
* Begin receiving user code
 setc CNF ; map B0 to program space
 call B2_init ;
pwait:
 in B2S_0,iosr ; Load input status from iosr
 bit B2S_0,7 ; bit 8 in the data
 bcnd pwait,ntc ; IF DR=0 no echo, return
 call pnrcv ;
 bit B2FM_8,15 ; Wait until Data_move ready flag
 bcnd pwait,ntc
 lacl B2PA_2 ; Load destination address
 tblw B2PD_5 ; Move data to the current destination address
 add #1 ; Increment destination address+1
 sacl B2PA_2 ; save next destination address
 banz pwait,*–
* check if next section, need to read next 16 bit word, if ”0000” then a
* section follows else program branches to address saved in B2PA_3.
 call B2_init ; reinitialize for next section
 splk #1, nextsect ; flag to check for another section
 B pwait
pnrcv:
 mar *,ar1 ; Valid UART data, Point to Word index reg.

’C206/LC206 Bootloader

 4-64

 bit B2D_6,15 ; Check if bit0 of word index =1,low byte
 bcnd plbyte,tc ; received!
 in B2S_1,adtr ; No, Hi byte received!
 out B2S_1,adtr ; Echo receive data
 lacc B2S_1,8 ; Align to upper byte
 sacl B2D_7 ; Save aligned word
 mar *+ ; Increment Word Index
 sar ar1,B2D_6 ; Store high_byte flag
 splk #0,B2FM_8 ; Reset Data/word move flag as only hi–byte recd!
 b pskip ; wait for next byte
plbyte:
 in B2S_0,adtr ; Receive second byte/low byte
* out B2S_0,adtr ; Echo received data
 lacc B2S_0,0
 and #0ffh ; Clear high byte
 or B2D_7 ; Add high byte to the word
 sacl B2PD_5 ; store 16–bit word at ar1
 mar *+ ; 1+
 sar ar1,B2D_6 ; Save the count
 bit nextsect,15 ; check for next section
 bcnd cont,ntc ; if not zero, continue, else check for 0
 lacl B2PD_5 ; load first word
 and #0FFFFh
 bcnd looper,eq ; if 0 done, else
 splk #0,nextsect ; reset next sect flag for next pass
cont bit B2FH_9,15 ; Check Header_done flag
 bcnd psmove,tc ; No, if 2 words received update Data_move flag
 lar ar0,#2
 cmpr 0
 bcnd pword2,ntc
 bit FDEST,15 ; test to determine if this is first pass
 bcnd skip,ntc ; skip if this is 2nd section onward
 splk #0, FDEST ; if yes reset flag
 sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skip sacl B2PA_2 ; Save data buffer address
 b pskip ;
pword2:
 lar ar0,#4 ; Check if 4 words recvd, update program length
 cmpr 0 ; Program length register
 bcnd pskip,ntc ; Else exit
 lar ar2,B2PD_5 ; Yes received!,Load PM length in AR2
 sar ar2, B2PL_4 ; Save program length
 splk #1,B2FH_9 ; Set Header_done flag
 b pskip
psmove:
 mar *,ar2
 splk #1h,B2FM_8 ; Set UART Data_move ready flag
pskip:
 splk #0020h, ifr ; Clear interrupt in ifr!
 ret
B2_init:
 lacc #0
 lar ar1,#B2 ; Point B2_RAM start address
 mar *,ar1

’C206/LC206 Bootloader

4-65Memory and I/O Spaces

 rpt #16
 sacl *+ ; Clear B2 memory
 lar ar1,#00h ; Clear pointers
 lar ar2,#00h ;
 lar ar3,#00h
 ret
*** Asynch. serial port (UART) bootloader code ends ***

* SERIAL BOOTLOAD (SSP 8/16 bit,UART), PARALLEL I/O *

ser_io
 bit brs,b4 ; test bit 4 of configuration word
 bcnd ASP,TC ; If set, branch to UART bootloader
 bit brs,b3 ; test bit 3 of configuration word
 bcnd io,tc ; If set, branch to Parallel I/O bootloader
* *
* Bootload from Synchronous serial port (SSP) *
* *
ser
 bit brs,b2 ; test bit 2 of configuration word
 bcnd bit8,ntc ; if 0, then 8–bit mode, else 16–bit mode
*********** 16–BIT SYNCH. SERIAL PORT (SSP) BOOTLOADER CODE BEGINS *********
* After data load the PC jumps to the Destination *
* /Load/Run address. *

 setc CNF ; Block B0 in PM
 ldp #0h ; set DP=0
 setc INTM ; Disable all interrupts
 call B2_init
 splk #0,nextsect
 splk #1,FDEST ; FLAG to determine address of code entry
*SSP initialization
sspld: splk #0c00ah,B2S_0 ; Initialize SSP in Burst mode, in reset
 out B2S_0,sspcr ; External Clocks, 16 bit word
 splk #0c03ah, B2S_0 ; Interrupt on 1 word in FIFO, Internal FSX
 out B2S_0, sspcr ; take port out of reset
wait: in B2S_0,sspcr
 bit B2S_0,3 ; poll RFNE bit to see if data received
 bcnd wait,ntc
 call codrx
 bit B2FM_8,15 ; Wait until Data_move ready flag
 bcnd wait,ntc
 splk #0,B2FM_8
 lacl B2PA_2 ; Load destination address
 tblw B2PD_5 ; Move data to the current destination address
 add #1 ; Increment destination address+1
 sacl B2PA_2 ; save next destination address
 banz wait,*– ; decrement length counter
* check if next section, need to read next 16 bit word, if not ”0000” then a
* section follows else program branches to address saved in B2PA_3.
 call B2_init ; reinitialize for next section
 splk #1, nextsect ; flag to check for another section
 B wait
* SSP loader code!

’C206/LC206 Bootloader

 4-66

codrx:
 in B2S_0,sdtr ; Read received data/Load Scratch RAM
 out B2S_0,sdtr ; Echo received data
 bit nextsect,15 ; check for next section/BIT 0 of nextsect
 bcnd contx,ntc ; if not zero, continue, else check for 0
 lacl B2S_0
* lacl B2PD_5 ; load first word
 and #0FFFFh
 lar ar7, #9999h
 bcnd looper,eq ; if 0 done, else
 splk #0,nextsect ; reset next sect flag for next pass
contx mar *,ar3 ; Set Word index register as AR3
 mar *+ ; Increment word index
 lar ar0,#1 ; If word index =1 save Program start address
 cmpr 0
 bcnd pmad,tc
 lar ar0,#2 ; If index =2 save Program length
 cmpr 0 ; Compare if (AR3)=(AR0). TC=1, if true
 bcnd plen,tc ; True in second pass
 lacc B2S_0,0
 sacl B2PD_5,0 ; Store received word
 splk #1h,B2FM_8 ; Set SSP Data_move ready flag
 b skip7,ar2
pmad: lacc B2S_0,0 ; Store destination start address in ACC
 bit FDEST,15 ; test to determine if this is first pass
 bcnd skip6,ntc ; skip if this is 2nd section onward
 splk #0, FDEST ; if yes reset flag
 sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skip6 sacl B2PA_2 ; Save data buffer address
 b skip7,ar2 ;

plen: lar ar2,B2S_0 ; Store Program length at B2PL_4
 sar ar2,B2PL_4
skip7:
 ret
*** 16–bit Synch. serial port (SSP) bootloader code ends ***
*********** 8–BIT SYNCH. SERIAL PORT (SSP) BOOTLOADER CODE BEGINS *********
bit8
* Function: F2xx Serial loader module *
* *
* Receive data format : *
* Header : *
* start address 1st word *
* Program code/length 2nd word *
* Program code/data from 3rd word *
* After data load the PC jumps to the *
* Destination/Load/Run address. *
 .title ” Serial loader” ; Title
 setc CNF ; Block B0 in PM
 ldp #0h ; set DP=0
 setc INTM ; Disable all interrupts
 call B2_init
 splk #0,nextsect
 splk #1,FDEST ; FLAG to determine address of code entry

’C206/LC206 Bootloader

4-67Memory and I/O Spaces

*SSP initialization
sspld1 splk #0c00ah,B2S_0 ; Initialize SSP in Burst mode, in reset
 out B2S_0,sspcr ; External Clocks, 16 bit word
 splk #0c03ah, B2S_0 ; Interrupt on 1 word in FIFO, external FSX
 out B2S_0, sspcr ; take port out of reset
 splk #0001h, B2S_0
 out B2S_0,sspst ; 8 bit mode
* splk #8h,imr ; Enable SSP RX interrupt only
pwait1:
 in B2S_0,sspcr ; Load input status from sspcr
 bit B2S_0,3 ; Poll RFNE bit
 bcnd pwait1,ntc ; IF DR=0 no echo, return
 call pnrcv1 ;
 bit B2FM_8,15 ; Wait until Data_move ready flag
 bcnd pwait1,ntc
 lacl B2PA_2 ; Load destination address
 tblw B2PD_5 ; Move data to the current destination address
 add #1 ; Increment destination address+1
 sacl B2PA_2 ; save next destination address
 banz pwait1,*–
* check if next section, need to read next 16 bit word, if not ”0000” then a
* section follows else program branches to address saved in B2PA_3.
 call B2_init ; reinitialize for next section
 splk #1, nextsect ; flag to check for another section
 B pwait1
pnrcv1:
 mar *,ar1 ; Valid data, Point to Word index reg.
 bit B2D_6,15 ; Check if bit0 of word index =1,low byte
 bcnd lbyte,tc ; received!
 in B2S_1,sdtr ; No, Hi byte received!
 out B2S_1,sdtr ; Echo receive data
 lacc B2S_1,8 ; Align to upper byte
 sacl B2D_7 ; Save aligned word
 mar *+ ; Increment Word Index
 sar ar1,B2D_6 ; Store high_byte flag
 splk #0,B2FM_8 ; Reset Data/word move flag as only hi–byte recd!
 b pskip8 ; wait for next byte
lbyte:
 in B2S_0,sdtr ; Receive second byte/low byte
* out B2S_0,sdtr ; Echo received data
 lacc B2S_0,0
 and #0ffh ; Clear high byte
 or B2D_7 ; Add high byte to the word
 sacl B2PD_5 ; store 16–bit word at ar1
 mar *+ ; 1+
 sar ar1,B2D_6 ; Save the count
 bit nextsect,15 ; check for next section
 bcnd cont9,ntc ; if not zero, continue, else check for 0
 lacl B2PD_5 ; load first word
 and #0FFFFh
 bcnd looper,eq ; if 0 done, else
 splk #0,nextsect ; reset next sect flag for next pass
cont9 bit B2FH_9,15 ; Check Header_done flag
 bcnd psmove0,tc ; No, if 2 words received update Data_move flag

’C206/LC206 Bootloader

 4-68

 lar ar0,#2
 cmpr 0
 bcnd word2,ntc
 bit FDEST,15 ; test to determine if this is first pass
 bcnd skipe,ntc ; skip if this is 2nd section onward
 splk #0, FDEST ; if yes reset flag
 sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skipe sacl B2PA_2 ; Save data buffer address
 b pskip8 ;
word2:
 lar ar0,#4 ; Check if 4 words recvd, update program length
 cmpr 0 ; Program length register
 bcnd pskip8,ntc ; Else exit
 lar ar2,B2PD_5 ; Yes received!,Load PM length in AR2
 sar ar2, B2PL_4 ; Save program length
 splk #1,B2FH_9 ; Set Header_done flag
 b pskip8
psmove0:
 mar *,ar2
 splk #1h,B2FM_8 ; Set UART Data_move ready flag
pskip8:
 ret
*** 8–bit Synch. serial port (SSP) bootloader code ends ***
* *
* Bootload from parallel I/O port (port 1) –8/16 bit parallel I/O *
* *
io
 splk #0,GREG ; disable global space
 bit brs,b2 ; test bit #2 of configuration word
 bcnd pasync08,ntc ; if reset, use 8–bit mode
*********** 16–BIT PARALLEL I/O BOOTLOADER CODE BEGINS *****************
pasync16

mar *,ar1
TOP3 call handshake

IN DEST,1 ; read word from port 1 to destination
LACL DEST
bit FDEST,15
bcnd skip3,ntc
splk #0, FDEST
SACL B2PA_3 ; save final destination address to jump to

skip3 SACL DEST ; store destination address
bit nextsect,15
bcnd cont3,ntc
lacl DEST
and #0FFFFh
bcnd looper,eq
splk #0,nextsect

cont3
call handshake
IN LENGTH,1 ; read word from port 1 to length
lar ar1,LENGTH ; ar1 <–– code length
lacl DEST ; ACC <–– destination address

loop16 call handshake
IN TEMP,1 ; read word from port 1 to temp

’C206/LC206 Bootloader

4-69Memory and I/O Spaces

setc xf ; acknowledge word as soon as it’s read
nop ; delay between xf and write
nop
tblw TEMP ; write word to destination
add #1 ; increment destination address
banz loop16,*– ; loop if ar1 is not zero
call B2_init ; reinitialize for next section
splk #1, nextsect ; flag to check for another section
B TOP3

*** 16–bit Parallel I/O bootloader code ends ***
******** 8–BIT PARALLEL I/O BOOTLOADER CODE BEGINS – MS byte first *******
pasync08

mar *,ar1
TOP4 call handshake

IN TEMP,1 ; read I/O port 1
lacc TEMP,8 ; read high byte from port
sacl DEST
call handshake
IN TEMP,1
lacl TEMP ; read low byte from port
and #0ffh ; clear upper byte
or DEST ; combine high and low byte

bit FDEST,15
bcnd skip4,ntc
splk #0, FDEST
SACL B2PA_3 ; save final destination address to jump to

skip4 SACL DEST ; store destination address
bit nextsect,15
bcnd cont4,ntc
lacl DEST
and #0FFFFh
bcnd looper,eq
splk #0,nextsect

cont4
 call handshake

IN TEMP,1
lacc TEMP,8 ; read high byte from port
sacl LENGTH ; save high byte
call handshake
IN TEMP,1
lacl TEMP ; read low byte from port
and #0ffh ; clear upper byte
or LENGTH ; combine high and low byte
sacl LENGTH ; save code length
LAR ar1,LENGTH ; ar1 <–– code length
lacl DEST
sacl DEST2 ; DEST2 <–– destination address

loop08 call handshake
IN TEMP,1
lacc TEMP,8 ; read high byte from port
sacl TEMP1 ; save high byte
call handshake
IN TEMP,1

’C206/LC206 Bootloader

 4-70

lacl TEMP ; read low byte from port
setc xf ; acknowledge byte as soon as it’s read
and #0ffh ; clear upper byte
or TEMP1 ; combine high and low byte
sacl TEMP1 ; save code word
lacl DEST2 ; DEST2 <–– destination address
tblw TEMP1 ; write code word to program memory
add #1 ; increment destination address
sacl DEST2 ; save new destination address
banz loop08,*– ; loop if ar1 not zero
call B2_init ; reinitialize for next section
splk #1, nextsect ; flag to check for another section
B TOP4

*** 8–bit Parallel I/O bootloader code ends ***
* Handshake with BIO signal using XF
handshake

setc xf ; acknowledge previous data word
biohigh

bcnd biohigh,bio ; wait till host sends request
clrc xf ; indicate ready to receive new data

biolow
retc bio ; wait till new data ready
b biolow

.sect ”alaw”
;**
;
; CCITT expansion table
; The table is A–law expansion table for ADI–coded samples. Please read
; columnar values top to bottom and from left column to next right column.
;**

.DEF AEXPTAB

’C206/LC206 Bootloader

4-71Memory and I/O Spaces

AEXPTAB.WORD –688
.WORD –656
.WORD –752
.WORD –720
.WORD –560
.WORD –528
.WORD –624
.WORD –592
.WORD –944
.WORD –912
.WORD –1008
.WORD –976
.WORD –816
.WORD –784
.WORD –880
.WORD –848
.WORD –344
.WORD –328
.WORD –376
.WORD –360
.WORD –280
.WORD –264
.WORD –312
.WORD –296
.WORD –472
.WORD –456
.WORD –504
.WORD –488
.WORD –408
.WORD –392
.WORD –440
.WORD –424
.WORD –2752
.WORD –2624
.WORD –3008
.WORD –2880
.WORD –2240
.WORD –2112
.WORD –2496
.WORD –2368
.WORD –3776
.WORD –3648
.WORD –4032
.WORD –3904
.WORD –3264
.WORD –3136
.WORD –3520
.WORD –3392
.WORD –1376
.WORD –1312
.WORD –1504
.WORD –1440
.WORD –1120
.WORD –1056

.WORD –1248

.WORD –1184

.WORD –1888

.WORD –1824

.WORD –2016

.WORD –1952

.WORD –1632

.WORD –1568

.WORD –1760

.WORD –1696

.WORD –43

.WORD –41

.WORD –47

.WORD –45

.WORD –35

.WORD –33

.WORD –39

.WORD –37

.WORD –59

.WORD –57

.WORD –63

.WORD –61

.WORD –51

.WORD –49

.WORD –55

.WORD –53

.WORD –11

.WORD –9

.WORD –15

.WORD –13

.WORD –3

.WORD –1

.WORD –7

.WORD –5

.WORD –27

.WORD –25

.WORD –31

.WORD –29

.WORD –19

.WORD –17

.WORD –23

.WORD –21

.WORD –172

.WORD –164

.WORD –188

.WORD –180

.WORD –140

.WORD –132

.WORD –156

.WORD –148

.WORD –236

.WORD –228

.WORD –252

.WORD –244

.WORD –204

.WORD –196

.WORD –220

.WORD –212

.WORD –86

.WORD –82

.WORD –94

.WORD –90

.WORD –70

.WORD –66

.WORD –78

.WORD –74

.WORD –118

.WORD –114

.WORD –126

.WORD –122

.WORD –102

.WORD –98

.WORD –110

.WORD –106

.WORD 688

.WORD 656

.WORD 752

.WORD 720

.WORD 560

.WORD 528

.WORD 624

.WORD 592

.WORD 944

.WORD 912

.WORD 1008

.WORD 976

.WORD 816

.WORD 784

.WORD 880

.WORD 848

.WORD 344

.WORD 328

.WORD 376

.WORD 360

.WORD 280

.WORD 264

.WORD 312

.WORD 296

.WORD 472

.WORD 456

.WORD 504

.WORD 488

.WORD 408

.WORD 392

.WORD 440

.WORD 424

.WORD 2752

.WORD 2624

’C206/LC206 Bootloader

 4-72

.WORD 3008

.WORD 2880

.WORD 2240

.WORD 2112

.WORD 2496

.WORD 2368

.WORD 3776

.WORD 3648

.WORD 4032

.WORD 3904

.WORD 3264

.WORD 3136

.WORD 3520

.WORD 3392

.WORD 1376

.WORD 1312

.WORD 1504

.WORD 1440

.WORD 1120

.WORD 1056

.WORD 1248

.WORD 1184

.WORD 1888

.WORD 1824

.WORD 2016

.WORD 1952

.WORD 1632

.WORD 1568

.WORD 1760

.WORD 1696

.WORD 43

.WORD 41

.WORD 47

.WORD 45

.WORD 35

.WORD 33

.WORD 39

.WORD 37

.WORD 59

.WORD 57

.WORD 63

.WORD 61

.WORD 51

.WORD 49

.WORD 55

.WORD 53

.WORD 11

.WORD 9

.WORD 15

.WORD 13

.WORD 3

.WORD 1

.WORD 7

.WORD 5

.WORD 27

.WORD 25

.WORD 31

.WORD 29

.WORD 19

.WORD 17

.WORD 23

.WORD 21

.WORD 172

.WORD 164

.WORD 188

.WORD 180

.WORD 140

.WORD 132

.WORD 156

.WORD 148

.WORD 236

.WORD 228

.WORD 252

.WORD 244

.WORD 204

.WORD 196

.WORD 220

.WORD 212

.WORD 86

.WORD 82

.WORD 94

.WORD 90

.WORD 70

.WORD 66

.WORD 78

.WORD 74

.WORD 118

.WORD 114

.WORD 126

.WORD 122

.WORD 102

.WORD 98

.WORD 110

.WORD 106

.sect ”ulaw”
;************************
;
; CCITT mu–law Expansion
 Table
;
;************************

.DEF UEXPTAB
UEXPTAB.WORD 0e0a1h

.WORD 0e1a1h

.WORD 0e2a1h

.WORD 0e3a1h

.WORD 0e4a1h

.WORD 0e5a1h

.WORD 0e6a1h

.WORD 0e7a1h

.WORD 0e8a1h

.WORD 0e9a1h

.WORD 0eaa1h

.WORD 0eba1h

.WORD 0eca1h

.WORD 0eda1h

.WORD 0eea1h

.WORD 0efa1h

.WORD 0f061h

.WORD 0f0e1h

.WORD 0f161h

.WORD 0f1e1h

.WORD 0f261h

.WORD 0f2e1h

.WORD 0f361h

.WORD 0f3e1h

.WORD 0f461h

.WORD 0f4e1h

.WORD 0f561h

.WORD 0f5e1h

.WORD 0f661h

.WORD 0f6e1h

.WORD 0f761h

.WORD 0f7e1h

.WORD 0f841h

.WORD 0f881h

.WORD 0f8c1h

.WORD 0f901h

.WORD 0f941h

.WORD 0f981h

.WORD 0f9c1h

.WORD 0fa01h

.WORD 0fa41h

.WORD 0fa81h

.WORD 0fac1h

.WORD 0fb01h

.WORD 0fb41h

.WORD 0fb81h

.WORD 0fbc1h

.WORD 0fc01h

.WORD 0fc31h

.WORD 0fc51h

.WORD 0fc71h

.WORD 0fc91h

.WORD 0fcb1h

.WORD 0fcd1h

.WORD 0fcf1h

.WORD 0fd11h

.WORD 0fd31h

.WORD 0fd51h

.WORD 0fd71h

.WORD 0fd91h

’C206/LC206 Bootloader

4-73Memory and I/O Spaces

.WORD 0fdb1h

.WORD 0fdd1h

.WORD 0fdf1h

.WORD 0fe11h

.WORD 0fe29h

.WORD 0fe39h

.WORD 0fe49h

.WORD 0fe59h

.WORD 0fe69h

.WORD 0fe79h

.WORD 0fe89h

.WORD 0fe99h

.WORD 0fea9h

.WORD 0feb9h

.WORD 0fec9h

.WORD 0fed9h

.WORD 0fee9h

.WORD 0fef9h

.WORD 0ff09h

.WORD 0ff19h

.WORD 0ff25h

.WORD 0ff2dh

.WORD 0ff35h

.WORD 0ff3dh

.WORD 0ff45h

.WORD 0ff4dh

.WORD 0ff55h

.WORD 0ff5dh

.WORD 0ff65h

.WORD 0ff6dh

.WORD 0ff75h

.WORD 0ff7dh

.WORD 0ff85h

.WORD 0ff8dh

.WORD 0ff95h

.WORD 0ff9dh

.WORD 0ffa3h

.WORD 0ffa7h

.WORD 0ffabh

.WORD 0ffafh

.WORD 0ffb3h

.WORD 0ffb7h

.WORD 0ffbbh

.WORD 0ffbfh

.WORD 0ffc3h

.WORD 0ffc7h

.WORD 0ffcbh

.WORD 0ffcfh

.WORD 0ffd3h

.WORD 0ffd7h

.WORD 0ffdbh

.WORD 0ffdfh

.WORD 0ffe2h

.WORD 0ffe4h

.WORD 0ffe6h

.WORD 0ffe8h

.WORD 0ffeah

.WORD 0ffech

.WORD 0ffeeh

.WORD 0fff0h

.WORD 0fff2h

.WORD 0fff4h

.WORD 0fff6h

.WORD 0fff8h

.WORD 0fffah

.WORD 0fffch

.WORD 0fffeh

.WORD 00000h

.WORD 01f5fh

.WORD 01e5fh

.WORD 01d5fh

.WORD 01c5fh

.WORD 01b5fh

.WORD 01a5fh

.WORD 0195fh

.WORD 0185fh

.WORD 0175fh

.WORD 0165fh

.WORD 0155fh

.WORD 0145fh

.WORD 0135fh

.WORD 0125fh

.WORD 0115fh

.WORD 0105fh

.WORD 00f9fh

.WORD 00f1fh

.WORD 00e9fh

.WORD 00e1fh

.WORD 00d9fh

.WORD 00d1fh

.WORD 00c9fh

.WORD 00c1fh

.WORD 00b9fh

.WORD 00b1fh

.WORD 00a9fh

.WORD 00a1fh

.WORD 0099fh

.WORD 0091fh

.WORD 0089fh

.WORD 0081fh

.WORD 007bfh

.WORD 0077fh

.WORD 0073fh

.WORD 006ffh

.WORD 006bfh

.WORD 0067fh

.WORD 0063fh

.WORD 005ffh

.WORD 005bfh

.WORD 0057fh

.WORD 0053fh

.WORD 004ffh

.WORD 004bfh

.WORD 0047fh

.WORD 0043fh

.WORD 003ffh

.WORD 003cfh

.WORD 003afh

.WORD 0038fh

.WORD 0036fh

.WORD 0034fh

.WORD 0032fh

.WORD 0030fh

.WORD 002efh

.WORD 002cfh

.WORD 002afh

.WORD 0028fh

.WORD 0026fh

.WORD 0024fh

.WORD 0022fh

.WORD 0020fh

.WORD 001efh

.WORD 001d7h

.WORD 001c7h

.WORD 001b7h

.WORD 001a7h

.WORD 00197h

.WORD 00187h

.WORD 00177h

.WORD 00167h

.WORD 00157h

.WORD 00147h

.WORD 00137h

.WORD 00127h

.WORD 00117h

.WORD 00107h

.WORD 000f7h

.WORD 000e7h

.WORD 000dbh

.WORD 000d3h

.WORD 000cbh

.WORD 000c3h

.WORD 000bbh

.WORD 000b3h

.WORD 000abh

.WORD 000a3h

.WORD 0009bh

.WORD 00093h

.WORD 0008bh

.WORD 00083h

.WORD 0007bh

.WORD 00073h

’C206/LC206 Bootloader

 4-74

.WORD 0006bh

.WORD 00063h

.WORD 0005dh

.WORD 00059h

.WORD 00055h

.WORD 00051h

.WORD 0004dh

.WORD 00049h

.WORD 00045h

.WORD 00041h

.WORD 0003dh

.WORD 00039h

.WORD 00035h

.WORD 00031h

.WORD 0002dh

.WORD 00029h

.WORD 00025h

.WORD 00021h

.WORD 0001eh

.WORD 0001ch

.WORD 0001ah

.WORD 00018h

.WORD 00016h

.WORD 00014h

.WORD 00012h

.WORD 00010h

.WORD 0000eh

.WORD 0000ch

.WORD 0000ah

.WORD 00008h

.WORD 00006h

.WORD 00004h

.WORD 00002h

.WORD 00000h

’C206/LC206 Bootloader

4-75Memory and I/O Spaces

Common header file:
Filename: sldrv201.h
 .mmregs
; Memory variables specific to flash algorithms

BASE .set 068h ; Base address for variables
B2_0 .set BASE+0 ; can be changed to relocate
B2_1 .set BASE+1 ; variable space in RAM
B2_2 .set BASE+2
B2_3 .set BASE+3
B2_4 .set BASE+4
B2_5 .set BASE+5
B2_6 .set BASE+6
nextsect .set BASE+7
FDEST .set BASE+8
B2PA_3 .set BASE+9 ; Program start address

* Variables for Uart_loader

B2 .set 72h
B2S_0 .set B2+0h ; Scratch registers
B2S_1 .set B2+1h
B2PA_2 .set B2+2h ; Program start address
*
B2PL_4 .set B2+4h ; Program Length
B2PD_5 .set B2+5h ; Program Code/Data
B2D_6 .set B2+6h ; Variables
B2D_7 .set B2+7h
B2FM_8 .set B2+8h ; Flag for start Data move – Data_move
B2FH_9 .set B2+9h ; Flag for Header receive – Header_done
B2FD_a .set B2+0ah ; Flag for data move complete – Data_ready
B2FSH .set B2+0bh ; High word check sum
B2FSL .set B2+0ch ; Low word check sum

* On-chip I/O registers

PMST .set 0FFE4h ;Defines SARAM in PM/DM and MP/MC bit
* SYNC PORT
sdtr set 0fff0h
sspcr .set 0fff1h
sspst .set 0fff2h
* UART
adtr .set 0fff4h
aspcr .set 0fff5h
iosr .set 0fff6h
brd .set 0fff7h

5-1

Program Control

This chapter discusses the processes and features involved in controlling the
flow of a program on the ’C20x.

Program control involves controlling the order in which one or more blocks of
instructions are executed. Normally, the flow of a program is sequential: the
’C20x executes instructions at consecutive program-memory addresses. At
times, a program must branch to a nonsequential address and then execute
instructions sequentially at that new location. For this purpose, the ’C20x
supports branches, calls, returns, repeats, and interrupts.

The ’C20x also provides a power-down mode, which halts internal program
flow and temporarily lowers the power requirements of the ’C20x.

Topic Page

5.1 Program-Address Generation 5-2.

5.2 Pipeline Operation 5-7.

5.3 Branches, Calls, and Returns 5-8.

5.4 Conditional Branches, Calls, and Returns 5-10.

5.5 Repeating a Single Instruction 5-14.

5.6 Interrupts 5-15.

5.7 Reset Operation 5-35.

5.8 Power-Down Mode 5-40.

Chapter 5

Program-Address Generation

5-2

5.1 Program-Address Generation

Program flow requires the processor to generate the next program address
(sequential or nonsequential) while executing the current instruction.
Program-address generation is illustrated in Figure 5–1 and summarized in
Table 5–1.

Figure 5–1. Program-Address Generation Block Diagram

Interrupt,
branch, or call

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

MUX

Next program address
register (NPAR)

Program counter
(PC/NPAR+1)

Sequential operation

Program address
register (PAR)
Dummy cycle

Micro stack
(MSTACK)

Table/block move

MUX

Program read bus (PRDB)

Data read bus (DRDB)

Top of stack (TOS)

Program-address
stack

8 � 16

Program address bus (PAB)

Data write bus (DWEB)

PSHD
instruction

Return
from
subroutine

POPD
instruction

Program
control

BACC or CALA
instruction

Program-Address Generation

5-3Program Control

Table 5–1. Program-Address Generation Summary

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Operation ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Program-Address Source

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Sequential operation ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

PC (contains program address +1)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Dummy cycle
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

PAR (contains program address)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Return from subroutine
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Top of the stack (TOS)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Return from table move or block moveÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Micro stack (MSTACK)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Branch or call to address specified in
instruction

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Branch or call instruction by way of the
program read bus (PRDB)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Branch or call to address specified in
lower half of the accumulator

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Low accumulator by way of the data
read bus (DRDB)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Branch to interrupt service routine ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Interrupt vector location by way of the
program read bus (PRDB)

The ’C20x program-address generation logic uses the following hardware:

� Program counter (PC). The ’C20x has a 16-bit program counter (PC) that
addresses internal and external program memory when fetching
instructions.

� Program address register (PAR). The PAR drives the program address
bus (PAB). The PAB is a 16-bit bus that provides program addresses for
both reads and writes.

� Stack. The program-address generation logic includes a 16-bit-wide,
8-level hardware stack for storing up to eight return addresses. In addition,
you can use the stack for temporary storage.

� Micro stack (MSTACK). Occasionally, the program-address generation
logic uses the 16-bit-wide, 1-level MSTACK to store one return address.

� Repeat counter (RPTC). The 16-bit RPTC is used with the repeat (RPT)
instruction to determine how many times the instruction following RPT is
repeated.

5.1.1 Program Counter (PC)

The program-address generation logic uses the 16-bit program counter (PC)
to address internal and external program memory. The PC holds the address
of the next instruction to be executed. Through the program address bus
(PAB), an instruction is fetched from that address in program memory and
loaded into the instruction register. When the instruction register is loaded, the
PC holds the next address.

Program-Address Generation

 5-4

The ’C20x can load the PC in a number of ways, to accommodate sequential
and nonsequential program flow. Table 5–2 shows what is loaded to the PC
according to the code operation performed.

Table 5–2. Address Loading to the Program Counter

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Code Operation ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Address Loaded to the PC

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Sequential execution ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with PC + 1 if the current instruction has
one word or PC + 2 if the current instruction has two words.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Branch ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with the long immediate value directly
following the branch instruction.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Subroutine call and
return

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

For a call, the address of the next instruction is pushed from
the PC onto the stack, and then the PC is loaded with the
long immediate value directly following the call instruction.
A return instruction pops the return address back into the PC
to return to the calling sequence of code.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Software or hardware
interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with the address of the appropriate
interrupt vector location. At this location is a branch
instruction that loads the PC with the address of the
corresponding interrupt service routine.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Computed GOTO
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The content of the lower 16 bits of the accumulator is loaded
into the PC. Computed GOTO operations can be performed
using the BACC (branch to address in accumulator) or
CALA (call subroutine at location specified by the
accumulator) instructions.

5.1.2 Stack

The ’C20x has a 16-bit-wide, 8-level-deep hardware stack. The
program-address generation logic uses the stack for storing return addresses
when a subroutine call or interrupt occurs. When an instruction forces the CPU
into a subroutine or an interrupt forces the CPU into an interrupt service
routine, the return address is loaded to the top of the stack automatically; this
event does not require additional cycles. When the subroutine or interrupt
service routine is complete, a return instruction transfers the return address
from the top of the stack to the program counter.

When the eight levels are not used for return addresses, the stack may be used
for saving context data during a subroutine or interrupt service routine, or for
other storage purposes.

You can access the stack with two sets of instructions:

� PUSH and POP. The PUSH instruction copies the lower half of the
accumulator to the top of the stack. The POP instruction copies the value
on the top of the stack to the lower half of the accumulator.

Program-Address Generation

5-5Program Control

� PSHD and POPD. These instructions allow you to build a stack in data
memory for the nesting of subroutines or interrupts beyond eight levels.
The PSHD instruction pushes a data-memory value onto the top of the
stack. The POPD instruction pops a value from the top of the stack to data
memory.

Whenever a value is pushed onto the top of the stack (by an instruction or by
the address-generation logic), the content of each level is pushed down one
level, and the bottom (eighth) location of the stack is lost. Therefore, data is
lost (stack overflow occurs) if more than eight successive pushes occur before
a pop. Figure 5–2 shows a push operation.

Figure 5–2. A Push Operation
Before Instruction After Instruction

Accumulator Accumulator
or memory 7h or memory 7h

location location

 2h 7h

 5h 2h

Stack 3h Stack 5h

 0h 3h

12h 0h

86h 12h

54h 86h

3Fh 54h

Pop operations are the reverse of push operations. A pop operation copies the
value at each level to the next higher level. Any pop after seven sequential
pops yields the value that was originally at the bottom of the stack because,
by then, the bottom value has been copied upward to all of the stack levels.
Figure 5–3 shows a pop operation.

Program-Address Generation

 5-6

Figure 5–3. A Pop Operation
Before Instruction After Instruction

Accumulator Accumulator
or memory 82h or memory 45h

location location

45h 16h

16h 7h

Stack 7h Stack 33h

33h 42h

42h 56h

56h 37h

37h 61h

61h 61h

5.1.3 Micro Stack (MSTACK)

The program-address generation logic uses the 16-bit-wide, 1-level-deep
MSTACK to store a return address before executing certain instructions.
These instructions use the program-address generation logic to provide a
second address in a two-operand instruction. These instructions are: BLDD,
BLPD, MAC, MACD, TBLR, and TBLW. When repeated, these instructions
use the PC to increment the first operand address and can use the auxiliary
register arithmetic unit (ARAU) to generate the second operand address.
When these instructions are used, the return address (the address of the next
instruction to be fetched) is pushed onto the MSTACK. Upon completion of the
repeated instruction, the MSTACK value is popped back into the
program-address generation logic. The MSTACK operations are not visible to
you. Unlike the stack, the MSTACK can be used only by the program-address
generation logic; there are no instructions that allow you to use the MSTACK
for storage.

Pipeline Operation

5-7Program Control

5.2 Pipeline Operation

Instruction pipelining consists of a sequence of bus operations that occur
during the execution of an instruction. The ’C20x pipeline has four
independent stages: instruction-fetch, instruction-decode, operand-fetch, and
instruction-execute. Because the four stages are independent, these
operations can overlap. During any given cycle, one to four different
instructions can be active, each at a different stage of completion. Figure 5–4
shows the operation of the 4-level-deep pipeline for single-word, single-cycle
instructions executing with no wait states.

The pipeline is essentially invisible to you except in the following cases:

� A single-word, single-cycle instruction immediately following a
modification of the global-memory allocation register (GREG) uses the
previous global map. You can prevent this by adding a NOP instruction
after the instruction that writes to the GREG.

� The NORM instruction modifies the auxiliary register pointer (ARP) and
uses the current auxiliary register (the one pointed to by the ARP) during
the execute phase of the pipeline. If the next two instruction words change
the values in the current auxiliary register or the ARP, they will do so during
the instruction decode phase of the pipeline (before the execution of
NORM). This would cause NORM to use the wrong auxiliary register value
and the following instructions to use the wrong ARP value.

Figure 5–4. 4-Level Pipeline Operation

N – 2N – 3

N – 2

N – 1

N – 1

N

N N + 1

N + 1 N + 2NN – 1

N + 3N + 2N + 1N

Execute

Operand

Decode

Fetch

CLKOUT1

The CPU is implemented using 2-phase static logic. The 2-phase operation
of the ’C20x CPU consists of a master phase in which all commutation logic
is executed, and a slave phase in which results are latched. Therefore,
sequential operations require sequential master cycles. Although sequential
operations require a deeper pipeline, 2-phase operation provides more time
for the computational logic to execute. This allows the ’C20x to run at faster
clock rates despite having a deeper pipeline that imposes a penalty on
branches and subroutine calls.

Branches, Calls, and Returns

5-8

5.3 Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by
transferring control to another location in program memory. A branch only
transfers control to the new location. A call also saves the return address (the
address of the instruction following the call) to the top of the hardware stack.
Every called subroutine or interrupt service routine is concluded with a return
instruction, which pops the return address off the stack and back into the
program counter (PC).

The ’C20x has two types of branches, calls, and returns:

� Unconditional. An unconditional branch, call, or return is always executed.
The unconditional branch, call, and return instructions are described in
sections 5.3.1, 5.3.2, and 5.3.3, respectively.

� Conditional. A conditional branch, call, or return is executed only if certain
specified conditions are met. The conditional branch, call, and return
instructions are described in detail in section 5.4, Conditional Branches,
Calls, and Returns, on page 5-10.

5.3.1 Unconditional Branches

When an unconditional branch is encountered, it is always executed. During
the execution, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the branch instruction or the
lower 16 bits of the accumulator.

By the time the branch instruction reaches the execute phase of the pipeline,
the next two instruction words have already been fetched. These two
instruction words are flushed from the pipeline so that they are not executed,
and then execution continues at the branched-to address. The unconditional
branch instructions are B (branch) and BACC (branch to location specified by
accumulator).

5.3.2 Unconditional Calls

When an unconditional call is encountered, it is always executed. When the
call is executed, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the call instruction or the lower
16 bits of the accumulator. Before the PC is loaded, the return address is saved
in the stack. After the subroutine or function is executed, a return instruction
loads the PC with the return address from the stack, and execution resumes
at the instruction following the call.

Branches, Calls, and Returns

5-9Program Control

By the time the unconditional call instruction reaches the execute phase of the
pipeline, the next two instruction words have already been fetched. These two
instruction words are flushed from the pipeline so that they are not executed,
the return address is stored to the stack, and then execution continues at the
beginning of the called function. The unconditional call instructions are CALL
and CALA (call subroutine at location specified by accumulator).

5.3.3 Unconditional Returns

When an unconditional return (RET) instruction is encountered, it is always
executed. When the return is executed, the PC is loaded with the value at the
top of the stack, and execution resumes at that address.

By the time the unconditional return instruction reaches the execute phase of
the pipeline, the next two instruction words have already been fetched. The
two instruction words are flushed from the pipeline so that they are not
executed, the return address is taken from the stack, and then execution con-
tinues in the calling function.

Conditional Branches, Calls, and Returns

 5-10

5.4 Conditional Branches, Calls, and Returns

The ’C20x provides branch, call, and return instructions that will execute only
if one or more conditions are met. You specify the conditions as operands of
the conditional instruction. Table 5–3 lists the conditions that you can use with
these instructions and their corresponding operand symbols.

Table 5–3. Conditions for Conditional Branches, Calls, and Returns

Operand
Symbol Condition DescriptionÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

EQ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACC = 0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator equal to zero

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NEQ ÁÁÁÁÁ
ÁÁÁÁÁ

ACC ≠ 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator not equal to zero

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LT ÁÁÁÁÁ
ÁÁÁÁÁ

ACC < 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator less than zero
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LEQ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACC � 0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator less than or equal to zero
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GT
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACC > 0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator greater than zero

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GEQ ÁÁÁÁÁ
ÁÁÁÁÁ

ACC � 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator greater than or equal to zero

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C ÁÁÁÁÁ
ÁÁÁÁÁ

C = 1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Carry bit set to 1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁNC

ÁÁÁÁÁ
ÁÁÁÁÁC = 0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCarry bit cleared to 0ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

OV
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

OV = 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator overflow detected

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOV ÁÁÁÁÁ
ÁÁÁÁÁ

OV = 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

No accumulator overflow detected

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

BIO ÁÁÁÁÁ
ÁÁÁÁÁ

BIO low ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BIO pin is low
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TC
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TC = 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test/control flag set to 1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NTC ÁÁÁÁÁ
ÁÁÁÁÁ

TC = 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test/control flag cleared to 0

5.4.1 Using Multiple Conditions

Multiple conditions can be listed as operands of the conditional instructions.
If multiple conditions are listed, all conditions must be met for the instruction
to execute. Note that only certain combinations of conditions are meaningful.
See Table 5–4. For each combination, the conditions must be selected from
Group 1 and Group 2 as follows:

� Group 1. You can select up to two conditions. Each of these conditions
must be from a different category (A or B); you cannot have two conditions
from the same category. For example, you can test EQ and OV at the same
time, but you cannot test GT and NEQ at the same time.

Conditional Branches, Calls, and Returns

5-11Program Control

� Group 2. You can select up to three conditions. Each of these conditions
must be from a different category (A or B); you cannot have two conditions
from the same category. For example, you can test TC and C at the same
time, but you cannot test C and NC at the same time.

Table 5–4. Groupings of Conditions

Group 1 Group 2

Category A Category B Category A Category B Category C

EQ OV TC C BIO

NEQ NOV NTC NC

LT

LEQ

GT

GEQ

5.4.2 Stabilization of Conditions

A conditional instruction must be able to test the most recent values of the
status bits. Therefore, the conditions cannot be considered stable until the
fourth, or execution stage of the pipeline, one cycle after the previous
instruction has been executed. The pipeline controller stops the decoding of
any instructions following the conditional instruction until the conditions are
stable.

5.4.3 Conditional Branches

A branch instruction transfers program control to any location in program
memory. Conditional branch instructions are executed only when one or more
user-specified conditions are met (see Table 5–3 on page 5-10). If all the
conditions are met, the PC is loaded with the second word of the branch
instruction, which contains the address to branch to, and execution continues
at this address.

By the time the conditions have been tested, the two instruction words
following the conditional branch instruction have already been fetched in the
pipeline. If all the conditions are met, these two instruction words are flushed
from the pipeline so that they are not executed, and then execution continues
at the branched-to address. If the conditions are not met, the two instruction
words are executed instead of the branch. Because conditional branches use

Conditional Branches, Calls, and Returns

 5-12

conditions determined by the execution of the previous instructions, a condi-
tional branch takes one more cycle than an unconditional one.

The conditional branch instructions are BCND (branch conditionally) and
BANZ (branch if currently selected auxiliary register is not equal to 0). The
BANZ instruction is useful for implementing loops.

5.4.4 Conditional Calls

The conditional call (CC) instruction is executed only when the specified
condition or conditions are met (see Table 5–3 on page 5-10). This allows your
program to choose among multiple subroutines based on the data being
processed. If all the conditions are met, the PC is loaded with the second word
of the call instruction, which contains the starting address of the subroutine.
Before branching to the subroutine, the processor stores the address of the
instruction following the call instruction—the return address—to the stack. The
function must end with a return instruction, which will take the return address
off the stack and force the processor to resume execution of the calling
program.

By the time the conditions of the conditional call instruction have been tested,
the two instruction words following the call instruction have already been
fetched in the pipeline. If all the conditions are met, these two instruction words
are flushed from the pipeline so that they are not executed, and then execution
continues at the beginning of the called function. If the conditions are not met,
the two instructions are executed instead of the call. Because there is a wait
cycle for conditions to become stable, the conditional call takes one more cycle
than the unconditional one.

5.4.5 Conditional Returns

Returns are used in conjunction with calls and interrupts. A call or interrupt
stores a return address to the stack and then transfers program control to a
new location in program memory. The called subroutine or the interrupt service
routine concludes with a return instruction, which pops the return address off
the top of the stack and into the program counter (PC).

The conditional return instruction (RETC) is executed only when one or more
conditions are met (see Table 5–3 on page 5-10). By using the RETC
instruction, you can give a subroutine or interrupt service routine more than
one possible return path. The path chosen then depends on the data being
processed. In addition, you can use a conditional return to avoid conditionally
branching to/around the return instruction at the end of the subroutine or
interrupt service routine.

Conditional Branches, Calls, and Returns

5-13Program Control

If all the conditions are met for execution of the RETC instruction, the
processor loads the return address from the stack to the PC and resumes
execution of the calling or interrupted program.

RETC, like RET, is a single-word instruction. However, because of the
potential PC discontinuity, it operates with the same effective execution time
as the conditional branch (BCND) and the conditional call (CC). By the time
the conditions of the conditional return instruction have been tested, the two
instruction words following the return instruction have already been fetched in
the pipeline. If all the conditions are met, these two instruction words are
flushed from the pipeline so that they are not executed, and then execution of
the calling program continues. If the conditions are not met, the two
instructions are executed instead of the return. Because there is a wait cycle
for conditions to become stable, the conditional return takes one more cycle
than the unconditional one.

Repeating a Single Instruction

5-14

5.5 Repeating a Single Instruction

The ’C20x repeat (RPT) instruction allows the execution of a single instruction
N + 1 times, where N is specified as an operand of the RPT instruction. When
RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then
decremented every time the repeated instruction is executed, until RPTC
equals zero. RPTC can be used as a 16-bit counter when the count value is
read from a data-memory location; if the count value is specified as a constant
operand, it is in an 8-bit counter.

The repeat feature is useful with instructions such as NORM (normalize
contents of accumulator), MACD (multiply and accumulate with data move),
and SUBC (conditional subtract). When instructions are repeated, the address
and data buses for program memory are free to fetch a second operand in
parallel with the address and data buses for data memory. This allows
instructions such as MACD and BLPD to effectively execute in a single cycle
when repeated.

Interrupts

5-15

5.6 Interrupts

Interrupts are hardware- or software-driven signals that cause the ’C20x to
suspend its current program sequence and execute a subroutine. Typically,
interrupts are generated by hardware devices that need to give data to or take
data from the ’C20x (for example, A/D and D/A converters and other
processors). Interrupts can also signal that a particular event has taken place
(for example, a timer has finished counting).

The ’C20x supports both software and hardware interrupts:

� A software interrupt is requested by an instruction (INTR, NMI, or TRAP).

� A hardware interrupt is requested by a signal from a physical device. Two
types exist:

� External hardware interrupts are triggered by signals at external
interrupt pins. All these interrupts are negative-edge triggered and
should be active low for at least one CLKOUT1 period to be
recognized.

� Internal hardware interrupts are triggered by signals from the on-chip
peripherals.

If hardware interrupts are triggered at the same time, the ’C20x services them
according to a set priority ranking. Each of the ’C20x interrupts, whether
hardware or software, can be placed in one of the following two categories:

� Maskable interrupts. These are hardware interrupts that can be blocked
(masked) or enabled (unmasked) through software.

� Nonmaskable interrupts. These interrupts cannot be blocked. The
’C20x will always acknowledge this type of interrupt and branch from the
main program to a subroutine. The ’C20x nonmaskable interrupts include
all software interrupts and two external hardware interrupts: reset (RS)
and NMI.

5.6.1 Interrupt Operation: Three Phases

The ’C20x handles interrupts in three main phases:

1) Receive the interrupt request. Suspension of the main program must be
requested by a software interrupt (from program code) or a hardware
interrupt (from a pin or an on-chip device).

2) Acknowledge the interrupt. The ’C20x must acknowledge the interrupt
request. If the interrupt is maskable, certain conditions must be met in
order for the ’C20x to acknowledge it. For nonmaskable hardware
interrupts and for software interrupts, acknowledgement is immediate.

Program Control

Interrupts

5-16

3) Execute the interrupt service routine. Once the interrupt is
acknowledged, the ’C20x branches to its corresponding subroutine called
an interrupt service routine (ISR). The ’C20x follows the branch instruction
you place at a predetermined address (the vector location) and executes
the ISR you have written.

5.6.2 Interrupt Table

For ’C20x devices other than the ’C209, Table 5–5 lists the interrupts available
and shows their vector locations. In addition, it shows the priority of each of the
hardware interrupts. For the corresponding ’C209 table, see section 11.3,
’C209 Interrupts, on page 11-10.

Table 5–5. ’C20x Interrupt Locations and Priorities

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

K†
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Vector
Location

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Name
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Priority
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Function

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0h ÁÁÁÁÁ
ÁÁÁÁÁ

RS ÁÁÁÁÁ
ÁÁÁÁÁ

1 (highest) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Hardware reset (nonmaskable)

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

2h ÁÁÁÁÁ
ÁÁÁÁÁ

HOLD/INT1ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-maskable interrupt #1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4h ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT2, INT3‡ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

5 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-maskable interrupts #2
and #3

ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

6h ÁÁÁÁÁ
ÁÁÁÁÁ

TINT ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-maskable timer interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

8h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

RINT
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-maskable synchronous
serial port receive interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Ah ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

XINT ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-maskable synchronous
serial port transmit interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Ch ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TXRXINT ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-maskable asynchronous
serial port transmit/receive in-
terrupt

ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁ
ÁÁÁÁ

Eh ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Reserved

ÁÁÁÁ
ÁÁÁÁ

8 ÁÁÁÁ
ÁÁÁÁ

10h ÁÁÁÁÁ
ÁÁÁÁÁ

INT8 ÁÁÁÁÁ
ÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

12h ÁÁÁÁÁ
ÁÁÁÁÁ

INT9 ÁÁÁÁÁ
ÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: This table does not apply to the ’C209. For the ’C209 interrupt table, see section 11.3 on
page 11-10.

† The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.

‡ INT2 and INT3 have separate pins but are tied to the same vector location.

Interrupts

5-17Program Control

Table 5–5. ’C20x Interrupt Locations and Priorities (Continued)

ÁÁÁ
ÁÁÁ
ÁÁÁ

K†
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Vector
Location

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Name
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Priority

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function

ÁÁÁ
ÁÁÁ

10ÁÁÁÁÁ
ÁÁÁÁÁ

14h ÁÁÁÁÁ
ÁÁÁÁÁ

INT10 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

11 ÁÁÁÁÁ
ÁÁÁÁÁ

16h ÁÁÁÁÁ
ÁÁÁÁÁ

INT11 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

12ÁÁÁÁÁ
ÁÁÁÁÁ

18h ÁÁÁÁÁ
ÁÁÁÁÁ

INT12 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

13
ÁÁÁÁÁ
ÁÁÁÁÁ

1Ah
ÁÁÁÁÁ
ÁÁÁÁÁ

INT13
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁ
ÁÁÁ14
ÁÁÁÁÁ
ÁÁÁÁÁ1Ch

ÁÁÁÁÁ
ÁÁÁÁÁINT14

ÁÁÁÁ
ÁÁÁÁ–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁUser-defined software interruptÁÁÁ

ÁÁÁ
ÁÁÁ

15
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1Eh
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT15
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

16ÁÁÁÁÁ
ÁÁÁÁÁ

20h ÁÁÁÁÁ
ÁÁÁÁÁ

INT16 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

17ÁÁÁÁÁ
ÁÁÁÁÁ

22h ÁÁÁÁÁ
ÁÁÁÁÁ

TRAP ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
TRAP instruction vector

ÁÁÁ
ÁÁÁ

18ÁÁÁÁÁ
ÁÁÁÁÁ

24h ÁÁÁÁÁ
ÁÁÁÁÁ

NMI ÁÁÁÁ
ÁÁÁÁ
3 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Nonmaskable interrupt

ÁÁÁ
ÁÁÁ

19ÁÁÁÁÁ
ÁÁÁÁÁ

26h ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
2 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Reserved

ÁÁÁ
ÁÁÁ

20
ÁÁÁÁÁ
ÁÁÁÁÁ

28h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT20
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁ
ÁÁÁ

21
ÁÁÁÁÁ
ÁÁÁÁÁ

2Ah
ÁÁÁÁÁ
ÁÁÁÁÁ

INT21
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interruptÁÁÁ
ÁÁÁ
ÁÁÁ

22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2Ch
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT22
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

23ÁÁÁÁÁ
ÁÁÁÁÁ

2Eh ÁÁÁÁÁ
ÁÁÁÁÁ

INT23 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

24ÁÁÁÁÁ
ÁÁÁÁÁ

30h ÁÁÁÁÁ
ÁÁÁÁÁ

INT24 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

25ÁÁÁÁÁ
ÁÁÁÁÁ

32h ÁÁÁÁÁ
ÁÁÁÁÁ

INT25 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

26ÁÁÁÁÁ
ÁÁÁÁÁ

34h ÁÁÁÁÁ
ÁÁÁÁÁ

INT26 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

27ÁÁÁÁÁ
ÁÁÁÁÁ

36h ÁÁÁÁÁ
ÁÁÁÁÁ

INT27 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

28
ÁÁÁÁÁ
ÁÁÁÁÁ

38h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT28
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁ
ÁÁÁ29
ÁÁÁÁÁ
ÁÁÁÁÁ3Ah

ÁÁÁÁÁ
ÁÁÁÁÁINT29

ÁÁÁÁ
ÁÁÁÁ–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁUser-defined software interruptÁÁÁ

ÁÁÁ
ÁÁÁ

30
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

3Ch
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT30
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

31ÁÁÁÁÁ
ÁÁÁÁÁ

3Eh ÁÁÁÁÁ
ÁÁÁÁÁ

INT31 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: This table does not apply to the ’C209. For the ’C209 interrupt table, see section 11.3 on
page 11-10.

† The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.

‡ INT2 and INT3 have separate pins but are tied to the same vector location.

Interrupts

 5-18

5.6.3 Maskable Interrupts

When a maskable interrupt is successfully requested by a hardware device or
by an external pin, the corresponding flag or flags are activated. These flags
are activated whether or not the interrupt is later acknowledged by the
processor.

Two registers on the ’C20x contain flag bits:

� Interrupt flag register (IFR), a 16-bit, memory-mapped register located at
address 0006h in data-memory space.The IFR is explained in detail in
section 5.6.4

� Interrupt control register (ICR), a 16-bit register located at address FFECh
in I/O space.The ICR is explained in section 5.6.6.

The IFR contains flag bits for all the maskable interrupts. The ICR contains
additional flag bits for the interrupts INT2 and INT3. For all maskable interrupts
except INT2 and INT3, an interrupt request is sent to the CPU as soon as the
interrupt signal is sent by the pin or on-chip peripheral. For INT2 or INT3, the
interrupt request is only sent to the CPU if the interrupt signal is not masked
by its mask bit in the ICR. Figure 5–5 shows the process for successfully
requesting INT2 or INT3.

Figure 5–5. INT2/INT3 Request Flow Chart

Interrupt request sent to CPU

Interrupt unmasked
in ICR?

Yes

No

Corresponding ICR flag bit set

INT2 or INT3 asserted at pin

Interrupts

5-19Program Control

After an interrupt request is received by the CPU, the CPU must decide
whether to acknowledge the request. Maskable hardware interrupts are
acknowledged only after certain conditions are met:

� Priority is highest. When more than one hardware interrupt is requested
at the same time, the ’C20x services them according to a set priority
ranking in which 1 indicates the highest priority. For the priorities of the
hardware interrupts, see section 5.6.2 (on page 5-16).

� IMR mask bit is 1. The interrupt must be unmasked (enabled) in the
interrupt mask register (IMR), a 16-bit, memory-mapped register located
at address 0004h in data-memory space. The IMR contains mask bits for
all the maskable interrupts. INT2 and INT3 share one of the bits in the IMR.
The IMR is explained in section 5.6.5 on page 5-23.

� INTM bit is 0. The interrupt mode (INTM) bit, bit 9 of status register ST0,
enables or disables all maskable interrupts:

� When INTM = 0, all unmasked interrupts are enabled.
� When INTM = 1, all unmasked interrupts are disabled.

INTM is set to 1 automatically when the CPU acknowledges an interrupt
(except when initiated by the TRAP instruction). INTM can also be set to
1 by a hardware reset or by execution of a disable-interrupts instruction
(SETC INTM). You can clear INTM by executing the enable-interrupts
instruction (CLRC INTM). INTM has no effect on reset, NMI, or
software-interrupts (initiated with the TRAP, NMI, and INTR instructions).
Also, INTM is unaffected by the LST (load status register) instruction.

INTM does not modify the interrupt flag register (IFR), the interrupt mask
register (IMR), or the interrupt control register (ICR).

When the CPU acknowledges a maskable hardware interrupt, it loads the
instruction bus with the INTR instruction. This instruction forces the CPU to
branch to the corresponding interrupt vector location. From this location in
program memory, the CPU fetches a branch that leads to the appropriate
interrupt service routine. As the CPU branches to the interrupt service routine,
it also sets the INTM bit to 1, preventing all hardware-initiated maskable
interrupts from interrupting the execution of the ISR. Note that the INTR
instruction can also be initiated directly by software; thus, the interrupt service
routines for the maskable interrupts can also be initiated directly with the INTR
instruction (see section 5.6.7, Nonmaskable Interrupts on page 5-27).

To determine which vector address has been assigned to each of the
interrupts, see section 5.6.2 (on page 5-16). Interrupt vector locations are
spaced apart by two addresses so a 2-word branch instruction can be
accommodated in each of the locations.

Interrupts

5-20

Figure 5–6 summarizes how maskable interrupts are handled by the CPU.

Figure 5–6. Maskable Interrupt Operation Flow Chart

Interrupt request sent to CPU

Corresponding IFR flag bit set

Interrupts enabled
(INTM bit = 0)

?

Interrupt
unmasked?

Interrupt acknowledged

Yes

Yes

No

No

INTM bit set to 1

PC saved on stack

Interrupt service routine run

Return instruction restores PC

Program continues

5.6.4 Interrupt Flag Register (IFR)

The 16-bit interrupt flag register (IFR), located at address 0006h in data
memory space, contains flag bits for all the maskable interrupts. When a
maskable interrupt request reaches the CPU, the corresponding flag is set to
1 in the IFR. This indicates that the interrupt is pending, or waiting for
acknowledgement.

Read the IFR to identify pending interrupts, and write to the IFR to clear
pending interrupts. To clear an interrupt request (and set its IFR flag to 0), write

Interrupts

5-21Program Control

a 1 to the corresponding IFR bit. All pending interrupts can be cleared by
writing the current contents of the IFR back into the IFR. Acknowledgement
of a hardware request also clears the corresponding IFR bit. A device reset
clears all IFR bits.

Notes:

1) When an interrupt is requested by an INTR instruction, if the
corresponding IFR bit is set, the CPU will not clear it automatically. If an
application requires that the IFR bit be cleared, the bit must be cleared
in the interrupt service routine.

2) To avoid double interrupts from the synchronous serial port and the
asynchronous serial port (including delta interrupts), clear the IFR bit(s)
in the corresponding interrupt service routine, just before returning from
the routine.

For ’C20x devices other than the ’C209, Figure 5–7 shows the IFR.
Descriptions of the bits follow the figure. For a description of the ’C209 IFR,
see section 11.3.1, ’C209 Interrupt Registers, on page 11-12.

Figure 5–7. ’C20x Interrupt Flag Register (IFR) — Data-Memory Address 0006h

15 6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Reserved TXRXINT XINT RINT TINT INT2/INT3 HOLD/INT1

0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Note: 0 = Always read as zeros; R = Read access; W1C = Write 1 to this bit to clear it to 0;
value following dash (–) is value after reset.

Table 5–6. ’C20x IFR — Data-Memory Address 0006h Bit Descriptions

Bit
No. Name Function

15–6 Reserved Bits 15–6 are reserved and are always read as 0s.

5 TXRXINT Transmit/receive interrupt flag. Bit 5 is tied to the transmit/receive interrupt for the
asynchronous serial port. To avoid double interrupts, write a 1 to this bit in the
interrupt service routine.

0 Interrupt TXRXINT is not pending.

1 Interrupt TXRXINT is pending.

Interrupts

 5-22

Table 5–6. ’C20x IFR — Data-Memory Address 0006h Bit Descriptions (Continued)

Bit
No. FunctionName

4 XINT Transmit interrupt flag. Bit 4 is tied to the transmit interrupt for the synchronous serial
port. To avoid double interrupts, write a 1 to this bit in the interrupt service routine.

0 Interrupt XINT is not pending.

1 Interrupt XINT is pending.

3 RINT Receive interrupt flag. Bit 3 is tied to the receive interrupt for the synchronous serial port.
To avoid double interrupts, write a 1 to this bit in the interrupt service routine.

0 Interrupt RINT is not pending.

1 Interrupt RINT is pending.

2 TINT Timer interrupt flag. Bit 2 is tied to the timer interrupt, TINT.

0 Interrupt TINT is not pending.

1 Interrupt TINT is pending.

1 INT2/INT3 Interrupt 2/Interrupt 3 flag. The INT2 pin and the INT3 pin are both tied to bit 1. If INT2
is requested, INT2/INT3 and FINT2 of the interrupt control register (ICR) are both
automatically set to 1. If INT3 is requested, INT2/INT3 and FINT3 (of the ICR) are both
automatically set to 1.

0 Neither INT2 nor INT3 is pending.

1 At least one of the two interrupts is pending. To determine which one is pending
or if both are pending, read flag bits FINT2 and FINT3 in the ICR. FINT2 and FINT3
are not automatically cleared when INT2 and INT3 are acknowledged by the CPU;
they must be cleared by the interrupt service routine.

0 HOLD/INT1 HOLD/Interrupt 1 flag. Bit 0 is a flag for HOLD or INT1. The operation of the HOLD/INT1
pin differs depending on the value of the MODE bit in the ICR. When MODE = 1, an
interrupt is triggered only by a negative edge on the pin. When MODE = 0, interrupts can
be triggered by both a negative edge and a positive edge. This is necessary to implement
the ’C20x HOLD operation (see section 4.6, Direct Memory Access Using The HOLD
Operation, on page 4-18).

0 HOLD/INT1 is not pending.

1 HOLD/INT1 is pending.

Interrupts

5-23Program Control

5.6.5 Interrupt Mask Register (IMR)

The 16-bit interrupt mask register (IMR), located at address 0004h in data-
memory space, is used for masking external and internal hardware interrupts.
Neither NMI nor RS is included in the IMR; thus, IMR has no effect on these
interrupts.

Read the IMR to identify masked or unmasked interrupts, and write to the IMR
to mask or unmask interrupts. To unmask an interrupt, set its corresponding
IMR bit to 1. To mask an interrupt, set its corresponding IMR bit to 0. The IMR
bits are not affected by a device reset.

For ’C20x devices other than the ’C209, Figure 5–8 shows the IMR.
Descriptions of the bits follow the figure. For a description of the ’C209 IMR,
see section 11.3.1, ’C209 Interrupt Registers, on page 11-12.

Figure 5–8. ’C20x Interrupt Mask Register (IMR) — Data-Memory Address 0004h

15 6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉ

Reserved TXRXINT XINT RINT TINT INT2/INT3 HOLD/INT1

0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (–) is value after reset.

Table 5–7. ’C20x IMR — Data-Memory Address 0004h Bit Descriptions

Bit
No. Name Function

15–6 Reserved Bits 15–6 are reserved and are always read as 0s.

5 TXRXINT Transmit/receive interrupt mask. Bit 5 is tied to the transmit/receive interrupt for the
asynchronous serial port.

0 Interrupt TXRXINT is masked.

1 Interrupt TXRXINT is unmasked.

4 XINT Transmit interrupt mask. Bit 4 is tied to the transmit interrupt for the synchronous serial
port.

0 Interrupt XINT is masked.

1 Interrupt XINT is unmasked.

3 RINT Receive interrupt mask. Bit 3 is tied to the receive interrupt for the synchronous serial
port.

0 Interrupt RINT is masked.

1 Interrupt RINT is unmasked.

Interrupts

 5-24

Table 5–7. ’C20x IMR — Data-Memory Address 0004h Bit Descriptions (Continued)

Bit
No. FunctionName

2 TINT Timer interrupt mask. Bit 2 is tied to the interrupt for the timer.

0 Interrupt TINT is masked.

1 Interrupt TINT is unmasked.

1 INT2/INT3 Interrupt 2/Interrupt 3 mask. The INT2 pin and the INT3 pin are both tied to bit 1. With
this bit, you mask both INT2 and INT3 simultaneously. In conjunction with this bit, bits
MINT2 and MINT3 of the ICR are used to individually unmask INT2 and INT3.

0 INT2 and INT3 are masked.

1 If INT2/INT3 = 1 and MINT2 = 1, INT2 is unmasked.

If INT2/INT3 = 1 and MINT3 = 1, INT3 is unmasked.

0 HOLD/INT1 HOLD/Interrupt 1 mask. This bit masks or unmasks interrupts requested at the
HOLD/INT1 pin.

0 HOLD/INT1 is masked.

1 HOLD/INT1 is unmasked.

5.6.6 Interrupt Control Register (ICR)

The 16-bit interrupt control register (ICR), located at address FFECh in I/O
space, controls the function of the HOLD/INT1 pin and individually controls the
interrupts INT2 and INT3.

Controlling the HOLD /INT1 pin

This pin can be used for triggering the interrupt INT1 and for sending a HOLD
signal to the CPU. Accordingly, the MODE bit provides two possible modes for
the HOLD/INT1 pin. When MODE = 1, the pin is negative-edge sensitive and,
thus, is set appropriately for initiating a standard interrupt (INT1). When
MODE = 0, the pin is both negative- and positive-edge sensitive, which is
necessary for implementing the logic for the HOLD operation (see section 4.6,
Direct Memory Access Using The HOLD Operation, on page 4-18).
Regardless of the value of MODE, the pin is connected to the same interrupt
logic, which initiates only one interrupt service routine. (HOLD/INT1 is mapped
to interrupt vector location 0002h in program memory.) To differentiate the two
uses of the pin, the interrupt service routine must test the value of the MODE
bit.

Interrupts

5-25Program Control

Controlling INT2 and INT3

Each of these interrupts has its own pin. However, they share:

� A single flag bit (INT2/INT3) in the interrupt flag register (IFR).

� A single mask bit in the interrupt mask register (IMR).

� A single interrupt service routine. (INT2 and INT3 are mapped to interrupt
vector location 0004h in program memory.)

To allow you to use INT2 and INT3 individually, the ICR provides two mask bits
(MINT2 and MINT3) and two flag bits (FINT2 and FINT3).

When interrupts are requested on the pins INT2 and INT3, MINT2 and MINT3
determine whether the flag bits FINT2, FINT3, and INT2/INT3 are set. To mask
INT2 (prevent the setting of flags FINT2 and INT2/INT3), write a 0 to MINT2;
to mask INT3 (prevent the setting of flags FINT3 and INT2/INT3) write a 0 to
MINT3. If INT2/INT3 is not set, the CPU has not received and will not
acknowledge the interrupt request.

When INT2/INT3 is set, one or both of the interrupts is pending. To differentiate
the occurrences of the two interrupts, your interrupt service routine can test
FINT2 and FINT3 and then branch to the appropriate subroutine. If you want
the interrupt service routine to be executed only in response to one of the
interrupts, mask the other interrupt in the ICR. Each of the ICR flag bits, like
the IFR flag bit, can be cleared by writing a 1 to it.

Note:

1) Neither FINT2 nor FINT3 is automatically cleared when the CPU
acknowledges the corresponding interrupt. If the application requires
the bit(s) be cleared, the clearing must be done in the interrupt service
routine.

2) Writing 1s to FINT2 and FINT3 will set these bits to 0 but will not clear
interrupt requests for INT2 and INT3. To clear requests for INT2 and/or
INT3, write a 1 to the INT2/INT3 bit of the IFR.

If INT2 or INT3 is unmasked in the ICR, the IFR flag bit will be set regardless
of bit 1 (INT2/INT3) in the IMR. If the IFR flag bit is set, the IMR bit is set, and
the INTM bit is 0 (maskable interrupts are enabled), the CPU will acknowledge
the interrupt. If an interrupt is masked by the IMR and/or the ICR, it will not be
acknowledged, even if INTM = 0.

Interrupts

 5-26

At reset, all ICR bits are set to zero, which means:

� The HOLD/INT1 pin is both negative- and positive-edge sensitive
(MODE = 0).

� The FINT2 and FINT3 flag bits are cleared.
� INT2 and INT3 are masked.

Figure 5–9 shows the ICR, and bit descriptions follow the figure.

Figure 5–9. ’C20x Interrupt Control Register (ICR) — I/O-Space Address FFECh

15 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved MODE FINT3 FINT2 MINT3 MINT2

0 R/W–0 R/W1C–0 R/W1C–0 R/W–0 R/W–0

Note: 0 = Always read as zeros; R = Read access; W = Write access; W1C = Write 1 to this bit to clear it to 0;
value following dash (–) is value after reset.

Table 5–8. ’C20x ICR — I/O-Space Address FFECh Bit Descriptions

Bit
No. Name Function

15–5 Reserved Bits 15–5 are reserved and are always read as 0s.

4 Mode Pin mode. Bit 4 selects one of two possible modes for the HOLD/INT1 pin.

0 Double-edge mode. The HOLD/INT1 pin is both negative- and positive-edge
sensitive. A falling edge or a rising edge triggers an interrupt request. This mode
is necessary for proper implementation of a HOLD operation.

1 Single-edge mode. A falling edge (only) on the HOLD/INT1 pin triggers an interrupt
request.

3 FINT3 Interrupt 3 flag. If MINT3 = 1, an interrupt request on the INT3 pin sets FINT3 and bit 1
of the IFR (INT2/INT3).

0 INT3 is not pending.

1 INT3 is pending.

2 FINT2 Interrupt 2 flag. If MINT2 = 1, an interrupt request on the INT2 pin sets FINT2 and bit 1
of the IFR (INT2/INT3).

0 INT2 is not pending.

1 INT2 is pending.

Interrupts

5-27Program Control

Table 5–8. ’C20x ICR — I/O-Space Address FFECh Bit Descriptions (Continued)

Bit
No. FunctionName

1 MINT3 Interrupt 3 mask. This bit masks the external interrupt INT3 or, in conjunction with the
INT2/INT3 bit of the IMR, unmasks INT3.

0 INT3 is masked. Neither FINT3 nor bit 1 of the IFR (INT2/INT3) is set by a request
on the INT3 pin.

1 INT3 is unmasked. Flag bits FINT3 and INT2/INT3 are both set by a request on the
INT3 pin.

0 MINT2 Interrupt 2 mask. This bit masks the external interrupt INT2 or, in conjunction with the
INT2/INT3 bit of the IMR, unmasks INT2.

0 INT2 is masked. Neither FINT2 nor bit 1 of the IFR (INT2/INT3) is set by a request
on the INT2 pin.

1 INT3 is unmasked. Flag bits FINT2 and INT2/INT3 are both set by a request on the
INT2 pin.

5.6.7 Nonmaskable Interrupts

Hardware nonmaskable interrupts can be requested through two pins:

� RS (reset). RS is an interrupt that stops program flow, returns the
processor to a predetermined state, and then begins program execution
at address 0000h. For details of the reset operation, see section 5.7, Reset
Operation, on page 5-35. When RS is acknowledged, the interrupt mode
(INTM) bit of status register ST1 is set to 1 to disable maskable interrupts.

� NMI. When NMI is activated (either by the NMI pin or by the NMI
instruction), the processor switches program control to vector location
24h. In addition, maskable interrupts are disabled (the INTM bit of status
register ST0 is set to 1). Although NMI uses the same logic as the
maskable interrupts, it is not maskable. NMI happens regardless of the
value of the INTM bit, and no mask bit exists for NMI. If the NMI pin is not
used, it should be pulled high to prevent an accidental interrupt.

NMI can be used as a soft reset. Unlike a hardware reset (RS), the NMI
neither affects any of the modes of the device nor aborts a currently active
instruction or memory operation.

Software interrupts (which are inherently nonmaskable) are requested by the
following instructions:

� INTR. This instruction allows you to initiate any ’C20x interrupt, including
user-defined interrupts INT8 through INT16 and INT20 through INT31.

Interrupts

 5-28

The instruction operand (K) indicates which interrupt vector location the
CPU will branch to. To determine the operand K that corresponds to each
interrupt vector location see section 5.6.2 (on page 5-16). When an INTR
interrupt is acknowledged, the interrupt mode (INTM) bit of status register
ST1 is set to 1 to disable maskable interrupts.

Note:

The INTR instruction does not affect IFR flags. When you use the INTR
instruction to initiate an interrupt that has an associated flag bit in the IFR,
the instruction neither sets nor clears the flag bit. No software write operation
can set the IFR flag bits; only the appropriate hardware requests can. If a
hardware request has set the flag for an interrupt and then the INTR
instruction is used to initiate that interrupt, the INTR instruction will not clear
the flag.

� NMI. This instruction forces a branch to interrupt vector location 24h, the
same location used for the nonmaskable hardware interrupt NMI. Thus,
you can either initiate NMI by driving the NMI pin low or by executing an
NMI instruction. When the NMI instruction is executed, INTM is set to 1 to
disable maskable interrupts.

� TRAP. This instruction forces the CPU to branch to interrupt vector
location 22h. The TRAP instruction does not disable maskable interrupts
(INTM is not set to 1); thus when the CPU branches to the interrupt service
routine, that routine can be interrupted by the maskable hardware
interrupts (in addition to RS and NMI).

If the INTM bit is set to 1 during the acknowledgement process, all hardware-
initiated maskable interrupts are disabled and, thus, cannot interfere with the
interrupt service routine.

To determine which vector address has been assigned to each of the interrupts
on a specific ’C20x device, see section 5.6.2 (on page 5-16). Interrupt vector
locations are spaced apart by two addresses so that a 2-word branch
instruction can be accommodated in each location.

Figure 5–10 summarizes how nonmaskable interrupts are handled by the
CPU.

Interrupts

5-29Program Control

Figure 5–10. Nonmaskable Interrupt Operation Flow Chart

Interrupt request sent to CPU

Interrupt acknowledged

TRAP
instruction?

Yes

No

INTM bit set to 1

PC saved on stack

Interrupt service routine run

Return instruction restores PC

Program continues

5.6.8 Interrupt Service Routines (ISRs)

After an interrupt has been requested and acknowledged, the CPU follows an
interrupt vector to the ISR. The ISR is the program code that actually performs
the tasks requested by the interrupt. While performing these tasks, the ISR
may also be:

� Saving and restoring register values
� Managing ISRs within ISRs

Saving and restoring register values

Only the incremented program counter value is stored automatically before
the CPU enters an interrupt service routine (ISR). You must design the ISR to
save and then restore any other important register values. For example, if your
ISR will need to perform a multiplication, it will need to use the product register
(PREG). If the value currently in the PREG must be in the PREG after the ISR,
the ISR must save the value, perform the new multiplication, store the resulting
PREG value, and then reload the original value. You may find that certain
registers will need to be saved during most ISRs. If so, you can copy a common
save and restore routine and then individualize it for each interrupt.

Interrupts

5-30

Managing ISRs within ISRs

The ’C20x hardware stack allows you to have ISRs within ISRs. When
considering nesting ISRs like this, keep the following in mind:

� If you want the ISR be interrupted by a maskable interrupt, the ISR must
unmask the interrupt by setting the appropriate IMR bit (and ICR bit, if
applicable) and executing the enable-interrupts instruction (CLRC INTM).

� The hardware stack is limited to eight levels. Each time an interrupt is
serviced or a subroutine is entered, the return address is pushed onto the
hardware stack. This provides a way to return to the previous context
afterwards. The stack contains eight locations, allowing interrupts or
subroutines to be nested up to eight levels deep. (One level of the stack
is reserved for debugging, to be used for breakpoint/single-step
operations. If debugging is not used, this extra level is available for internal
use.) If your software requires more than eight stack levels, you can use
the POPD and PSHD instructions to effectively extend the stack into data
memory.

� If you do not nest ISRs, you can avoid stack overflow. The ’C20x has a
feature that allows you to prevent unintentional nesting. If an interrupt
occurs during the execution of a CLRC INTM instruction, the device
always completes CLRC INTM as well as the next instruction before the
pending interrupt is processed. This ensures that a return instruction that
directly follows CLRC INTM will be executed before an interrupt is
processed. The return instruction will pop the previous return address off
the top of the stack before the new return address is pushed onto the stack.

To allow the CPU to complete the return, interrupts are also blocked after a
RET instruction until at least one instruction at the return address is
executed. Interrupts may be blocked for more than one instruction if the
instruction at the return address requires additional blocking for pipeline
protection.

� If you want an ISR to occur within the current ISR rather than after the
current ISR, place the CLRC INTM instruction more than one instruction
before the return (RET) instruction.

Interrupts

5-31Program Control

5.6.9 Interrupt Latency

The length of an interrupt latency—the delay between when an interrupt
request is made and when it is serviced—depends on many factors. For
example, the CPU always completes all instructions in the pipeline before
executing a software vector. This section describes the factors that determine
minimum latency and then describes factors that may cause additional
latency. The maximum latency is a function of wait states and pipeline
protection.

For an external, maskable hardware interrupt, a minimum latency of eight
cycles is required to synchronize the interrupt externally, recognize the
interrupt, and branch to the interrupt vector location. On the ninth cycle, the
interrupt vector is fetched. For a software interrupt, the minimum latency
consists of four cycles needed to branch to the interrupt vector location.

Latency for pipeline protection

Multicycle instructions add additional cycles to empty the pipeline. Instructions
may become multicycle for these reasons:

� An instruction that writes to or reads from external memory may be
delayed by wait states generated by the external READY pin or the
on-chip wait-state generator. These wait states may affect the instruction
being executed at the time the interrupt is requested, and they may affect
the interrupt itself if the interrupt vector must be fetched from external
memory.

� If an interrupt occurs during a HOLD operation and the interrupt vector
must be fetched from external memory, the vector cannot be fetched until
HOLDA is deasserted.

� When repeated with RPT, instructions run parallel operations in the
pipeline and the context of these additional parallel operations cannot be
saved in an interrupt service routine. To protect the context of the repeated
instruction, the CPU locks out all interrupts except reset until the RPT loop
completes.

Note:

Reset (RS) is not delayed by multicycle instructions. NMI can be delayed by
multicycle instructions.

Interrupts

 5-32

Latency for stack overflow protection

A return address (incremented program counter value) is forced onto the
hardware stack every time the CPU follows another interrupt service routine
or other subroutine. However, the ’C20x has a feature that can help you to keep
the hardware stack from overflowing. Interrupts cannot be processed between
the CLRC INTM (enable maskable interrupts) instruction and the next
instruction in a program sequence. This ensures that a return instruction that
directly follows CLRC INTM will be executed before an interrupt is processed.
The return instruction will pop the previous return address off the top of the
stack before the new return address is pushed onto the stack. If the interrupt
were to occur before the return, the new return address would be added to the
hardware stack, even if the stack were already full.

To allow the CPU to complete the return, interrupts are also blocked after a
RET instruction until at least one instruction at the return address is executed.

5.6.10 Context Saving During Interrupts

During context saving and restoring, the order in which registers ST0 and ST1
are loaded is crucial and changes contingent upon the addressing mode
(direct and indirect). As there is no LPL instruction, you can extend
interruptability by:

� Direct addressing context save

� Indirect addressing context save (software stack)

See Figure 5–11 and Figure 5–12 for code examples.

Interrupts

5-33Program Control

� Direct addressing context save

Using direct addressing to perform context save to data memory is the
simplest way to extend interruptability to the second level of depth. The
code example below shows the most likely items to be saved, and in so
doing, demonstrates most of the techniques used for contexting in
general. Note, however, that this is not a comprehensive context save
operation, and that you must consider which registers will, and will not, be
maintained for the specific ISR. Given the large number of registers
present on the ’C20x, it is not recommended that you employ a generic, all
encompassing context save process, as this would almost always be
impractical.

Figure 5–11.Direct Addressing Context Save

STATUS .usect “BLOCKB2”, 2 ; Must be located on Data Page 0
 .bss CONTEX, 4, 1 ; Located anywhere in Data Memory
 .text
ISR1: SST #0,STATUS ; ST0 must go to data page 0
 SST #1,STATUS+1 ; ST1 must go to data page 0
 LDP #CONTEX ;
 SACH CONTEX ; Save ACCH & ACCL
 SACL CONTEX+1 ; (if needed, P & T regs saved as shown above)
 POPD CONTEX+2 ; Offload 1 level of stack
 BLDD #04h, CONTEX+3 ; Save IMR
 LDP #0
 LACL #0010B ; Mask to sub-enable only INT2, for example
 SACL 04h ; Write to IMR
 CLRC INTM ; Re-allow interruptability
 * ;
 * ; Nestable ISR goes here. . .
 * ;
 SETC INTM ; Interruptability back off
 LDP #CONTEX ; Go to page with context values
 PSHD CONTEX+2 ; Reload stack with return address
 LACL CONTEX+1 ; Restore ACCL w/o sign extension
 ADD CONTEX,16 ; Sum in ACCH
 LDP #0 ; Go to DP=0. for status registers
 BLDD #CONTEX+3, 04h ; Restore to IMR
 LST #1, STATUS+1 ; Restore ST1
 LST #0, STATUS ; Restore ST0
 CLRC INTM ; Enable interrupts
 RET ;

Interrupts

 5-34

� Indirect addressing context save (software stack)

Using indirect addressing to perform a context save allows any degree of
nestability of interrupts and is typically used in conjunction with a software
stack. In creating a software stack, you should assign one auxiliary
register (AR) as a stack pointer. Following TI’s C compiler convention, AR1
has been assigned as the stack pointer (SP).

Figure 5–12. Indirect Addressing Context Save

 .bss STACK,100h ; Assign 512 locations for stack
 .text
OSR1: LAR AR1, #STACK ; AR1 is SP, start at beginning
 *
 *
ISR1: MAR *, AR1 ; Select AR1 to point to stack
 SST #1,*+ ; Save ST1 & ST0
 SST #0,*+
 SACH *+ ; Save ACCH & ACCL
 SACL *+
 LDP #0
 LACC 4h ; Get IMR
 SACL *+ ; Store old IMR
 POPD *+ ; Offload 1 level of stack
 LACL #010B ; Mask to sub-enable only INT2
 SACL 4h ; New IMR
 CLRC INTM ; Re-allow interruptability
 * ;
 * ; Interruptible ISR goes here
 * ;
 SETC INTM ; Interruptability back off
 MAR *,AR1 ; Select stack pointer
 MAR *– ; Move AR1 to last saved content
 PSHD *– ; Reload stack with return address
 LACC *– ; Get & restore original IMR value
 LDP #0
 SACL 4h ; Restore IMR
 LACL *– ; Load ACCL & sum in ACCH
 ADD *–,16
 LST #0,*– ; Restore ST0
 LST #1,* ; Restore ST1 and ARP
 CLRC INTM ; Enable interrupts
 RET ; Return to main

Reset Operation

5-35Program Control

5.7 Reset Operation

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to put the ’C20x into a known state. Reset is the highest priority interrupt; no
other interrupt takes precedence over reset. Reset is typically applied after
power up when the machine is in an unknown state. Because the reset signal
aborts memory operations and initializes status bits, the system should be
reinitialized after each reset. The NMI interrupt can be used for soft resets
because it neither aborts memory operations nor initializes status bits.

Driving RS low causes the ’C20x to terminate execution and affects various
registers and status bits. For correct system operation after power up, RS must
be asserted for at least six clock cycles. The device latches the reset pulse and
generates an internal reset pulse long enough to ensure a device reset. The
device fetches its first instruction 16 cycles after the rising edge of RS.
Processor execution begins at location 0000h, which normally contains a
branch instruction to the system initialization routine.

When the ’C20x receives a reset signal, the following actions take place:

� Control features:

� The program counter is cleared to 0 (however, the address bus,
A15–A0, is unknown while RS is low).

� Status bits in registers ST0 and ST1 are loaded with their reset values:
OV = 0, INTM = 1, CNF = 0, SXM = 1, C = 1, XF= 1 and PM = 00.
(The other status bits remain undefined and should be initialized by a
reset.)

� The INTM (interrupt mode) bit is set to 1, disabling all maskable
interrupts. (RS and NMI are not maskable.) Also, the interrupt flag
register (IFR), interrupt mask register (IMR), and interrupt control
register (ICR) are cleared.

� The MODE bit of the interrupt control register (ICR) is set to 0 so that
the HOLD/INT1 pin is both negative- and positive-edge sensitive.

� The repeat counter (RPTC) is cleared.

� Memory and I/O spaces:

� A logic 0 is loaded into the CNF (configuration control) bit in status
register ST1, mapping dual-access RAM block B0 into data space.

� The global memory allocation register (GREG) is cleared to make all
memory local.

� The wait-state generator is set to provide the maximum number of wait
states for external memory and I/O accesses.

Reset Operation

 5-36

� Peripherals:

The peripherals are not reset until 16 CLKOUT1 cycles from the rising edge
of the RESET pin.

� The timer count is set to its maximum value (FFFFh), the timer
divide-down value is set to 0, and the timer starts counting down.

� The synchronous serial port is reset:

� The port emulation mode is set to immediate stop.

� Error and status flags are reset.

� Receive interrupts are set to occur when the receive buffer is not
empty.

� Transmit interrupts are set to occur when the transmit buffer can
accept one or more words.

� External clock and frame synchronization sources are selected.

� Continuous mode is selected.

� Digital loopback mode is disabled.

� The receiver and transmitter are enabled.

� The asynchronous serial port is reset:

� The port emulation mode is set to immediate stop.

� Error and status flags are reset.

� Receive, transmit, and delta interrupts are disabled.

� One stop bit is selected.

� Auto-baud alignment is disabled.

� The TX pin is forced high between transmissions.

� I/O pins IO0, IO1, IO2, and IO3 are configured as inputs.

� A baud rate of (CLKOUT1 rate)/16 is selected.

� The port is disabled.

� CLK register bit 0 is cleared to 0 so that the CLKOUT1 signal is
available at the CLKOUT1 pin.

No other registers or status bits (such as the accumulator, DP, ARP, and the
auxiliary registers) are initialized. Table 5–9 and Table 5–10 list the reset val-
ues for all the registers mapped to on-chip addresses.

Reset Operation

5-37Program Control

Table 5–9. Reset Values of On-Chip Registers Mapped to Data Space

Name Data-Memory Address Reset Value Description

IMR 0004h 0000h Interrupt mask register

GREG 0005h 0000h Global memory allocation register

IFR 0006h 0000h Interrupt flag register

Table 5–10. Reset Values of On-Chip Registers Mapped to I/O Space

I/O Address

Name ’C209 Other ’C20x Reset Value Description

PMST – FFE4h 0000x Program memory status register

CLK – FFE8h 0000h CLKOUT1-pin control (CLK) register

ICR – FFECh 0000h Interrupt control register

SDTR – FFF0h xxxxh Synchronous data transmit and receive register

SSPCR – FFF1h 0030h Synchronous serial port control register

SSPST – FFF2h 0000h Synchronous serial port status register

SSPMC – FFF3h 0000h Synchronous serial port multichannel register

ADTR – FFF4h xxxxh Asynchronous data transmit and receive register

ASPCR – FFF5h 0000h Asynchronous serial port control register

IOSR – FFF6h 18xxh I/O status register

BRD – FFF7h 0001h Baud-rate divisor register

TCR FFFCh FFF8h 0000h Timer control register

PRD FFFDh FFF9h FFFFh Timer period register

TIM FFFEh FFFAh FFFFh Timer counter register

SSPCT – FFFBh 0000h Synchronous serial port shift clock and frame
sync prescaler

WSGR FFFFh FFFCh 0FFFh Wait-state generator control register

Note: An x in an address represents four bits that are either not affected by reset or dependent on pin levels at reset.

Reset Operation

 5-38

5.7.1 TMS320C206/LC206 Reset and PLL Lock Conditions

TMS320C206/LC206 devices have special reset conditions compared to the
TMS320C203 and TMS320F206 devices. Table 5–11 explains the reset
conditions for the TMS320C206/LC206 devices.

Table 5–11. Reset Conditions for the ’C206/’LC206

Condition PLLRS RS2 RS PLL † DSP Core

Power on reset (POR) 0 X (Don’t care) 0 Reset Reset

After POR Always 1 1 1 No No

After POR Always 1 0 0 No Reset

† PLL-reset means that the PLL resets and initiates locking sequence.

� Case A

The Case A schematic shows initiation of PLL and DSP core reset at power
up. After power up, reset pulses on RS2 (for example, watchdog timer) reset
the DSP core only. The PLL does not reset as PLLRS remains inactive high
while RS2 is active low. This scheme keeps CLKOUT1 locked for all resets
except for power-on reset.

PLLRS

RS

PLL

DSP core

VCC

RS2

TMS320C206/LC206

Reset Operation

5-39Program Control

� Case B

The Case B schematic shows initiation of the PLL reset and DSP core reset
for every reset. Following every reset, the PLL initiates the PLL locking
sequence as PLLRS is low during reset RS.

PLLRS

RS

PLL

DSP core

VCC

TMS320C206/LC206

� Case C

The Case C schematic shown is equivalent to case B. PLL and DSP core are
reset for each reset. PLL initiates the locking sequence for every reset as
PLLRS is low during reset.

PLLRS

RS

PLL

DSP core

VCC

TMS320C206/LC206

Power-Down Mode

5-40

5.8 Power-Down Mode

The ’C20x has a power-down mode that allows the ’C20x core to enter a
dormant state and use less power than during normal operation. Executing an
IDLE instruction initiates power-down mode. When the IDLE instruction
executes, the program counter is incremented once, and then all CPU
activities are halted. While the ’C20x is in power-down mode, all of its internal
contents are maintained. The content of all on-chip RAM remains unchanged.
The peripheral circuits continue to operate, allowing the serial ports and the
timer to take the CPU out of the power-down state. The CLKOUT1 pin remains
active if bit 0 of the CLK register is set to 0.

The methods for terminating power-down mode depend on whether the
power-down was initiated under normal circumstances or as part of a HOLD
operation. sections 5.8.1 and 5.8.2 describe the differences.

5.8.1 Normal Termination of Power-Down Mode

If power-down has been initiated, any hardware interrupt (internal or external)
takes the processor out of the IDLE state. If you use reset or NMI, the CPU will
immediately execute the corresponding interrupt service routine. In addition,
if you use reset, registers will assume their reset values.

For a maskable hardware interrupt to wake the processor, it must be
unmasked by the interrupt mask register (IMR bit = 1). However, if the interrupt
is unmasked and is then requested, the processor will leave the IDLE state
regardless of the value of the INTM bit (bit 9 of status register ST0). The value
of the INTM bit will only determine the action of the CPU after power-down has
been terminated:

� INTM = 0. The interrupt is enabled, and the CPU executes the
corresponding interrupt service routine.

� INTM = 1. The interrupt is disabled, and the CPU continues with the
instruction after IDLE.

If you do not want the CPU to follow an interrupt service routine before
continuing with the interrupted program sequence:

� Do not use reset or NMI to bring the processor out of power-down.

� Make sure your program globally disables maskable interrupts (sets INTM
to 1) before IDLE is executed.

Power-Down Mode

5-41Program Control

5.8.2 Termination of Power-Down During a HOLD Operation

One of the necessary steps in the HOLD operation is the execution of an IDLE
instruction (see section 4.6, Direct Memory Access Using The HOLD
Operation, on page 4-18) . There are unique characteristics of the HOLD
operation that affect how the IDLE state can be exited.

Before performing a HOLD operation, your program must write a 0 to the
MODE bit (bit 4 of the interrupt control register, ICR). This makes the
HOLD/INT1 pin both negative- and positive-edge sensitive. A falling edge on
HOLD/INT1 will cause the CPU to branch to the interrupt service routine, which
initiates the HOLD operation with an IDLE instruction. A subsequent rising
edge on HOLD/INT1 can take the CPU out of the IDLE state and end the HOLD
operation. This rising-edge interrupt does not cause the CPU to branch to the
interrupt service routine.

The recommended software logic for the HOLD operation is described in
section 4.6, Direct Memory Access Using the HOLD Operation.

During a HOLD operation, there are only three valid methods for taking the
CPU out of the IDLE state:

� Causing a rising edge on the HOLD/INT1 pin.
� Asserting a system reset at the reset pin.
� Asserting the nonmaskable interrupt NMI at the NMI pin.

If you use reset or NMI, the CPU will immediately execute the corresponding
interrupt service routine. In addition, if you use reset, the contents of some
registers will be changed. For more information about exiting a HOLD
operation with reset or NMI, see section 4.6, Direct Memory Access Using The
HOLD Operation.

6-1Addressing Modes

Addressing Modes

This chapter explains the three basic memory addressing modes used by the
’C20x instruction set. The three modes are:

� Immediate addressing mode
� Direct addressing mode
� Indirect addressing mode

In immediate addressing, a constant to be manipulated by the instruction is
supplied directly as an operand of that instruction. Two types of immediate
addressing are available—short and long. In short-immediate addressing, an
8-, 9-, or 13-bit operand is included in the instruction word. Long-immediate
addressing uses a 16-bit operand.

When you need to access data memory, you can use direct or indirect addres-
sing. Direct addressing concatenates seven bits of the instruction word with
the nine bits of the data-memory page pointer (DP) to form the 16-bit data
memory address. Indirect addressing accesses data memory through one of
eight 16-bit auxiliary registers.

Topic Page

6.1 Immediate Addressing Mode 6-2.

6.2 Direct Addressing Mode 6-4.

6.3 Indirect Addressing Mode 6-9.

Chapter 6

Immediate Addressing Mode

6-2

6.1 Immediate Addressing Mode

In immediate addressing, the instruction word contains a constant to be ma-
nipulated by the instruction. The ’C20x supports two types of immediate ad-
dressing:

� Short-immediate addressing. Instructions that use short-immediate ad-
dressing take an 8-bit, 9-bit, or 13-bit constant as an operand. Short-im-
mediate instructions require a single instruction word, with the constant
embedded in that word.

� Long-immediate addressing. Instructions that use long-immediate ad-
dressing take a 16-bit constant as an operand and require two instruction
words. The constant is sent as the second instruction word. This 16-bit val-
ue can be used as an absolute constant or as a 2s-complement value.

6.1.1 Examples of Immediate Addressing

In Example 6–1, the immediate operand is contained as a part of the RPT
instruction word. For this RPT instruction, the instruction register will be loaded
with the value shown in Figure 6–1. Immediate operands are preceded by the
symbol #.

Example 6–1. RPT Instruction Using Short-Immediate Addressing

RPT #99 ;Execute the instruction that follows RPT
;100 times.

Figure 6–1. Instruction Register Contents for Example 6–1

0123456789101112131415

1100011011011101

8-bit constant = 99RPT opcode for immediate addressing

Immediate Addressing Mode

6-3Addressing Modes

In Example 6–2, the immediate operand is contained in the second instruction
word. The instruction register receives, consecutively, the two 16-bit values
shown in Figure 6–2.

Example 6–2. ADD Instruction Using Long-Immediate Addressing

ADD #16384,2 ;Shift the value 16384 left by two bits
;and add the result to the accumulator.

Figure 6–2. Two Words Loaded Consecutively to the Instruction Register in Example 6–2

0123456789101112131415

100111111101

shift = 2

16-bit constant = 16 384 = 4000h

First instruction word:

Second instruction word:

0100

ADD opcode for long-immediate addressing

000000000010 0000

0123456789101112131415

Direct Addressing Mode

6-4

6.2 Direct Addressing Mode

In the direct addressing mode, data memory is addressed in blocks of 128
words called data pages. The entire 64K of data memory consists of 512 data
pages labeled 0 through 511, as shown in Figure 6–3. The current data page
is determined by the value in the 9-bit data page pointer (DP) in status register
ST0. For example, if the DP value is 0000000002, the current data page is 0.
If the DP value is 0000000102, the current data page is 2.

Figure 6–3. Pages of Data Memory

Data Memory

Page 0: 0000h–007Fh

Page 1: 0080h–00FFh

Page 2: 0100h–017Fh

Page 511: FF80h–FFFFh

.

000 0000

OffsetDP value

0000 0000 0

111 11110000 0000 0
0000 0000 1

0000 0000 1

1111 1111 1

1111 1111 1

000 0000

111 1111

000 0000

111 1111

0000 0001 0

000 0000

111 1111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.0000 0001 0

..

.

..

. ..
.

..

.

..

.

..

. ..
.

In addition to the data page, the processor must know the particular word being
referenced on that page. This is determined by a 7-bit offset (see Figure 6–3).
The offset is supplied by the seven least significant bits (LSBs) of the instruc-
tion register, which holds the opcode for the next instruction to be executed.
In direct addressing mode, the content of the instruction register has the format
shown in Figure 6–4.

Direct Addressing Mode

6-5Addressing Modes

Figure 6–4. Instruction Register (IR) Contents in Direct Addressing Mode

0123456789101112131415

7 LSBs08 MSBs

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
ADD) and also contain any information regarding a shift of the
data value to be accessed by the instruction.

0 Direct/indirect indicator. Bit 7 contains a 0 to define the ad-
dressing mode as direct.

7 LSBs Bits 6 through 0 indicate the offset for the data-memory ad-
dress referenced by the instruction.

To form a complete 16-bit address, the processor concatenates the DP value
and the seven LSBs of the instruction register, as shown in Figure 6–5. The
DP supplies the nine most significant bits (MSBs) of the address (the page
number), and the seven LSBs of the instruction register supply the seven LSBs
of the address (the offset). For example, to access data address 003Fh, you
specify data page 0 (DP = 0000 0000 0) and an offset of 011 1111. Concatenat-
ing the DP and the offset produces the 16-bit address 0000 0000 0011 1111,
which is 003Fh or decimal 63.

Figure 6–5. Generation of Data Addresses in Direct Addressing Mode

7 LSBs from IR

16-bit data-memory address

All 9 bits from DP

Data page pointer (DP)

Page (9 MSBs) Offset (7 LSBs)

Instruction register (IR)

8 MSBs 7 LSBs9 bits 0

Initialize the DP in All Programs

It is critical that all programs initialize the DP. The DP is not
initialized by reset and is undefined after power up. The ’C20x
development tools use default values for many parameters,
including the DP. However, programs that do not explicitly initialize
the DP can execute improperly, depending on whether they are
executed on a ’C20x device or with a development tool.

Direct Addressing Mode

 6-6

6.2.1 Using Direct Addressing Mode

When you use direct addressing mode, the processor uses the DP to find the
data page and uses the seven LSBs of the instruction register to find a particu-
lar address on that page. Always do the following:

1) Set the data page. Load the appropriate value (from 0 to 511) into the DP.
The DP register can be loaded by the LDP instruction or by any instruction
that can load a value to ST0. The LDP instruction loads the DP directly
without affecting the other bits of ST0, and it clearly indicates the value
loaded into the DP. For example, to set the current data page to 32 (ad-
dresses 1000h–107Fh), you can use:

LDP #32 ;Initialize data page pointer

2) Specify the offset. Supply the 7-bit offset as an operand of the instruction.
For example, if you want the ADD instruction to use the value at the second
address of the current data page, you would write:

ADD 1h ;Add to accumulator the value in the current

;data page, offset of 1.

You do not have to set the data page prior to every instruction that uses direct
addressing. If all the instructions in a block of code access the same data page,
you can simply load the DP at the front of the block. However, if various data
pages are being accessed throughout the block of code, be sure the DP is
changed whenever a new data page should be accessed.

6.2.2 Examples of Direct Addressing

In Example 6–3, the first instruction loads the DP with 0000001002 (4) to set
the current data page to 4. The ADD instruction then references a data
memory address that is generated as shown following the program code. Be-
fore the ADD instruction is executed, the opcode is loaded into the instruction
register. Together, the DP and the seven LSBs of the instruction register form
the complete 16-bit address, 00000010000010012 (0209h).

Direct Addressing Mode

6-7Addressing Modes

Example 6–3. Using Direct Addressing with ADD (Shift of 0 to 15)

LDP #4 ;Set data page to 4 (addresses 0200h–027Fh).
ADD 9h,5 ;The contents of data address 0209h are

;left–shifted 5 bits and added to the
;contents of the accumulator.

7 LSBs from IR

16-bit data address 0209h

All 9 bits from DP

DP = 4 Instruction register (IR)

0 0 1 0 0 0 0 1 0 0 10 0 0 0 0 0 1 0 0 00 0 1 0

ADD
opcode

Shift of 5

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

9h

In Example 6–4, the ADD instruction references a data memory address that
is generated as shown following the program code. For any instruction that
performs a shift of 16, the shift value is not embedded directly in the instruction
word; instead, all eight MSBs contain an opcode that not only indicates the
instruction type but also a shift of 16. The eight MSBs of the instruction word
indicate an ADD with a shift of 16.

Example 6–4. Using Direct Addressing with ADD (Shift of 16)

LDP #5 ;Set data page to 5 (addresses 0280h–02FFh).
ADD 9h,16 ;The contents of data address 0289h are

;left–shifted 16 bits and added to the
;contents of the accumulator.

7 LSBs from IR

16-bit data address 0289h

All 9 bits from DP

DP = 5 Instruction register (IR)

0 0 0 1 0 0 10 0 0 0 0 0 1 0 1 0

ADD with shift of 16
opcode

0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1

9h

0 1 1 0 0 0 0 1

Direct Addressing Mode

6-8

In Example 6–5, the ADDC instruction references a data memory address that
is generated as shown following the program code. Note that if an instruction
does not perform shifts, like the ADDC instruction does not, all eight MSBs of
the instruction contain the opcode for the instruction type.

Example 6–5. Using Direct Addressing with ADDC

LDP #500 ;Set data page to 500 (addresses FA00h–FA7Fh).
ADDC 6h ;The contents of data address FA06h
 ;and the value of the carry bit (C) are

;added to the contents of the accumulator.

7 LSBs from IR

16-bit data address FA06h

All 9 bits from DP

DP = 500 Instruction register (IR)

0 0 0 0 1 1 01 1 1 1 1 0 1 0 0 0

ADDC opcode

1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0

6h

0 1 1 0 0 0 0 0

Indirect Addressing Mode

6-9Addressing Modes

6.3 Indirect Addressing Mode

Eight auxiliary registers (AR0–AR7) provide flexible and powerful indirect ad-
dressing. Any location in the 64K data memory space can be accessed using
a 16-bit address contained in an auxiliary register.

6.3.1 Current Auxiliary Register

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register ST0 with a value from 0 to 7. The ARP can be loaded
as a primary operation by the MAR instruction or by the LST instruction. The
ARP can be loaded as a secondary operation by any instruction that supports
indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rent auxiliary register is used as the address at which the data-memory access
will take place. The ARAU passes this address to the data-read address bus
(DRAB) if the instruction requires a read from data memory, or it passes the
address to the data-write address bus (DWAB) if the instruction requires a
write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the
ARAU, which implements unsigned 16-bit arithmetic.

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operation is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: During processing of the NORM
instruction, the auxiliary register and/or ARP modification is done during the
execute phase of the pipeline. For information on the operation of the pipeline,
see section 5.2 on page 5-7.

6.3.2 Indirect Addressing Options

The ’C20x provides four types of indirect addressing options:

� No increment or decrement. The instruction uses the content of the current
auxiliary register as the data memory address but neither increments nor
decrements the content of the current auxiliary register.

� Increment or decrement by 1. The instruction uses the content of the cur-
rent auxiliary register as the data memory address and then increments
or decrements the content of the current auxiliary register by one.

� Increment or decrement by an index amount. The value in AR0 is the index
amount. The instruction uses the content of the current auxiliary register

Indirect Addressing Mode

 6-10

as the data memory address and then increments or decrements the con-
tent of the current auxiliary register by the index amount.

� Increment or decrement by an index amount using reverse carry. The val-
ue in AR0 is the index amount. After the instruction uses the content of the
current auxiliary register as the data-memory address, that content is in-
cremented or decremented by the index amount. The addition or subtrac-
tion, in this case, is done with the carry propagation reversed (for FFTs).

These four option types provide the seven indirect addressing options listed
in Table 6–1. The table also shows the instruction operand that corresponds
to each indirect addressing option and gives an example of how each option
is used.

Table 6–1. Indirect Addressing Operands

Option Operand Example

No increment or decrement * LT * loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR.

Increment by 1 *+ LT *+ loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then adds one to the
content of the current AR.

Decrement by 1 *– LT *– loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then subtracts one from
the content of the current AR.

Increment by index amount *0+ LT *0+ loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then adds the content
of AR0 to the content of the current AR.

Decrement by index amount *0– LT *0– loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then subtracts the con-
tent of AR0 from the content of the cur-
rent AR.

Indirect Addressing Mode

6-11Addressing Modes

Table 6–1. Indirect Addressing Operands (Continued)

Option Operand Example

Increment by index amount,
adding with reverse carry

*BR0+ LT *BR0+ loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then adds the content
of AR0 to the content of the current AR,
adding with reverse carry propagation.

Decrement by index amount,
subtracting with reverse carry

*BR0– LT *BR0– loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then subtracts the
content of AR0 from the content of the
current AR, subtracting with bit reverse
carry propagation.

All increments or decrements are performed by the auxiliary register arithmetic
unit (ARAU) in the same cycle during which the instruction is being decoded
in the pipeline.

The bit-reversed indexed addressing allows efficient I/O operations by rese-
quencing the data points in a radix-2 FFT program. The direction of carry prop-
agation in the ARAU is reversed when the address is selected, and AR0 is add-
ed to or subtracted from the current auxiliary register. A typical use of this ad-
dressing mode requires that AR0 first be set to a value corresponding to half
of the array’s size, and that the current AR value be set to the base address
of the data (the first data point).

6.3.3 Next Auxiliary Register

In addition to updating the current auxiliary register, a number of instructions
can also specify the next auxiliary register or next AR. This register will be the
current auxiliary register when the instruction execution is complete. The
instructions that allow you to specify the next auxiliary register load the ARP
with a new value. When the ARP is loaded with that value, the previous ARP
value is loaded into the auxiliary register pointer buffer (ARB). Example 6–6
illustrates the selection of a next auxiliary register, as well as other indirect ad-
dressing features discussed so far.

Indirect Addressing Mode

6-12

Example 6–6. Selecting a New Current Auxiliary Register

MAR*,AR1 ;Load the ARP with 1 to make AR1 the
;current auxiliary register.

LT *+,AR2 ;AR2 is the next auxiliary register.
;Load the TREG with the content of the
;address referenced by AR1, add one to
;the content of AR1, then make AR2 the
;current auxiliary register.

MPY* ;Multiply TREG by content of address
;referenced by AR2.

6.3.4 Indirect Addressing Opcode Format

Figure 6–6 shows the format of the instruction word loaded into the instruction
register when you use indirect addressing. The opcode fields are described
following the figure.

Figure 6–6. Instruction Register Content in Indirect Addressing

0123456789101112131415

NARNARU18 MSBs

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
LT) and also contain any information regarding data shifts.

1 Direct/indirect indicator. Bit 7 contains a 1 to define the
addressing mode as indirect.

ARU Auxiliary register update code. Bits 6 through 4 determine
whether and how the current auxiliary register is incremented
or decremented. See Table 6–2.

N Next auxiliary register indicator. Bit 3 specifies whether the
instruction will change the ARP value.

N = 0 If N is 0, the content of the ARP will remain
unchanged.

N = 1 If N is 1, the content of NAR will be loaded into
the ARP, and the old ARP value is loaded into
the auxiliary register buffer (ARB) of status
register ST1.

NAR Next auxiliary register value. Bits 2 through 0 contain the
value of the next auxiliary register. NAR is loaded into the ARP
if N = 1.

Indirect Addressing Mode

6-13Addressing Modes

Table 6–2. Effects of the ARU Code on the Current Auxiliary Register

ARU Code

6 5 4 Arithmetic Operation Performed on Current AR

0 0 0 No operation on current AR

0 0 1 current AR – 1 → current AR

0 1 0 current AR + 1 → current AR

0 1 1 Reserved

1 0 0 current AR – AR0 → current AR [reverse carry propagation]

1 0 1 current AR – AR0 → current AR

1 1 0 current AR + AR0 → current AR

1 1 1 current AR + AR0 → current AR [reverse carry propagation]

Table 6–3 shows the opcode field bits and the notation used for indirect ad-
dressing. It also shows the corresponding operations performed on the current
auxiliary register and the ARP.

Indirect Addressing Mode

 6-14

Table 6–3. Field Bits and Notation for Indirect Addressing

Instruction Opcode Bits

15 – 8 7 6 5 4 3 2 1 0 Operand(s) Operation

← 8 MSBs → 1 0 0 0 0 ←NAR→ * No manipulation of current AR

← 8 MSBs → 1 0 0 0 1 ←NAR→ *,ARn NAR → ARP

← 8 MSBs → 1 0 0 1 0 ←NAR→ *– current AR – 1 → current AR

← 8 MSBs → 1 0 0 1 1 ←NAR→ *–,ARn current AR – 1 → current AR
NAR → ARP

← 8 MSBs → 1 0 1 0 0 ←NAR→ *+ current AR + 1 → current AR

← 8 MSBs → 1 0 1 0 1 ←NAR→ *+,ARn current AR + 1 → current AR
NAR → ARP

← 8 MSBs → 1 1 0 0 0 ←NAR→ *BR0– current AR – rcAR0 → current AR †

← 8 MSBs → 1 1 0 0 1 ←NAR→ *BR0–,ARn current AR – rcAR0 → current AR
NAR → ARP †

← 8 MSBs → 1 1 0 1 0 ←NAR→ *0– current AR – AR0 → current AR

← 8 MSBs → 1 1 0 1 1 ←NAR→ *0–,ARn current AR – AR0 → current AR
NAR → ARP

← 8 MSBs → 1 1 1 0 0 ←NAR→ *0+ current AR + AR0 → current AR

← 8 MSBs → 1 1 1 0 1 ←NAR→ *0+,ARn current AR + AR0 → current AR
NAR → ARP

← 8 MSBs → 1 1 1 1 0 ←NAR→ *BR0+ current AR + rcAR0 → current AR †

← 8 MSBs → 1 1 1 1 1 ←NAR→ *BR0+,ARn current AR + rcAR0 → current AR
NAR → ARP †

† Bit-reversed addressing mode

Legend: rc Reverse carry propagation
NAR Next AR
n 0, 1, 2, ..., or 7
8 MSBs Eight bits determined by instruction type and (sometimes) shift information
→ Is loaded into

Indirect Addressing Mode

6-15Addressing Modes

6.3.5 Examples of Indirect Addressing

In Example 6–7, when the ADD instruction is fetched from program memory,
the instruction register is loaded with the value shown.

Example 6–7. No Increment or Decrement

ADD *,8 ;Add to the accumulator the content of the
;data-memory address referenced by the
;current auxiliary register. The data
;is left-shifted 8 bits before being added.

0123456789101112131415

N = No next AR specified

ARU = No operation on current AR

1

Shift = 8

0 0 0 0 X X X

ADD opcode

0 0 1 0 1 0 0 0

Addressing mode = indirect

NAR = don’t cares

In Example 6–8, when the ADD instruction is fetched from program memory,
the instruction register is loaded with the value shown.

Example 6–8. Increment by 1

ADD *+,8,AR4 ;Operates as in Example 6–7, but
;in addition, the current auxiliary
;register is incremented by one, and
;AR4 is chosen as the next auxiliary
;register.

0123456789101112131415

NAR = 4

N = next AR specified

ARU = increment current AR by 1

1

Shift = 8

0 1 0 0 1 0 0

ADD opcode

0 0 1 0 1 0 0 0

Addressing mode = indirect

Indirect Addressing Mode

 6-16

Example 6–9. Decrement by 1

ADD *–,8 ;Operates as in Example 6–7, but in
;addition, the current auxiliary register
;is decremented by one.

Example 6–10. Increment by Index Amount

ADD *0+,8 ;Operates as in Example 6–7, but in
;addition, the content of register AR0
;is added to the current auxiliary
;register.

Example 6–11. Decrement by Index Amount

ADD *0–,8 ;Operates as in Example 6–7, but in
;addition, the content of register AR0
;is subtracted from the current auxiliary
;register.

Example 6–12. Increment by Index Amount With Reverse Carry Propagation

ADD *BR0+,8 ;Operates as in Example 6–10, except that
;the content of register AR0 is added to
;the current auxiliary register with
;reverse carry propagation.

Example 6–13. Decrement by Index Amount With Reverse Carry Propagation

ADD *BR0–,8 ;Operates as in Example 6–11, except that
;the content of register AR0 is subtracted
;from the current auxiliary register with
;reverse carry propagation.

Indirect Addressing Mode

6-17Addressing Modes

6.3.6 Modifying Auxiliary Register Content

The LAR, ADRK, SBRK, and MAR instructions are specialized instructions for
changing the content of an auxiliary register (AR):

� The LAR instruction loads an AR.

� The ADRK instruction adds an immediate value to an AR; SBRK subtracts
an immediate value.

� The MAR instruction can increment or decrement an AR value by one or
by an index amount.

However, you are not limited to these four instructions. Auxiliary registers can
be modified by any instruction that supports indirect addressing operands. (In-
direct addressing can be used with all instructions except those that have im-
mediate operands or no operands.)

7-1Assembly Language Instructions

Assembly Language Instructions

The ’C20x instruction set supports numerically intensive signal-processing op-
erations as well as general-purpose applications such as multiprocessing and
high-speed control. The ’C20x instruction set is compatible with the ’C2x
instruction set; code written for the ’C2x can be reassembled to run on the
’C20x. The ’C5x instruction set is a superset of that of the ’C20x; thus, code
written for the ’C20x can be upgraded to run on a ’C5x.

This chapter describes the assembly language instructions.

Topic Page

7.1 Instruction Set Summary 7-2.

7.2 How To Use the Instruction Descriptions 7-12.

7.3 Instruction Descriptions 7-20.

Chapter 7

Instruction Set Summary

7-2

7.1 Instruction Set Summary

This section provides a summary of the instruction set in six tables (Table 7–1
to Table 7–6) according to the following functional headings:

� Accumulator, arithmetic, and logic instructions (see Table 7–1 on page
7-4)

� Auxiliary register and data page pointer instructions (see Table 7–2 on
page 7-7)

� TREG, PREG, and multiply instructions (see Table 7–3 on page 7-8)
� Branch instructions (see Table 7–4 on page 7-9)
� Control instructions (see Table 7–5 on page 7-9)
� I/O and memory operations (see Table 7–6 on page 7-11)

Within each table, the instructions are arranged alphabetically. The number of
words that an instruction occupies in program memory is specified in column
three of each table; the number of cycles that an instruction requires to execute
is in column four. All instructions are assumed to be executed from internal
program memory (RAM) and internal data dual-access memory. The cycle
timings are for single-instruction execution, not for repeat mode. Additional
information about each instruction is presented in the individual instruction
descriptions in section 7.2.

For your reference, here are definitions of the symbols used in these six sum-
mary tables:

ACC The accumulator

AR Auxiliary register

ARX A 3-bit value used in the LAR and SAR instructions to desig-
nate which auxiliary register will be loaded (LAR) or have its
contents stored (SAR)

BITX A 4-bit value (called the bit code) that determines which bit of
a designated data memory value will be tested by the BIT
instruction

CM A 2-bit value. The CMPR instruction performs a comparison
specified by the value of CM:
If CM = 00, test whether current AR = AR0
If CM = 01, test whether current AR < AR0
If CM = 10, test whether current AR > AR0
If CM = 11, test whether current AR ≠ AR0

Instruction Set Summary

7-3Assembly Language Instructions

IAAA AAAA (One I followed by seven As) The I at the left represents a bit
that reflects whether direct addressing (I = 0) or indirect ad-
dressing (I = 1) is being used. When direct addressing is used,
the seven As are the seven least significant bits (LSBs) of a
data memory address. For indirect addressing, the seven As
are bits that control auxiliary register manipulation (see sec-
tion 6.3, Indirect Addressing Mode, p. 6-9).

IIII IIII (Eight Is) An 8-bit constant used in short immediate addres-
sing

I IIII IIII (Nine Is) A 9-bit constant used in short immediate addressing
for the LDP instruction

I IIII IIII IIII (Thirteen Is) A 13-bit constant used in short immediate ad-
dressing for the MPY instruction

I NTR# A 5-bit value representing a number from 0 to 31. The INTR
instruction uses this number to change program control to one
of the 32 interrupt vector addresses.

PM A 2-bit value copied into the PM bits of status register ST1 by
the SPM instruction

SHF A 3-bit left-shift value

SHFT A 4-bit left-shift value

TP A 2-bit value used by the conditional execution instructions to
represent four conditions:

BIO pin low TP = 00
TC bit =1 TP = 01
TC bit = 0 TP = 10
No condition TP = 11

Instruction Set Summary

7-4

ZLVC ZLVC Two 4-bit fields — each representing the following conditions:

ACC = 0 Z
ACC < 0 L
Overflow V
Carry C

A conditional instruction contains two of these 4-bit fields. The
4-LSB field of the instruction is a mask field. A 1 in the corre-
sponding mask bit indicates that condition is being tested. For
example, to test for ACC ≥ 0, the Z and L fields are set, and
the V and C fields are not set. The Z field is set to test the condi-
tion ACC = 0, and the L field is reset to test the condition
ACC ≥ 0.The second 4-bit field (bits 4 – 7) indicates the state
of the conditions to test. The conditions possible with these
eight bits are shown in the descriptions for the BCND, CC, and
RETC instructions.

+ 1 word The second word of a two-word opcode. This second word
contains a 16-bit constant. Depending on the instruction, this
constant is a long immediate value, a program memory ad-
dress, or an address for an I/O port or an I/O-mapped register.

Table 7–1. Accumulator, Arithmetic, and Logic Instructions

Mnemonic Description Words Cycles Opcode

ABS Absolute value of ACC 1 1 1011 1110 0000 0000

ADD Add to ACC with shift of 0 to 15, direct or indirect 1 1 0010 SHFT IAAA AAAA

Add to ACC with shift 0 to 15, long immediate 2 2 1011 1111 1001 SHFT
+ 1 word

Add to ACC with shift of 16, direct or indirect 1 1 0110 0001 IAAA AAAA

Add to ACC, short immediate 1 1 1011 1000 IIII IIII

ADDC Add to ACC with carry, direct or indirect 1 1 0110 0000 IAAA AAAA

ADDS Add to low ACC with sign-extension suppressed,
direct or indirect

1 1 0110 0010 IAAA AAAA

ADDT Add to ACC with shift (0 to 15) specified by TREG,
direct or indirect

1 1 0110 0011 IAAA AAAA

Instruction Set Summary

7-5Assembly Language Instructions

Table 7–1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic OpcodeCyclesWordsDescription

AND AND ACC with data value, direct or indirect 1 1 0110 1110 IAAA AAAA

AND with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1011 SHFT
+ 1 word

AND with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0001
+ 1 word

CMPL Complement ACC 1 1 1011 1110 0000 0001

LACC Load ACC with shift of 0 to 15, direct or indirect 1 1 0001 SHFT IAAA AAAA

Load ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1000 SHFT
+ 1 word

Load ACC with shift of 16, direct or indirect 1 1 0110 1010 IAAA AAAA

LACL Load low word of ACC, direct or indirect 1 1 0110 1001 IAAA AAAA

Load low word of ACC, short immediate 1 1 1011 1001 IIII IIII

LACT Load ACC with shift (0 to 15) specified by TREG,
direct or indirect

1 1 0110 1011 IAAA AAAA

NEG Negate ACC 1 1 1011 1110 0000 0010

NORM Normalize the contents of ACC, indirect 1 1 1010 0000 IAAA AAAA

OR OR ACC with data value, direct or indirect 1 1 0110 1101 IAAA AAAA

OR with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1100 SHFT
+ 1 word

OR with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0010
+ 1 word

ROL Rotate ACC left 1 1 1011 1110 0000 1100

ROR Rotate ACC right 1 1 1011 1110 0000 1101

SACH Store high ACC with shift of 0 to 7,
direct or indirect

1 1 1001 1SHF IAAA AAAA

SACL Store low ACC with shift of 0 to 7,
direct or indirect

1 1 1001 0SHF IAAA AAAA

SFL Shift ACC left 1 1 1011 1110 0000 1001

SFR Shift ACC right 1 1 1011 1110 0000 1010

Instruction Set Summary

7-6

Table 7–1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic OpcodeCyclesWordsDescription

SUB Subtract from ACC with shift of 0 to 15,
direct or indirect

1 1 0011 SHFT IAAA AAAA

Subtract from ACC with shift of 0 to 15,
long immediate

2 2 1011 1111 1010 SHFT
+ 1 word

Subtract from ACC with shift of 16,
direct or indirect

1 1 0110 0101 IAAA AAAA

Subtract from ACC, short immediate 1 1 1011 1010 IIII IIII

SUBB Subtract from ACC with borrow, direct or indirect 1 1 0110 0100 IAAA AAAA

SUBC Conditional subtract, direct or indirect 1 1 0000 1010 IAAA AAAA

SUBS Subtract from ACC with sign-extension
suppressed, direct or indirect

1 1 0110 0110 IAAA AAAA

SUBT Subtract from ACC with shift (0 to 15) specified by
TREG, direct or indirect

1 1 0110 0111 IAAA AAAA

XOR Exclusive OR ACC with data value, direct or indirect 1 1 0110 1100 IAAA AAAA

Exclusive OR with ACC with shift of 0 to 15,
long immediate

2 2 1011 1111 1101 SHFT
+ 1 word

Exclusive OR with ACC with shift of 16, long
immediate

2 2 1011 1110 1000 0011
+ 1 word

ZALR Zero low ACC and load high ACC with rounding,
direct or indirect

1 1 0110 1000 IAAA AAAA

Instruction Set Summary

7-7Assembly Language Instructions

Table 7–2. Auxiliary Register Instructions

Mnemonic Description Words Cycles Opcode

ADRK Add constant to current AR,
short immediate

1 1 0111 1000 IIII IIII

BANZ Branch on current AR not-zero,
indirect

2 4 (condition true)
2 (condition false)

0111 1011 1AAA AAAA
+ 1 word

CMPR Compare current AR with AR0 1 1 1011 1111 0100 01CM

LAR Load specified AR from
specified data location,
direct or indirect

1 2 0000 0ARX IAAA AAAA

Load specified AR with
constant, short immediate

1 2 1011 0ARX IIII IIII

Load specified AR with
constant, long immediate

2 2 1011 1111 0000 1ARX
+ 1 word

MAR Modify current AR and/or ARP,
indirect (performs no operation
when direct)

1 1 1000 1011 IAAA AAAA

SAR Store specified AR to specified
data location, direct or indirect

1 1 1000 0ARX IAAA AAAA

SBRK Subtract constant from current
AR, short immediate

1 1 0111 1100 IIII IIII

Instruction Set Summary

7-8

Table 7–3. TREG, PREG, and Multiply Instructions

Mnemonic Description Words Cycles Opcode

APAC Add PREG to ACC 1 1 1011 1110 0000 0100

LPH Load high PREG, direct or indirect 1 1 0111 0101 IAAA AAAA

LT Load TREG, direct or indirect 1 1 0111 0011 IAAA AAAA

LTA Load TREG and accumulate previous product,
direct or indirect

1 1 0111 0000 IAAA AAAA

LTD Load TREG, accumulate previous product, and
move data, direct or indirect

1 1 0111 0010 IAAA AAAA

LTP Load TREG and store PREG in accumulator,
direct or indirect

1 1 0111 0001 IAAA AAAA

LTS Load TREG and subtract previous product,
direct or indirect

1 1 0111 0100 IAAA AAAA

MAC Multiply and accumulate, direct or indirect 2 3 1010 0010 IAAA AAAA
+ 1 word

MACD Multiply and accumulate with data move, direct or
indirect

2 3 1010 0011 IAAA AAAA
+ 1 word

MPY Multiply TREG by data value, direct or indirect 1 1 0101 0100 IAAA AAAA

Multiply TREG by 13-bit constant, short immediate 1 1 110I IIII IIII IIII

MPYA Multiply and accumulate previous product, direct or
indirect

1 1 0101 0000 IAAA AAAA

MPYS Multiply and subtract previous product, direct or
indirect

1 1 0101 0001 IAAA AAAA

MPYU Multiply unsigned, direct or indirect 1 1 0101 0101 IAAA AAAA

PAC Load ACC with PREG 1 1 1011 1110 0000 0011

SPAC Subtract PREG from ACC 1 1 1011 1110 0000 0101

SPH Store high PREG, direct or indirect 1 1 1000 1101 IAAA AAAA

SPL Store low PREG, direct or indirect 1 1 1000 1100 IAAA AAAA

SPM Set product shift mode 1 1 1011 1111 0000 00PM

SQRA Square and accumulate previous product, direct or
indirect

1 1 0101 0010 IAAA AAAA

SQRS Square and subtract previous product, direct or
indirect

1 1 0101 0011 IAAA AAAA

Instruction Set Summary

7-9Assembly Language Instructions

Table 7–4. Branch Instructions

Mnemonic Description Words Cycles Opcode

B Branch unconditionally, indirect 2 4 0111 1001 1AAA AAAA
+ 1 word

BACC Branch to address specified by
ACC

1 4 1011 1110 0010 0000

BANZ Branch on current AR not-zero,
indirect

2 4 (condition true)
2 (condition false)

0111 1011 1AAA AAAA
+ 1 word

BCND Branch conditionally 2 4 (conditions true)
2 (any condition false)

1110 00TP ZLVC ZLVC
+ 1 word

CALA Call subroutine at location
specified by ACC

1 4 1011 1110 0011 0000

CALL Call subroutine, indirect 2 4 0111 1010 1AAA AAAA
+ 1 word

CC Call conditionally 2 4 (conditions true)
2 (any condition false)

1110 10TP ZLVC ZLVC
+ 1 word

INTR Soft interrupt 1 4 1011 1110 011I NTR#

NMI Nonmaskable interrupt 1 4 1011 1110 0101 0010

RET Return from subroutine 1 4 1110 1111 0000 0000

RETC Return conditionally 1 4 (conditions true)
2 (any condition false)

1110 11TP ZLVC ZLVC

TRAP Software interrupt 1 4 1011 1110 0101 0001

Table 7–5. Control Instructions

Mnemonic Description Words Cycles Opcode

BIT Test bit, direct or indirect 1 1 0100 BITX IAAA AAAA

BITT Test bit specified by TREG, direct or indirect 1 1 0110 1111 IAAA AAAA

CLRC Clear C bit 1 1 1011 1110 0100 1110

Clear CNF bit 1 1 1011 1110 0100 0100

Clear INTM bit 1 1 1011 1110 0100 0000

Clear OVM bit 1 1 1011 1110 0100 0010

Clear SXM bit 1 1 1011 1110 0100 0110

Clear TC bit 1 1 1011 1110 0100 1010

Clear XF bit 1 1 1011 1110 0100 1100

Instruction Set Summary

7-10

Table 7–5. Control Instructions (Continued)

Mnemonic OpcodeCyclesWordsDescription

IDLE Idle until interrupt 1 1 1011 1110 0010 0010

LDP Load data page pointer,
direct or indirect

1 2 0000 1101 IAAA AAAA

Load data page pointer,
short immediate

1 2 1011 110I IIII IIII

LST Load status register ST0, direct or indirect 1 2 0000 1110 IAAA AAAA

Load status register ST1, direct or indirect 1 2 0000 1111 IAAA AAAA

NOP No operation 1 1 1000 1011 0000 0000

POP Pop top of stack to low ACC 1 1 1011 1110 0011 0010

POPD Pop top of stack to data memory, direct or indirect 1 1 1000 1010 IAAA AAAA

PSHD Push data memory value on stack, direct or
indirect

1 1 0111 0110 IAAA AAAA

PUSH Push low ACC onto stack 1 1 1011 1110 0011 1100

RPT Repeat next instruction, direct or indirect 1 1 0000 1011 IAAA AAAA

Repeat next instruction, short immediate 1 1 1011 1011 IIII IIII

SETC Set C bit 1 1 1011 1110 0100 1111

Set CNF bit 1 1 1011 1110 0100 0101

Set INTM bit 1 1 1011 1110 0100 0001

Set OVM bit 1 1 1011 1110 0100 0011

Set SXM bit 1 1 1011 1110 0100 0111

Set TC bit 1 1 1011 1110 0100 1011

Set XF bit 1 1 1011 1110 0100 1101

SPM Set product shift mode 1 1 1011 1111 0000 00PM

SST Store status register ST0, direct or indirect 1 1 1000 1110 IAAA AAAA

Store status register ST1, direct or indirect 1 1 1000 1111 IAAA AAAA

Instruction Set Summary

7-11Assembly Language Instructions

Table 7–6. I/O and Memory Instructions

Mnemonic Description Words Cycles Opcode

BLDD Block move from data memory to data memory,
direct/indirect with long immediate source

2 3 1010 1000 IAAA AAAA
+ 1 word

Block move from data memory to data memory,
direct/indirect with long immediate destination

2 3 1010 1001 IAAA AAAA
+ 1 word

BLPD Block move from program memory to data memory,
direct/indirect with long immediate source

2 3 1010 0101 IAAA AAAA
+ 1 word

DMOV Data move in data memory, direct or indirect 1 1 0111 0111 IAAA AAAA

IN Input data from I/O location, direct or indirect 2 2 1010 1111 IAAA AAAA
+ 1 word

OUT Output data to port, direct or indirect 2 3 0000 1100 IAAA AAAA
+ 1 word

SPLK Store long immediate to data memory location,
direct or indirect

2 2 1010 1110 IAAA AAAA
+ 1 word

TBLR Table read, direct or indirect 1 3 1010 0110 IAAA AAAA

TBLW Table write, direct or indirect 1 3 1010 0111 IAAA AAAA

How To Use the Instruction Descriptions

7-12

7.2 How To Use the Instruction Descriptions

Section 7.3 contains detailed information on the instruction set. The descrip-
tion for each instruction presents the following categories of information:

� Syntax
� Operands
� Opcode
� Execution
� Status Bits
� Description
� Words
� Cycles
� Examples

7.2.1 Syntax

Each instruction begins with a list of the available assembler syntax expres-
sions and the addressing mode type(s) for each expression. For example, the
description for the ADD instruction begins with:

ADD dma [, shift] Direct addressing
ADD dma, 16 Direct with left shift of 16
ADD ind [, shift [, ARn]] Indirect addressing
ADD ind, 16 [, ARn] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [, shift] Long immediate addressing

These are the notations used in the syntax expressions:

italic
symbols

Italic symbols in an instruction syntax represent variables.
Example: For the syntax:

ADD dma
you may use a variety of values for dma.
Samples with this syntax follow:
ADD DAT

ADD 15

boldface
characters

Boldface characters in an instruction syntax must be typed as
shown.
Example: For the syntax:

ADD dma, 16
you may use a variety of values for dma, but the
word ADD and the number 16 should be typed
as shown. Samples with this syntax follow:
ADD 7h, 16

ADD X, 16

How To Use the Instruction Descriptions

7-13Assembly Language Instructions

[, x] Operand x is optional.
Example: For the syntax:

ADD dma, [, shift]
you must supply dma, as in the instruction:
ADD 7h

and you have the option of adding a shift value,
as in the instruction:
ADD 7h, 5

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot include x2
without also including x1.
Example: For the syntax:

ADD ind, [, shift [, ARn]]
you must supply ind, as in the instruction:
ADD *+

You have the option of including shift,
as in the instruction:
ADD *+, 5

If you wish to include ARn, you must also
include shift, as in:
ADD *+, 0, AR2

The # symbol is a prefix for constants used in immediate
addressing. For short- or long- immediate operands, it is
used in instructions where there is ambiguity with other
addressing modes.
Example: RPT #15 uses short immediate addressing. It

causes the next instruction to be repeated 16
times. But RPT 15 uses direct addressing.
The number of times the next instruction
repeats is determined by a value stored in
memory.

Finally, consider this code example:

MoveData BLDD DAT5, #310h ;move data at address
;referenced by DAT5 to address
;310h.

Note the optional label MoveData used as a reference in front of the instruc-
tion mnemonic. Place labels either before the instruction mnemonic on the
same line or on the preceding line in the first column. (Be sure there are no
spaces in your labels.) An optional comment field can conclude the syntax ex-
pression. At least one space is required between fields (label, mnemonic, op-
erand, and comment).

How To Use the Instruction Descriptions

 7-14

7.2.2 Operands

Operands can be constants, or assembly-time expressions referring to
memory, I/O ports, register addresses, pointers, shift counts, and a variety of
other constants. The operands category for each instruction description
defines the variables used for and/or within operands in the syntax
expressions. For example, for the ADD instruction, the syntax category gives
these syntax expressions:

ADD dma [, shift] Direct addressing
ADD dma, 16 Direct with left shift of 16
ADD ind [, shift [, ARn]] Indirect addressing
ADD ind, 16 [, ARn] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [, shift] Long immediate addressing

The operands category defines the variables dma, shift, ind, n, k, and lk. For
ind, an indirect addressing variable, you supply one of the following seven
symbols:

* *+ *– *0+ *0– *BR0+ *BR0–

These symbols are defined in section 6.3.2, Indirect Addressing Options, on
page 6-9.

7.2.3 Opcode

The opcode category breaks down the various bit fields that make up each
instruction word. When one of the fields contains a constant value derived
directly from an operand, it has the same name as that operand. The contents
of fields that do not directly relate to operands have other names; the opcode
category either explains these names directly or refers you to a section of this
book that explains them in detail. For example, these opcodes are given for
the ADDC instruction:

ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 dma

ADDC ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9).

How To Use the Instruction Descriptions

7-15Assembly Language Instructions

The field called dma contains the value dma, which is defined in the operands
category. The contents of the fields ARU, N, and NAR are derived from the op-
erands ind and n but do not directly correspond to those operands; therefore,
a note directs you to the appropriate section for more details.

7.2.4 Execution

The execution category presents an instruction operation sequence that de-
scribes the processing that takes place when the instruction is executed. If the
execution event or events depend on the addressing mode used, the execu-
tion category specifies which events are associated with which addressing
modes. Here are notations used in the execution category:

(r) The content of register or location r.
Example: (ACC) represents the value in the accumulator.

x → y Value x is assigned to register or location y.
Example: (data-memory address) → ACC means:

The content of the specified data-memory
address is put into the accumulator.

r(n:m) Bits n through m of register or location r.
Example: ACC(15:0) represents bits 15 through 0 of the

accumulator.

(r(n:m)) The content of bits n through m of register or location r.
Example: (ACC(31:16)) represents the content of bits 31

through 16 of the accumulator.

nnh Indicates that nn represents a hexadecimal number.

7.2.5 Status Bits

The bits in status registers ST0 and ST1 affect the operation of certain instruc-
tions and are affected by certain instructions. The status bits category of each
instruction description states which of the bits (if any) affect the execution of
the instruction and which of the bits (if any) are affected by the instruction.

7.2.6 Description

The description category explains what happens during instruction execution
and its effect on the rest of the processor or on memory contents. It also dis-
cusses any constraints on the operands imposed by the processor or the as-
sembler. This description parallels and supplements the information given in
the execution category.

How To Use the Instruction Descriptions

 7-16

7.2.7 Words

The words category specifies the number of memory words (one or two) re-
quired to store the instruction. When the number of words depends on the ad-
dressing mode used for an instruction, the words category specifies which ad-
dressing modes require one word and which require two words.

7.2.8 Cycles

The cycles category of each instruction description contains tables showing
the number of processor machine cycles (CLKOUT1 periods) required for the
instruction to execute in a given memory configuration when executed as a
single instruction or when repeated with the RPT instruction. For example:

Cycles for a Single Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1 1+p

External 1+d 1+d 1+d 2+d+p

Cycles for a Repeat (RPT) Execution of an Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n n+p

External n+nd n+nd n+nd n+1+p+nd

The column headings in these tables indicate the program source location, de-
fined as follows:

ROM The instruction executes from internal program ROM.

DARAM The instruction executes from internal dual-access program RAM.

SARAM The instruction executes from internal single-access program RAM.

External The instruction executes from external program memory.

How To Use the Instruction Descriptions

7-17Assembly Language Instructions

If an instruction requires memory operand(s), the rows in the table indicate the
location(s) of the operand(s), as defined here:

DARAM The operand is in internal dual-access RAM.

SARAM The operand is in internal single-access RAM.

External The operand is in external memory.

For the RPT mode execution, n indicates the number of times a given instruc-
tion is repeated by an RPT instruction. Additional cycles (wait states) can be
generated for program-memory, data-memory, and I/O accesses by the wait-
state generator or by the external READY signal. These additional wait states
are represented in the tables by the following variables:

p Program-memory wait states. Represents the number of additional clock
cycles the device waits for external program memory to respond to a
single access.

d Data-memory wait states. Represents the number of additional clock
cycles the device waits for external data memory to respond to a single
access.

io I/O wait states. Represents the number of additional clock cycles the de-
vice waits for an external I/O device to respond to a single access.

n Number of repetitions (where n > 2 to fill the pipeline). Represents the
number of times a repeated instruction is executed.

If there are multiple accesses to one of the spaces, the variable will be preced-
ed by the appropriate integer multiple. For example, two accesses to external
program memory would require 2p wait states. The above variables may also
use the subscripts src, dst, and code to indicate source, destination, and code,
respectively.

Single access RAM (SARAM) allows for only one access per cycle. However,
the internal single access memory on each ’C20x processor is divided into
2K-word blocks contiguous in address space. You can use SARAM for
simultaneous accesses to program memory and data memory if the accesses
are made to different 2K-word blocks.

All external reads take at least one machine cycle while all external writes take
at least two machine cycles. However, if an external write is immediately fol-
lowed or preceded by an external read cycle, then the external write requires
three cycles. If the wait state generator or the READY pin is used to add m
(m > 0) wait states to an external access, then external reads require m+1
cycles, and external write accesses require m+2 cycles. See Section 8.5,
Wait-State Generator, page 8-15, for the discussion on generating wait states.

How To Use the Instruction Descriptions

 7-18

The instruction-cycle timings are based on the following assumptions:

� At least the next four instructions are fetched from the same memory sec-
tion (internal or external) that was used to fetch the current instruction (ex-
cept in the case of PC discontinuity instructions, such as B, CALL, etc.)

� In the single-execution mode, there is no pipeline conflict between the cur-
rent instruction and the instructions immediately preceding or following
that instruction. The only exception is the conflict between the fetch phase
of the pipeline and the memory read/write (if any) access of the instruction
under consideration. See Section 5.2, Pipeline, on page 5-7 for more in-
formation about pipeline operation.

� In the repeat execution mode, all conflicts caused by the pipelined execu-
tion of an instruction are considered.

7.2.9 Examples

Example code is included for each instruction. The effect of the code on
memory and/or registers is summarized. Program code is shown in a
special typeface . The sample code is then followed by a verbal or graph-
ic description of the effect of that code. Consider this example of the ADD
instruction:

ADD*+,0,AR0
Before Instruction After Instruction

ARP 4 ARP 0

AR4 0302h AR4 0303h

Data Memory Data Memory
302h 2h 302h 2h

ACC X 2h ACC 0 04h

C C

Here are the facts and events represented in this example:

� The auxiliary register pointer (ARP) points to the current auxiliary register.
Because ARP = 4, the current auxiliary register is AR4.

� When the addition takes place, the CPU follows AR4 to data-memory
address 0302h. The content of that address, 2h, is added to the content
of the accumulator, also 2h. The result (4h) is placed in the accumulator.
(Because the second operand of the instruction specifies a left shift of 0,
the data-memory value is not shifted before being added to the accumula-
tor value.)

� The instruction specifies an increment of one for the contents of the cur-
rent auxiliary register (*+); therefore, after the addition is performed, the
content of AR4 is incremented to 0303h.

How To Use the Instruction Descriptions

7-19Assembly Language Instructions

� The instruction also specifies that AR0 will be the next auxiliary register;
therefore, after the instruction ARP = 0.

� Because no carry is generated during the addition, the carry bit (C) be-
comes 0.

Instruction Descriptions

7-20

7.3 Instruction Descriptions

This section contains detailed information on the instruction set for the ’C20x
(For a summary of the instruction set, see Section 7.1.) The instructions are
presented alphabetically, and the description for each instruction presents the
following categories of information:

� Syntax
� Operands
� Opcode
� Execution
� Status Bits
� Description
� Words
� Cycles
� Examples

For a description of how to use each of these categories, see Section 7.2.

 Absolute Value of Accumulator ABS

7-21 Assembly Language Instructions

Syntax ABS

Operands None

Opcode 0123456789101112131415
0000000001111101

Execution Increment PC, then ...
|(ACC)| → ACC; 0 → C

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM

Description If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.
The carry bit (C) on the ’C20x is always reset to zero by the execution of this
instruction.

Note that 8000 0000h is a special case. When the overflow mode is not set
(OVM = 0), the ABS of 8000 0000h is 8000 0000h. When the overflow mode
is set (OVM = 1), the ABS of 8000 0000h is 7FFF FFFFh. In either case, the
OV status bit is set.

Words 1

Cycles for a Single ABS Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ABS Instruction

ROM DARAM SARAM External

n n n n+p

Cycles

ABS Absolute Value of Accumulator

7-22

Example 1 ABS

Before Instruction After Instruction

 ACC X 1234h ACC 0 1234h

C C

Example 2 ABS

Before Instruction After Instruction

ACC X 0FFFFFFFFh ACC 0 1h

C C

Example 3 ABS ;(OVM = 1)

Before Instruction After Instruction

ACC X 80000000h ACC 0 7FFFFFFFh

C C

X 1

OV OV

Example 4 ABS ;(OVM = 0)

Before Instruction After Instruction

ACC X 80000000h ACC 0 80000000h

C C

X 1

OV OV

 Add to Accumulator ADD

7-23 Assembly Language Instructions

Syntax ADD dma [, shift] Direct addressing
ADD dma, 16 Direct with left shift of 16
ADD ind [, shift [, ARn]] Indirect addressing
ADD ind, 16 [, ARn] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [, shift] Long immediate addressing

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADD dma [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 shift 0 dma

ADD dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 0 dma

ADD ind [, shift [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

ADD ind, 16 [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

ADD #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 k

ADD #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 0 1 shift

lk

Opcode

ADD Add to Accumulator

7-24

Execution Increment PC, then ...
Event Addressing mode
(ACC) + ((data-memory address) � 2shift) → ACC Direct or indirect

(ACC) + ((data-memory address) � 216) → ACC Direct or indirect
(shift of 16)

(ACC) + k → ACC Short immediate

(ACC) + lk � 2shift → ACC Long immediate

Status Bits Affected by Affects Addressing mode
SXM and OVM C and OV Direct or indirect

OVM C and OV Short immediate

SXM and OVM C and OV Long immediate

Description The content of the addressed data memory location or an immediate constant
is left-shifted and added to the accumulator. During shifting, low-order bits are
zero filled. High-order bits are sign extended if SXM = 1 and zero filled if
SXM = 0. The result is stored in the accumulator. When short immediate ad-
dressing is used, the addition is unaffected by SXM and is not repeatable.

If you are using indirect addressing and update the ARP, you must specify a
shift operand. However, if you do not want a shift to occur, enter a 0 for this
operand. For example:

ADD *+,0,AR2

Normally, the carry bit is set (C = 1) if the result of the addition generates a carry
and is cleared (C = 0) if it does not generate a carry. However, when adding
with a shift of 16, the carry bit is set if a carry is generated but otherwise, the
carry bit is unaffected. This allows the accumulator to generate the proper
single carry when adding a 32-bit number to the accumulator.

Words Words Addressing mode
1 Direct, indirect, or

short immediate
2 Long immediate

 Add to Accumulator ADD

7-25 Assembly Language Instructions

Cycles for a Single ADD Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADD Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single ADD Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Single ADD Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Example 1 ADD 1,1 ;(DP = 6)
Before Instruction After Instruction

Data Memory Data Memory
301h 1h 301h 1h

ACC X 2h ACC 0 04h

C C

Example 2 ADD *+,0,AR0
Before Instruction After Instruction

ARP 4 ARP 0

AR4 0302h AR4 0303h

Data Memory Data Memory
302h 2h 302h 2h

ACC X 2h ACC 0 04h

C C

Cycles

ADD Add to Accumulator

7-26

Example 3 ADD #1h ;Add short immediate
Before Instruction After Instruction

ACC X 2h ACC 0 03h

C C

Example 4 ADD #1111h,1 ;Add long immediate with shift of 1

Before Instruction After Instruction

ACC X 2h ACC 0 2224h

C C

 Add to Accumulator With Carry ADDC

7-27 Assembly Language Instructions

Syntax ADDC dma Direct addressing
ADDC ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 dma

ADDC ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) + (C) → ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the addressed data-memory location and the value of the
carry bit are added to the accumulator with sign extension suppressed. The
carry bit is then affected in the normal manner: the carry bit is set (C = 1) if the
result of the addition generates a carry and is cleared (C = 0) if it does not gen-
erate a carry.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Words 1

Cycles for a Single ADDC Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

ADDC Add to Accumulator With Carry

7-28

Cycles for a Repeat (RPT) Execution of an ADDC Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDC DAT300 ;(DP = 6: addresses 0300h–037Fh;
;DAT300 is a label for 300h)

Before Instruction After Instruction

Data Memory Data Memory
300h 04h 300h 04h

ACC 1 13h ACC 0 18h

C C

Example 2 ADDC *–,AR4 ;(OVM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 300h AR0 299h

Data Memory Data Memory
300h 0h 300h 0h

ACC 1 0FFFFFFFFh ACC 1 0h

C C

X 0

OV OV

 Add to Accumulator With Sign Extension Suppressed ADDS

7-29 Assembly Language Instructions

Syntax ADDS dma Direct addressing
ADDS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADDS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 0 dma

ADDS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) → ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the specified data-memory location are added to the accumu-
lator with sign extension suppressed. The data is treated as an unsigned 16-bit
number, regardless of SXM. The accumulator contents are treated as a signed
number. Note that ADDS produces the same results as an ADD instruction
with SXM = 0 and a shift count of 0.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

Words 1

Cycles for a Single ADDS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

ADDS Add to Accumulator With Sign Extension Suppressed

7-30

Cycles for a Repeat (RPT) Execution of an ADDS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDS 0 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
300h 0F006h 300h 0F006h

ACC X 00000003h ACC 0 0000F009h

C C

Example 2 ADDS *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0300h AR0 0300h

Data Memory Data Memory
300h 0FFFFh 300h 0FFFFh

ACC X 7FFF0000h ACC 0 7FFFFFFFh

C C

 Add to Accumulator With Shift Specified by TREG ADDT

7-31 Assembly Language Instructions

Syntax ADDT dma Direct addressing
ADDT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ADDT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1 0 dma

ADDT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + [(data-memory address) � 2(TREG(3:0))] → (ACC)

Status Bits Affected by Affects
SXM and OVM C and OV

Description The data-memory value is left shifted and added to the accumulator, and the
result replaces the accumulator contents. The left shift is defined by the four
LSBs of the TREG, resulting in shift options from 0 to 15 bits. Sign extension
on the data-memory value is controlled by SXM. The carry bit (C) is set when
a carry is generated out of the MSB of the accumulator; if no carry is generated,
the carry bit is cleared.

Words 1

Cycles for a Single ADDT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Opcode

Cycles

ADDT Add to Accumulator With Shift Specified by TREG

7-32

Cycles for a Repeat (RPT) Execution of an ADDT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDT 127 ;(DP = 4: addresses 0200h–027Fh,
;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG 0FF94h TREG 0FF94h

ACC X 0F715h ACC 0 0F7A5h

C C

Example 2 ADDT *–,AR4 ;(SXM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 027Fh AR0 027Eh

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG 0FF94h TREG 0FF94h

ACC X 0F715h ACC 0 0F7A5h

C C

 Add Short-Immediate Value to Auxiliary Register ADRK

7-33 Assembly Language Instructions

Syntax ADRK #k Short immediate addressing

Operands k: 8-bit short immediate value

ADRK #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 k

Execution Increment PC, then ...
(current AR) + 8-bit positive constant → current AR

Status Bits None

Description The 8-bit immediate value is added, right justified, to the current auxiliary regis-
ter (the one specified by the current ARP value) and the result replaces the
auxiliary register contents. The addition takes place in the ARAU, with the im-
mediate value treated as an 8-bit positive integer. All arithmetic operations on
the auxiliary registers are unsigned.

Words 1

Cycles for a Single ADRK Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example ADRK #80h

Before Instruction After Instruction

ARP 5 ARP 5

AR5 4321h AR5 43A1h

Opcode

Cycles

AND AND With Accumulator

7-34

Syntax AND dma Direct addressing
AND ind [, ARn] Indirect addressing
AND #lk [, shift] Long immediate addressing
AND #lk, 16 Long immediate with left

shift of 16

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

AND dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 0 dma

AND ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

AND #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 1 1 shift

lk

AND #lk, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1

lk

Execution Increment PC, then ...
Event(s) Addressing mode
(ACC(15:0)) AND (data-memory address) → ACC(15:0) Direct or indirect
0 → ACC(31:16)

(ACC(31:0)) AND lk � 2shift → ACC Long immediate

(ACC(31:0)) AND lk � 216→ ACC Long immediate
with left shift of 16

Opcode

 AND With Accumulator AND

7-35 Assembly Language Instructions

Status Bits None

This instruction is not affected by SXM.

Description If direct or indirect addressing is used, the low word of the accumulator is
ANDed with a data-memory value, and the result is placed in the low word posi-
tion in the accumulator. The high word of the accumulator is zeroed. If immedi-
ate addressing is used, the long-immediate constant can be shifted. During the
shift, low-order and high-order bits not filled by the shifted value are zeroed.
The resulting value is ANDed with the accumulator contents.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single AND Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an AND Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single AND Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

AND AND With Accumulator

7-36

Example 1 AND 16 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

Data Memory Data Memory
0210h 00FFh 0210h 00FFh

ACC 12345678h ACC 00000078h

Example 2 AND *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0301h AR0 0301h

Data Memory Data Memory
0301h 0FF00h 0301h 0FF00h

ACC 12345678h ACC 00005600h

Example 3 AND #00FFh,4

Before Instruction After Instruction

ACC 12345678h ACC 00000670h

 Add PREG to Accumulator APAC

7-37 Assembly Language Instructions

Syntax APAC

Operands None

APAC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0

Execution Increment PC, then ...
(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

This instruction is not affected by SXM.

Description The contents of PREG are shifted as defined by the PM status bits of the ST1
register (see Table 7–7) and added to the contents of the accumulator. The re-
sult is placed in the accumulator. APAC is not affected by the SXM bit of the
status register. PREG is always sign extended. The task of the APAC instruc-
tion is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and
SQRA instructions.

Table 7–7. Product Shift Modes

PM Bits

Bit 1 Bit 0 Resulting Shift

0 0 No shift

0 1 Left shift of 1 bit

1 0 Left shift of 4 bits

1 1 Right shift of 6 bits

Words 1

Cycles for a Single APAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an APAC Instruction

ROM DARAM SARAM External

n n n n+p

Opcode

Cycles

APAC Add PREG to Accumulator

7-38

Example APAC ;(PM = 01)

Before Instruction After Instruction

PREG 40h PREG 40h

ACC X 20h ACC 0 A0h

C C

 Branch Unconditionally B

7-39 Assembly Language Instructions

Syntax B pma [, ind [, ARn]] Indirect addressing

Operands pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

B pma [, ind [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution pma → PC
Modify (current AR) and (ARP) as specified.

Status Bits None

Description The current auxiliary register and ARP contents are modified as specified, and
control is passed to the designated program-memory address (pma). The pma
can be either a symbolic or numeric address.

Words 2

Cycles for a Single B Instruction

ROM DARAM SARAM External

4 4 4 4+4p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example B 191,*+,AR1

The value 191 is loaded into the program counter, and the program continues
to execute from that location. The current auxiliary register is incremented by
1, and ARP is set to point to auxiliary register 1 (AR1).

Opcode

Cycles

BACC Branch to Location Specified by Accumulator

7-40

Syntax BACC

Operands None

Opcode 0123456789101112131415
0000010001111101

Execution ACC(15:0) → PC

Status Bits None

Description Control is passed to the 16-bit address residing in the lower half of the accumu-
lator.

Words 1

Cycles for a Single BACC Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example BACC ;(ACC contains the value 191)

The value 191 is loaded into the program counter, and the program continues
to execute from that location.

Cycles

 Branch on Auxiliary Register Not Zero BANZ

7-41 Assembly Language Instructions

Syntax BANZ pma [, ind [, ARn]] Indirect addressing

Operands pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BANZ pma [, ind [,ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution If (current AR) ≠ 0
Then pma → PC
Else (PC) + 2 → PC

Modify (current AR) and (ARP) as specified

Status Bits None

Description Control is passed to the designated program-memory address (pma) if the
contents of the current auxiliary register are not zero. Otherwise, control
passes to the next instruction.The default modification to the current AR is a
decrement by one. N loop iterations can be executed by initializing an auxiliary
register (as a loop counter) to N–1 prior to loop entry. The pma can be either
a symbolic or a numeric address.

Words 2

Cycles for a Single BANZ Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The ’C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Opcode

Cycles

BANZ Branch on Auxiliary Register Not Zero

7-42

Example 1 BANZ PGM0 ;(PGM0 labels program address 0)

Before Instruction After Instruction

ARP 0 ARP 0

AR0 5h AR0 4h

Because the content of AR0 is not zero, the program address denoted by
PGM0 is loaded into the program counter (PC), and the program continues ex-
ecuting from that location. The default auxiliary register operation is a decre-
ment of the current auxiliary register content; thus, AR0 contains 4h at the end
of the execution.

or
Before Instruction After Instruction

ARP 0 ARP 0

AR0 0h AR0 FFFFh

Because the content of AR0 is zero, the branch is not executed; instead, the
PC is incremented by 2, and execution continues with the instruction following
the BANZ instruction. Because of the default decrement, AR0 is decremented
by 1, becoming –1.

Example 2 MAR *,AR0 ;Set ARP to point to AR0.
LAR AR1,#3 ;Load AR1 with 3.
LAR AR0,#60h ;Load AR0 with 60h.

PGM191 ADD *+,AR1 ;Loop: While AR1 not zero,
BANZ PGM191,*–AR0 ;add data referenced by AR0

;to accumulator and increment
;AR0 value.

The contents of data-memory locations 60h–63h are added to the accumula-
tor.

 Branch Conditionally BCND

7-43 Assembly Language Instructions

Syntax BCND pma, cond 1 [,cond 2] [,...]

Operands pma: 16-bit program-memory address

cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C = 1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

Opcode 0123456789101112131415

ZLVCZLVCTP000111
pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

Execution If cond 1 AND cond 2 AND ...
Then pma → PC
Else increment PC

Status Bits None

Description A branch is taken to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC.

Words 2

Cycles for a Single BCND Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The ’C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Cycles

BCND Branch Conditionally

7-44

Example BCND PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, program address 191 is loaded into the program counter, and the program
continues to execute from that location. If these conditions do not hold, execu-
tion continues from location PC + 2.

 Test Bit BIT

7-45 Assembly Language Instructions

Syntax BIT dma, bit code Direct addressing
BIT ind, bit code [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
bit code: Value from 0 to 15 indicating which bit to test (see Figure 7–1)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BIT dma, bit code
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 bit code 0 dma

BIT ind, bit code [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 bit code 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 – bit code)) → TC

Status Bits Affects
TC

Description The BIT instruction copies the specified bit of the data-memory value to the TC
bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bit in ST1. A bit code value is specified that
corresponds to a certain bit number of the data-memory value, as shown in
Figure 7–1. For example, if you want to copy bit 6, you specify the bit code as
9, which is 15 minus six (15–6).

Figure 7–1. Bit Numbers and Their Corresponding Bit Codes for BIT Instruction

Bit code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LSB

Words 1

Opcode

BIT Test Bit

7-46

Cycles for a Single BIT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BIT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BIT 0h,15 ;(DP = 6). Test LSB at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TC 0 TC 0

Example 2 BIT *,0,AR1 ;Test MSB at 310h, then set ARP = 1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 310h AR0 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TC 0 TC 1

Cycles

 Test Bit Specified by TREG BITT

7-47 Assembly Language Instructions

Syntax BITT dma Direct addressing
BITT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BITT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1 0 dma

BITT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 –TREG(3:0))) → TC

Status Bits Affects
TC

Description The BITT instruction copies the specified bit of the data-memory value to the
TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bit in status register ST1. The bit number is spe-
cified by a bit code value contained in the four LSBs of the TREG, as shown
in Figure 7–2.

Figure 7–2. Bit Numbers and Their Corresponding Bit Codes for BITT Instruction

Bit code (in 4 LSBs of
TREG)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LSB

Words 1

Opcode

BITT Test Bit Specified by TREG

7-48

Cycles for a Single BITT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an BITT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BITT 00h ;(DP = 6) Test bit 14 of data
;at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TREG 1h TREG 1h

TC 0 TC 1

Example 2 BITT * ;Test bit 1 of data at 310h

Before Instruction After Instruction

ARP 1 ARP 1

AR1 310h AR1 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TREG 0Eh TREG 0Eh

TC 0 TC 0

Cycles

 Block Move From Data Memory to Data Memory BLDD

7-49 Assembly Language Instructions

Syntax General syntax: BLDD source, destination

BLDD #lk, dma Direct with long immediate
source

BLDD #lk, ind [, ARn] Indirect with long
immediate source

BLDD dma, #lk Direct with long immediate
destination

BLDD ind, #lk [, ARn] Indirect with long immediate
destination

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BLDD # lk, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0 0 dma

lk

BLDD #lk, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

BLDD dma, #lk
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 0 dma

lk

BLDD ind, #lk [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Opcode

BLDD Block Move From Data Memory to Data Memory

7-50

Execution Increment PC, then ...
(PC) → MSTACK
lk → PC
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0:
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter

(MSTACK) → PC

Status Bits None

Description The word in data memory pointed to by source is copied to a data-memory
space pointed to by destination. The word of the source and/or destination
space can be pointed to with a long-immediate value or by a data-memory ad-
dress. Note that not all source/destination combinations of pointer types are
valid.

Note:

BLDD will not work with memory-mapped registers.

RPT can be used with the BLDD instruction to move consecutive words in data
memory. The number of words to be moved is one greater than the number
contained in the repeat counter (RPTC) at the beginning of the instruction.
When the BLDD instruction is repeated, the source (destination) address spe-
cified by the long immediate constant is stored to the PC. Because the PC is
incremented by 1 during each repetition, it is possible to access a series of
source (destination) addresses. If you use indirect addressing to specify the
destination (source) address, a new destination (source) address can be ac-
cessed during each repetition. If you use the direct addressing mode, the spe-
cified destination (source) address is a constant; it will not be modified during
each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a BLDD operation used with the RPT instruction.
When used with RPT, BLDD becomes a single-cycle instruction once the RPT
pipeline is started.

Words 2

 Block Move From Data Memory to Data Memory BLDD

7-51 Assembly Language Instructions

Cycles

Cycles for a Single BLDD Instruction

Operand ROM DARAM SARAM External

Source: DARAM
Destination: DARAM

3 3 3 3+2p

Source: SARAM
Destination: DARAM

3 3 3 3+2p

Source: External
Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+2p

Source: DARAM
Destination: SARAM

3 3 3
4†

3+2p

Source: SARAM
Destination: SARAM

3 3 3
4†

3+2p

Source: External
Destination: SARAM

3+dsrc 3+dsrc 3+dsrc
4+dsrc†

3+dsrc+2p

Source: DARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: External
Destination: External

4+dsrc+ddst 4+dsrc+ddst 4+dsrc+ddst 6+dsrc+ddst+2p

† If the destination operand and the code are in the same SARAM block.

BLDD Block Move From Data Memory to Data Memory

7-52

Cycles for a Repeat (RPT) Execution of a BLDD Instruction

Operand ROM DARAM SARAM External

Source: DARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2p

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2p

Source: External
Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc+2p

Source: DARAM
Destination: SARAM

n+2 n+2 n+2
n+4†

n+2+2p

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

n+4†

2n+2§

n+2+2p
2n+2p‡

Source: External
Destination: SARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc
n+4+ndsrc†

n+2+ndsrc+2p

Source: DARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2p

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2p

Source: External
Destination: External

4n+ndsrc+nddst‡ 4n+ndsrc+nddst 4n+ndsrc+nddst 4n+2+ndsrc+nddst+2p

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

 Block Move From Data Memory to Data Memory BLDD

7-53 Assembly Language Instructions

Example 1 BLDD #300h,20h ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h 0h 300h 0h

320h 0Fh 320h 0h

Example 2 BLDD *+,#321h,AR3

Before Instruction After Instruction

ARP 2 ARP 3

AR2 301h AR2 302h

Data Memory Data Memory
301h 01h 301h 01h

321h 0Fh 321h 01h

BLPD Block Move From Program Memory to Data Memory

7-54

Syntax General syntax: BLPD source, destination

BLPD #pma, dma Direct with long immediate
source

BLPD #pma, ind [, ARn] Indirect with long immediate
source

Operands pma: 16-bit program-memory address
dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

BLPD #pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1 0 dma

pma

BLPD #pma, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(PC) → MSTACK
pma → PC
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0:
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter

(MSTACK) → PC

Status Bits None

Opcode

 Block Move From Program Memory to Data Memory BLPD

7-55 Assembly Language Instructions

Description A word in program memory pointed to by the source is copied to data-memory
space pointed to by destination. The first word of the source space is pointed
to by a long-immediate value. The data-memory destination space is pointed
to by a data-memory address or auxiliary register pointer. Not all source/des-
tination combinations of pointer types are valid.

RPT can be used with the BLPD instruction to move consecutive words. The
number of words to be moved is one greater than the number contained in the
repeat counter (RPTC) at the beginning of the instruction. When the BLPD in-
struction is repeated, the source (program-memory) address specified by the
long immediate constant is stored to the PC. Because the PC is incremented
by 1 during each repetition, it is possible to access a series of program-
memory addresses. If you use indirect addressing to specify the destination
(data-memory) address, a new data-memory address can be accessed during
each repetition. If you use the direct addressing mode, the specified data-
memory address is a constant; it will not be modified during each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a repeated BLPD instruction. When used with
RPT, BLPD becomes a single-cycle instruction once the RPT pipeline is
started.

Words 2

BLPD Block Move From Program Memory to Data Memory

7-56

Cycles

Cycles for a Single BLPD Instruction

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+2pcode

Source: SARAM
Destination: DARAM

3 3 3 3+2pcode

Source: External
Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+2pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3
4†

3+2pcode

Source: SARAM
Destination: SARAM

3 3 3
4†

3+2pcode

Source: External
Destination: SARAM

3+psrc 3+psrc 3+psrc
4+psrc†

3+psrc+2pcode

Source: DARAM/ROM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

Source: External
Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+2pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BLPD Instruction

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: External
Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+2pcode

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2
n+4†

n+2+2pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

 Block Move From Program Memory to Data Memory BLPD

7-57 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of a BLPD Instruction (Continued)

Operand ExternalSARAMDARAMROM

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

n+4†

2n+2§

n+2+2pcode
2n+2pcode‡

Source: External
Destination: SARAM

n+2+npsrc† n+2+npsrc n+2+npsrc
n+4+npsrc†

n+2+npsrc+2pcode

Source: DARAM/ROM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: External
Destination: External

4n+npsrc+nddst‡ 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst+
2pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 BLPD #800h,00h ;(DP=6)

Before Instruction After Instruction

Program Memory Program Memory
800h 0Fh 800h 0Fh

Data Memory Data Memory
300h 0h 300h 0Fh

Example 2 BLPD #800h,*,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 310h AR0 310h

Program Memory Program Memory
800h 1111h 800h 1111h

Data Memory Data Memory
310h 0100h 310h 1111h

CALA Call Subroutine at Location Specified by Accumulator

7-58

Syntax CALA

Operands None

Opcode 0123456789101112131415
0000110001111101

Execution PC + 1 → TOS
ACC(15:0) → PC

Status Bits None

Description The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the lower half of the accumulator are
loaded into the PC. Execution continues at this address.

The CALA instruction is used to perform computed subroutine calls.

Words 1

Cycles for a Single CALA Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example CALA

Before Instruction After Instruction

PC 25h PC 83h

ACC 83h ACC 83h

TOS 100h TOS 26h

Cycles

 Call Unconditionally CALL

7-59 Assembly Language Instructions

Syntax CALL pma [, ind [, ARn]] Indirect addressing

Operands pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

CALL pma [, ind [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution PC + 2 → TOS
pma → PC
Modify (current AR) and (ARP) as specified.

Status Bits None

Description The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the pma, either a symbolic or numeric
address, are loaded into the PC. Execution continues at this address. The cur-
rent auxiliary register and ARP contents are modified as specified.

Words 2

Cycles for a Single CALL Instruction

ROM DARAM SARAM External

4 4 4 4+4p†

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example CALL 191,*+,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 05h AR1 06h

PC 30h PC 0BFh

TOS 100h TOS 32h

Program address 0BFh (191) is loaded into the program counter, and the pro-
gram continues executing from that location.

Opcode

Cycles

CC Call Conditionally

7-60

Syntax CC pma, cond 1 [,cond 2] [,...]

Operands pma: 16-bit program-memory address
cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C = 1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

Opcode 0123456789101112131415
ZLVCZLVCTP010111

pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

Execution If cond 1 AND cond 2 AND ...
Then

PC + 2 → TOS
pma → PC

Else
Increment PC

Status Bits None

Description Control is passed to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC. The CC instruction operates like the CALL in-
struction if all conditions are true.

Words 2

Cycles for a Single CC Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p†

False 2 2 2 2+2p

† The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken these two instruction words are discarded.

Cycles

 Call Conditionally CC

7-61 Assembly Language Instructions

Example CC PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, 0BFh (191) is loaded into the program counter, and the program continues
to execute from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.

CLRC Clear Control Bit

7-62

Syntax CLRC control bit

Operands control bit: Select one of the following control bits:
C Carry bit of status register ST1
CNF RAM configuration control bit of status register ST1
INTM Interrupt mode bit of status register ST0
OVM Overflow mode bit of status register ST0
SXM Sign-extension mode bit of status register ST1
TC Test/control flag bit of status register ST1
XF XF pin status bit of status register ST1

CLRC C
0123456789101112131415
0111001001111101

CLRC CNF
0123456789101112131415
0010001001111101

CLRC INTM
0123456789101112131415
0000001001111101

CLRC OVM
0123456789101112131415
0100001001111101

CLRC SXM
0123456789101112131415
0110001001111101

CLRC TC
0123456789101112131415
0101001001111101

CLRC XF
0123456789101112131415
0011001001111101

Execution Increment PC, then ...
0 → control bit

Status Bits None

Description The specified control bit is cleared to 0. Note that the LST instruction can also
be used to load ST0 and ST1. See section 3.5, Status Registers ST0 and ST1
on page 3-15, for more information on each of these control bits.

Opcode

 Clear Control Bit CLRC

7-63 Assembly Language Instructions

Words 1

Cycles for a Single CLRC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a CLRC Instruction

ROM DARAM SARAM External

n n n n+p

Example CLRC TC ;(TC is bit 11 of ST1)

Before Instruction After Instruction

ST1 x9xxh ST1 x1xxh

Cycles

CMPL Complement Accumulator

7-64

Syntax CMPL

Operands None

Opcode 0123456789101112131415
1000000001111101

Execution Increment PC, then ...
(ACC) → ACC

Status Bits None

Description The contents of the accumulator are replaced with its logical inversion (1s
complement). The carry bit is unaffected.

Words 1

Cycles for a Single CMPL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an CMPL Instruction

ROM DARAM SARAM External

n n n n+p

Example CMPL

Before Instruction After Instruction

ACC X 0F7982513h ACC X 0867DAECh

C C

Cycles

 Compare Auxiliary Register With AR0 CMPR

7-65 Assembly Language Instructions

Syntax CMPR CM

Operands CM: Value from 0 to 3

Opcode 0123456789101112131415
CM10001011111101

Execution Increment PC, then ...
Compare (current AR) to (AR0) and place the result in the TC bit of status
register ST1.

Status Bits Affects
TC

This instruction is not affected by SXM. It does not affect SXM.

Description The CMPR instruction performs a comparison specified by the value of CM:

If CM = 00, test whether (current AR) = (AR0)
If CM = 01, test whether (current AR) < (AR0)
If CM = 10, test whether (current AR) > (AR0)
If CM = 11, test whether (current AR) ≠ (AR0)

If the condition is true, the TC bit is set to 1. If the condition is false, the TC bit
is cleared to 0.

Note that the auxiliary register values are treated as unsigned integers in the
comparisons.

Words 1

Cycles for a Single CMPR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an CMPR Instruction

ROM DARAM SARAM External

n n n n+p

Example CMPR 2 ;(current AR) > (AR0)?

Before Instruction After Instruction

ARP 4 ARP 4

AR0 0FFFFh AR0 0FFFFh

AR4 7FFFh AR4 7FFFh

TC 1 TC 0

Cycles

DMOV Data Move in Data Memory

7-66

Syntax DMOV dma Direct addressing
DMOV ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

DMOV dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 0 dma

DMOV ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → data-memory address + 1

Status Bits Affected by
CNF

Description The contents of the specified data-memory address are copied into the con-
tents of the next higher address. When data is copied from the addressed loca-
tion to the next higher location, the contents of the addressed location remain
unaltered.

DMOV works only within on-chip data DARAM blocks. It works within any con-
figurable RAM block if that block is configured as data memory. In addition, the
data move function is continuous across block boundaries. The data move
function cannot be performed on external data memory. If the instruction spec-
ifies an external memory address, DMOV reads the specified memory location
but performs no operations.

The data move function is useful in implementing the z–1 delay encountered
in digital signal processing. The DMOV function is a subtask of the LTD and
MACD instructions (see the LTD and MACD instructions for more information).

Words 1

Opcode

 Data Move in Data Memory DMOV

7-67 Assembly Language Instructions

Cycles for a Single DMOV Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External‡ 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block
‡ If used on external memory, DMOV reads the specified memory location but performs no

operations.

Cycles for a Repeat (RPT) Execution of a DMOV Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2, 2n+1† 2n–2+p

External‡ 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block
‡ If used on external memory, DMOV reads the specified memory location but performs no

operations.

Example 1 DMOV DAT8 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
308h 43h 308h 43h

Data Memory Data Memory
309h 2h 309h 43h

Example 2 DMOV *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 30Ah AR0 30Ah

Data Memory Data Memory
30Ah 40h 30Ah 40h

Data Memory Data Memory
30Bh 41h 30Bh 40h

Cycles

IDLE Idle Until Interrupt

7-68

Syntax IDLE

Operands None

Opcode 0123456789101112131415
0100010001111101

Execution Increment PC, then wait for unmasked or nonmaskable hardware interrupt.

Status Bits Affected by
INTM

Description The IDLE instruction forces the program being executed to halt until the CPU
receives a request from an unmasked hardware interrupt (external or internal),
NMI, or reset. Execution of the IDLE instruction causes the ’C20x to enter a
power-down mode. The PC is incremented once before the ’C20x enters pow-
er down; it is not incremented during the idle state. On-chip peripherals remain
active; thus, their interrupts are among those that can wake the processor.

The idle state is exited by an unmasked interrupt even if INTM is 1. (INTM, the
interrupt mode bit of status register ST0, normally disables maskable inter-
rupts when it is set to 1.) When the idle state is exited by an unmasked inter-
rupt, the CPU’s next action, however, depends on INTM:

� If INTM is 0, the program branches to the corresponding interrupt service
routine.

� If INTM is 1, the program continues executing at the instruction following
the IDLE.

NMI and reset are not maskable; therefore, if the idle state is exited by NMI or
reset, the corresponding interrupt service routine will be executed, regardless
of INTM.

Words 1

Cycles for a Single IDLE Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example IDLE ;The processor idles until a hardware reset,
;a hardware NMI, or an unmasked interrupt
;occurs.

Cycles

 Input Data From Port IN

7-69 Assembly Language Instructions

Syntax IN dma, PA Direct addressing
IN ind, PA [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
PA: 16-bit I/O port or I/O-mapped register address
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

IN dma , PA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 0 dma

PA

IN ind ,PA [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 1 ARU N NAR

PA

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
PA → address bus lines A15–A0
Data bus lines D15–D0 → data-memory address
(PA) → data-memory address

Status Bits None

Description The IN instruction reads a 16-bit value from an I/O location into the specified
data-memory location. The IS line goes low to indicate an I/O access. The
STRB, RD, and READY timings are the same as for an external data-memory
read.

The repeat (RPT) instruction can be used with the IN instruction to read in con-
secutive words from I/O space to data space.

Words 2

Opcode

IN Input Data From Port

7-70

Cycles for a Single IN Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 2+iosrc 2+iosrc 2+iosrc 3+iosrc+2pcode

Destination: SARAM 2+iosrc 2+iosrc 2+iosrc
3+iosrc†

3+iosrc+2pcode

Destination: External 3+ddst+iosrc 3+ddst+iosrc 3+ddst+iosrc 6+ddst+iosrc+2pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an IN Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 2n+niosrc 2n+niosrc 2n+niosrc 2n+1+niosrc+2pcode

Destination: SARAM 2n+niosrc 2n+niosrc 2n+niosrc
2n+2+niosrc†

2n+1+niosrc+2pcode

Destination: External 4n–1+nddst+
niosrc

4n–1+nddst+niosrc 4n–1+nddst+niosrc 4n+2+nddst+niosrc+
2pcode

† If the operand and the code are in the same SARAM block

Example 1 IN 7,1000h ;Read in word from peripheral on
;port address 1000h. Store word in
;data memory location 307h (DP=6).

Example 2 IN *,5h ;Read in word from peripheral on
;port address 5h. Store word in
;data memory location specified by
;current auxiliary register.

Cycles

 Software Interrupt INTR

7-71 Assembly Language Instructions

Syntax INTR K

Operands K: Value from 0 to 31 that indicates the interrupt vector location
to branch to

Opcode 0123456789101112131415
K11001111101

Execution (PC) + 1 → stack
corresponding interrupt vector location → PC

Status Bits Affects
INTM

This instruction is not affected by INTM.

Description The processor has locations for 32 interrupt vectors; each location is repre-
sented by a value K from 0 to 31. The INTR instruction is a software interrupt
that transfers program control to the program-memory address specified by
K. The vector at that address then leads to the corresponding interrupt service
routine. Thus, the instruction allows any one of the interrupt service routines
to be executed from your software. For a list of interrupts and their correspond-
ing K values, see section 5.6.2, Interrupt Table, on page 5-16. During execu-
tion of the instruction, the value PC + 1 (the return address) is pushed onto the
stack. Neither the INTM bit nor the interrupt masks affect the INTR instruction.
An INTR for the external interrupts looks exactly like an external interrupt (an
interrupt acknowledge is generated, and maskable interrupts are globally dis-
abled by setting INTM = 1).

Words 1

Cycles for a Single INTR Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken, these two instruction words are discarded.

Example INTR 3 ;PC + 1 is pushed onto the stack.
;Then control is passed to program
;memory location 6h.

Cycles

LACC Load Accumulator With Shift

7-72

Execution Increment PC, then ...
Event Addressing mode
(data-memory address) × 2shift → ACC Direct or indirect

(data-memory address) × 216 → ACC Direct or indirect (shift of 16)

lk × 2shift → ACC Long immediate

Status Bits Affected by
SXM

Description The contents of the specified data-memory address or a 16-bit constant are
left shifted and loaded into the accumulator. During shifting, low-order bits are
zero filled. High-order bits are sign extended if SXM = 1 and zeroed if SXM = 0.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single LACC Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACC Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single LACC Instruction (Using Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

 Load Accumulator With Shift LACC

7-73 Assembly Language Instructions

Example 1 LACC 6,4 ;(DP = 8: addresses 0400h–047Fh,
;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
406h 01h 406h 01h

ACC X 012345678h ACC X 10h

C C

Example 2 LACC *,4 ;(SXM = 0)

Before Instruction After Instruction

ARP 2 ARP 2

AR2 0300h AR2 0300h

Data Memory Data Memory
300h 0FFh 300h 0FFh

ACC X 12345678h ACC X 0FF0h

C C

Example 3 LACC #0F000h,1 ;(SXM = 1)

Before Instruction After Instruction

ACC X 012345678h ACC X FFFFE000h

C C

LACC Load Accumulator With Shift

7-74

Syntax LACC dma [, shift] Direct addressing
LACC dma, 16 Direct with left shift of 16
LACC ind [, shift [, ARn]] Indirect addressing
LACC ind, 16[, ARn] Indirect with left shift of 16
LACC #lk [, shift] Long immediate addressing

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LACC dma [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 shift 0 dma

LACC dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 0 0 dma

LACC ind [, shift [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACC ind, 16[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACC #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 0 0 shift

lk

Opcode

 Load Low Accumulator and Clear High Accumulator LACL

7-75 Assembly Language Instructions

Syntax LACL dma Direct addressing
LACL ind [, ARn] Indirect addressing
LACL #k Short immediate

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LACL dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 0 dma

LACL ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACL #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 1 k

Execution Increment PC, then ...
Events Addressing mode
0 → ACC(31:16) Direct or indirect
(data-memory address) → ACC(15:0)

0 → ACC(31:8) Short immediate
k → ACC(7:0)

Status Bits This instruction is not affected by SXM.

Description The contents of the addressed data-memory location or a zero-extended 8-bit
constant are loaded into the 16 low-order bits of the accumulator. The upper
half of the accumulator is zeroed. The data is treated as an unsigned 16-bit
number rather than a 2s-complement number. There is no sign extension of
the operand with this instruction, regardless of the state of SXM.

Words 1

Opcode

LACL Load Low Accumulator and Clear High Accumulator

7-76

Cycles for a Single LACL Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACL Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single LACL Instruction (Using Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 LACL 1 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
301h 0h 301h 0h

ACC X 7FFFFFFFh ACC X 0h

C C

Example 2 LACL *–,AR4

Before Instruction After Instruction

ARP 0 ARP 4

AR0 401h AR0 400h

Data Memory Data Memory
401h 00FFh 401h 00FFh

ACC X 7FFFFFFFh ACC X 0FFh

C C

Cycles

 Load Low Accumulator and Clear High Accumulator LACL

7-77 Assembly Language Instructions

Example 3 LACL #10h

Before Instruction After Instruction

ACC X 7FFFFFFFh ACC X 010h

C C

LACT Load Accumulator With Shift Specified by TREG

7-78

Syntax LACT dma Direct addressing
LACT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LACT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1 0 dma

LACT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) × 2(TREG(3:0)) → ACC

If SXM = 1:
Then (data-memory address) is sign extended.

If SXM = 0:
Then (data-memory address) is not sign extended.

Status Bits Affected by
SXM

Description The LACT instruction loads the accumulator with a data-memory value that
has been left shifted. The left shift is specified by the four LSBs of the TREG,
resulting in shift options from 0 to 15 bits. Using the four LSBs of the TREG as
a shift code provides a dynamic shift mechanism. During shifting, the high-or-
der bits are sign extended if SXM = 1 and zeroed if SXM = 0.

LACT may be used to denormalize a floating-point number if the actual expo-
nent is placed in the four LSBs of the TREG register and the mantissa is refer-
enced by the data-memory address. This method of denormalization can be
used only when the magnitude of the exponent has four bits or less.

Words 1

Opcode

 Load Accumulator With Shift Specified by TREG LACT

7-79 Assembly Language Instructions

Cycles for a Single LACT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LACT 1 ;(DP = 6: addresses 0300h–037Fh,
;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
301h 1376h 301h 1376h

TREG 14h TREG 14h

ACC X 98F7EC83h ACC X 13760h

C C

Example 2 LACT *–,AR3 ;(SXM = 1)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 310h AR1 30Fh

Data Memory Data Memory
310h 0FF00h 310h 0FF00h

TREG 11h TREG 11h

ACC X 098F7EC83h ACC X 0FFFFFE00h

C C

Cycles

LAR Load Auxiliary Register

7-80

Syntax LAR ARx, dma Direct addressing
LAR ARx, ind [, ARn] Indirect addressing
LAR ARx, #k Short immediate addressing
LAR ARx, #lk Long immediate addressing

Operands x: Value from 0 to 7 designating the auxiliary register to be loaded
dma: 7 LSBs of the data-memory address
k: 8-bit short immediate value
lk: 16-bit long immediate value
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LAR AR x, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 x 0 dma

LAR AR x, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 x 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LAR AR x, #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 x k

LAR AR x, #lk
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 1 x

lk

Execution Increment PC, then ...
Event Addressing mode
(data-memory address) → ARx Direct or indirect

k → ARx Short immediate

lk → ARx Long immediate

Status Bits None

Opcode

 Load Auxiliary Register LAR

7-81 Assembly Language Instructions

Description The contents of the specified data-memory address or an 8-bit or 16-bit
constant are loaded into the specified auxiliary register (ARx). The specified
constant is treated as an unsigned integer, regardless of the value of SXM.

The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If an
auxiliary register is not being used for indirect addressing, LAR and SAR
enable the register to be used as an additional storage register, especially for
swapping values between data-memory locations without affecting the
contents of the accumulator.

Words Words Addressing mode
1 Direct, indirect or

short immediate
2 Long immediate

Cycles for a Single LAR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LAR Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrcpcode

† If the operand and the code are in the same SARAM block

Cycles for a Single LAR Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+pcode

Cycles for a Single LAR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

LAR Load Auxiliary Register

7-82

Example 1 LAR AR0,16 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
310h 18h 310h 18h

AR0 6h AR0 18h

Example 2 LAR AR4,*–

Before Instruction After Instruction

ARP 4 ARP 4

Data Memory Data Memory
300h 32h 300h 32h

AR4 300h AR4 32h

Note:

LAR in the indirect addressing mode ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

Example 3 LAR AR4,#01h

Before Instruction After Instruction

AR4 0FF09h AR4 01h

Example 4 LAR AR6,#3FFFh

Before Instruction After Instruction

AR6 0h AR6 3FFFh

 Load Data Page Pointer LDP

7-83 Assembly Language Instructions

Syntax LDP dma Direct addressing
LDP ind [, ARn] Indirect addressing
LDP #k Short immediate

addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 9-bit short immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LDP dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 dma

LDP ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LDP #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 k

Execution Increment PC, then ...
Event Addressing mode
Nine LSBs of (data-memory address) → DP Direct or indirect

k → DP Short immediate

Status Bits Affects
DP

Description The nine LSBs of the contents of the addressed data-memory location or a
9-bit immediate value is loaded into the data page pointer (DP) of status regis-
ter ST0. The DP can also be loaded by the LST instruction.

In direct addressing, the 9-bit DP and the 7-bit value specified in the instruction
(dma) are concatenated to form the 16-bit data-memory address accessed by
the instruction. The DP provides the 9 MSBs, and dma provides the 7 LSBs.

Words 1

Opcode

LDP Load Data Page Pointer

7-84

Cycles for a Single LDP Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LDP Instruction (Using Direct and
Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrcpcode

† If the operand and the code are in the same SARAM block

Cycles for a Single LDP Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+pcode

Example 1 LDP 127 ;(DP = 511: addresses FF80h–FFFFh)

Before Instruction After Instruction

Data Memory Data Memory
FFFFh FEDCh FFFFh FEDCh

DP 1FFh DP 0DCh

Example 2 LDP #0h

Before Instruction After Instruction

DP 1FFh DP 0h

Example 3 LDP *,AR5

Before Instruction After Instruction

ARP 4 ARP 5

AR4 300h AR4 300h

Data Memory Data Memory
300h 06h 300h 06h

DP 1FFh DP 06h

Cycles

 Load Product Register High Word LPH

7-85 Assembly Language Instructions

Syntax LPH dma Direct addressing
LPH ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LPH dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 1 0 dma

LPH ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → PREG (31:16)

Status Bits None

Description The 16 high-order bits of the PREG are loaded with the content of the specified
data-memory address. The low-order PREG bits are unaffected.

The LPH instruction can be used for restoring the high-order bits of the PREG
after interrupts and subroutine calls.

Words 1

Cycles for a Single LPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

LPH Load Product Register High Word

7-86

Cycles for a Repeat (RPT) Execution of an LPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LPH DAT0 ;(DP = 4)

Before Instruction After Instruction

Data Memory Data Memory
200h 0F79Ch 200h 0F79Ch

PREG 30079844h PREG 0F79C9844h

Example 2 LPH *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 200h AR5 200h

Data Memory Data Memory
200h 0F79Ch 200h 0F79Ch

PREG 30079844h PREG 0F79C9844h

 Load Status Register LST

7-87 Assembly Language Instructions

Syntax LST #m, dma Direct addressing
LST #m, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
m: Select one of the following:

0 Indicates that ST0 will be loaded
1 Indicates that ST1 will be loaded

ind: Select one of the following seven options:
* *+ *– *0+ *0– *BR0+ *BR0–

LST #0, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 0 dma

LST #0, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LST #1, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 dma

LST #1, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → status register STm

For details about the differences between an LST #0 operation and an LST #1
operation, see Figure 7–3, Figure 7–4, and the description category below.

Figure 7–3. LST #0 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST0 ARP OV OVM 1 INTM DP

Opcode

LST Load Status Register

7-88

Figure 7–4. LST #1 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST0 ARP OV OVM 1 INTM DP

↑ ↑ ↑
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST1 ARB CNF TC SXM C 1 1 1 1 XF 1 1 PM

Status Bits Affects
ARB, ARP, OV, OVM, DP, CNF, TC, SXM, C, XF, and PM

This instruction does not affect INTM.

Description The specified status register (ST0 or ST1) is loaded with the addressed data-
memory value. Note the following points:

� The LST #0 operation does not affect the ARB field in the ST1 register,
even though a new ARP is loaded.

� During the LST #1 operation, the value loaded into ARB is also loaded into
ARP.

� If a next AR value is specified as an operand in the indirect addressing
mode, this operand is ignored. ARP is loaded with the three MSBs of the
value contained in the addressed data-memory location.

� Reserved bit values in the status registers are always read as 1s. Writes
to these bits have no effect.

The LST instruction can be used for restoring the status registers after subrou-
tine calls and interrupts.

Words 1

Cycles for a Single LST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles

 Load Status Register LST

7-89 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an LST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrc+pcode

† If the operand and the code are in the same SARAM block

Example 1 MAR *,AR0
LST #0,*,AR1 ;The data memory word addressed by the

;contents of auxiliary register AR0 is
;loaded into status register ST0,except
;for the INTM bit. Note that even
;though a next ARP value is specified,
;that value is ignored. Also note that
;the old ARP is not loaded into the
;ARB.

Example 2 LST #0,60h ;(DP = 0)

Before Instruction After Instruction

Data Memory Data Memory
60h 2404h 60h 2404h

ST0 6E00h ST0 2604h

ST1 05ECh ST1 05ECh

Example 3 LST #0,*–,AR1

Before Instruction After Instruction

ARP 4 ARP 7

AR4 3FFh AR4 3FEh

Data Memory Data Memory
3FFh EE04h 3FFh EE04h

ST0 EE00h ST0 EE04h

ST1 F7ECh ST1 F7ECh

LST Load Status Register

7-90

Example 4 LST #1,00h ;(DP = 6)
;Note that the ARB is loaded with
;the new ARP value.

Before Instruction After Instruction

Data Memory Data Memory
300h E1BCh 300h E1BCh

ST0 0406h ST0 E406h

ST1 09ECh ST1 E1FCh

 Load TREG LT

7-91 Assembly Language Instructions

Syntax LT dma Direct addressing
LT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 0 dma

LT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG

Status Bits None

Description TREG is loaded with the contents of the specified data-memory address. The
LT instruction may be used to load TREG in preparation for multiplication. See
also the LTA, LTD, LTP, LTS, MPY, MPYA, MPYS, and MPYU instructions.

Words 1

Cycles for a Single LT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

LT Load TREG

7-92

Cycles for a Repeat (RPT) Execution of an LT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LT 24 ;(DP = 8: addresses 0400h–047Fh)

Before Instruction After Instruction

Data Memory Data Memory
418h 62h 418h 62h

TREG 3h TREG 62h

Example 2 LT *,AR3

Before Instruction After Instruction

ARP 2 ARP 3

AR2 418h AR2 418h

Data Memory Data Memory
418h 62h 418h 62h

TREG 3h TREG 62h

 Load TREG and Accumulate Previous Product LTA

7-93 Assembly Language Instructions

Syntax LTA dma Direct addressing
LTA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 0 dma

LTA ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

Description TREG is loaded with the contents of the specified data-memory address. The
contents of the product register, shifted as defined by the PM status bits, are
added to the accumulator, and the result is placed in the accumulator.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

The function of the LTA instruction is a subtask of the LTD instruction.

Words 1

Cycles for a Single LTA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

LTA Load TREG and Accumulate Previous Product

7-94

Cycles for a Repeat (RPT) Execution of an LTA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTA 36 ;(DP = 6: addresses 0300h–037Fh,
;PM =0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Example 2 LTA *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 324h AR4 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

 Load TREG, Accumulate Previous Product, and Move Data LTD

7-95 Assembly Language Instructions

Syntax LTD dma Direct addressing
LTD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 0 0 dma

LTD ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
(data-memory address) → data-memory address + 1
(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

Description TREG is loaded with the contents of the specified data-memory address. The
contents of the PREG, shifted as defined by the PM status bits, are added to
the accumulator, and the result is placed in the accumulator. The contents of
the specified data-memory address are also copied to the next higher data-
memory address.

This instruction is valid for all blocks of on-chip RAM configured as data
memory. The data move function is continuous across the boundaries of con-
tiguous blocks of memory but cannot be used with external data memory or
memory-mapped registers. The data move function is described under the in-
struction DMOV.

Note:

If LTD is used with external data memory, its function is identical to that of
LTA; that is, the previous product will be accumulated, and the TREG will be
loaded from external data memory, but the data move will not occur.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

Opcode

LTD Load TREG, Accumulate Previous Product, and Move Data

7-96

Words 1

Cycles for a Single LTD Instruction

Program

Operand ROM DARAM SARAM External ‡

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block
‡ If the LTD instruction is used with external memory, the data move will not occur. (The previous

product will be accumulated, and the TREG will be loaded.)

Cycles for a Repeat (RPT) Execution of an LTD Instruction

Program

Operand ROM DARAM SARAM External ‡

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2, 2n+1† 2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block
‡ If the LTD instruction is used with external memory, the data move will not occur. (The previous

product will be accumulated, and the TREG will be loaded.)

Example 1 LTD 126 ;(DP = 7: addresses 0380h–03FFh,
;PM = 0: no shift of product).

Before Instruction After Instruction

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Cycles

 Load TREG, Accumulate Previous Product, and Move Data LTD

7-97 Assembly Language Instructions

Example 2 LTD *,AR3 ;(PM = 0)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 3FEh AR1 3FEh

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Note: The data move function for LTD can occur only within on-chip data memory RAM blocks.

LTP Load TREG and Store PREG in Accumulator

7-98

Syntax LTP dma Direct addressing
LTP ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTP dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 0 dma

LTP ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
shifted (PREG) → ACC

Status Bits Affected by
PM

Description The TREG is loaded with the content of the addressed data-memory location,
and the PREG value is stored in the accumulator. The shift at the output of the
PREG is controlled by the PM status bits.

Words 1

Cycles for a Single LTP Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Load TREG and Store PREG in Accumulator LTP

7-99 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an LTP Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTP 36 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C

Example 2 LTP *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 2 ARP 5

AR2 324h AR2 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C

LTS Load TREG and Subtract Previous Product

7-100

Syntax LTS dma Direct addressing
LTS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

LTS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 0 dma

LTS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
ACC – shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

Description TREG is loaded with the contents of the addressed data-memory location. The
contents of the product register, shifted as defined by the contents of the PM
status bits, are subtracted from the accumulator. The result is placed in the
accumulator.

The carry bit is cleared (C = 0) if the result of the subtraction generates a
borrow, and is set (C = 1) if it does not generate a borrow.

Words 1

Cycles for a Single LTS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

 Load TREG and Subtract Previous Product LTS

7-101 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an LTS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTS DAT36 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 0FFFFFFF6h

C C

Example 2 LTS *,AR2 ;(PM = 0)

Before Instruction After Instruction

ARP 1 ARP 2

AR1 324h AR1 324h

324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 0FFFFFFF6h

C C

MAC Multiply and Accumulate

7-102

Syntax MAC pma, dma Direct addressing
MAC pma, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MAC pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 0 0 dma

pma

MAC pma, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 0 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then . . .
(PC) → MSTACK
pma → PC
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0:
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) – 1 → repeat counter

(MSTACK) → PC

Status Bits Affected by Affects
PM and OVM C and OV

Opcode

 Multiply and Accumulate MAC

7-103 Assembly Language Instructions

Description The MAC instruction:

� Adds the previous product, shifted as defined by the PM status bits, to the
accumulator. The carry bit is set (C = 1) if the result of the addition gener-
ates a carry and is cleared (C = 0) if it does not generate a carry.

� Loads the TREG with the content of the specified data-memory address.

� Multiplies the data-memory value in the TREG by the contents of the spe-
cified program-memory address.

The data and program memory locations on the ’C20x may be any nonre-
served on-chip or off-chip memory locations. If the program memory is block
B0 of on-chip RAM, the CNF bit must be set to 1.

When the MAC instruction is repeated, the program-memory address con-
tained in the PC is incremented by 1 during each repetition. This makes it pos-
sible to access a series of operands in program memory. If you use indirect
addressing to specify the data-memory address, a new data-memory address
can be accessed during each repetition. If you use the direct addressing mode,
the specified data-memory address is a constant; it will not be modified during
each repetition.

MAC is useful for long sum-of-products operations because, when repeated,
it becomes a single-cycle instruction once the RPT pipeline is started.

Words 2

MAC Multiply and Accumulate

7-104

Cycles

Cycles for a Single MAC Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: External
Operand 2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: SARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: SARAM

3
4†

3
4†

3
4†

3+2pcode
4+2pcode†

Operand 1: External
Operand 2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: SARAM
Operand 2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: External
Operand 2: External

4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

† If both operands are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MAC Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: External
Operand 2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

† If both operands are in the same SARAM block

 Multiply and Accumulate MAC

7-105 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an MAC Instruction (Continued)

Operand ExternalSARAMDARAMROM

Operand 1: DARAM/
ROM
Operand 2: SARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM
Operand 2: SARAM

n+2
2n+2†

n+2
2n+2†

n+2
2n+2†

n+2+2pcode
2n+2†

Operand 1: External
Operand 2: SARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: SARAM
Operand 2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: External
Operand 2: External

2n+2+npop1+
ndop2

2n+2+npop1+ndop2 2n+2+npop1+ndop2 2n+2+npop1+ndop2+
2pcode

† If both operands are in the same SARAM block

Example 1 MAC 0FF00h,02h ;(DP = 6, PM = 0, CNF = 1)

Before Instruction After Instruction

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 08Ch

ACC X 723EC41h ACC 0 76975B3h

C C

Example 2 MAC 0FF00h,*,AR5 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 302h AR4 302h

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C

MACD Multiply and Accumulate With Data Move

7-106

Syntax MACD pma, dma Direct addressing
MACD pma, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MACD pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1 0 dma

pma

MACD pma, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then . . .
(PC) → MSTACK
pma → PC
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(data-memory address) → data-memory address + 1

While (repeat counter) ≠ 0:
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(data-memory address) → data-memory address + 1
(repeat counter) – 1 → repeat counter

(MSTACK) → PC

Opcode

 Multiply and Accumulate With Data Move MACD

7-107 Assembly Language Instructions

Status Bits Affected by Affects
PM and OVM C and OV

Description The MACD instruction:

� Adds the previous product, shifted as defined by the PM status bits, to the
accumulator. The carry bit is set (C = 1) if the result of the addition gener-
ates a carry and is cleared (C = 0) if it does not generate a carry.

� Loads the TREG with the content of the specified data-memory address.

� Multiplies the data-memory value in the TREG by the contents of the spe-
cified program-memory address.

� Copies the contents of the specified data-memory address to the next
higher data-memory address.

The data- and program-memory locations on the ’C20x may be any nonre-
served, on-chip or off-chip memory locations. If the program memory is block
B0 of on-chip RAM, the CNF bit must be set to 1. If MACD addresses one of
the memory-mapped registers or external memory as a data-memory location,
the effect of the instruction is that of a MAC instruction; the data move will not
occur (see the DMOV instruction description).

When the MACD instruction is repeated, the program-memory address con-
tained in the PC is incremented by 1 during each repetition. This makes it pos-
sible to access a series of operands in program memory. If you use indirect
addressing to specify the data-memory address, a new data-memory address
can be accessed during each repetition. If you use the direct addressing mode,
the specified data-memory address is a constant; it will not be modified during
each repetition.

MACD functions in the same manner as MAC, with the addition of a data move
for on-chip RAM blocks. This feature makes MACD useful for applications
such as convolution and transversal filtering. When used with RPT, MACD be-
comes a single-cycle instruction once the RPT pipeline is started.

Words 2

Cycles

Cycles for a Single MACD Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: DARAM

3 3 3 3+2pcode

MACD Multiply and Accumulate With Data Move

7-108

Cycles for a Single MACD Instruction (Continued)

Operand ExternalSARAMDARAMROM

Operand 1: External
Operand 2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: SARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: SARAM

3 3 3
4†

5‡

3+2pcode
4+2pcode†

Operand 1: External
Operand 2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External§

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: SARAM
Operand 2: External§

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: External
Operand 2: External§

4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

† If both operands are in the same SARAM block
‡ If both operands and code are in the same SARAM block
§ Data move operation is not performed when operand2 is in external data memory.

Cycles for a Repeat (RPT) Execution of an MACD Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: External
Operand 2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: SARAM

2n 2n 2n
2n+2†

2n+2pcode

† If operand 2 and code are in the same SARAM block
‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.

 Multiply and Accumulate With Data Move MACD

7-109 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an MACD Instruction (Continued)

Operand ExternalSARAMDARAMROM

Operand 1: SARAM
Operand 2: SARAM

2n
3n‡

2n
3n‡

2n
2n+2†

3n‡

3n+2§

2n+2pcode
3n‡

Operand 1: External
Operand 2: SARAM

2n+npop1 2n+npop1 2n+npop1
2n+2+npop1†

2n+npop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External¶

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: SARAM
Operand 2: External¶

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: External
Operand 2: External¶

2n+2+npop1+
ndop2

2n+2+npop1+ndop2 2n+2+npop1+ndop2 2n+2+npop1+ndop2+
2pcode

† If operand 2 and code are in the same SARAM block
‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.

Example 1 MACD 0FF00h,08h ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product,
;CNF = 1: RAM B0 configured to
;program memory).

Before Instruction After Instruction

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C

MACD Multiply and Accumulate With Data Move

7-110

Example 2 MACD 0FF00h,*,AR6 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 5 ARP 6

AR5 308h AR5 308h

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C

Note: The data move function for MACD can occur only within on-chip data memory RAM
blocks.

 Modify Auxiliary Register MAR

7-111 Assembly Language Instructions

Syntax MAR dma Direct addressing
MAR ind [, ARn] Indirect addressing

Operands n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MAR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 1 0 dma

MAR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Event(s) Addressing mode
Increment PC Direct

Increment PC Indirect
Modify (current AR) and (ARP) as specified

Status Bits Affects Addressing mode
None Direct

ARP and ARB Indirect

Description In the direct addressing mode, the MAR instruction acts as a NOP instruction.

In the indirect addressing mode, an auxiliary register value and the ARP value
can be modified; however, the memory being referenced is not used. When
MAR modifies the ARP value, the old ARP value is copied to the ARB field of
ST1. Any operation that MAR performs with indirect addressing can also be
performed with any instruction that supports indirect addressing. The ARP can
also be loaded by an LST instruction.

The LARP instruction from the ’C25 instruction set is a subset of MAR. For ex-
ample, MAR *, AR4 performs the same function as LARP 4, which loads the
ARP with 4.

For loading an auxiliary register, see the description for the LAR instruction.
For storing an auxiliary register value to data memory, see the SAR instruction.

Opcode

MAR Modify Auxiliary Register

7-112

Words 1

Cycles for a Single MAR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an MAR Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 MAR *,AR1 ;Load the ARP with 1.

Before Instruction After Instruction

ARP 0 ARP 1

ARB 7 ARB 0

Example 2 MAR *+,AR5 ;Increment current auxiliary
;register (AR1) and load ARP
;with 5.

Before Instruction After Instruction

AR1 34h AR1 35h

ARP 1 ARP 5

ARB 0 ARB 1

Cycles

 Multiply MPY

7-113 Assembly Language Instructions

Syntax MPY dma Direct addressing
MPY ind [, ARn] Indirect addressing
MPY #k Short immediate addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 13-bit short immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPY dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 0 dma

MPY ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

MPY #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 k

Execution Increment PC, then ...
Event Addressing mode
(TREG) × (data-memory address) → PREG Direct or indirect

(TREG) × k → PREG Short immediate

Status Bits None

Description The contents of TREG are multiplied by the contents of the addressed data
memory location. The result is placed in the product register (PREG). With
short immediate addressing, TREG is multiplied by a signed 13-bit constant.
The short-immediate value is right justified and sign extended before the multi-
plication, regardless of SXM.

Words 1

Opcode

MPY Multiply

7-114

Cycles for a Single MPY Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPY Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single MPY Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 MPY DAT13 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Dh 7h 40Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

Cycles

 Multiply MPY

7-115 Assembly Language Instructions

Example 2 MPY *,AR2

Before Instruction After Instruction

ARP 1 ARP 2

AR1 40Dh AR1 40Dh

Data Memory Data Memory
40Dh 7h 40Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

Example 3 MPY #031h

Before Instruction After Instruction

TREG 2h TREG 2h

PREG 36h PREG 62h

MPYA Multiply and Accumulate Previous Product

7-116

Syntax MPYA dma Direct addressing
MPYA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPYA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 0 dma

MPYA ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + shifted (PREG) → ACC
(TREG) × (data-memory address) → PREG

Status Bits Affected by Affects
PM and OVM C and OV

Description The contents of TREG are multiplied by the contents of the addressed data
memory location. The result is placed in the product register (PREG). The pre-
vious product, shifted as defined by the PM status bits, is also added to the
accumulator.

Words 1

Cycles for a Single MPYA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Multiply and Accumulate Previous Product MPYA

7-117 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an MPYA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYA DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C

Example 2 MPYA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 30Dh AR3 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C

MPYS Multiply and Subtract Previous Product

7-118

Syntax MPYS dma Direct addressing
MPYS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPYS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 0 dma

MPYS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – shifted (PREG) → ACC
(TREG) × (data-memory address) → PREG

Status Bits Affected by Affects
PM and OVM C and OV

Description The contents of TREG are multiplied by the contents of the addressed data
memory location. The result is placed in the product register (PREG). The pre-
vious product, shifted as defined by the PM status bits, is also subtracted from
the accumulator, and the result is placed in the accumulator.

Words 1

Cycles for a Single MPYS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Multiply and Subtract Previous Product MPYS

7-119 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an MPYS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYS DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C

Example 2 MPYS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 30Dh AR4 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C

MPYU Multiply Unsigned

7-120

Syntax MPYU dma Direct addressing
MPYU ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

MPYU dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 dma

MPYU ind [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
Unsigned (TREG) × unsigned (data-memory address) → PREG

Status Bits None

This instruction is not affected by SXM.

Description The unsigned contents of TREG are multiplied by the unsigned contents of the
addressed data-memory location. The result is placed in the product register
(PREG). The multiplier acts as a signed 17 × 17-bit multiplier for this instruc-
tion, with the MSB of both operands forced to 0.

When another instruction passes the resulting PREG value to data memory
or to the CALU, the value passes first through the product shifter at the output
of the PREG. This shifter always invokes sign extension on the PREG value
when PM = 3 (right-shift-by-6 mode). Therefore, this shift mode should not be
used if unsigned products are desired.

The MPYU instruction is particularly useful for computing multiple-precision
products, such as when multiplying two 32-bit numbers to yield a 64-bit prod-
uct.

Words 1

Opcode

 Multiply Unsigned MPYU

7-121 Assembly Language Instructions

Cycles for a Single MPYU Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPYU Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYU 16 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

Data Memory Data Memory
210h 0FFFFh 210h 0FFFFh

TREG 0FFFFh TREG 0FFFFh

PREG 1h PREG 0FFFE0001h

Example 2 MPYU *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 210h AR5 210h

Data Memory Data Memory
210h 0FFFFh 210h 0FFFFh

TREG 0FFFFh TREG 0FFFFh

PREG 1h PREG 0FFFE0001h

Cycles

NEG Negate Accumulator

7-122

Syntax NEG

Operands None

Opcode 0123456789101112131415
0100000001111101

Execution Increment PC, then ...
(ACC) × –1 → ACC

Status Bits Affected by Affects
OVM C and OV

Description The content of the accumulator is replaced with its arithmetic complement (2s
complement). The OV bit is set when taking the NEG of 8000 0000h. If OVM
= 1, the accumulator content is replaced with 7FFF FFFFh. If OVM = 0, the
result is 8000 0000h. The carry bit (C) is cleared to 0 by this instruction for all
nonzero values of the accumulator, and is set to 1 if the accumulator equals
zero.

Words 1

Cycles for a Single NEG Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an NEG Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 NEG ;(OVM = X) Convert –3544 to +3544

Before Instruction After Instruction

ACC X 0FFFFF228h ACC 0 0DD8h

C C

X X

OV OV

Example 2 NEG ;(OVM = 0)

Before Instruction After Instruction

ACC X 080000000h ACC 0 080000000h

C C

X 1

OV OV

Cycles

 Negate Accumulator NEG

7-123 Assembly Language Instructions

Example 3 NEG ;(OVM = 1)

Before Instruction After Instruction

ACC X 080000000h ACC 0 7FFFFFFFh

C C

X 1

OV OV

NMI Nonmaskable Interrupt

7-124

Syntax NMI

Operands None

Opcode 0123456789101112131415
0100101001111101

Execution (PC) + 1 → stack
24h → PC
1 → INTM

Status Bits Affects
INTM

This instruction is not affected by INTM.

Description The NMI instruction forces the program counter to the nonmaskable interrupt
vector located at 24h. This instruction has the same effect as the hardware
nonmaskable interrupt NMI.

Words 1

Cycles for a Single NMI Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The ’C20x performs speculative fetching by reading two additional instruction words. If the PC
discontinuity is taken, these two instruction words are discarded.

Example NMI ;PC + 1 is pushed onto the stack, and then
;control is passed to program memory location
;24h.

Cycles

 No Operation NOP

7-125 Assembly Language Instructions

Syntax NOP

Operands None

Opcode 0123456789101112131415
0000000011010001

Execution Increment PC

Status Bits None

Description No operation is performed. The NOP instruction affects only the PC. The NOP
instruction is useful for creating pipeline and execution delays.

Words 1

Cycles for a Single NOP Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an NOP Instruction

ROM DARAM SARAM External

n n n n+p

Example NOP ;No operation is performed.

Cycles

NORM Normalize Contents of Accumulator

7-126

Syntax NORM ind Indirect addressing

Operands ind: Select one of the following seven options:
* *+ *– *0+ *0– *BR0+ *BR0–

NORM ind
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...

If (ACC) = 0:
Then TC → 1;

Else, if (ACC(31)) XOR (ACC(30)) = 0:
Then TC → 0,

(ACC) × 2 → ACC
Modify (current AR) as specified;

Else TC → 1.

Status Bits Affects
TC

Description The NORM instruction normalizes a signed number that is contained in the ac-
cumulator. Normalizing a fixed-point number separates it into a mantissa and
an exponent by finding the magnitude of the sign-extended number. An exclu-
sive-OR operation is performed on accumulator bits 31 and 30 to determine
if bit 30 is part of the magnitude or part of the sign extension. If they are the
same, they are both sign bits, and the accumulator is left shifted to eliminate
the extra sign bit.

The current AR is modified as specified to generate the magnitude of the expo-
nent. It is assumed that the current AR is initialized before normalization be-
gins. The default modification of the current AR is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the accumulator. Although using NORM with
RPT does not cause execution of NORM to fall out of the repeat loop automati-
cally when the normalization is complete, no operation is performed for the re-
mainder of the repeat loop. NORM functions on both positive and negative 2s-
complement numbers.

Opcode

 Normalize Contents of Accumulator NORM

7-127 Assembly Language Instructions

Notes:

For the NORM instruction, the auxiliary register operations are executed dur-
ing the fourth phase of the pipeline, the execution phase. For other instruc-
tions, the auxiliary register operations take place in the second phase of the
pipeline, in the decode phase. Therefore:

1) The auxiliary register values should not be modified by the two
instruction words following NORM. If the auxiliary register used in the
NORM instruction is to be affected by either of the next two instruction
words, the auxiliary register value will be modified by the other instruc-
tions before it is modified by the NORM instruction.

2) The value in the auxiliary register pointer (ARP) should not be mo-
dified by the two instruction words following NORM. If either of the
next two instruction words specify a change in the ARP value, the ARP
value will be changed before NORM is executed; the ARP will not be
pointing at the correct auxiliary register when NORM is executed.

Words 1

Cycles for a Single NORM Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a NORM Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 NORM *+

Before Instruction After Instruction

ARP 2 ARP 2

AR2 00h AR2 01h

ACC X 0FFFFF001h ACC X 0FFFE002h

C C

X 0

TC TC

Example 2 31-Bit Normalization:

MAR *,AR1 ;Use AR1 to store the exponent.
LAR AR1,#0h ;Clear out exponent counter.

LOOP NORM *+ ;One bit is normalized.
BCND LOOP,NTC ;If TC = 0, magnitude not found yet.

Cycles

NORM Normalize Contents of Accumulator

7-128

Example 3 15-Bit Normalization:

MAR *,AR1 ;Use AR1 to store the exponent.
LAR AR1,#0Fh ;Initialize exponent counter.
RPT #14 ;15-bit normalization specified (yielding

;a 4-bit exponent and 16-bit mantissa).
NORM *– ;NORM automatically stops shifting when first

;significant magnitude bit is found,
;performing NOPs for the remainder of the
;repeat loops.

The method used in Example 2 normalizes a 32-bit number and yields a 5-bit
exponent magnitude. The method used in Example 3 normalizes a 16-bit num-
ber and yields a 4-bit magnitude. If the number requires only a small amount
of normalization, the Example 2 method may be preferable to the Example 3
method because the loop in Example 2 runs only until normalization is com-
plete. Example 3 always executes all 15 cycles of the repeat loop. Specifically,
Example 2 is more efficient if the number requires three or fewer shifts. If the
number requires six or more shifts, Example 3 is more efficient.

 OR With Accumulator OR

7-129 Assembly Language Instructions

Syntax OR dma Direct addressing
OR ind [, ARn] Indirect addressing
OR #lk [, shift] Long immediate addressing
OR #lk, 16 Long immediate with left

shift of 16

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

OR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 1 0 dma

OR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

OR #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 0 0 shift

lk

OR #lk [, 16]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0

lk

Execution Increment PC, then ...
Event(s) Addressing mode
(ACC(15:0)) OR (data-memory address) → ACC(15:0) Direct or indirect
(ACC(31:16)) → ACC(31:16)

(ACC) OR lk � 2shift → ACC Long immediate

(ACC) OR lk � 216 → ACC Long immediate
with left shift of 16

Opcode

OR OR With Accumulator

7-130

Status Bits None
This instruction is not affected by SXM.

Description An OR operation is performed on the contents of the accumulator and the con-
tents of the addressed data-memory location or a long-immediate value. The
long-immediate value may be shifted before the OR operation. The result re-
mains in the accumulator. All bit positions unoccupied by the data operand are
zero filled, regardless of the value of the SXM status bit. Thus, the high word
of the accumulator is unaffected by this instruction if direct or indirect address-
ing is used, or if immediate addressing is used with a shift of 0. Zeros are
shifted into the least significant bits of the operand if immediate addressing is
used with a nonzero shift count.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single OR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OR Instruction (Using Direct and
Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single OR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

 OR With Accumulator OR

7-131 Assembly Language Instructions

Example 1 OR DAT8 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
408h 0F000h 408h 0F000h

ACC X 100002h ACC X 10F002h

C C

Example 2 OR *,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 300h AR1 300h

Data Memory Data Memory
300h 1111h 300h 1111h

ACC X 222h ACC X 1333h

C C

Example 3 OR #08111h,8

Before Instruction After Instruction

ACC X 0FF0000h ACC X 0FF1100h

C C

OUT Output Data to Port

7-132

Syntax OUT dma, PA Direct addressing
OUT ind, PA [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
PA: 16-bit I/O address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

OUT dma, PA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 dma

PA

OUT ind, PA [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1 ARU N NAR

PA

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
PA → address bus A15–A0
(data-memory address) → data bus D15–D0
(data-memory address) → PA

Status Bits None

Description The OUT instruction writes a 16-bit value from a data-memory location to the
specified I/O location. The IS line goes low to indicate an I/O access. The
STRB, R/W, and READY timings are the same as for an external data-memory
write.

RPT can be used with the OUT instruction to write consecutive words from
data memory to I/O space.

Words 2

Opcode

 Output Data to Port OUT

7-133 Assembly Language Instructions

Cycles

Cycles for a Single OUT Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM 3+iodst 3+iodst 3+iodst 5+iodst+2pcode

Source: SARAM 3+iodst 3+iodst 3+iodst
4+iodst†

5+iodst+2pcode

Source: External 3+dsrc+iodst 3+dsrc+iodst 3+dsrc+iodst 6+dsrc+iodst+2pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OUT Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2pcode

Destination: SARAM 3n+niodst 3n+niodst 3n+niodst
3n+1+niodst†

3n+3+niodst+2pcode

Destination: External 5n–2+ndsrc+
niodst

5n–2+ndsrc+niodst 5n–2+ndsrc+niodst 5n+1+ndsrc+niodst+
2pcode

† If the operand and the code are in the same SARAM block

Example 1 OUT DAT0,100h ;(DP = 4) Write data word stored in
;data memory location 200h to
;peripheral at I/O port address
;100h.

Example 2 OUT *,100h ;Write data word referenced by
;current auxiliary register to
;peripheral at I/O port address
;100h.

PAC Load Accumulator With Product Register

7-134

Syntax PAC

Operands None

Opcode 0123456789101112131415
1100000001111101

Execution Increment PC, then ...
shifted (PREG) → ACC

Status Bits Affected by
PM

Description The content of PREG, shifted as specified by the PM status bits, is loaded into
the accumulator.

Words 1

Cycles for a Single PAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a PAC Instruction

ROM DARAM SARAM External

n n n n+p

Example PAC ;(PM = 0: no shift of product)

Before Instruction After Instruction

PREG 144h PREG 144h

ACC X 23h ACC X 144h

C C

Cycles

 Pop Top of Stack to Low Accumulator POP

7-135 Assembly Language Instructions

Syntax POP

Operands None

Opcode 0123456789101112131415
0100110001111101

Execution Increment PC, then ...
(TOS) → ACC(15:0)
0 → ACC(31:16)
Pop stack one level

Status Bits None

Description The content of the top of the stack (TOS) is copied to the low accumulator, and
then the stack values move up one level. The upper half of the accumulator
is set to all zeros.

The hardware stack functions as a last-in, first-out stack with eight locations.
Any time a pop occurs, every stack value is copied to the next higher stack lo-
cation, and the top value is removed from the stack. After a pop, the bottom
two stack words will have the same value. Because each stack value is copied,
if more than seven stack pops (using the POP, POPD, RETC, or RET instruc-
tions) occur before any pushes occur, all levels of the stack will contain the
same value. No provision exists to check stack underflow.

Words 1

Cycles for a Single POP Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a POP Instruction

ROM DARAM SARAM External

n n n n+p

Cycles

POP Pop Top of Stack to Low Accumulator

7-136

Example POP

Before Instruction After Instruction

ACC X 82h ACC X 45h

C C

Stack 45h Stack 16h

16h 7h

 7h 33h

33h 42h

42h 56h

56h 37h

37h 61h

61h 61h

 Pop Top of Stack to Data Memory POPD

7-137 Assembly Language Instructions

Syntax POPD dma Direct addressing
POPD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

POPD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0 0 dma

POPD ind [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(TOS) → data-memory address
Pop stack one level

Status Bits None

Description The value from the top of the stack is transferred into the data-memory location
specified by the instruction. In the lower seven locations of the stack, the val-
ues are copied up one level. The stack operation is explained in the description
for the POP instruction. No provision exists to check stack underflow.

Words 1

Cycles for a Single POPD Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

POPD Pop Top of Stack to Data Memory

7-138

Cycles for a Repeat (RPT) Execution of a POPD Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 POPD DAT10 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Ah 55h 40Ah 92h

Stack 92h Stack 72h

72h 8h

 8h 44h

44h 81h

81h 75h

75h 32h

32h 0AAh

0AAh 0AAh

Example 2 POPD *+,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 301h

Data Memory Data Memory
300h 55h 300h 92h

Stack 92h Stack 72h

72h 8h

 8h 44h

44h 81h

81h 75h

75h 32h

32h 0AAh

0AAh 0AAh

 Push Data-Memory Value Onto Stack PSHD

7-139 Assembly Language Instructions

Syntax PSHD dma Direct addressing
PSHD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

PSHD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 0 dma

PSHD ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TOS
Push all stack locations down one level

Status Bits None

Description The value from the data-memory location specified by the instruction is trans-
ferred to the top of the stack. In the lower seven locations of the stack, the val-
ues are also copied one level down, as explained in the description for the
PUSH instruction. The value in the lowest stack location is lost.

Words 1

Cycles for a Single PSHD Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

PSHD Push Data-Memory Value Onto Stack

7-140

Cycles for a Repeat (RPT) Execution of a PSHD Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+nd+p

† If the operand and the code are in the same SARAM block

Example 1 PSHD 127 ;(DP = 3: addresses 0180–01FFh)

Before Instruction After Instruction

Data Memory Data Memory
1FFh 65h 1FFh 65h

Stack 2h Stack 65h

33h 2h

78h 33h

99h 78h

42h 99h

50h 42h

 0h 50h

 0h 0h

Example 2 PSHD *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 1FFh AR0 1FFh

Data Memory Data Memory
1FFh 12h 1FFh 12h

Stack 2h Stack 12h

33h 2h

78h 33h

99h 78h

42h 99h

50h 42h

 0h 50h

 0h 0h

 Push Low Accumulator Onto Stack PUSH

7-141 Assembly Language Instructions

Syntax PUSH

Operands None

Opcode 0123456789101112131415
0011110001111101

Execution Increment PC, then...
Push all stack locations down one level
ACC(15:0) → TOS

Status Bits None

Description The stack values move down one level. Then, the content of the lower half of
the accumulator is copied onto the top of the hardware stack.

The hardware stack operates as a last-in, first-out stack with eight locations.
If more than eight pushes (due to a CALA, CALL, CC, PSHD, PUSH, TRAP,
INTR, or NMI instruction) occur before a pop, the first data values written are
lost with each succeeding push.

Words 1

Cycles for a Single PUSH Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a PUSH Instruction

ROM DARAM SARAM External

n n n n+p

Example PUSH

Before Instruction After Instruction

ACC X 7h ACC X 7h

C C

Stack 2h Stack 7h

 5h 2h

 3h 5h

 0h 3h

12h 0h

86h 12h

54h 86h

3Fh 54h

Cycles

RET Return From Subroutine

7-142

Syntax RET

Operands None

Opcode 0123456789101112131415
0000000011110111

Execution (TOS) → PC
Pop stack one level.

Status Bits None

Description The contents of the top stack register are copied into the program counter. The
remaining stack values are then copied up one level. RET concludes subrou-
tines and interrupt service routines to return program control to the calling or
interrupted program sequence.

Words 1

Cycles for a Single RET Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example RET

Before Instruction After Instruction

PC 96h PC 37h

Stack 37h Stack 45h

45h 75h

75h 21h

21h 3Fh

3Fh 45h

45h 6Eh

6Eh 6Eh

6Eh 6Eh

Cycles

 Return Conditionally RETC

7-143 Assembly Language Instructions

Syntax RETC cond 1 [, cond 2] [,...]

Operands cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C =1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

‡

Opcode 0123456789101112131415
ZLVCZLVCTP110111

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

Execution If cond 1 AND cond 2 AND ...
(TOS) → PC
Pop stack one level

Else, continue

Status Bits None

Description If the specified condition or conditions are met, a standard return is executed
(see the description for the RET instruction). Note that not all combinations of
conditions are meaningful. For example, testing for LT and GT is contradictory.
In addition, testing BIO is mutually exclusive to testing TC.

Words 1

Cycles for a Single RETC Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The processor performs speculative fetching by reading two additional instruction
words. If the PC discontinuity is taken, these two instruction words are discarded.

Example RETC GEQ,NOV ;A return is executed if the
;accumulator content is positive
;or zero and if the OV (overflow)
;-bit is zero.

Cycles

ROL Rotate Accumulator Left

7-144

Syntax ROL

Operands None

Opcode 0123456789101112131415
0011000001111101

Execution Increment PC, then ...
C → ACC(0)
(ACC(31)) → C
(ACC(30:0)) → ACC(31:1)

Status Bits Affects
C

This instruction is not affected by SXM.

Description The ROL instruction rotates the accumulator left one bit. The value of the carry
bit is shifted into the LSB, then the MSB is shifted into the carry bit.

Words 1

Cycles for a Single ROL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ROL Instruction

ROM DARAM SARAM External

n n n n+p

Example ROL

Before Instruction After Instruction

ACC 0 B0001234h ACC 1 60002468h

C C

Cycles

 Rotate Accumulator Right ROR

7-145 Assembly Language Instructions

Syntax ROR

Operands None

Opcode 0123456789101112131415
1011000001111101

Execution Increment PC, then ...
C → ACC(31)
(ACC(0)) → C
(ACC(31:1)) → ACC(30:0)

Status Bits Affects
C

This instruction is not affected by SXM.

Description The ROR instruction rotates the accumulator right one bit. The value of the
carry bit is shifted into the MSB of the accumulator, then the LSB of the accu-
mulator is shifted into the carry bit.

Words 1

Cycles for a Single ROR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ROR Instruction

ROM DARAM SARAM External

n n n n+p

Example ROR

Before Instruction After Instruction

ACC 0 B0001235h ACC 1 5800091Ah

C C

Cycles

RPT Repeat Next Instruction

7-146

Syntax RPT dma Direct addressing
RPT ind [, ARn] Indirect addressing
RPT #k Short immediate

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

RPT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 dma

RPT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

RPT #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 1 k

Execution Increment PC, then ...
Event Addressing mode
(data-memory address) → RPTC Direct or indirect

k → RPTC Short immediate

Status Bits None

Description The repeat counter (RPTC) is loaded with the content of the addressed data-
memory location if direct or indirect addressing is used; it is loaded with an 8-bit
immediate value if short immediate addressing is used. The instruction follow-
ing the RPT is repeated n times, where n is the initial value of the RPTC plus
1. Since the RPTC cannot be saved during a context switch, repeat loops are
regarded as multicycle instructions and are not interruptible. The RPTC is
cleared to 0 on a device reset.

RPT is especially useful for block moves, multiply/accumulates, and normal-
ization. The repeat instruction itself is not repeatable.

Words 1

Opcode

 Repeat Next Instruction RPT

7-147 Assembly Language Instructions

Cycles for a Single RPT Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Single RPT Instruction (Using Short Immediate
Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 RPT DAT127 ;(DP = 31: addresses 0F80h–0FFFh)
;Repeat next instruction 13 times.

Before Instruction After Instruction

Data Memory Data Memory
0FFFh 0Ch 0FFFh 0Ch

RPTC 0h RPTC 0Ch

Example 2 RPT *,AR1 ;Repeat next instruction 4096 times.

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 300h

Data Memory Data Memory
300h 0FFFh 300h 0FFFh

RPTC 0h RPTC 0FFFh

Example 3 RPT #1 ;Repeat next instruction two times.

Before Instruction After Instruction

RPTC 0h RPTC 1h

Cycles

SACH Store High Accumulator With Shift

7-148

Syntax SACH dma [, shift2] Direct addressing
SACH ind [, shift2 [, ARn]] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
shift2: Left shift value from 0 to 7 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SACH dma [, shift2]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 shift2 0 dma

SACH ind [, shift�[, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 shift2 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 MSBs of ((ACC) � 2shift2) → data-memory address

Status Bits This instruction is not affected by SXM

Description The SACH instruction copies the entire accumulator into the output shifter,
where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the
upper 16 bits of the shifted value into data memory. During the shift, the low-or-
der bits are filled with zeros, and the high-order bits are lost. The accumulator
itself remains unaffected.

Words 1

Cycles for a Single SACH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Store High Accumulator With Shift SACH

7-149 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SACH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SACH DAT10,1 ;(DP = 4: addresses 0200h–027Fh,
;left shift of 1)

Before Instruction After Instruction

ACC X 4208001h ACC X 4208001h

C C

Data Memory Data Memory
20Ah 0h 20Ah 0841h

Example 2 SACH *+,0,AR2 ;(No shift)

Before Instruction After Instruction

ARP 1 ARP 2

AR1 300h AR1 301h

ACC X 4208001h ACC X 4208001h

C C

Data Memory Data Memory
300h 0h 300h 0420h

SACL Store Low Accumulator With Shift

7-150

Syntax SACL dma [, shift2] Direct addressing
SACL ind [, shift2 [, ARn]] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
shift2: Left shift value from 0 to 7 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SACL dma [, shift2]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 shift2 0 dma

SACL ind [, shift2 [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 shift2 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 LSBs of ((ACC) � 2shift2) → data-memory address

Status Bits This instruction is not affected by SXM.

Description The SACL instruction copies the entire accumulator into the output shifter,
where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the
lower 16 bits of the shifted value into data memory. During the shift, the
low-order bits are filled with zeros, and the high-order bits are lost. The
accumulator itself remains unaffected.

Words 1

Cycles for a Single SACL Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block.

Opcode

Cycles

 Store Low Accumulator With Shift SACL

7-151 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SACL Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block.

Example 1 SACL DAT11,1 ;(DP = 4: addresses 0200h–027Fh,
;left shift of 1)

Before Instruction After Instruction

ACC X 7C63 8421 ACC X 7C63 8421h

C C

Data Memory Data Memory
20Bh 05h 20Bh 0842h

Example 2 SACL *,0,AR7 ;(No shift)

Before Instruction After Instruction

ARP 6 ARP 7

AR6 300h AR6 300h

ACC X 00FF 8421h ACC X 00FF 8421h

C C

Data Memory Data Memory
300h 05h 300h 8421h

SAR Store Auxiliary Register

7-152

Syntax SAR ARx, dma Direct addressing
SAR ARx, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
x: Value from 0 to 7 designating the auxiliary register value to be

stored
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SAR ARx, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 x 0 dma

SAR ARx, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 x 0 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ARx) → data-memory address

Status Bits None

Description The content of the designated auxiliary register (ARx) is stored in the specified
data-memory location. When the content of the designated auxiliary register
is also modified by the instruction (in indirect addressing mode), SAR copies
the auxiliary register value to data memory before it increments or decrements
the contents of the auxiliary register.

Words 1

Cycles for a Single SAR Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Store Auxiliary Register SAR

7-153 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SAR Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SAR AR0,DAT30 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

AR0 37h AR0 37h

Data Memory Data Memory
31Eh 18h 31Eh 37h

Example 2 SAR AR0,*+

Before Instruction After Instruction

ARP 0 ARP 0

AR0 401h AR0 402h

Data Memory Data Memory
401h 0h 401h 401h

SBRK Subtract Short-Immediate Value From Auxiliary Register

7-154

Syntax SBRK #k Short immediate addressing

Operands k: 8-bit positive short immediate value

SBRK #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 k

Execution Increment PC, then ...
(current AR) – k → current AR

Note that k is an 8-bit positive constant.

Status Bits None

Description The 8-bit immediate value is subtracted, right justified, from the content of the
current auxiliary register (the one pointed to by the ARP) and the result re-
places the contents of the auxiliary register. The subtraction takes place in the
auxiliary register arithmetic unit (ARAU), with the immediate value treated as
an 8-bit positive integer. All arithmetic operations on the auxiliary registers are
unsigned.

Words 1

Cycles for a Single SBRK Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example SBRK #0FFh

Before Instruction After Instruction

ARP 7 ARP 7

AR7 0h AR7 FF01h

Opcode

Cycles

 Set Control Bit SETC

7-155 Assembly Language Instructions

Syntax SETC control bit

Operands control bit: Select one of the following control bits:
C Carry bit of status register ST1
CNF RAM configuration control bit of status register ST1
INTM Interrupt mode bit of status register ST0
OVM Overflow mode bit of status register ST0
SXM Sign-extension mode bit of status register ST1
TC Test/control flag bit of status register ST1
XF XF pin status bit of status register ST1

SETC C
0123456789101112131415
1111001001111101

SETC CNF
0123456789101112131415
1010001001111101

SETC INTM
0123456789101112131415
1000001001111101

SETC OVM
0123456789101112131415
1100001001111101

SETC SXM
0123456789101112131415
1110001001111101

SETC TC
0123456789101112131415
1101001001111101

SETC XF
0123456789101112131415
1011001001111101

Execution Increment PC, then ...
1 → control bit

Status Bits None

Description The specified control bit is set to 1. Note that LST may also be used to load
ST0 and ST1. See section 3.5, Status and Control Registers, on page 3-15 for
more information on each control bit.

Opcode

SETC Set Control Bit

7-156

Words 1

Cycles for a Single SETC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SETC Instruction

ROM DARAM SARAM External

n n n n+p

Example SETC TC ;TC is bit 11 of ST1

Before Instruction After Instruction

ST1 x1xxh ST1 x9xxh

Cycles

 Shift Accumulator Left SFL

7-157 Assembly Language Instructions

Syntax SFL

Operands None

Opcode 0123456789101112131415
1001000001111101

Execution Increment PC, then ...
(ACC(31)) → C
(ACC(30:0)) → ACC(31:1)
0 → ACC(0)

Status Bits Affects
C

This instruction is not affected by SXM.

Description The SFL instruction shifts the entire accumulator left one bit. The least signifi-
cant bit is filled with a 0, and the most significant bit is shifted into the carry bit
(C). SFL, unlike SFR, is unaffected by SXM.

Words 1

Cycles for a Single SFL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SFL Instruction

ROM DARAM SARAM External

n n n n+p

Example SFL

Before Instruction After Instruction

ACC X B0001234h ACC 1 60002468h

C C

Cycles

SFR Shift Accumulator Right

7-158

Syntax SFR

Operands None

Opcode 0123456789101112131415
0101000001111101

Execution Increment PC, then ...
If SXM = 0

Then 0 → ACC(31).
If SXM = 1

Then (ACC(31)) → ACC(31)

(ACC(31:1)) → ACC(30:0)
(ACC(0)) → C

Status Bits Affected by Affects
SXM C

Description The SFR instruction shifts the accumulator right one bit.

� If SXM = 1, the instruction produces an arithmetic right shift. The sign bit
(MSB) is unchanged and is also copied into bit 30. Bit 0 is shifted into the
carry bit (C).

� If SXM = 0, the instruction produces a logic right shift. All of the accumula-
tor bits are shifted right by one bit. The least significant bit is shifted into
the carry bit, and the most significant bit is filled with a 0.

Words 1

Cycles for a Single SFR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SFR Instruction

ROM DARAM SARAM External

n n n n+p

Cycles

 Shift Accumulator Right SFR

7-159 Assembly Language Instructions

Example 1 SFR ;(SXM = 0: no sign extension)

Before Instruction After Instruction

ACC X B0001234h ACC 0 5800091Ah

C C

Example 2 SFR ;(SXM = 1: sign extend)

Before Instruction After Instruction

ACC X B0001234h ACC 0 D800091Ah

C C

SPAC Subtract PREG From Accumulator

7-160

Syntax SPAC

Operands None

Opcode 0123456789101112131415
1010000001111101

Execution Increment PC, then ...
(ACC) – shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

This instruction is not affected by SXM.

Description The content of PREG, shifted as defined by the PM status bits, is subtracted
from the content of the accumulator. The result is stored in the accumulator.
SPAC is not affected by SXM, and the PREG value is always sign extended.

The function of the SPAC instruction is a subtask of the LTS, MPYS, and SQRS
instructions.

Words 1

Cycles for a Single SPAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SPAC Instruction

ROM DARAM SARAM External

n n n n+p

Example SPAC ;(PM = 0)

Before Instruction After Instruction

PREG 10000000h PREG 10000000h

ACC X 70000000h ACC 1 60000000h

C C

Cycles

 Store High PREG SPH

7-161 Assembly Language Instructions

Syntax SPH dma Direct addressing
SPH ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SPH dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 0 dma

SPH ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 MSBs of shifted (PREG) → data-memory address

Status Bits Affected by
PM

Description The 16 high-order bits of the PREG, shifted as specified by the PM bits, are
stored in data memory. First, the 32-bit PREG value is copied into the product
shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6
mode is selected, the high-order bits are sign extended and the low-order bits
are lost. If a left shift is selected, the high-order bits are lost and the low-order
bits are zero filled. If PM = 00, no shift occurs. Then the 16 MSBs of the shifted
value are stored in data memory. Neither the PREG value nor the accumulator
value is modified by this instruction.

Words 1

Cycles for a Single SPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

SPH Store High PREG

7-162

Cycles for a Repeat (RPT) Execution of an SPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SPH DAT3 ;(DP = 4: addresses 0200h–027Fh,
;PM = 0: no shift)

Before Instruction After Instruction

PREG FE079844h PREG FE079844h

Data Memory Data Memory
203h 4567h 203h FE07h

Example 2 SPH *,AR7 ;(PM = 2: left shift of four)

Before Instruction After Instruction

ARP 6 ARP 7

AR6 203h AR6 203h

PREG FE079844h PREG FE079844h

Data Memory Data Memory
203h 4567h 203h E079h

 Store Low PREG SPL

7-163 Assembly Language Instructions

Syntax SPL dma Direct addressing
SPL ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SPL dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 0 dma

SPL ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 LSBs of shifted (PREG) → data-memory address

Status Bits Affected by
PM

Description The 16 low-order bits of the PREG, shifted as specified by the PM bits, are
stored in data memory. First, the 32-bit PREG value is copied into the product
shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6
mode is selected, the high-order bits are sign extended and the low-order bits
are lost. If a left shift is selected, the high-order bits are lost and the low-order
bits are zero filled. If PM = 00, no shift occurs. Then the 16 LSBs of the shifted
value are stored in data memory. Neither the PREG value nor the accumulator
value is modified by this instruction.

Words 1

Cycles for a Single SPL Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

SPL Store Low PREG

7-164

Cycles for a Repeat (RPT) Execution of an SPL Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SPL DAT5 ;(DP = 4: addresses 0200h–027Fh,
;PM = 2: left shift of four)

Before Instruction After Instruction

PREG 0FE079844h PREG 0FE079844h

Data Memory Data Memory
205h 4567h 205h 08440h

Example 2 SPL *,AR3 ;(PM = 0: no shift)

Before Instruction After Instruction

ARP 2 ARP 3

AR2 205h AR2 205h

PREG 0FE079844h PREG 0FE079844h

Data Memory Data Memory
205h 4567h 205h 09844h

 Store Long-Immediate Value to Data Memory SPLK

7-165 Assembly Language Instructions

Syntax SPLK #lk, dma Direct addressing
SPLK #lk, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SPLK #lk, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 0 0 dma

lk

SPLK #lk, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 0 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
lk → data-memory address

Status Bits None

Description The SPLK instruction allows a full 16-bit pattern to be written into any data
memory location.

Words 2

Cycles for a Single SPLK Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+2p

SARAM 2 2 2, 3† 2+2p

External 3+d 3+d 3+d 5+d+2p

† If the operand and the code are in the same SARAM block

Example 1 SPLK #7FFFh,DAT3 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
303h FE07h 303h 7FFFh

Opcode

Cycles

SPLK Store Long-Immediate Value to Data Memory

7-166

Example 2 SPLK #1111h,*+,AR4

Before Instruction After Instruction

ARP 0 ARP 4

AR0 300h AR0 301h

Data Memory Data Memory
300h 07h 300h 1111h

 Set PREG Output Shift Mode SPM

7-167 Assembly Language Instructions

Syntax SPM constant

Operands constant: Value from 0 to 3 that determines the product shift mode

Opcode
constant00000011111101

0123456789101112131415

Execution Increment PC, then ...
constant → product shift mode (PM) bits

Status Bits Affects
PM

This instruction is not affected by SXM.

Description The two LSBs of the instruction word are copied into the product shift mode
(PM) bits of status register ST1 (bits 1 and 0 of ST1). The PM bits control the
mode of the shifter at the output of the PREG. This shifter can shift the PREG
output either one or four bits to the left or six bits to the right. The possible PM
bit combinations and their meanings are shown in Table 7–8. When an instruc-
tion accesses the PREG value, the value first passes through the shifter,
where it is shifted by the specified amount.

Table 7–8. Product Shift Modes

PM Field Specified Product Shift

00 No shift of PREG output

01 PREG output to be left shifted 1 place

10 PREG output to be left shifted 4 places

11 PREG output to be right shifted 6 places and sign extended

The left shifts allow the product to be justified for fractional arithmetic. The
right-shift-by-six mode allows up to 128 multiply accumulate processes with-
out the possibility of overflow occurring. PM may also be loaded by an LST #1
instruction.

Words 1

Cycles for a Single SPM Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example SPM 3 ;Product register shift mode 3 (PM = 11)
;is selected causing all subsequent
;transfers from the product register (PREG)
;to be shifted to the right six places.

Cycles

SQRA Square Value and Accumulate Previous Product

7-168

Syntax SQRA dma Direct addressing
SQRA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SQRA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 0 0 dma

SQRA ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(TREG) � (data-memory address) → PREG

Status Bits Affected by Affects
OVM and PM OV and C

Description The content of the PREG, shifted as defined by the PM status bits, is added
to the accumulator. Then the addressed data-memory value is loaded into the
TREG, squared, and stored in the PREG.

Words 1

Cycles for a Single SQRA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Square Value and Accumulate Previous Product SQRA

7-169 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SQRA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRA DAT30 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory

31Eh 0Fh 31Eh 0Fh

TREG 3h TREG 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C

Example 2 SQRA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 31Eh AR3 31Eh

Data Memory Data Memory
31Eh 0Fh 31Eh 0Fh

TREG 3h TREG 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C

SQRS Square Value and Subtract Previous Product

7-170

Syntax SQRS dma Direct addressing
SQRS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SQRS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 0 dma

SQRS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – shifted (PREG) → ACC
(data-memory address) → TREG
(TREG) � (data-memory address) → PREG

Status Bits Affected by Affects
OVM and PM OV and C

Description The content of the PREG, shifted as defined by the PM status bits, is sub-
tracted from the accumulator. Then the addressed data-memory value is
loaded into the TREG, squared, and stored in the PREG.

Words 1

Cycles for a Single SQRS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Square Value and Subtract Previous Product SQRS

7-171 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SQRS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRS DAT9 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
309h 08h 309h 08h

TREG 1124h TREG 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C

Example 2 SQRS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 5

AR3 309h AR3 309h

Data Memory Data Memory
309h 08h 309h 08h

TREG 1124h TREG 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C

SST Store Status Register

7-172

Syntax SST #m, dma Direct addressing
SST #m, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
m: Select one of the following:

0 Indicates that ST0 will be stored
1 Indicates that ST1 will be stored

ind: Select one of the following seven options:
* *+ *– *0+ *0– *BR0+ *BR0–

SST #0, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 0 0 dma

SST #0, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SST #1, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 0 dma

SST #1, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(status register STm) → data-memory address

Status Bits None

Description Status register ST0 or ST1 (whichever is specified) is stored in data memory.

In direct addressing mode, the specified status register is always stored in data
page 0, regardless of the value of the data page pointer (DP) in ST0. Although
the processor automatically accesses page 0, the DP is not physically
modified; this allows the DP value to be stored unchanged when ST0 is stored.

In indirect addressing mode, the storage address is obtained from the auxiliary
register selected; thus, the specified status register contents can be stored to
an address on any page in data memory.

Opcode

 Store Status Register SST

7-173 Assembly Language Instructions

Status registers ST0 and ST1 are defined in section 3.5, Status Registers ST0
and ST1, on page 3-15.

Words 1

Cycles for a Single SST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SST Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SST #0,96 ;Direct addressing: data page 0
;accessed automatically

Before Instruction After Instruction

ST0 0A408h ST0 0A408h

Data Memory Data Memory
60h 0Ah 60h 0A408h

Example 2 SST #1,*,AR7 ;Indirect addressing

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ST1 2580h ST1 2580h

Data Memory Data Memory
300h 0h 300h 2580h

Cycles

SUB Subtract From Accumulator

7-174

Syntax SUB dma [, shift] Direct addressing
SUB dma,16 Direct with left shift of 16
SUB ind [,shift [, ARn]] Indirect addressing
SUB ind,16[, ARn] Indirect with left shift of 16
SUB #k Short immediate
SUB #lk [,shift] Long immediate

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUB dma [,shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 shift 0 dma

SUB dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 dma

SUB ind [, shift [, ARn]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SUB ind,16 [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SUB #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 0 k

SUB #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 1 1 1 0 1 0 shift

lk

Opcode

 Subtract From Accumulator SUB

7-175 Assembly Language Instructions

Execution Increment PC, then ...
Event Addressing mode
(ACC) – ((data-memory address) � 2shift) → ACC Direct or indirect

(ACC) – ((data-memory address) � 216) → ACC Direct or indirect
(shift of 16)

(ACC) – k → ACC Short immediate

(ACC) – lk � 2shift → ACC Long immediate

Status Bits Affected by Affects Addressing mode
OVM and SXM OV and C Direct or indirect

OVM OV and C Short immediate

OVM and SXM OV and C Long immediate

Description In direct, indirect, and long immediate addressing, the content of the ad-
dressed data-memory location or a 16-bit constant are left shifted and sub-
tracted from the accumulator. During shifting, low-order bits are zero filled.
High-order bits are sign extended if SXM = 1 and zero filled if SXM = 0. The
result is then stored in the accumulator.

If short immediate addressing is used, an 8-bit positive constant is subtracted
from the accumulator. In this case, no shift value may be specified, the subtrac-
tion is unaffected by SXM, and the instruction is not repeatable.

Normally, the carry bit is cleared (C = 0) if the result of the subtraction gener-
ates a borrow; it is set (C = 1) if it does not generate a borrow. However, if a
16-bit shift is specified with the subtraction, the instruction will clear the carry
bit if a borrow is generated but will not affect the carry bit otherwise.

Words Words Addressing mode
1 Direct, indirect

or short immediate
2 Long immediate

SUB Subtract From Accumulator

7-176

Cycles for a Single SUB Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUB Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block.

Cycles for a Single SUB Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Single SUB Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Example 1 SUB DAT80 ;(DP = 8: addresses 0400h–047Fh

Before Instruction After Instruction

Data Memory Data Memory
450h 11h 450h 11h

ACC X 24h ACC 1 13h

C C

Example 2 SUB *–,1,AR0 ;(Left shift by 1, SXM = 0)

Cycles

 Subtract From Accumulator SUB

7-177 Assembly Language Instructions

Before Instruction After Instruction

ARP 7 ARP 0

AR7 301h AR7 300h

Data Memory Data Memory
301h 04h 301h 04h

ACC X 09h ACC 1 01h

C C

Example 3 SUB #8h

Before Instruction After Instruction

ACC X 07h ACC 0 FFFFFFFFh

C C

Example 4 SUB #0FFFh,4 ;(Left shift by four, SXM = 0)

Before Instruction After Instruction

ACC X 0FFFFh ACC 1 0Fh

C C

SUBB Subtract From Accumulator With Borrow

7-178

Syntax SUBB dma Direct addressing
SUBB ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBB dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 0 dma

SUBB ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – (data-memory address) – (logical inversion of C) → ACC

Status Bits Affected by Affects
OVM OV and C

This instruction is not affected by SXM.

Description The content of the addressed data-memory location and the logical inversion
of the carry bit is subtracted from the accumulator with sign extension sup-
pressed. The carry bit is then affected in the normal manner: the carry bit is
cleared (C = 0) if the result of the subtraction generates a borrow; it is set
(C = 1) if it does not generate a borrow.

The SUBB instruction can be used in performing multiple-precision arithmetic.

Words 1

Cycles for a Single SUBB Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Subtract From Accumulator With Borrow SUBB

7-179 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SUBB Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBB DAT5 ;(DP = 8: addresses 0400h–047Fh)

Before Instruction After Instruction

Data Memory Data Memory
405h 06h 405h 06h

ACC 0 06h ACC 0 0FFFFFFFFh

C C

Example 2 SUBB *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 301h AR6 301h

Data Memory Data Memory
301h 02h 301h 02h

ACC 1 04h ACC 1 02h

C C

In the first example, C is originally zeroed, presumably from the result of a pre-
vious subtract instruction that performed a borrow. The effective operation per-
formed was 6 – 6 – (0–) = –1, generating another borrow (resetting carry) in
the process. In the second example, no borrow was previously generated (C
= 1), and the result from the subtract instruction does not generate a borrow.

SUBC Conditional Subtract

7-180

Syntax SUBC dma Direct addressing
SUBC ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 dma

SUBC ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution For (ACC) ≥ 0 and (data-memory address) ≥ 0:

Increment PC, then ...
(ACC) – [(data-memory address) × 215] → ALU output

If ALU output ≥ 0
Then (ALU output) × 2 + 1 → ACC
Else (ACC) × 2 → ACC

Status Bits Affects
OV and C

Description The SUBC instruction performs conditional subtraction, which can be used for
division as follows: Place a positive 16-bit dividend in the low accumulator and
clear the high accumulator. Place a 16-bit positive divisor in data memory.
Execute SUBC 16 times. After completion of the last SUBC, the quotient of the
division is in the lower-order 16 bits of the accumulator, and the remainder is
in the higher-order 16 bits of the accumulator. For negative accumulator and/or
data-memory values, SUBC cannot be used for division.

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may
be placed in the accumulator and left shifted by the number of leading nonsig-
nificant 0s. The number of executions of SUBC is reduced from 16 by that num-
ber. One leading 0 is always significant.

SUBC operations performed as stated above are not affected by the sign-ex-
tension mode bit (SXM).

Opcode

 Conditional Subtract SUBC

7-181 Assembly Language Instructions

SUBC affects OV but is not affected by OVM; therefore, the accumulator does
not saturate upon positive or negative overflows when executing this instruc-
tion. The carry bit is affected in the normal manner during this instruction: the
carry bit is cleared (C = 0) if the result of the subtraction generates a borrow
and is set (C = 1) if it does not generate a borrow.

Words 1

Cycles for a Single SUBC Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SUBC Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBC DAT2 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
302h 01h 302h 01h

ACC X 04h ACC 0 08h

C C

Example 2 RPT #15
SUBC *

Before Instruction After Instruction

ARP 3 ARP 3

AR3 1000h AR3 1000h

Data Memory Data Memory
1000h 07h 1000h 07h

ACC X 41h ACC 1 20009h

C C

Cycles

SUBS Subtract From Accumulator With Sign Extension Suppressed

7-182

Syntax SUBS dma Direct addressing
SUBS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 0 dma

SUBS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – (data-memory address) → ACC

Status Bits Affected by Affects
OVM OV and C

This instruction is not affected by SXM.

Description The content of the specified data-memory location is subtracted from the accu-
mulator with sign extension suppressed. The data is treated as a 16-bit un-
signed number, regardless of SXM. The accumulator behaves as a signed
number. SUBS produces the same results as a SUB instruction with SXM =
0 and a shift count of 0.

The carry bit is cleared (C = 0) if the result of the subtraction generates a bor-
row and is set (C = 1) if it does not generate a borrow.

Words 1

Cycles for a Single SUBS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Subtract From Accumulator With Sign Extension Suppressed SUBS

7-183 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SUBS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBS DAT2 ;(DP = 16, SXM = 1)

Before Instruction After Instruction

Data Memory Data Memory
802h 0F003h 802h 0F003h

ACC X 0F105h ACC 1 102h

C C

Example 2 SUBS * ;(SXM = 1)

Before Instruction After Instruction

ARP 0 ARP 0

AR0 310h AR0 310h

Data Memory Data Memory
310h 0F003h 310h 0F003h

ACC X 0FFFF105h ACC 1 0FFF0102h

C C

SUBT Subtract From Accumulator With Shift Specified by TREG

7-184

Syntax SUBT dma Direct addressing
SUBT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

SUBT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 1 0 dma

SUBT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – [(data-memory address) � 2(TREG(3:0))] → (ACC)

If SXM = 1
Then (data-memory address) is sign-extended.

If SXM = 0
Then (data-memory address) is not sign-extended.

Status Bits Affected by Affects
OVM and SXM OV and C

Description The data-memory value is left shifted and subtracted from the accumulator.
The left shift is defined by the four LSBs of TREG, resulting in shift options from
0 to 15 bits. The result replaces the accumulator contents. Sign extension on
the data-memory value is controlled by the SXM status bit.

The carry bit is cleared (C = 0) if the result of the subtraction generates a bor-
row and is set (C = 1) if it does not generate a borrow.

Words 1

Opcode

 Subtract From Accumulator With Shift Specified by TREG SUBT

7-185 Assembly Language Instructions

Cycles for a Single SUBT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUBT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block.

Example 1 SUBT DAT127 ;(DP = 5: addresses 0280h–02FFh)

Before Instruction After Instruction

Data Memory Data Memory
2FFh 06h 2FFh 06h

TREG 08h TREG 08h

ACC X 0FDA5h ACC 1 0F7A5h

C C

Example 2 SUBT *

Before Instruction After Instruction

ARP 1 ARP 1

AR1 800h AR1 800h

Data Memory Data Memory
800h 01h 800h 01h

TREG 08h TREG 08h

ACC X 0h ACC 0 FFFFFF00h

C C

Cycles

TBLR Table Read

7-186

Syntax TBLR dma Direct addressing
TBLR ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

TBLR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 0 0 dma

TBLR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...

(PC) → MSTACK
(ACC(15:0)) → PC
(pma) → data-memory address
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0
(pma) → data-memory address
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter.

(MSTACK) → PC

Status Bits None

Description The TBLR instruction transfers a word from a location in program memory to
a data-memory location specified by the instruction. The program-memory ad-
dress is defined by the low-order 16 bits of the accumulator. For this operation,
a read from program memory is performed, followed by a write to data memory.
When repeated with the repeat (RPT) instruction, TBLR effectively becomes
a single-cycle instruction, and the program counter that was loaded with
(ACC(15:0)) is incremented once each cycle.

Words 1

Opcode

 Table Read TBLR

7-187 Assembly Language Instructions

Cycles

Cycles for a Single TBLR Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+pcode

Source: SARAM
Destination: DARAM

3 3 3 3+pcode

Source: External
Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3
4†

3+pcode

Source: SARAM
Destination: SARAM

3 3 3
4†

3+pcode

Source: External
Destination: SARAM

3+psrc 3+psrc 3+psrc
4+psrc†

3+psrc+pcode

Source: DARAM/ROM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: External
Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a TBLR Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External
Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

TBLR Table Read

7-188

Cycles for a Repeat (RPT) Execution of a TBLR Instruction (Continued)

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2
n+4†

n+2+pcode

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

2n+2§

n+2+pcode
2n‡

Source: External
Destination: SARAM

n+2+npsrc n+2+npsrc n+2+npsrc
n+4+npsrc†

n+2+npsrc+pcode

Source: DARAM/ROM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: External
Destination: External

4n+npsrc+nddst 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst+
pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLR DAT6 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

ACC 23h ACC 23h

Program Memory Program Memory
23h 306h 23h 306h

Data Memory Data Memory
206h 75h 206h 306h

Example 2 TBLR *,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ACC 24h ACC 24h

Program Memory Program Memory
24h 307h 24h 307h

Data Memory Data Memory
300h 75h 300h 307h

 Table Write TBLW

7-189 Assembly Language Instructions

Syntax TBLW dma Direct addressing
TBLW ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

TBLW dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 0 dma

TBLW ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(PC+1) → MSTACK
(ACC(15:0)) → PC+1
(data-memory address) → pma,
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0
(data-memory address) → pma,
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter.

(MSTACK) → PC+1

Status Bits None

Description The TBLW instruction transfers a word in data memory to program memory.
The data-memory address is specified by the instruction, and the program-
memory address is specified by the lower 16 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete the
instruction. When repeated with the repeat (RPT) instruction, TBLW effectively
becomes a single-cycle instruction, and the program counter that was loaded
with (ACC(15:0)) is incremented once each cycle.

Words 1

Opcode

TBLW Table Write

7-190

Cycles

Cycles for a Single TBLW Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+pcode

Source: SARAM
Destination: DARAM

3 3 3 3+pcode

Source: External
Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3
4†

3+pcode

Source: SARAM
Destination: SARAM

3 3 3
4†

3+pcode

Source: External
Destination: SARAM

3+dsrc 3+dsrc 3+dsrc
4+dsrc†

3+dsrc+pcode

Source: DARAM/ROM
Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: SARAM
Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: External
Destination: External

4+dsrc+pdst 4+dsrc+pdst 4+dsrc+pdst 5+dsrc+pdst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a TBLW Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External
Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

 Table Write TBLW

7-191 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of a TBLW Instruction (Continued)

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2
n+3†

n+2+pcode

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

2n+1§

n+2+pcode
2n‡

Source: External
Destination: SARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc
n+3+ndsrc†

n+2+ndsrc+pcode

Source: DARAM/ROM
Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: SARAM
Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: External
Destination: External

4n+ndsrc+npdst 4n+ndsrc+npdst 4n+ndsrc+npdst 4n+1+ndsrc+npdst+
pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLW DAT5 ;(DP = 32: addresses 1000h–107Fh)

Before Instruction After Instruction

ACC 257h ACC 257h

Data Memory Data Memory
1005h 4339h 1005h 4339h

Program Memory Program Memory
257h 306h 257h 4399h

Example 2 TBLW *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 1006h AR6 1006h

ACC 258h ACC 258h

Data Memory Data Memory
1006h 4340h 1006h 4340h

Program Memory Program Memory
258h 307h 258h 4340h

TRAP Software Interrupt

7-192

Syntax TRAP

Operands None

Opcode 0123456789101112131415
1000101001111101

Execution (PC) + 1 → stack
22h → PC

Status Bits Not affected by INTM; does not affect INTM.

Description The TRAP instruction is a software interrupt that transfers program control to
program-memory location 22h and pushes the program counter (PC) plus 1
onto the hardware stack. The instruction at location 22h may contain a branch
instruction to transfer control to the TRAP routine. Putting (PC + 1) onto the
stack enables a return instruction to pop the return address (which points to
the instruction after TRAP) from the stack. The TRAP instruction is not mask-
able.

Words 1

Cycles for a Single TRAP Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken, these two instruction words are discarded.

Example TRAP ;PC + 1 is pushed onto the stack, and then
;control is passed to program memory location
;22h.

Cycles

 Exclusive OR With Accumulator XOR

7-193 Assembly Language Instructions

Syntax XOR dma Direct addressing
XOR ind [, ARn] Indirect addressing
XOR #lk [, shift] Long immediate addressing
XOR #lk,16 Long immediate with left

shift of 16

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

XOR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 0 dma

XOR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

XOR #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 0 1 shift

lk

XOR #lk, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1

lk

Execution Increment PC, then ...
Event(s) Addressing mode
(ACC(15:0)) XOR (data-memory address) → ACC(15:0) Direct or indirect
(ACC(31:16)) → ACC(31:16)

(ACC(31:0)) XOR lk � 2shift → ACC(31:0) Long immediate

(ACC(31:0)) XOR lk � 216→ ACC(31:0) Long immediate
with left shift of 16

Opcode

XOR Exclusive OR With Accumulator

7-194

Status Bits None

Description With direct or indirect addressing, the low half of the accumulator value is
exclusive ORed with the content of the addressed data memory location, and
the result replaces the low half of the accumulator value; the upper half of the
accumulator value is unaffected. With immediate addressing, the long imme-
diate constant is shifted and zero filled on both ends and exclusive ORed with
the entire content of the accumulator. The carry bit (C) is unaffected by XOR.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single XOR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an XOR Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single XOR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles

 Exclusive OR With Accumulator XOR

7-195 Assembly Language Instructions

Example 1 XOR DAT127 ;(DP = 511: addresses FF80h–FFFFh)

Before Instruction After Instruction

Data Memory Data Memory
0FFFFh 0F0F0h 0FFFFh 0F0F0h

ACC X 12345678h ACC X 1234A688h

C C

Example 2 XOR *+,AR0

Before Instruction After Instruction

ARP 7 ARP 0

AR7 300h AR7 301h

Data Memory Data Memory
300h 0FFFFh 300h 0FFFFh

ACC X 1234F0F0h ACC X 12340F0Fh

C C

Example 3 XOR #0F0F0h,4 ;(First shift data value left by
;four)

Before Instruction After Instruction

ACC X 11111010h ACC X 111E1F10h

C C

ZALR Zero Low Accumulator and Load High Accumulator With Rounding

7-196

Syntax ZALR dma Direct addressing
ZALR ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* *+ *– *0+ *0– *BR0+ *BR0–

ZALR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 0 dma

ZALR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → ACC(31:16)
8000h → ACC(15:0)

Status Bits None

Description The ZALR instruction loads a 16-bit data-memory value into the high word of
the accumulator. The instruction rounds the value by adding half of the value
of the LSB: bit 15 of the accumulator is set, and bits 14 are cleared.

Words 1

Cycles for a Single ZALR Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles

 Zero Low Accumulator and Load High Accumulator With Rounding ZALR

7-197 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of a ZALR Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ZALR DAT3 ;(DP = 32: addresses 1000h–107Fh)

Before Instruction After Instruction

Data Memory Data Memory
1003h 3F01h 1003h 3F01h

ACC X 77FFFFh ACC X 3F018000h

C C

Example 2 ZALR *–,AR4

Before Instruction After Instruction

ARP 7 ARP 4

AR7 0FF00h AR7 0FEFFh

Data Memory Data Memory
0FF00h 0E0E0h 0FF00h 0E0E0h

ACC X 107777h ACC X 0E0E08000h

C C

8-1On-Chip Peripherals

On-Chip Peripherals

This chapter discusses on-chip peripherals connected to the ’C20x CPU and
their control registers. The on-chip peripherals are controlled through I/O
mapped registers. The operations of the timer and the serial ports are
synchronized to the processor through interrupts and interrupt polling. The
’C20x on-chip peripherals are:

� Clock generator
� Timer
� Software-programmable wait-state generator
� General-purpose I/O pins
� Synchronous serial port (SSP)
� Asynchronous serial port (ASP), or UART

The serial ports are discussed in Chapter 9 and Chapter 10.

For examples of program code for the on-chip peripherals, see Appendix D,
Program Examples.

Topic Page

8.1 Control of On-Chip Peripherals 8-2.

8.2 Clock Generator 8-4.

8.3 CLKOUT1-Pin Control (CLK) Register 8-7.

8.4 Timer 8-8.

8.5 Wait-State Generator 8-15.

8.6 General-Purpose I/O Pins 8-18.

Chapter 8

Control of On-Chip Peripherals

8-2

8.1 Control of On-Chip Peripherals

The on-chip peripherals are controlled by accessing control registers that are
mapped to on-chip I/O space. Data is also transferred to and from the peripher-
als through these registers. Setting and clearing bits in these registers can en-
able, disable, initialize, and dynamically reconfigure the on-chip peripherals.

On a device reset, the CPU sends an internal SRESET signal to the peripheral
circuits. Table 8–1 lists the peripheral registers and summarizes what hap-
pens when the values in these registers are reset. For a description of all the
effects of a device reset, see section 5.7, Reset Operation, on page 5-35.

Table 8–1. Peripheral Register Locations and Reset Conditions

Register
I/O Address

Register
Name ’C209 Other ’C20x Reset Value Effects at Reset

PMST – FFE4h 000xh Program memory status register. SARAM mapped
into program and data memory. MP/MC and
LEVEXT8 bits depend on external pin state.

CLK – FFE8h 0000h CLKOUT1-pin control (CLK) register. The
CLKOUT1 signal is available at the CLKOUT1 pin.

SDTR – FFF0h xxxxh Synchronous data transmit and receive register.
The value in this register is undefined after reset.

SSPCR – FFF1h 0030h Synchronous serial port control register. The port
emulation mode is set to immediate stop. Error and
status flags are reset. Receive interrupts are set to
occur when the receive buffer is not empty.
Transmit interrupts are set to occur when the
transmit buffer can accept one or more words.
External clock and frame synchronization sources
are selected. Continuous mode is selected. Digital
loopback mode is disabled. The receiver and
transmitter are enabled.

SSPST – FFF2h 0000h Synchronous serial port status register. Data word
size is 16 bits. Sign extension is off. FIFO registers
are empty. Clock prescaler is disabled. Input clock
is CLKOUT1. CLKX polarity is normal. FSX rate is
rate at which data is written to transmit FIFO.

SSPMC – FFF3h 0000h Synchronous serial port multichannel register.
GPC is disabled. Multichannel mode is disabled.
SPI mode is disabled.

ADTR – FFF4h xxxxh Asynchronous data transmit and receive register.
The value in this register is undefined after reset.

Control of On-Chip Peripherals

8-3On-Chip Peripherals

Table 8–1. Peripheral Register Locations and Reset Conditions (Continued)

Register
Name

I/O Address
Register
Name Effects at ResetReset ValueOther ’C20x’C209

ASPCR – FFF5h 0000h Asynchronous serial port control register. The port
emulation mode is set to immediate stop. Receive,
transmit, and delta interrupts are disabled. One
stop bit is selected. Auto-baud alignment is
disabled. The TX pin is forced high between
transmissions. I/O pins IO0, IO1, IO2, and IO3 are
configured as inputs. The port is disabled.

IOSR – FFF6h 18xxh I/O status register. Auto-baud alignment is
disabled. Error and status flags are reset. The
lower eight bits are dependent on the values on
pins IO0, IO1, IO2, and IO3 at reset.

BRD – FFF7h 0001h Baud rate divisor register. A baud rate of
(CLKOUT1 rate)/16 is selected.

TCR FFFCh FFF8h 0000h Timer control register. The divide-down value is 0,
and the timer is started.

PRD FFFDh FFF9h FFFFh Timer period register. The next value to be loaded
into the timer counter register (TIM) is at its highest
value.

TIM FFFEh FFFAh FFFFh Timer counter register. The timer count is at its
highest value.

SSPCT – FFFBh 0000h Synchronous serial port counter register. SSP
counter bits are 0.

WSGR FFFFh FFFCh 0FFFh Wait-state generator control register. The
maximum number of wait states are selected for
off-chip program, data, and I/O spaces.

Clock Generator

8-4

8.2 Clock Generator

The high pulse of the master clock output signal (CLKOUT1) signifies the logic
phase of the device (the phase when values are changed), while the low pulse
signifies the latch phase (the phase when values are latched). CLKOUT1 de-
termines much of the device’s operational speed. For example:

� The timer clock rate is a fraction of the rate of CLKOUT1.
� Each instruction cycle is equal to one CLKOUT1 period.
� Each wait state generated by the READY signal or by the on-chip wait-

state generator is equal to one CLKOUT1 period.

You control the rate of CLKOUT1 with the on-chip clock generator. The clock
generator creates an internal CPU clock signal CLKOUT1 whose rate is a frac-
tion or multiple of a source clock signal CLKIN. This generator consists of two
independent components, an oscillator and a phase lock loop (PLL) circuit.
The internal oscillator, in conjunction with an external resonator circuit, allows
you to generate CLKIN internally and create a CLKOUT1 signal that oscillates
at a multiple (0.5, 1, 2, or 4 times) of the frequency of CLKIN. The PLL makes
the rate of CLKOUT1 a multiple of the rate of CLKIN and locks the phase of
CLKOUT1 to that of CLKIN.

CLKIN can be generated by the internal oscillator or by an external oscillator:

� Internal oscillator . The clock source is generated internally by connect-
ing a crystal resonator circuit across the CLKIN/X2 and X1 pins. The crys-
tal should be in either fundamental or overtone operation and parallel res-
onant, with an effective series resistance of 30 ohms and a power dissipa-
tion of 1 mW. It should also be specified at a load capacitance of 20 pF.
Figure 8–1 shows the setup for a fundamental frequency crystal. Over-
tone crystals require an additional tuned-LC circuit.

If the internal oscillator is used, the frequency of CLKOUT1 is half the oscil-
lating frequency of the crystal in ÷2 mode. For example, a 40-MHz crystal
will provide a CLKOUT1 rate of 20 MHz, providing 20 MIPS of processing
power.

Figure 8–1. Using the Internal Oscillator

’C20x

X1

CLKIN/X2

Crystal
C1

C1

Clock Generator

8-5On-Chip Peripherals

� External Oscillator . If an external oscillator is used, its output must be
connected to the CLKIN/X2 pin. The X1 pin must be left unconnected. See
Figure 8–2.

Figure 8–2. Using an External Oscillator

’C20x

X1

CLKIN/X2

No connection

Oscillator

Regardless of the method used to generate CLKOUT1, CLKOUT1 is also
available at the CLKOUT1 pin, unless the pin is turned off by the CLK register
(see section 8.3).

You can lower the power requirements for the ’C20x by slowing down or stop-
ping the input clock.

Note:

When restarting the system, activate RS before starting or stopping the
clock, and hold it active until the clock stabilizes. This brings the device back
to a known state.

8.2.1 Clock Generator Options

The ’C20x provides four clock modes: divide-by-2 (÷2), multiply-by-1 (×1),
multiply-by-2 (×2), and multiply-by-4 (×4). The ÷2 mode operates the CPU at
half the input clock rate. Each of the other modes operates the CPU at a multi-
ple of the input clock rate and phase locks the output clock with the the input
clock. You set the mode by changing the levels on the DIV1 and DIV2 pins. For
each mode, Table 8–2 shows the generated CPU clock rate and the state of
DIV2, DIV1, the internal oscillator, and the internal phase lock loop (PLL).

Notes:

1) Change DIV1 and DIV2 only while the reset signal (RS) is active.

2) The PLL requires approximately 2500 cycles to lock the output clock sig-
nal to the input clock signal. When setting the ×1, ×2, or ×4 mode, keep
the reset (RS) signal active until at least three cycles after the PLL has
stabilized.

Clock Generator

8-6

Table 8–2. ’C20x Input Clock Modes

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Clock
Mode

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 Rate
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DIV2
ÁÁÁ
ÁÁÁ
ÁÁÁ

DIV1
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
CLKIN Source?

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
Oscillator

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
PLL

ÁÁÁÁ
ÁÁÁÁ

÷ 2 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 = CLKIN ÷ 2ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

No ÁÁÁÁÁ
ÁÁÁÁÁ

Enabled ÁÁÁÁÁ
ÁÁÁÁÁ

Disabled

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Yes
ÁÁÁÁÁ
ÁÁÁÁÁ

Disabled
ÁÁÁÁÁ
ÁÁÁÁÁ

Disabled
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

× 1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 = CLKIN × 1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Required
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Disabled
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Enabled

ÁÁÁÁ
ÁÁÁÁ

× 2 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 = CLKIN × 2ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Required ÁÁÁÁÁ
ÁÁÁÁÁ

Disabled ÁÁÁÁÁ
ÁÁÁÁÁ

Enabled

ÁÁÁÁ
ÁÁÁÁ

× 4 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 = CLKIN × 4ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Required ÁÁÁÁÁ
ÁÁÁÁÁ

Disabled ÁÁÁÁÁ
ÁÁÁÁÁ

Enabled

Remember the following when configuring the clock mode:

� The clock mode configuration cannot be dynamically changed. After you
change the levels on DIV1 and DIV2, the mode is not changed until a hard-
ware reset is executed (RS low).

� The operation of the PLL circuit is affected by the operating voltage of the
device. If your device operates at 5V, the PLL5V signal should be tied high
at the PLL5V pin. If you have a 3-V device, tie PLL5V low.

� The ×1, ×2, and ×4 modes use an internal phase lock loop (PLL) that re-
quires approximately 2500 cycles to lock. Delay the rising edge of RS until
at least three cycles after the PLL has stabilized. When the PLL is used,
the duty cycle of the CLKIN signal is more flexible, but the minimum duty
cycle should not be less than 10 nanoseconds. When the PLL is not used,
no phase-locking time is necessary, but the minimum pulse width must be
45% of the minimum clock cycle.

CLKOUT1-Pin Control (CLK) Register

8-7On-Chip Peripherals

8.3 CLKOUT1-Pin Control (CLK) Register

You can use bit 0 of the CLK register to turn off the pin for the master clock out-
put signal (CLKOUT1). The CLK register is located at address FFE8h in I/O
space and has the organization shown in Figure 8–3.

Figure 8–3. ’C20x CLK Register — I/O-Space Address FFE8h

15 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved CLKOUT1

0 R/W–0

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (–) is value after reset.

If the CLKOUT1 bit is 1, the CLKOUT1 signal is not available at the CLKOUT1
pin; if the bit is 0, CLKOUT1 is available at the pin. At reset, this bit is cleared
to 0. When the IDLE instruction puts the CPU into a power-down mode,
CLKOUT1 remains active at the pin if the CLKOUT1 bit is 0. (For more informa-
tion on the ’C20x power-down mode, see section 5.8, Power-Down Mode, on
page 5-40).

For the current status of CLKOUT1, read bit 0. To change the status, write to
bit 0. When programming, allow the CLKOUT1 pin two cycles to change its
state from on to off or from off to on. Bits 15–1 are reserved and are always
read as 0s.

Timer

8-8

8.4 Timer

The ’C20x features an on-chip timer with a 4-bit prescaler. This timer is a down
counter that can be stopped, restarted, reset, or disabled by specific status
bits. You can use the timer to generate periodic CPU interrupts.

Figure 8–4 shows a functional block diagram of the timer. There is a 16-bit
main counter (TIM) and a 4-bit prescaler counter (PSC). The TIM is reloaded
from the period register PRD. The PSC is reloaded from the period register
TDDR.

Figure 8–4. Timer Functional Block Diagram

PRD

TIM

Borrow

TDDR

PSC

Borrow

SRESET

TRB

CLKOUT1

TSS

TINT

TOUT

Each time a counter decrements to zero, a borrow is generated on the next
CLKOUT1 cycle, and the counter is reloaded with the contents of its corre-
sponding period register. The contents of the PRD are loaded into the TIM
when the TIM decrements to 0 or when a 1 is written to the timer reload bit
(TRB) in the timer control register (TCR). Similarly, the PSC is loaded with the
value in the TDDR when the PSC decrements to 0 or when a 1 is written to
TRB.

When the TIM decrements to 0, it generates a borrow pulse that has a duration
equal to that of a CLKOUT1 cycle (tc(C)). This pulse is sent to:

� The external timer output (TOUT) pin
� The CPU, as a timer interrupt (TINT) signal

Timer

8-9On-Chip Peripherals

The TINT request automatically sets the TINT flag bit in the interrupt flag regis-
ter (IFR). You can mask or unmask the request with the interrupt mask register
(IMR). If you are not using the timer, mask TINT so that it does not cause an
unexpected interrupt.

8.4.1 Timer Operation

Here is a typical sequence of events for the timer:

1) The PSC decrements on each succeeding CLKOUT1 pulse until it
reaches 0.

2) On the next CLKOUT1 cycle, the TDDR loads the new divide-down count
into the PSC, and the TIM decrements by 1.

3) The PSC and the TIM continue to decrement in the same way until the TIM
decrements to 0.

4) On the next CLKOUT1 cycle, a timer interrupt (TINT) is sent to the CPU,
a pulse is sent to the TOUT pin, the new timer count is loaded from the
PRD into the TIM, and the PSC is decremented once.

The TIM decrements by one every (TDDR+1) CLKOUT1 cycles. When PRD,
TDDR, or both are nonzero, the timer interrupt rate is defined by Equation 8–1,
where tc(CO) is the period of CLKOUT1, u is the TDDR value plus 1, and v is
the PRD value plus 1. When PRD = TDDR = 0, the timer interrupt rate is
(CLKOUT1 rate)/2.

Equation 8–1. Timer Interrupt Rate for Nonzero TDDR and/or PRD

TINT rate� 1
tc(CO)

�
1

u� v�
1

tc(CO)
�

1
(TDDR� 1)� (PRD� 1)

�
CLKOUT1 rate

(TDDR� 1)� (PRD� 1)

Note:

Equation 8–1 is not valid for TDDR = PRD = 0; in this case, the timer interrupt
rate defaults to (CLKOUT1 rate)/2.

In Equation 8–1 the timer interrupt rate equals the CLKOUT1 frequency
(1/tc(CO)) divided by two independent factors (u and v). Each of the two divisors
is implemented with a down counter and a period register. See the timer
functional block diagram, Figure 8–4, on page 8-8. The counter and period
registers for the divisor u are the PSC and TDDR, respectively, both 4-bit fields
of the timer control register (TCR). The counter and period registers for the
divisor v are the TIM and PRD, respectively. Both are16-bit registers mapped
to I/O space.

Timer

8-10

The 4-bit TDDR (timer divide-down register) and the 4-bit PSC (prescaler
counter) are contained in the timer control register (TCR) described in section
8.4.2. The TIM (timer counter register) and the PRD (timer period register) are
16-bit registers described in section 8.4.3. You can read the TCR, TIM, and
PRD to obtain the current status of the timer and its counters.

Note:

Read the TIM for the current value in the timer. Read the TCR for the PSC
value. Because it takes two instructions to read both the TIM and the TCR,
the PSC may decrement between the two reads, making comparison of the
reads inaccurate. Therefore, where precise timing measurements are
necessary, you may want to stop the timer before reading the two values.
(Set the TSS bit of the TCR to 1 to stop the timer; clear TSS to 0 to restart
the timer.)

8.4.2 Timer Control Register (TCR)

The TCR, a 16-bit register mapped to on-chip I/O space, contains the control
bits that:

� Control the mode of the timer
� Specify the current count in the prescaler counter
� Reload the timer
� Start and stop the timer
� Define the divide-down value of the timer

For ’C20x devices other than the ’C209, Figure 8–5 shows the bit layout of the
TCR. Descriptions of the bits follow the figure. For a description of the ’C209
TCR, see section 11.4.2 on page 11-16.

Timer

8-11On-Chip Peripherals

Figure 8–5. ’C20x Timer Control Register (TCR) — I/O-Space Address FFF8h

15 12 11 10 9 6 5 4 3 0

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Reserved FREE SOFT PSC TRB TSS TDDR

0 R/W–0 R/W–0 R/W–0 R/W–0 W–0 R/W–0

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (–) is value after reset.

Table 8–3. ’C20x TCR — I/O Space Address FFF8h Bit Descriptions

Bit
No. Name Function

15–12 Reserved Bits 15–12 are reserved and are always read as 0s.

11–10 FREE, SOFT These bits are special emulation bits that determine the state of the timer when a
breakpoint is encountered in the high-level language debugger. If the FREE bit is
set to 1, then, upon a software breakpoint, the timer continues to run (that is, runs
free). In this case, SOFT is a don’t care. But if FREE is 0, then SOFT takes effect.
In this case, if SOFT = 0, the timer halts the next time the TIM decrements. If the
SOFT bit is 1, then the timer halts when the TIM has decremented to zero. The
default (reset) setting is FREE = 0 and SOFT = 0. The available run and
emulation modes are:

0 0 Stop after the next decrement of the TIM (hard stop)

0 1 Stop after the TIM decrements to 0 (soft stop)

1 0 Free run

1 1 Free run

9–6 PSC Timer prescaler counter. These four bits hold the current prescale count for the
timer. For every CLKOUT1 cycle that the PSC value is greater than 0, the PSC
decrements by one. One CLKOUT1 cycle after the PSC reaches 0, the PSC is
loaded with the contents of the TDDR, and the timer counter register (TIM)
decrements by one. The PSC is also reloaded whenever the timer reload bit
(TRB) is set by software. The PSC can be checked by reading the TCR, but it
cannot be set directly. It must get its value from the timer divide-down register
(TDDR). At reset, the PSC is set to 0.

5 TRB Timer reload bit. When you write a 1 to TRB, the TIM is loaded with the value in
the PRD, and the PSC is loaded with the value in the timer divide-down register
(TDDR). The TRB bit is always read as zero.

Timer

8-12

Table 8–3. ’C20x TCR — I/O Space Address FFF8h Bit Descriptions (Continued)

Bit
No. FunctionName

4 TSS Timer stop status bit. TSS stops or starts the timer. At reset, TSS is cleared to 0
and the timer immediately starts.

0 Starts or restarts the timer.

1 Stops the timer.

3–0 TDDR Timer divide-down register. Every (TDDR + 1) CLKOUT1 cycles, the timer counter
register (TIM) decrements by one. At reset, the TDDR bits are cleared to 0. If you
want to increase the overall timer count by an integer factor, write this factor mi-
nus one to the four TDDR bits. When the prescaler counter (PSC) value is 0, one
CLKOUT1 cycle later, the contents of the TDDR reload the PSC, and the TIM
decrements by one. TDDR also reloads the PSC whenever the timer reload bit
(TRB) is set by software.

8.4.3 Timer Counter Register (TIM) and Timer Period Register (PRD)

These two registers work together to provide the current count of the timer:

� The 16-bit timer counter register (TIM) holds the current count of the timer.
The TIM decrements by one every (TDDR+1) CLKOUT1 cycles. When the
TIM decrements to zero, the TINT bit of the interrupt flag register (IFR) is
set (causing a pending timer interrupt), and a pulse is sent to the TOUT
pin.

You cannot directly write to the TIM register. At reset, this register is set to
hold its maximum value of FFFFh. See Table 8–1 (page 8-2) for the ad-
dress of this register.

� The 16-bit timer period register (PRD) holds the next starting count for the
timer. When the TIM decrements to zero, in the following cycle, the con-
tents of the PRD are loaded into the TIM. The PRD contents are also
loaded into the TIM when you set the timer reload bit (TRB).

You can program the PRD to contain a value from 0 to 65 535 (FFFFh).
After reset, the PRD holds its maximum value of FFFFh. See Table 8–1
(page 8-2) for the address of this register. If you are not using the timer,
you can mask TINT and then use the PRD as a general-purpose data-
memory location.

You control the timer’s current and next periods. You can write to or read from
the TIM and PRD on any cycle. You can monitor and control the count by read-
ing from the TIM and writing the next counter period to the PRD without disturb-
ing the current timer count. The timer will start the next period after the current

Timer

8-13On-Chip Peripherals

count is complete. If you use TINT, you should program the PRD and TIM be-
fore unmasking TINT, to avoid unwanted interrupts.

Once a reset is initiated, the TIM begins to decrement only after reset is
deasserted.

8.4.4 Setting the Timer Interrupt Rate

When the divide-down value (TDDR) is 0, you can program the timer to gener-
ate an interrupt (TINT) every 2 to 65 536 cycles by programming the period
register (PRD) from 0 to 65 535 (FFFFh). When TDDR is nonzero (1 to 15),
the timer interrupt rate decreases.

If TDDR, PRD, or both are nonzero, the timer interrupt rate is given by:

TINT rate � CLKOUT1 rate
(TDDR� 1)� (PRD� 1)

Note:

When TDDR = PRD = 0, the timer interrupt rate defaults to
(CLKOUT1 rate)/2.

As an example of setting the timer interrupt rate, suppose the CLKOUT1 rate
is 10 MHz and you want to use the timer to generate a clock signal with a rate
of 10 kHz. You need to divide the CLKOUT1 rate by 1000. The TDDR is loaded
with 4, so that every 5 CLKOUT1 cycles, the TIM decrements by one. The PRD
is loaded with the starting count (199) for the TIM. These values are verified
with the TINT rate equation:

TINT rate� CLKOUT1 rate � 1
(TDDR� 1)� (PRD� 1)

TINT rate�
1 CLKOUT1 cycle

0.10 � 10�6 s
�

1 TINT cycle
(4� 1)� (199� 1) CLKOUT1 cycle

TINT rate�
10 � 103 TINT cycles

s � 10 kHz

The PSC and the TIM would be loaded with the values from the TDDR and the
PRD, respectively. Then, one CLKOUT1 cycle after the TIM decrements to 0,
the timer would send an interrupt to the CPU.

Timer

8-14

8.4.5 The Timer at Hardware Reset

On a device reset, the CPU sends an SRESET signal to the peripheral circuits,
including the timer. The SRESET signal has the following consequences on
the timer:

� The registers TIM and PRD are loaded with their maximum values
(FFFFh).

� All the bits of the TCR are cleared to zero with the following results:

� The divide-down value is 0 (TDDR = 0 and PSC = 0).

� The timer is started (TSS = 0).

� The FREE and SOFT bits are both 0.

Wait-State Generator

8-15On-Chip Peripherals

8.5 Wait-State Generator

Wait states are necessary when you want to interface the ’C20x with slower
external logic and memory. By adding wait states, you lengthen the time the
CPU waits for external memory or an external I/O port to respond when the
CPU reads from or writes to that memory or port. Specifically, the CPU waits
one extra cycle (one CLKOUT1 cycle) for every wait state. The wait states op-
erate on CLKOUT1 cycle boundaries.

To avoid bus conflicts, writes from the ’C20x always take at least two
CLKOUT1 cycles.

The ’C20x offers two options for generating wait states:

� The READY signal. With the READY signal, you can externally generate
any number of wait states.

� The on-chip wait-state generator. With this generator, you can generate
zero to seven wait states.

8.5.1 Generating Wait States With the READY Signal

When READY is low, the ’C20x waits one CLKOUT1 cycle and checks READY
again. The ’C20x will not continue executing until READY is driven high; there-
fore, if the READY signal is not used, it should be pulled high during external
accesses.

Again, the READY pin can be used to generate any number of wait states.
However, even when the ’C20x operates at full speed, it may not respond fast
enough to provide a READY-based wait state for the first cycle. For extended
wait states using external READY logic, the on-chip wait-state generator
should be programmed to generate at least one wait state.

The READY pin has no effect on accesses to internal memory or I/O registers,
except in the case of the ’C209 (refer to section 11.2, ’C209 Memory and I/O
Spaces). For a ’C20x device with a bootloader, READY must be high at boot
time.

8.5.2 Generating Wait States With the ’C20x Wait-State Generator

For devices other than the ’C209, the software wait-state generator can be
programmed to generate zero to seven wait states for a given off-chip memory
space (lower program, upper program, data, or I/O), regardless of the state of
the READY signal. This wait-state generator has the bit fields shown in
Figure 8–6 and described after the figure. For a description of the ’C209 wait-

Wait-State Generator

8-16

state generator, see section 11.4.3 on page 11-17. To avoid bus conflicts, all
writes to external addresses take at least two cycles. Once the wait-state gen-
erator has no zero value, the wait states are extended for both read and write
cycles.

Figure 8–6. ’C20x Wait-State Generator Control Register (WSGR)
— I/O-Space Address FFFCh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Reserved ISWS DSWS PSUWS PSLWS

0 R/W–111 R/W–111 R/W–111 R/W–111

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (–) is value after reset.

Table 8–4. ’C20x WSGR — I/O Space Address FFFCh Bit Descriptions

Bit
No. Name Function

15–12 Reserved Bits 15–12 are reserved and are always read as 0s.

11–9 ISWS I/O-space wait-state bits. Bits 9–11 determine the number of wait states (0, 1, 2,
3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip I/O space. At
reset, the three ISWS bits become 111, setting seven wait states for reads from
and writes to off-chip I/O space.

8–6 DSWS Data-space wait-state bits. Bits 6–8 determine the number of wait states (0, 1, 2,
3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip data space. At
reset, the three DSWS bits become 111, setting seven wait states for reads from
and writes to off-chip data space.

5–3 PSUWS Upper program-space wait-state bits. Bits 3–5 determine the number of wait
states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip
upper program addresses 8000h–FFFFh. At reset, the three PSUWS bits become
111, setting seven wait states for reads from and writes to off-chip upper program
space.

2–0 PSLWS Lower program-space wait-state bits. Bits 0–2 determine the number of wait
states (0, 1, 2, 3, 4, 5, 6, or 7) that are applied to reads from and writes to off-chip
lower program addresses 0h–7FFFh. At reset, the three PSLWS bits become 111,
setting seven wait states for reads from and writes to off-chip lower program
space.

Wait-State Generator

8-17On-Chip Peripherals

Table 8–5 shows how to set the number of wait states you want for each type
of off-chip memory. For example, if you write 1s to bits 0 through 5, the device
will generate seven wait states for off-chip lower program memory and seven
wait states for off-chip upper program memory.

Table 8–5. Setting the Number of Wait States With the ’C20x WSGR Bits

ISWS Bits
I/O Wait

DSWS Bits
Data Wait

PSUWS
Bits

Upper
Program

Wait

PSLWS
Bits

Lower
Program

Wait
11 10 9

I/O Wait
States 8 7 6

Data Wait
States 5 4 3

Wait
States 2 1 0

Wait
States

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3

1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4

1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5

1 1 0 6 1 1 0 6 1 1 0 6 1 1 0 6

1 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7

In summary, the wait-state generator inserts zero to seven wait states to a giv-
en memory space, depending on the values of PSLWS, PSUWS, DSWS, and
ISWS, while the READY signal remains high. The READY signal may then be
driven low to generate additional wait states. At reset, all WSGR bits are set
to 1, making seven wait states the default for every memory space.

General-Purpose I/O Pins

8-18

8.6 General-Purpose I/O Pins

The ’C20x provides pins that can be used to supply input signals from an exter-
nal device or output signals to an external device. These pins are not bound
to specific uses; rather, they can provide input or output signals for a great vari-
ety purposes. You have access to the general-purpose input pin BIO and the
general-purpose output pin XF. On ’C20x devices other than the ’C209, you
also have the pins IO0, IO1, IO2, and IO3, which can each be configured as
an input pin or an output pin.

8.6.1 Input Pin BIO

The general-purpose input pin BIO pin provides input from an external device
and is particularly helpful as an alternative to an interrupt when time-critical
loops must not be disturbed. The BIO signal gives you control through three
instructions, a conditional branch (BCND), a conditional call (CC), and a condi-
tional return (RETC). Here is an example of each:

� BCND pma, BIO

pma is a program memory address that you specify. The CPU branches to
the program memory address if BIO is low.

� CC pma, BIO

pma is a program memory address that you specify. If BIO is low, the CPU
stores the return address to the top of the hardware stack and then
branches to the program memory address.

� RETC BIO

If BIO is low, the CPU transfers the return address from the stack to the
program counter (PC) to return from a subroutine or interrupt service rou-
tine.

If BIO is not used, it should be pulled high so that a conditional branch, call,
or return will not be executed accidentally.

An example of BIO timing is shown in Figure 8–7. This timing diagram is for
a sequence of single-cycle, single-word instructions located in external
memory. BIO must be asserted low for at least one CLKOUT1 cycle. The
BCND, CC, and RETC instructions sample the BIO pin during their execute
phase in the pipeline. Actual timing may vary with different instruction se-
quences.

General-Purpose I/O Pins

8-19On-Chip Peripherals

Figure 8–7. BIO Timing Diagram Example

BIO

CLKOUT1

1 CLKOUT1
cycle

8.6.2 Output Pin XF

The XF pin is the external flag output pin. If you connect XF to an input pin of
another processor, you can use XF as a signal to other processor. The most
recent XF value is latched in the ’C20x, and that value is indicated by the XF
status bit of status register ST1. You can set XF (XF = 1) with the SETC XF (set
external flag) instruction and clear it (XF = 0) with the CLRC XF (clear external
flag) instruction. In addition, you can write to ST1 with the LST (load status
register) instruction. During a hardware reset, XF is set to 1.

8.6.3 Input/Output Pins IO0, IO1, IO2, and IO3

For additional input/output control, ’C20x devices other than the ’C209 have
pins IO0, IO1, IO2, and IO3, which can be individually configured as inputs or
outputs. These pins are software-controllable with the asynchronous serial
port control register (ASPCR) and the I/O status register (IOSR). For the
details of configuring and using these I/O pins, see section 10.3.5, Using I/O
Pins IO3, IO2, IO1, and IO0, on page 10-15.

9-1Synchronous Serial Port

Synchronous Serial Port

The ’C20x devices have a synchronous serial port that provides direct
communication with serial devices such as codecs (coder/decoders) and
serial A/D converters. The serial port may also be used for intercommunication
between processors in multiprocessing applications.

The synchronous serial port offers these features:

� Two four-word-deep FIFO buffers
� Interrupts generated by the FIFO buffers
� A wide range of speeds of operation
� Burst and continuous modes of operation

For examples of program code for the synchronous serial port, see Appendix D,
Program Examples.

Topic Page

9.1 Overview of the Synchronous Serial Port 9-2.

9.2 Components and Basic Operation 9-3.

9.3 Controlling and Resetting the Port 9-8.

9.4 Managing the Contents of the FIFO Buffers 9-15.

9.5 Transmitter Operation 9-16.

9.6 Receiver Operation 9-22.

9.7 Troubleshooting 9-25.

9.8 Enhanced Synchronous Serial Port (ESSP) 9-29.

9.9 ESSP Pins 9-30.

9.10 ESSP Registers 9-32.

9.11 ESSP Register Programming Considerations 9-40.

Chapter 9

Overview of the Synchronous Serial Port

9-2

9.1 Overview of the Synchronous Serial Port

Both receive and transmit sections of the synchronous serial port have a
four-word-deep first-in, first-out (FIFO) buffer. The FIFO buffers reduce the
amount of CPU overhead inherent in servicing transmit or receive data by
reducing the number of transmit or receive interrupts that occur during a
transfer. The synchronous serial port is reset 16 CLKOUT1 cycles after the
rising edge of the pin, during device reset.

In the internal clock mode, the maximum transmission rate for both transmit
and receive operations is the CPU clock rate divided by two, or
(CLKOUT1 rate)/2. Therefore, the maximum rate is 10 megabits/s for a
20-MHz (50-ns) device, 14.28 megabits/s for a 28.57-MHz (35-ns) device, and
20 megabits/s for a 40-MHz (25-ns) device. Since the serial port is fully static,
it also functions at arbitrarily low clocking frequencies.

Two modes of operation are provided to support a wide range of applications:

� Continuous mode – provides operation that requires only one frame
synchronization (frame sync) pulse to transmit several packets at
maximum frequency

� Burst mode – allows transmission of a single 16-bit word following a frame
sync pulse.

These two modes of operation suit most of the industry-standard synchronous
serial-data devices, such as codecs. This port is intended to provide a glueless
interface to most of the standard codec parts. However, these modes can also
be adapted for specialized synchronous interfaces.

Components and Basic Operation

9-3Synchronous Serial Port

9.2 Components and Basic Operation

The synchronous serial port has several hard-wired parts, including two FIFO
buffers and six signal pins. Figure 9–1 shows how the components of the
synchronous serial port are interconnected.

Figure 9–1. Synchronous Serial Port Block Diagram

SDTR transmit (-3)

RSR XSRDR DX

FSR FSX CLKXCLKR

SDTR receive (-3)

Receive (-2) Transmit (-2)

Receive (-1) Transmit (-1)

Receive (0) Transmit (0)

RINT XINT

Control
logic

(receive)

Control
logic

(transmit)

Internal data bus

9.2.1 Signals

Serial port operation requires three basic signals:

� Clock signal. The clock signal (CLKX/CLKR) is used to control timing
during the transfer. The timing signal for transmissions can be either
generated internally or taken from an external source.

� Frame sync signal. The frame sync signal (FSX/FSR) is used at the start
of a transfer to synchronize the transmit and receive operations. The
frame sync signal for transmissions can be either generated internally or
taken from an external source.

Components and Basic Operation

9-4

� Data signal. The data signal carries the actual data that is transferred in
the transmit/receive operation. The data signal transmit pin (DX) of one
device should be connected to the data signal receive (DR) pin on another
device.

Table 9–1 describes the six pins that use these signals.

Table 9–1. SSP Interface Pins

Pin
Name Description

CLKX Transmit clock input or output. The clock signal is used for clocking data
from the serial port transmit shift register (XSR) to the DX pin. If the port is
configured for accepting an external clock, this pin receives the clock
signal. If the port is configured for generating an internal clock, this pin
transmits the clock signal.

FSX Transmit frame synchronization. FSX signals the start of a transmission.
If the port is configured for accepting an external frame sync pulse, this pin
receives the pulse. If the port is configured for generating an internal frame
sync pulse, this pin transmits the signal.

DX Serial data transmit. DX transmits serial data from the serial port transmit
shift register (XSR).

CLKR Receive clock input. CLKR receives an external clock signal for clocking
the data from the DR pin into the serial port receive shift register (RSR).

FSR Receive frame synchronization. FSR initiates the reception of data at the
beginning of the packet.

DR Serial data receive. DR receives serial data, transferring it into the serial
port receive shift register (RSR).

Figure 9–2 shows how the signals are connected in a typical serial transfer
between two devices. The DR pin receives serial data from the DOUT signal,
and the DX signal sends serial data to the DIN pin. The FSX and FSR signals
are both supplied from the FS pin, and they initiate the transfers (at the
beginning of a data packet). The SCK signal drives both the CLKX and CLKR
signals, which clock the bit transfers.

Components and Basic Operation

9-5Synchronous Serial Port

Figure 9–2. 2-Way Serial Port Transfer With External Frame Sync and External Clock

TMS320C203TLC320AD55C

Analog
signal

A/D

D/AAnalog
signal

DR

DX

CLKX

CLKR

FSX

FSR

DOUT

DIN

SCK

FS

Legend: D OUT Transmit data DR Receive data
DIN Receive data DX Transmit data
SCK Clock source CLKX Transmit clock
FS Frame sync source CLKR Receive clock

FSX Transmit frame synchronization
FSR Receive frame synchronization

9.2.2 FIFO Buffers and Registers

The synchronous serial port (SSP) has two four-level transmit and receive
FIFO buffers (shown at the center of Figure 9–1 on page 9-3).

Two on-chip registers allow you to access the FIFO buffers and control the
operation of the port:

� Synchronous data transmit and receive register (SDTR). The SDTR,
at I/O address FFF0h, is used for the top of both FIFO buffers (transmit and
receive) and is the only visible part of the FIFO buffers.

� Synchronous serial port control register (SSPCR). The SSPCR, at I/O
address FFF1h, contains bits for setting port modes, indicating the status
of a data transfer, setting trigger conditions for interrupts, indicating error
conditions, accepting bit input, and resetting the port. Section 9.3 includes
a detailed description of the SSPCR.

Two other registers (not accessible to a programmer) control transfers
between the FIFO buffers and the pins:

� Synchronous serial port transmit shift register (XSR). Each data word
is transferred from the bottom level of the transmit FIFO buffer to the XSR.
The XSR then shifts the data out (MSB first) through the DX pin.

� Synchronous serial port receive shift register (RSR). Each data word
is accepted, one bit at a time, at the DR pin and shifted into the RSR. The
RSR then transfers the word to the bottom level of the receive FIFO buffer.

Components and Basic Operation

9-6

9.2.3 Interrupts

The synchronous serial port (SSP) has two hardware interrupts that let the
processor know when the FIFO buffers need to be serviced:

� Transmit interrupts (XINTs) cause a branch to address 000Ah in program
space whenever the transmit-interrupt trigger condition is met. Set the
trigger condition by setting bits FT1 and FT0 in the SSPCR (see Table 5–8
on page 5-26). XINTs have a priority level of 8 (1 being highest).

� Receive interrupts (RINTs) cause a branch to address 0008h in program
space whenever the receive-interrupt-trigger condition is met. The trigger
condition is selected by setting the FR1 and FR0 bits in the SSPCR (see
Table 5–8 on page 5-26). RINTs have a priority level of 7.

These are maskable interrupts controlled by the interrupt mask register (IMR)
and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the SSP, clear the IFR bit (XINT or RINT)
in the corresponding interrupt service routine, just before returning from the
routine.

9.2.4 Basic Operation

Typically, transmission through the serial port follows this process:

1) Initialize the serial port to the desired configuration by writing to the
SSPCR.

2) Your software writes up to four words to the transmit FIFO buffer through
the SDTR.

3) The transmit FIFO buffer copies the earliest-written word to the transmit
shift register (XSR) when the XSR is empty.

4) The XSR shifts the data, bit-by-bit (MSB first), to the DX pin.

5) When the XSR empties, it signals the FIFO buffer, and then:

� If the FIFO buffer is not empty, the process repeats from step 3.

� If the FIFO buffer is empty (as specified by the FT1 and FT0 bits in the
SSPCR), it sends a transmit interrupt (XINT) to request more data,
and the process repeats from step 2.

Components and Basic Operation

9-7Synchronous Serial Port

Reception through the serial port typically is done as follows:

1) Data from the DR pin is shifted, bit-by-bit (MSB first), into the receive shift
register (RSR).

2) When the RSR is full, the RSR copies the data to the receive FIFO buffer.

3) The process then does one of two things, depending upon the state of the
receive FIFO buffer:

� If the receive FIFO buffer is not full, the process repeats from step 1.

� If the receive FIFO buffer is full (as specified by the FR1 and FR0 bits in
the SSPCR), it sends a receive interrupt (RINT) to the processor to
request servicing.

4) The processor can read the received data from the receive FIFO buffer
through the SDTR.

Controlling and Resetting the Port

9-8

9.3 Controlling and Resetting the Port

The synchronous serial port control register (SSPCR) controls the operation
of the synchronous serial port. To configure the serial port, a total of two writes
to the SSPCR are necessary:

1) Write your choices to the configuration bits and place the port’s FIFO in
reset by writing zeros to SSPCR bits XRST and RRST.

2) Write your choices to the configuration bits and take the port’s FIFO out
of reset by writing ones to bits XRST and RRST.

Note:

XRST and RRST are bits that reset the pointer to two FIFOs (transmit and
receive). These bits do not reset the serial port mode or operation. When
XRST and RRST are reset, the FIFO pointers are set to start at zero (empty
condition). See enhanced serial port features in section 9.8 to view the reset
conditions in ESSP.

Set the DLB bit of the SSPCR to zero to disable digital loopback mode, which
is not normally used in serial transfers. See section 9.7.1, Test Bits, for a de-
scription of digital loopback mode.

Make sure you write your configuration choices to the SSPCR during both
writes.

Figure 9–3 shows the 16-bit memory-mapped SSPCR. Following the figure is
a description of each of the bits.

Figure 9–3. Synchronous Serial Port Control Register (SSPCR) — I/O-Space FFF1h

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁ
ÁÁÁÁ

14 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

FREE ÁÁÁÁ
ÁÁÁÁ

SOFT ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TCOMP ÁÁÁÁÁ
ÁÁÁÁÁ

RFNE ÁÁÁÁ
ÁÁÁÁ

FT1 ÁÁÁÁ
ÁÁÁÁ

FT0 ÁÁÁÁ
ÁÁÁÁ

FR1 ÁÁÁÁ
ÁÁÁÁ

FR0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–0 ÁÁÁÁ
ÁÁÁÁ

R/W–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R–0 ÁÁÁÁÁ
ÁÁÁÁÁ

R–0 ÁÁÁÁ
ÁÁÁÁ

R/W–0 ÁÁÁÁ
ÁÁÁÁ

R/W–0 ÁÁÁÁ
ÁÁÁÁ

R/W–0 ÁÁÁÁ
ÁÁÁÁ

R/W–0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7
ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5
ÁÁÁÁÁ
ÁÁÁÁÁ

4
ÁÁÁÁ
ÁÁÁÁ

3
ÁÁÁÁ
ÁÁÁÁ

2
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ

0
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

OVF
ÁÁÁÁ
ÁÁÁÁ

IN0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

XRST
ÁÁÁÁÁ
ÁÁÁÁÁ

RRST
ÁÁÁÁ
ÁÁÁÁ

TXM
ÁÁÁÁ
ÁÁÁÁ

MCM
ÁÁÁÁ
ÁÁÁÁ

FSM
ÁÁÁÁ
ÁÁÁÁ

DLB
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

R–0
ÁÁÁÁ
ÁÁÁÁ

R–0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W–1
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–1
ÁÁÁÁ
ÁÁÁÁ

R/W–0
ÁÁÁÁ
ÁÁÁÁ

R/W–0
ÁÁÁÁ
ÁÁÁÁ

R/W–0
ÁÁÁÁ
ÁÁÁÁ

R/W–0
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: R=Read access; W=Write access; value following dash (–) is value after reset.
Á
Á

Controlling and Resetting the Port

9-9Synchronous Serial Port

Table 9–2. SSPCR — I/O-Space Address FFF1h Bit Descriptions

Bit
No. Name Function

15–14 FREE, SOFT These bits are special emulation bits that determine the state of the serial port
clock when a breakpoint is encountered in the high-level language debugger. If
the FREE bit is set to 1, then, upon a breakpoint, the clock continues to run (that
is, free runs) and data is shifted out. In this case, SOFT is a don’t care. If
FREE = 0, then SOFT takes effect. At reset, immediate stop mode is selected
(FREE = 0 and SOFT = 0). The effects of the FREE and SOFT bits are:

FREE SOFT Run/Emulation Mode

0 0 Immediate stop

0 1 Stop after completion of word

1 0 Free run

1 1 Free run

Note: If an option besides immediate stop is chosen for the receiver, an overflow
error is possible. The default mode (selected at reset) is immediate stop. The
FREE and SOFT bits are for emulation and test purpose only. In your application,
use ’00’ as default values for these bits.

13 TCOMP Transmission complete. This bit is cleared to 0 when all data in the transmit FIFO
buffer has been transmitted (the buffer is empty) and is set to 1 when new data is
written to the transmit FIFO buffer (the buffer is not empty).

12 RFNE Receive FIFO buffer not empty bit. This bit is 1 when the receive FIFO buffer
contains data and is cleared when the buffer empties.

11–10 FT1, FT0 FIFO transmit-interrupt bits. The values you write to FT0 and FT1 set an interrupt
trigger condition based on the contents of the transmit FIFO buffer. When this
condition is met, a transmit interrupt (XINT) is generated and the data can be
transferred out to the FIFO buffer using the OUT instruction. Writing to bits FT1
and FT0 controls transmit interrupt generation as follows:

FT1 FT0 Generates XINT when...

0 0 Transmit FIFO buffer can accept one or more words;
XINT occurs repeatedly until the buffer is full.

0 1 Transmit FIFO buffer can accept two or more words;
XINT occurs repeatedly until three words are written.

1 0 Transmit FIFO buffer can accept three or four words;
XINT occurs repeatedly until two words are written.

1 1 Transmit FIFO buffer is empty (can accept 4 words);
XINT occurs repeatedly until one word is written.

Controlling and Resetting the Port

 9-10

Table 9–2. SSPCR — I/O-Space Address FFF1h Bit Descriptions (Continued)

Bit
No. FunctionName

9–8 FR1, FR0 FIFO receive-interrupt bits. The values you write to FR0 and FR1 set an interrupt
trigger condition based on the contents of the receive FIFO buffer. When this
condition is met, a receive interrupt (RINT) is generated and the data can be
transferred in from the FIFO buffer using the IN instruction. Writing to bits FR1
and FR0 controls receive interrupt generation as follows:

FR1 FR0

0 0

0 1

1 0

1 1

Generate RINT when...

Receive FIFO buffer is not empty.

Receive FIFO buffer holds at least two words.

Receive FIFO buffer holds at least three words.

Receive FIFO buffer is full (holds four words).

7 OVF Overflow bit. This bit is set whenever the receive FIFO buffer is full and another
word is received in the RSR. The contents of the FIFO buffer will not be
overwritten by this new word. OVF is cleared when the FIFO buffer is read.

6 IN0 Input bit. This bit allows the CLKR pin to be used as a bit input. IN0 reflects the
current logic level on the CLKR pin. IN0 can be tested by using a BIT or BITT
instruction on the SSPCR. If the serial port is not used, IN0 can be used as a
general-purpose bit input.

5 XRST Transmit reset bit. This bit resets the transmitter FIFO of the serial interface. Set
XRST to 0 to put the transmitter FIFO in reset. The FIFO will point to the start of
the 4-deep FIFO and treat the FIFO as empty. Set XRST to 1 to bring the
transmitter out of reset.

4 RRST Receive reset bit. This bit resets the receiver FIFO of the serial interface. Set
RRST to 0 to put the receiver FIFO in reset. The FIFO will point to the start of the
4-deep FIFO and treat the FIFO as empty. Set RRST to 1 to bring the receiver out
of reset.

3 TXM Transmit mode. This bit determines the source device for the frame synchroniza-
tion (frame sync) pulse for transmissions. It configures the transmit frame sync pin
(FSX) as an output or as in input. Note that the receive frame sync pin (FSR) is
always configured as an input.

0 An external frame sync source is selected. FSX is configured
as an input and accepts an external frame sync signal. The
transmitter idles until a frame sync pulse is supplied on the FSX
pin.

1 The internal frame sync source is selected. The FSX pin is
configured as an output and sends a frame sync pulse at the
beginning of every transmission. In this mode, frame sync
pulses are generated internally when data is transferred from
the SDTR to the XSR to initiate data transfers. The internally
generated framing signal is synchronous with respect to CLKX.

Controlling and Resetting the Port

9-11Synchronous Serial Port

Table 9–2. SSPCR — I/O-Space Address FFF1h Bit Descriptions (Continued)

Bit
No. FunctionName

2 MCM Clock mode. This bit determines the source device for the clock for a serial port
transfer. It configures the clock transmit pin (CLKX) as an output or as an input.
Note that the clock receive pin (CLKR) is always configured as an input.

0 An external clock source is selected. The CLKX pin is
configured as an input that accepts an external clock signal.

1 The internal clock source is selected. The CLKX pin is
configured as an output driven by an internal clock source with
a frequency equal to 1/2 that of CLKOUT1. Note that if
MCM = 1 and DLB = 1, CLKR is also supplied by the internal
source.

1 FSM Frame synchronization mode. The FSM bit specifies whether frame
synchronization pulses are required between consecutive word transfers.

0 Continuous mode is selected. In continuous mode, one frame
sync pulse (FSX/FSR) initiates the transmission/reception of
multiple words.

1 Burst mode is selected. A frame sync pulse (FSX/FSR) is
required for the transmission/reception of each word.

0 DLB Digital loopback mode. The DLB bit can be used to put the serial port in digital
loopback mode.

0 Digital loopback mode is disabled. The DR, FSR, and CLKR
signals are connected to their respective device pins.

1 Digital loopback mode is enabled. DR and FSR become
internally connected to DX and FSX, respectively. The FSX and
DX signals appear on the device pins, but FSR and DR do not.

TXM must be set to 1 for proper operation in digital loopback
mode.

CLKX drives CLKR if you also set MCM = 1. If DLB = 1 and
MCM = 0, CLKR is taken from the CLKR pin of the device. This
configuration allows CLKX and CLKR to be tied together
externally and supplied by a common external clock source.

Controlling and Resetting the Port

9-12

9.3.1 Selecting a Mode of Operation (Bit 1 of the SSPCR)

Different applications require different modes of operation for the serial port.
The synchronous serial port supports two basic modes of operation:

� Continuous mode (FSM = 0). The continuous mode of operation requires
only an initial frame sync pulse, as long as a write to SDTR (for
transmission) or a read from SDTR (for reception) is executed during each
transmission/reception. Use continuous mode for transmitting a
continuous stream of information.

� Burst mode (FSM = 1). In burst mode operation, a frame sync is required
for every transfer, and there are periods of serial port inactivity between
packet transmits. Use this mode for transmitting short packets of
information.

9.3.2 Selecting Transmit Clock Source and Transmit Frame Sync Source
(Bits 2 and 3 of the SSPCR)

The transmit clock is used to set the transmission rate of the serial port.
Transmissions can be clocked by the internal clock source or by an external
source:

� To use the internal clock source, set the MCM bit in the SSPCR to 1. This
causes the serial port to take CLKX from the internal source. The internal
clock rate is (CLKOUT1 rate)/2.

� To use an external clock source:

1) Connect the external clock to the CLKX pin of the transmitter and to
the CLKR pin of the receiver.

2) Set the MCM bit to 0 in the SSPCR to cause the serial port to get CLKX
from the CLKX pin.

A transmit frame sync pulse marks the start of a data transmission. The
synchronous serial port can transmit using the internal frame sync source or
using an external source:

� To use internal frame sync pulses, set the TXM bit in the SSPCR to 1.

� To use external frame sync pulses:

1) Connect the frame sync source to the FSX pin of the transmitter and to
the FSR pin of the receiver.

2) Set the TXM bit in the SSPCR to 0 to enable external frame syncs.

Controlling and Resetting the Port

9-13Synchronous Serial Port

The source configuration options are summarized in Table 9–3.

Table 9–3. Selecting Transmit Clock and Frame Sync Sources

ÁÁÁÁÁ
ÁÁÁÁÁ

MCM ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TXM ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CLKX source ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
FSX source

ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
External ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
External

ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
External ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
Internal

ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Internal

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

External
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Internal
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Internal

9.3.3 Resetting the Synchronous Serial Port (Bits 4 and 5 of the SSPCR)

Reset the synchronous serial port by setting XRST = 0 and RRST = 0 and then
setting XRST = 1 and RRST = 1. These bits can be set individually, allowing
you to reset only the transmitter or only the receiver. When a zero is written to
one of these bits, activity in the corresponding section of the serial port stops.

9.3.4 Using Transmit and Receive Interrupts (Bits 8–11 of the SSPCR)

The synchronous serial port has two interrupts for managing reads and writes
to the FIFO buffers. The processor can determine when the FIFO buffers need
servicing in two ways:

� By polling the SSPCR register (RFNE and TCOMP bits)
� By setting up XINT and/or RINT interrupts

To determine when the FIFO buffers need servicing by polling, disable the
interrupts by masking them in the interrupt mask register (IMR).

If you want to use interrupts to manage your serial transfer, then perform three
steps:

1) Create interrupt service routines for XINTs and RINTs and include a
branch to each service routine at the appropriate interrupt vector address:

� The RINT vector is fetched from address 0008h.
� The XINT vector is fetched from address 000Ah.

2) Select when you want interrupts to occur and set the FR0, FR1, FT0, and
FT1 bits accordingly. You can set the FIFO buffers to generate interrupts
when they are empty, when they have 1 or 2 words, when they have 3 or
4 words, or when they are full. Table 5–8 shows what values to set in the
FR0, FR1, FT0, and FT1 bits for each condition.

Controlling and Resetting the Port

 9-14

3) Enable the interrupts by unmasking them in the interrupt mask register
(IMR).

For more information about interrupts, see section 5.6, Interrupts, p. 5-15.

Note:

To avoid a double interrupt from the SSP, clear the IFR bit (XINT or RINT)
in the corresponding interrupt service routine, just before returning from the
routine.

Managing the Contents of the FIFO Buffers

9-15Synchronous Serial Port

9.4 Managing the Contents of the FIFO Buffers

The SDTR is a read/write register (at I/O address FFF0h) that is used to send
data to the transmit FIFO buffer and to extract data from the receive FIFO
buffer.

A word is written to the SDTR by the OUT instruction. When the transmit FIFO
buffer is full, additional writes to the SDTR are ignored. Therefore, your
program should not write a word for transmission until at least one space is
available in the transmit FIFO buffer. You can set up a transmit interrupt (XINT)
based on the contents of the buffer (using the FT1 and FT0 bits of the SSPCR).
If your program writes words to the buffer only when the buffer is empty, you
can use the transmission complete (TCOMP) bit; when the buffer is empty,
TCOMP = 0.

When the receive FIFO buffer holds data, you can read the received data from
the FIFO buffer through the SDTR (using the IN instruction). You can check
the state of the receive buffer by reading the receive FIFO buffer not empty
(RFNE) bit in the SSPCR, or you can set up a receive interrupt (RINT) based
on the state of the buffer (using the FR1 and FR0 bits of the SSPCR).

Transmitter Operation

9-16

9.5 Transmitter Operation

Transmitter operation is different in continuous and burst modes. Other
differences also depend on whether an internal or an external frame sync is
used.

9.5.1 Burst Mode Transmission With Internal Frame Sync (FSM = 1, TXM = 1)

Use burst mode transmission with internal frame sync to transfer short packets
at rates lower than maximum packet frequency while using an internal frame
sync generator. Place the transmitter in burst mode with internal frame sync
by setting the FSM bit to 1 and the TXM bit to 1.

This mode of operation offers several features:

� A one-clock-cycle frame-sync pulse is generated internally at the
beginning of each transmission.

� Continuous transmission is possible if SDTR is updated in the XINT
interrupt service routine.

� Transmission can be initiated by an external event (for example, an
external interrupt) or by a receive interrupt (RINT).

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the ’C20x on the next falling edge of the clock
signal.

Burst mode transmission with internal frame sync requires the following order
of events (see Figure 9–4):

1) Initiate the transfer by writing to SDTR.

2) A frame sync pulse is generated on the next rising edge of CLKX. The
frame sync pulse remains high for one clock cycle.

3) On the next rising edge of CLKX after FSX goes high, XSR is loaded with
the value at the bottom of the FIFO buffer, and the frame sync pulse goes
low. Additionally, the first data bit (MSB first) is driven on the DX pin. If the
FIFO buffer becomes empty during this operation, it generates XINT to re-
quest more data.

4) The rest of the bits are then shifted out. Each new bit is transmitted at each
consecutive rising edge of CLKX.

5) If the FIFO buffer still holds a word or words to be transmitted, another
frame sync pulse is generated in parallel to the driving of the LSB on the
DX pin, and transmission continues at step 3. If the FIFO is empty,
transmission is complete.

Transmitter Operation

9-17Synchronous Serial Port

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

The burst mode can be discontinued (changed to continuous mode) only by
a serial-port or device reset. Changing the FSM bit during transmit or halt will
not necessarily cause a switch to continuous mode.

Figure 9–4. Burst Mode Transmission With Internal Frame Sync
and Multiple Words in the Buffer

CLKX

FSX

DX

XINT

A15 A14 A13 A12 A11 A10 ... A0

LSBMSB

B15 B14 B13 B12

MSB

XSR loaded
from buffer

XSR loaded
from buffer

9.5.2 Burst Mode Transmission With External Frame Sync (FSM = 1, TXM = 0)

Use burst mode transmission with external frame sync to transfer short
packets at rates lower than maximum packet frequency while using an
external frame sync generator. Place the transmitter in burst mode with
external frame sync by setting the FSM bit to 1 and the TXM bit to 0.

This mode of operation offers several features:

� A frame sync pulse initiates transmission.

� If a frame sync pulse occurs after the initial one, then transmission
restarts.

� Transmission can be initiated by an external event (for example, an
external interrupt) or by a serial port receive interrupt (RINT).

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the ’C20x on the next falling edge of the clock
signal.

Burst mode transmission with external frame sync involves the following order
of events (see Figure 9–5):

Transmitter Operation

9-18

1) A frame sync pulse initiates the transmission. The pulse is sampled on the
falling edge of CLKX. After the falling edge of CLKX, the contents of the
first entry in the FIFO buffer are transferred to the XSR. If the FIFO buffer
becomes empty during this operation, it generates a XINT to request more
data.

2) On the next rising edge of CLKX after FSX goes high, DX is driven with
the first bit (MSB) of the word to be transmitted.

3) The frame sync goes low (and remains low during word transmission).

4) Once FSX goes low, the rest of the bits are shifted out.

5) When all of the bits in the word are transferred, the port waits for a new
frame sync pulse.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

If a frame sync pulse occurs during transmission, transmission is restarted. If
another value has been written to the SDTR, a new word is sent; otherwise,
the last word in the XSR is sent.

The burst mode can be discontinued (changed to continuous mode) only by
a serial-port or device reset. Changing the FSM bit during transmit or halt will
not necessarily cause a switch to continuous mode.

Figure 9–5. Burst Mode Transmission With External Frame Sync

FSX

CLKX

DX

XINT

A15

MSB

A14 A13 A12 A11 A10 ... A0 B15

LSB

XSR loaded
from buffer

XSR loaded
from buffer

Transmitter Operation

9-19Synchronous Serial Port

9.5.3 Continuous Mode Transmission With Internal Frame Sync (FSM = 0, TXM = 1)

Use continuous mode transmission with internal frame sync to transfer long
packets at maximum packet frequency while using an internal frame sync
generator. Place the transmitter in continuous mode with internal frame sync
by setting the FSM bit to 0 and the TXM bit to 1.

In continuous mode, frame sync pulses are not necessary after the initial pulse
for consecutive packet transfers. A frame sync is generated only for the first
transmission. As long as the FIFO buffer has new values to transmit, the mode
continues. Transmission halts when the buffer empties. If SDTR is written to
after the halt, the device starts a new continuous mode transmission.

This mode of operation offers several features:

� A write to the SDTR begins the transmission.

� A one-clock-cycle frame-sync pulse is generated internally at the
beginning of the transmission.

� As long as data is maintained in the transmit FIFO buffer, the mode
continues.

� Failure to update the FIFO buffer causes the process to end.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the ’C20x on the next falling edge of the clock
signal.

As illustrated by Figure 9–6, in this mode, the port operates as follows:

1) The transfer is initiated by a write to the SDTR.

2) The write to the SDTR causes a frame sync pulse to be generated on the
next rising edge of CLKX. The frame sync pulse remains high for one clock
cycle.

3) On the next rising edge of CLKX after FSX goes high, the XSR is loaded
with the earliest-written value from the transmit FIFO buffer, and the frame
sync pulse goes low. Additionally, the first data bit (MSB first) is driven on
the DX pin. If the FIFO buffer becomes empty during this operation, it
generates an XINT to request more data.

4) The rest of the bits are then shifted out. Each new bit is transmitted at the
rising edge of CLKX.

5) Once the entire word in the XSR is shifted out, the next word is loaded in
and the first bit of the word is placed on the DX pin. Then, the process
repeats beginning with step four. If a new word is not in the transmit FIFO
buffer, the process ends.

Transmitter Operation

 9-20

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

Continuous mode can be discontinued (changed to burst mode) only by a
serial-port mode change or device reset. Changing the FSM bit during transmit
or halt will not necessarily cause a switch to burst mode.

Figure 9–6. Continuous Mode Transmission With Internal Frame Sync

CLKX

XINT

A15 A14 A13 A12 A11 A10 ... A0

LSBMSB

B15 B14 B13 B12

FSX

DX

XSR loaded
from buffer

XSR loaded
from buffer

9.5.4 Continuous Mode Transmission with External Frame Sync (FSM=0, TXM=0)

Use continuous mode transmission with external frame sync to transfer long
packets at maximum packet frequency while using an external frame sync
generator. Place the transmitter in continuous mode with external frame sync
by setting the FSM bit to 0 and the TXM bit to 0.

In continuous mode, frame sync pulses are not necessary after the initial pulse
for consecutive packet transfers. A frame sync is generated only for the first
transmission. As long as the FIFO buffer has new values to transmit, the mode
continues. Transmission halts when the buffer empties. If SDTR is written to
after the halt, the device starts a new continuous mode transmission.

This mode of operation offers several features:

� Only one frame sync is necessary for the transmission of consecutive
packets.

� If the FIFO buffer is not empty, the mode continues. If the FIFO buffer is
empty, the process ends.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the

Transmitter Operation

9-21Synchronous Serial Port

clock signal and received by the ’C20x on the next falling edge of the clock
signal.

Continuous mode transmission with external frame sync requires the following
order of events (see Figure 9–7):

1) A frame sync pulse initiates the transmission. The pulse is sampled on the
falling edge of CLKX. After the falling edge of CLKX, the contents of the
current word in the transmit FIFO buffer are transferred to the XSR. If the
FIFO buffer becomes empty during this operation, it generates an XINT
to request more data.

2) On the next rising edge of CLKX after FSX goes high, DX is driven with
the first bit (MSB) of the word to be transmitted.

3) The frame sync goes low (and remains low during word transmission).

4) Once FSX goes low, the rest of the bits are shifted out.

5) Once the entire word in the XSR is shifted out, the next word is loaded in
and the first bit of the word is placed on the DX pin. Then, the process
repeats beginning with step four. If a new word is not in the transmit FIFO
buffer, the process ends.

If the SDTR is loaded with a new word while the transmit FIFO buffer is full, the
new word will be lost; the FIFO buffer will not accept any more than four words.

The continuous mode can be discontinued (changed to burst mode) only by
a serial-port or device reset. Changing the FSM bit during transmit or halt will
not necessarily cause a switch to burst mode.

Figure 9–7. Continuous Mode Transmission With External Frame Sync

B15

FSX

CLKX

DX

XINT

A15

MSB

A14 A13 A12 A11 A10 ... A0

LSB

XSR loaded
from buffer

B12B14 B13

XSR loaded
from buffer

Receiver Operation

9-22

9.6 Receiver Operation

Receiver operation is different in continuous and burst modes. The receiver
does not generate frame sync pulses; it always takes the frame sync pulse as
an input.

In selecting the proper receive mode, note that the mode for the receiver must
match the mode for the transmitter.

If all four words of the receive FIFO buffer have been filled, the buffer will not
accept additional words. If a fifth write is attempted, the overflow (OVF) bit of
the SSP control register (SSPCR) is set to 1.

9.6.1 Burst Mode Reception

Use burst mode receive to transfer short packets at rates lower than maximum
packet frequency.

This mode of operation offers these features:

� The data packet is marked by the frame sync pulse on FSR.

� Reception of data can be maintained continuously.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the ’C20x on the next falling edge of the clock
signal.

The following events occur during a burst mode receive operation (see
Figure 9–8):

1) A frame sync pulse initiates the receive operation. This event is sampled
on the falling edge of CLKR.

2) On the next falling edge of CLKR after the falling edge of FSR, the first bit
(MSB) is shifted into the receive shift register (RSR).

3) The rest of the bits in the word are then shifted into RSR one at a time at
each consecutive falling edge of CLKR.

4) After all bits have been received, if the receive FIFO buffer is not full, the
contents of the RSR are copied into the receive FIFO buffer. If the FIFO
buffer becomes full during this operation, an interrupt (RINT) is sent to the
CPU, and the overflow bit (OVF) of the SSPCR is set.

5) The receive operation is started again after the next frame sync pulse.
However, the received word can be loaded into the FIFO buffer only if the
buffer is empty; otherwise, the word is lost.

Receiver Operation

9-23Synchronous Serial Port

If a frame sync pulse occurs during reception, reception is restarted, and the
bits that were shifted into the RSR before the pulse are lost.

Figure 9–8. Burst Mode Reception

CLKR

FSR

DR

RINT

A15

MSB

A14 A13 A12 A11 A10 ... A0 B15

LSB

Word loaded
to buffer

from RSR

B14

MSB

9.6.2 Continuous Mode Reception

Use continuous mode receive to transfer long packets at maximum packet
frequency.

This mode of operation offers several features:

� Only the first frame sync signal is necessary to start the reception of
consecutive words.

� As long as the receive FIFO buffer is not allowed to overflow, the mode
continues. Overflow is indicated by the OVF bit in the SSPCR.

� Reception can be maintained continuously.

Generally, the transmit clock and the receive clock have the same source. This
allows each bit to be transmitted from another device on a rising edge of the
clock signal and received by the ’C20x on the next falling edge of the clock
signal.

As shown in Figure 9–9, the following events occur during a continuous mode
receive operation:

1) The receive operation begins when a frame sync signal is detected on the
falling edge of CLKR.

2) On the first falling edge of CLKR after the frame sync signal goes low, the
first bit (MSB) is shifted into the RSR.

Receiver Operation

9-24

3) The remaining bits in the word are then shifted into the RSR, one by one
at the falling edge of each consecutive clock cycle.

4) After all bits have been received, if the FIFO buffer is not full, the contents
of the RSR are copied to the receive FIFO buffer. If the receive FIFO buffer
does become full, an interrupt (RINT) is sent to the CPU, and if overflow
has occurred, the overflow (OVF) bit of the SSPCR is set.

5) The process then repeats itself, except that there are no additional frame
sync pulses.

If a frame sync pulse occurs during reception, then reception is restarted and
the bits in the current word that were shifted into the RSR before the pulse are
lost.

If the FIFO buffer becomes full, no new words will be received into the buffer
until at least one word has been read from the buffer (through the SDTR). Once
the continuous reception is started, the port will always be reading in the values
on the DR pin. To stop continuous mode reception, either change mode bits
to burst mode or initiate system reset.

Figure 9–9. Continuous Mode Reception

CLKR

FSR

DR

RINT

Word loaded
to buffer

from RSR

A15 A14 A13 A12 A11 A10 ... A0

LSBMSB

B15 B14 B13 B12

Word loaded
to buffer

from RSR

B11

MSB

Troubleshooting

9-25Synchronous Serial Port

9.7 Troubleshooting

The synchronous serial port uses three bits for troubleshooting and testing. In
addition to using these three bits, you must be able to identify special error
conditions that may occur in actual transfers. Error conditions result from an
unprogrammed event occurring to the serial port. These conditions are
operational errors such as overflow, underflow, or a frame sync pulse during
a data transfer.

This section describes how the serial port handles these errors and the state
it acquires during these error conditions. The types of errors differ slightly in
burst and continuous modes.

9.7.1 Test Bits

Three bits in the SSPCR help you test the synchronous serial port. The digital
loopback mode bit (DLB) can be used to internally connect the receive data
and frame sync signals to the transmit data and frame sync signals on the
same device. The FREE and SOFT bits allow emulation modes that stop the
port either immediately or after the transmission of the current word.
Figure 9–10 shows the bits that are used for troubleshooting. The list items
following the figure describe the functions of these bits.

Figure 9–10. Test Bits in the SSPCRÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ

15
ÁÁÁ
ÁÁÁ

14
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

0
Á
ÁÁÁ

ÁÁ
ÁÁÁ
ÁÁÁ

FREE
ÁÁÁ
ÁÁÁ

SOFT
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÁÁÁ
ÁÁÁ

DLB
Á
ÁÁÁ

ÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á

� FREE and SOFT are special emulation bits that allow you to determine
the state of the serial port clock when a breakpoint is encountered in the
high-level language debugger. If the FREE bit is set to 1, then, upon a
software breakpoint, the clock continues to run (that is, free runs) and data
is shifted out. In this case, SOFT is a don’t care. But if FREE is 0, then
SOFT takes effect. If SOFT = 0, then the clock immediately stops, thus
aborting any transmission. If the SOFT bit is 1, the particular transmission
continues until completion of the word, and then the clock halts. Table 9–4
summarizes the available run and emulation modes.

Troubleshooting

9-26

Table 9–4. Run and Emulation Modes

ÁÁÁ
ÁÁÁ

FREEÁÁÁ
ÁÁÁ

SOFTÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Run/Emulation Mode
ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Immediate stop
ÁÁÁ
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Stop after completion
of word

ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁ0
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁFree runÁÁÁ

ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Free run

Note:

If an option besides immediate stop is chosen for the receiver, an overflow
error is possible. The default mode (selected at reset) is immediate stop.

� DLB enables or disables digital loopback mode:

� To enable the digital loopback mode, set DLB = 1.
� To disable the digital loopback mode, set DLB = 0.

When you enable digital loopback mode, the transmit data (DX) and frame
sync (FSX) signals become internally connected to the receive data (DR)
and frame sync (FSR) signals. After writing code for both the transmitter
and the receiver, you can then test whether the code is working properly
and also check that the serial port is functioning. In addition, if both the DLB
and MCM bits are 1, the transmit clock signal is also connected internally
to the receive clock signal.

The serial port operates normally when you disable digital loopback mode;
that is, no transmit and receive signals are internally connected together.

Note:

To configure the serial port, a total of two writes to the SSPCR are necessary:

1) First, write your choices to the configuration bits and place the port in
reset by writing zeros to XRST and RRST.

2) Second, write your choices to the configuration bits and take the port out
of reset by writing ones to the XRST and RRST bits.

Troubleshooting

9-27Synchronous Serial Port

9.7.2 Burst Mode Error Conditions

The following are descriptions of errors that can occur in burst mode:

� Underflow. Underflow is caused if an external FSX occurs, and there are
no new words in the transmit FIFO buffer. Upon receiving the FSX
(generally, from an external clock source), transmitter resends the
previous word; that is, the value in XSR will be transmitted again.

� Overflow. This error occurs when the device has not read incoming data
and more data is being sent (indicated by a frame sync pulse on FSR). The
OVF bit of the SSPCR is set to indicate overflow. The processor halts
updates to the FIFO buffer until the SDTR is read. Thus, any further data
sent is lost.

� Frame sync pulse during a reception. If the frame sync occurs during a
reception, the present reception is aborted and a new one begins. The
data that was being loaded into the RSR is lost, but the data in the FIFO
buffer is not. No RSR-to-FIFO buffer copy occurs until all 16 bits in a word
have been received.

� Frame sync pulse during a transmission. Another error results when a
frame sync occurs while a transmission is in process. If the data in the XSR
is being driven on the DX pin when the frame sync pulse occurs, then the
present transmission is aborted. Then, whatever data is next in the FIFO
buffer at the time of the frame sync pulse is transferred to XSR for
transmission.

9.7.3 Continuous Mode Error Conditions

The following are descriptions of continuous mode errors and how the port re-
sponds to them:

� Underflow. Underflow occurs when the XSR is ready to accept new data
but there are no new words in the transmit FIFO buffer. Underflow errors
are fatal to a transmission; it causes transmission to halt. For as long as
the transmit FIFO buffer is empty, frame sync pulses are ignored. If new
data is then written to the SDTR, another frame sync pulse is required (or
generated, if you are using internal frame syncs) to restart continuous
mode transmission.

Your software can do the following to determine how many words are left in
the transmit FIFO buffer:

� Test for the condition TCOMP = 0. When the transmit FIFO buffer
empties, the TCOMP bit of the SSPCR is set to 0.

� Cause an interrupt (XINT) to occur based on the contents of the buffer.
You can use bits FT1 and FT0 in the SSPCR to set the interrupt trigger
conditions shown in Table 5–8 on page 5-26.

Troubleshooting

 9-28

� Overflow. Overflow occurs when the RSR has new data to pass to the
receive FIFO buffer but the FIFO buffer is full. Overflow errors are fatal to
a reception. For as long as the FIFO buffer is full, any incoming words will
be lost. To restart reception, make space in the buffer by reading from it
(through the SDTR).

� Frame sync pulse during a transmission. After the initial frame sync, no
others should occur during transmission. If a frame sync pulse occurs
during a transmission, the current transmission is aborted, and a new
transmit cycle begins.

� Frame sync pulse during a reception. After the initial frame sync, no others
should occur during reception. If a frame sync pulse occurs during a
reception, the current packet of data is lost. On any FSR pulse, the RSR
bit counter is reset; therefore, the data that was being shifted into the RSR
from the the DR pin is lost.

Enhanced Synchronous Serial Port (ESSP)

9-29Synchronous Serial Port

9.8 Enhanced Synchronous Serial Port (ESSP)

The enhanced synchronous serial port (ESSP) is a feature available in
TMS320F206 and TMS320C206/LC206 series of digital signal processors.
The ESSP is an enhancement of the synchronous serial port (SSP), which is
standard in the C20x family. In addition to providing a glueless interface for
multiple serial devices, the ESSP also features a pseudo serial peripheral
interface (SPI) mode of operation. The maximum transmission rate for both
transmit and receive operations are the CPU clock divided by two, i.e.
CLKOUT1(frequency)/2. Therefore, the maximum rate is 10Mbit/s at 50ns,
14.28Mbit/s at 35ns, and 20Mbit/s at 25ns. Refer to the TI web site at
www.ti.com and follow the DSP path to ’C20x DSP to find software source on
ESSP test programs.

9.8.1 ESSP Features

� Full-duplex, double-buffered synchronous serial port

� Highly flexible operation:

� Burst and continuous modes

� Supports 8- and 16-bit word lengths

� Multichannel mode with glueless interface to as many as four
voice-band or telephony codecs for telecommunications applications
such as line cards and feature phones.

� Pseudo serial peripheral interface (SPI) mode

� Independent four-level deep FIFO for both the receive and transmit
sections

� Programmable FIFO level interrupts to reduce software overhead

� FIFO level status bits

� Various clocking options to ease interfacing in many applications

� Internal shift clock, CLKX, derived from an independent 8-bit
prescaler

� Internal frame sync, FSX, derived from an independent 8-bit prescaler

� Polarity control on shift clock, CLKX, and frame sync pulse, FSX

� High impedance control on data transmit pin DX for TDM applications

� Prescalers are configurable as general-purpose 16-bit counters.

� Fast transfer rate of 20 Mbits/s at 25ns cycle time

ESSP Pins

 9-30

9.9 ESSP Pins

The enhanced synchronous serial port has seven pins for external interface.

Table 9–5 explains the functions of these pins. In this table, SSP mode

indicates that only one serial device is connected to the DSP chip (for example,

the ESSP mode has not been activated. ESSP mode indicates that the ESSP

features have been activated (by programming the ESSP registers) and that

one or more serial devices have been connected to the DSP chip.

Table 9–5. TMS320C20x Enhanced Synchronous Serial Port Interface Signals

100
Pin

’C20x
Pin I/O/Z† Description

87 CLKX I/O Transmit clock (input or output). Clock signal for clocking data from the serial
port transmit shift register (XSR) to the data transmit (DX) pin. CLKX is an
input if the MCM bit in the SSPCR is set to 0 (external CLKX). It can also be
generated internally if the MCM bit is set to 1. Internal CLKX rate is
determined by the input clock to the CLKX prescaler (CLXCT) and is
governed by the equation:

CLKX rate = CLKOUT1 / (2*(CLXCT+1))

The generated CLKX can also feed a frame sync prescaler (FSXCT) to
generate internal frame syncs synchronous to CLKX at variable rates. The
prescalers for CLKX and FSX are defined in the I/O register SSPCT at
FFF3h in I/O space. The input to the CLKX prescaler is CLKOUT1.

84 CLKR/
FSX2

I/O Receive clock (input). In the SSP mode, this pin is the external clock signal
for clocking data from the DR (data receive) pin into the RSR (receive shift
register) and must be present during serial port data receive process. If the
serial port is not being used, this pin can be sampled as an input via the IN0
bit of the SSPCR.

Frame synchronization pulse 2 (output). In the ESSP mode, if the
multichannel register is configured for two channels, this pin transmits the
frame sync for the second serial device connected to the serial port.

85 FSR/FSX3 I/O Frame synchronization pulse for receive (input). In the SSP mode, the falling
edge of the FSR pulse initiates the data receive process.

Frame synchronization pulse 3 (output). In the ESSP mode, if the
multichannel register is configured for three channels, this pin transmits the
frame sync for the third serial device connected to the serial port.

86 DR I Serial data receive (input). Serial data is received into the receive shift
register (RSR) from DR pin.

† I = Input, O = Output, Z = High impedance

ESSP Pins

9-31Synchronous Serial Port

Table 9–5. TMS320C20x Enhanced Synchronous Serial Port Interface Signals
(Continued)

100
Pin DescriptionI/O/Z†

’C20x
Pin

89 FSX/FSX1 I/O Frame synchronization pulse for transmit (input or output). The falling edge of
the FSX pulse initiates the data transmit process beginning the clocking of
the XSR. Following reset, FSX is an input. This pin can be selected by
software to be an output when the TXM bit in the SSPCR is set to 1.

The frame sync can be generated internally. The frame sync rate can be
either defined by the prescaler FSXCT or by the rate at which data is written
into the transmit FIFO. The internal CLKX can also feed a frame sync
prescaler to generate internal frame sync synchronous to CLKX and at
variable rates. Internal FSX rate is determined by the input clock to the
prescaler and is governed by the equation:

FSX rate = CLKX pin clock /((2*(FSXCT+1))

The prescalers for CLKX and FSX are defined in the I/O register SSPCT at
FFF3h in I/O space.

Frame synchronization pulse 1 (output). In the ESSP mode, this pin transmits
the frame sync for the first serial device connected to the serial port. This
frame sync functions as the master frame sync, while FSX2, FSX3, FSX4
follow this pulse as slaves.

90 DX O Serial data transmit (output). Serial data is transmitted from the transmit shift
register (XSR) through DX pin. DX is placed in high impedance when not
transmitting.

96 IO0/FSX4 I/O Input/Output 0 (input or output). In the SSP mode, this pin is used as a
general-purpose input/output.

Frame synchronization pulse 4 (output). In the ESSP mode, if the
multi-channel register is configured for four channels, this pin transmits the
frame sync for the fourth serial device connected to the serial port.

† I = Input, O = Output, Z = High impedance

9.9.1 Multichannel Mode

In the multichannel mode of the ESSP, up to four serial devices can be
connected gluelessly to the DSP. All the four serial devices are connected in
parallel to the DX, DR, CLKX lines. In effect, all the serial devices transmit and
receive data at the same shift clock rate. The exact instant at which each
device transmits and receives data is determined by the frame sync pulse for
the corresponding device. In the SSP mode, only one device is connected to
the DSP and the default frame sync signal FSX is used. When additional serial
devices are connected in the ESSP mode, CLKR, FSR and IO0 act as the
frame syncs for the additional serial channels. The successive frame syncs
are separated by 18 shift clocks.

ESSP Registers

 9-32

9.10 ESSP Registers

The enhanced synchronous serial port operates through the five registers
(SDTR, SSPCR, SSPST, SSPMC, and SSPCT) that are mapped into the I/O
space. Before the ESSP can be used, the control and status registers need
to be programmed. The ESSP registers are listed in Table 9–6.

Table 9–6. ESSP Registers

Registers I/O Address Value at Reset Description

SSPST FFF2h 0000h SSP Status register

SSPMC FFF3h 0000h SSP Multichannel register

SSPCT–CLXCT FFFBh xx00h Shift clock prescaler (CLKX) (low byte,
bits 7–0)

SSPCT–FSXCT FFFBh 00xxh Frame sync prescaler (FSX) (high byte,
bits 15–8)

Notes: 1) x – Indicates undefined values or value based on the pin levels at reset.

2) SSPST, SSPMC and SSPCT are registers that are unique to ESSP.

9.10.1 Synchronous Serial Port Status Register (SSPST)

The SSPST register is used to configure the various ESSP options. It has
additional FIFO status bits. The prescalers for CLKX and FSX are also
configured by the SSPST.

Figure 9–11.Synchronous Serial Port Status (SSPST) Register — I/O address FFF2h

15 14 13 12 11 10 9

DRP Pin FSN FSXOX
FSXST
Status

Reserved CLN CLXOX

R R/W R/W W1C/R R/W R/W

8 7 6 5 4 3 2 1 0

PRSEN Transmit FIFO Status Receive FIFO Status
SGNEX

(Sign-Extend)
BYTE

(8/16 Bit)

R/W R R R/W R/W

Note: R = Read, W = Write, W1C/R = Write one to clear

ESSP Registers

9-33Synchronous Serial Port

Table 9–7. SSPST Register — I/O address FFF2h Bit Descriptions

Bit
No. Name Function

15 DRP pin DR pin read bit. Read-only DRP bit that gives visibility to the DR pin.

14 FSN Frame sync invert bit. FSN selects the polarity for the frame sync. At reset, FSN is
0 and selects FSX to be high for one CLKX duration. The data transmit and
receive is based on the falling edge of FSX. If FSN is set to 1, the polarity of the
FSX is inverted. The FSX remains high during data transmit or receive (8/16
CLKX cycles). FSN bit controls both the FSX and FSR polarity. In the internal FSX
mode, the outgoing FSX is inverted once and the incoming FSR is inverted once.
Thus, if FSX and FSR pins are externally connected, the polarity of the FSX/FSR
are the same with respect to the SSP core.

13 FSXOX Internal FSX selection bit. FSXOX selects the type of internal frame sync that is
issued from the FSX pin. If set to 1, the FSX is from the frame sync prescaler
FSXCT. If reset to 0, the internal FSX is at the rate at which data is written into the
transmit FIFO.

12 FSXST
Status

Prescaler FSXST status bit. FSXST is set to 1 every time the FSXCT prescaler
counter reaches zero. FSXST can be read and cleared by writing a 1. This bit is
also a counter-status bit in the 16-bit counter mode. It is set to 1 whenever the
16-bit counter reaches zero. FSXST initiates an interrupt if GPI is enabled in the
SSPMC register.

11 Reserved Reserved

10 CLN Shift clock CLKX invert bit. CLN selects the polarity for the shift clock CLKX. If
reset to 0, CLKX is of normal polarity. If set to 1, CLKX is inverted for internal and
external CLKX. CLN bit controls both the CLKX and CLKR polarity. In the internal
CLKX mode, the outgoing CLKX is inverted once, and the incoming CLKR signal
is inverted once. Thus, if CLKX and CLKR pins are externally connected, the
polarity of the CLKX/CLKR are the same with respect to the SSP core.

9 CLXOX Input clock source CLXOX bit. In the general purpose counter mode (GPC bit =1),
CLXOX selects the input clock source to the 16-bit counter (SSPCT). If CLXOX =
1, the input clock is CLKX pin clock (either CLKOUT1/2 or external CLKX
depending on the MCM bit). If CLXOX bit is 0 , the input clock is CLKOUT1. In all
other modes, CLXOX has no effect (don’t care x).

8 PRSEN Prescale clock enable. When set to 1, PRSEN enables the input clock source to
the CLKX prescaler CLXCT and extends the scaled CLKX to the ESSP. If reset to
0, the prescaler does not count down as there is no input clock to the counter. The
input to CLXCT is CLKOUT1. PRSEN bit functions as a master to all ESSP
clocks/modes. All ESSP bits should be preloaded before PRSEN is enabled.

7–5 Transmit
FIFO Status

Status of the receive and transmit FIFOs. Define the status of the receive and
transmit FIFOs. Each set of 3 bits is capable of indicating five different states that
reflect upon the contents of the FIFOs.

ESSP Registers

 9-34

Table 9–7. SSPST Register — I/O address FFF2h Bit Descriptions (Continued)

Bit
No. FunctionName

4–2 Receive FIFO
Status

Status of the receive and transmit FIFOs. Define the status of the receive and
transmit FIFOs. Each set of 3 bits is capable of indicating five different states that
reflect upon the contents of the FIFOs.

1 SGNEX
(Sign-Extend)

Sign-extend. When the selected data word size is 8 bits, SGNEX, when set to 1,
sign extends the most significant 8 bits of the 16-bit word. If the bit is reset to 0,
the most significant 8 bits are filled with zeros.

0 BYTE
(8/16 Bit)

Data word size. Defines the data word length as 16 bits or 8 bits. The default
value at reset is 0 and selects the 16-bit data word size. The 8-bit data can be
received or transmitted by setting bit 0 to 1.

9.10.2 Synchronous Serial Port Multichannel Register (SSPMC)

The SSPMC register is used to select multichannel and 16-bit counter features
in the ESSP. Figure 9–12 explains the bit fields used to control the
multichannel option on the ESSP.

Figure 9–12. Synchronous Serial Port Multichannel (SSPMC) Register — FFF3h

15 14 13 12 11 10 9 8 7

SSPRST Reserved

R/S

6 5 4 3 2 1 0

SPI CH1 CH0 MMODE GPI CHLT GPC

R/W R/W R/W R/W R/W R/W R/W

Note: R = Read, W = Write

ESSP Registers

9-35Synchronous Serial Port

Table 9–8. SSPMC Register — FFF3h Bit Descriptions

Bit
No. Name Function

15 SSPRST SSPRST resets the current operation of SSP. At reset, SSPRST is 0 and enables
normal SSP operation. If set to 1, the SSP resets as follows:

a. Resets transmit FIFO pointers and transmit shift register

b. Resets receive FIFO pointers and receive shift register

c. Prescaler logic reloads the prescaler counters if GPC=0. If GPC=1, there is no
reload to prescalers. Resets all logic, except counter logic.

d. SSP control register bits (SSPCR) are not affected. However, all status bits are
reset.

14–7 Reserved Reserved

6 SPI SPI mode bit. SPI, when 1, enables an 8/16-bit pseudo serial peripheral interface (SPI)
mode. This mode is available only in burst mode with internal shift clock CLKX. If bit 6
is reset to 0, the SPI mode is disabled. In this mode, CLKX is issued only during the
time that data bits are transmitted or received. Data is transmitted/received whenever
transmit FIFO has data along with an FSX signal. Prescaled FSX cannot be used in
this mode. CLKR and FSR are internally connected to CLKX and FSX, respectively.
CLKX pin is normally low in SPI mode. If the CLN bit is enabled in the SSPST register,
then the CLKX pin is high between data transmits.

5–4 CH1,
CH0

Channel select bit. CH0, CH1 select the number of channels that are available in the
multichannel mode. CH0, CH1 have no effect if the MMODE bit is 0.

0 0 Selects one channel with one frame sync pulse FSX1 on FSX pin. The FSX rate
is defined only by the FSX prescaler, FSXCT.

0 1 Selects two channels with the second frame sync pulse FSX2 on the CLKR pin
(pin 84). Frame sync FSX2 is issued on the second CLKX cycle from the LSB of
the first channel.

1 0 Selects three channels with the third frame sync pulse FSX3 on the FSR pin (pin
85). Frame sync FSX3 is issued on the second CLKX cycle from the LSB of the
second channel.

1 1 Selects all four channels with the fourth frame sync pulse FSX4 on the IO0 pin
(pin 96). Frame sync FSX4 is issued on the second CLKX cycle from the LSB of
the third channel. In this mode, the IO0 pin is not available for I/O operation.

ESSP Registers

 9-36

Table 9–8. SSPMC Register — FFF3h Bit Descriptions (Continued)

Bit
No. FunctionName

3 MMODE Multichannel mode bit. MMODE, if reset to the default value 0, deselects the
multichannel option on the serial port. If set to 1, MMODE selects the multichannel
mode and uses the prescaled frame sync FSX only. In this mode, one or more frame
sync pulses are generated on different pins for glueless interface to multiple codecs.
The FSX and CLKX signals are internally connected to FSR and CLKR pins
respectively. CLKR and FSR pins are available as outputs for generating multichannel
frame sync FSX2, FSX3. The fourth channel frame sync (FSX4) is generated on IO0
pin (pin96). In this mode, IO0 is not available as the general purpose I/O pin.

2 GPI General purpose counter interrupt bit. GPI configures the XINT interrupt of the SSP as
the 16-bit counter interrupt. Whenever the 16-bit counter reaches 0, an XINT interrupt
is generated instead of a serial port transmit interrupt.

1 CHLT 16-bit counter halt bit. CHLT can be used to stop the 16-bit counter when the
prescalers are used as a counter. The default value is 0 and indicates that the counter
is counting. A value of 1 stops the counter.

0 GPC General purpose counter bit. GPC configures the two prescalers CLXCT, FSXCT as a
16-bit counter. When GPC is 1, CLXCT and FSXCT are together used as a 16-bit
counter. The input to the counter is either internal CLKOUT1 or CLKX pin clock as
defined by CLXOX in SSPST register. In the counter mode the prescalers are not
available for ESSP clock scaling. The GPC bit should be 0 if the prescalers are to be
used for CLKX and FSX scaling.

9.10.3 Synchronous Serial Port Count Register (SSPCT)

The shift clock CLKX and frame sync FSX can come from external or internal
sources. The SSPCR register bits define the source of these signals. The
SSPCT register holds two 8-bit prescale counters to provide user-specific shift
clock (CLKX) and frame sync clock (FSX). The CLXCT counter is an 8-bit
prescaler to divide CLKOUT1. The value of the prescaler output clock is:

CLKOUT1/(2*(CLXCT+1))

CLXCT is the prescale value defined in the SSPCT register bits 7–0. At reset,
the CLXCT register value is zero, which makes the CLKX rate equal to
(CLKOUT1)/2. This register can be written with any desired 8-bit prescale
value. The prescaler functions as a down counter, and the counter value can
be read anytime. The input clock source to the CLXCT prescaler can be
CLKOUT1 only. PRSEN (bit 8 of the SSPST register) should be set to 1, which
enables the input clock to the prescaler.

Once 8-bit prescaler values are written to the register SSPCT, PRSEN must
be enabled to start the counter counting down. The prescaler values are

ESSP Registers

9-37Synchronous Serial Port

loaded into the counter from the internal buffers only after PRSEN is enabled.
Enabling PRSEN should always follow any prescaler update. The prescaler
has an internal buffer register that gets updated every time SSPCT is written.
After reaching zero, the counter reloads the prescale value from the buffer and
counts down. This sequence of reload and count down repeats until PRSEN
bit in SSPST is reset to 0. If the PRSEN is reset to 0, the prescaler does not
have any input clock source to count down.

FSXCT takes either the CLKX prescaler output or the external CLKX pin clock
as its input. This helps to generate a variable frame sync pulse synchronous
to CLKX. Most applications require a FSX rate that is a multiple of the CLKX
rate. The FSX rate is defined by the equation:

CLKX pin clock/(2*(FSXCT+1))

FSXST bit (bit 12 in SSPST) is set every time FSXCT reaches zero, and can
be reset by writing a 1 to the FSXST bit. The 8-bit prescaler FSXCT for FSX
also functions in a similar way to the CLKX prescaler CLXCT.

Pay Attention to the FSXCT Value for Serial Channel Configuration

In multichannel mode, the value of FSXCT chosen (for 16-bit data)
should be such that there are at least (18 * n) SCLKs between
successive frame syncs, where n is the number of serial channels.
For example, FSXCT should be greater than or equal to 35 (23h) if
four serial channels are configured. For 8-bit data, FSXCT should
be greater than or equal to 19 (13h) for four channel configuration.
This number is valid for any CLKX and changes only with the
number of serial channels configured.

9.10.4 Programmable Internal CLKX and FSX Rates

The device clock CLKOUT1, external shift clock CLKX, and the 8-bit
prescalers can provide various CLKX/FSX rates to match several serial
interface devices. Interface devices such as CODECs operate in slave mode
expecting external shift clock. Table 9–9 provides various shift clock and frame
sync rates that can be generated for voice band applications using the
prescalers.

ESSP Registers

 9-38

Table 9–9. Typical CLKX/FSX Rates and Their Prescaler Values

CLKOUT1
Prescale Value

CLXCT Decimal (Hex) CLKX Rate
Prescale Value

FSXCT Decimal (Hex) FSX Rate Remarks

40.96 MHz 0 20.48 MHz 255 (FFh) 40 kHz

9 (9h) 2.048 MHz 127 (7Fh) 8 kHz VBAP/combo
codec rates

159 (9Fh) 128 kHz 3 (03h) 16 kHz

20.48 MHz 0 10.24 MHz 255 (FFh) 20 kHz

4 (4h) 2.048 MHz 127 (7Fh) 8 kHz VBAP/combo
codec rates

159 (9Fh) 64 kHz 3 (03h) 16 kHz

12.288 x 2 =
24.576 MHz

0 12.288 MHz 383 (17Fh) 16 kHz

1h 6.144 MHz 191 (BFh) 16 kHz

5h 2.048 MHz 127 (7Fh) 8 kHz VBAP/combo
codec rates

7h 1.536 MHz 95 (5Fh) 8 kHz VBAP/combo
codec rates

191 (BFh) 64 kHz 3 (03h) 8 kHz

9.10.5 Prescalers as General Purpose Counter

The two 8-bit prescalers in the SSPCT register can be used as a single 16-bit
down counter. The GPC bit in SSPMC register enables the 16-bit counter
mode. When GPC is set to 1, the prescalers are not available for scaling CLKX
and FSX. The 16-bit counter can accept either CLKOUT1 clock or CLKX pin
clock as its input. The counter value can be read any time and can be stopped
by setting CHLT bit in the SSPMC register. The counter flags a status bit
FSXST whenever it reaches 0×0000. The counter reloads the counter value
after it reaches zero and continues to count down. The FSXST bit is cleared
by writing a one to that bit.

Figure 9–13. Synchronous Serial Port Count (SSPCT) Register — FFFBh

15 8 7 0

8-bit prescaler – FSXCT 8-bit prescaler – CLXCT

R/W R/W

Note: R = Read, W = Write

ESSP Registers

9-39Synchronous Serial Port

When the prescalers are used as a 16-bit counter, they are not available for
prescaling FSX and CLKX. Two options are possible in the 16-bit counter
mode (GPC = 1).

� Option 1: Internal CLKX (MCM = 1)

When CLXOX = 1, input to counter is CLKX which is CLKOUT1/2, since
the prescalers are not operating.

When CLXOX = 0, input to the counter is CLKOUT1.

� Option 2: External CLKX (MCM =0)

When CLXOX = 1, input to counter is the CLKX pin.

When CLXOX = 0, input to counter is CLKOUT1.

ESSP Register Programming Considerations

 9-40

9.11 ESSP Register Programming Considerations

All standard SSP features can be configured by programming the ESSP
register (SSPCR) alone. This provides compatibility to the existing codes for
standard SSP in TMS320C203. However, if ESSP features such as
multichannel mode, prescaled frame sync, and shift clocks are desired, it is
necessary to initialize ESSP registers (SSPCT, SSPMC, and SSPST). It is
recommended that registers SSPCT and SSPMC are initialized first, followed
by the SSPST register. The prescalers are enabled only after the PRSEN bit
(bit 8 in SSPST) is set to 1. It is essential that the other registers be preloaded
before enabling the PRSEN bit in the SSPST register.

9.11.1 ESSP Register Initialization

While changing CLKN or FSN bits, initialize the SSPST register in two steps:

1) Load the SSPST registers bits with PRSEN bit 0.

2) Provide at least one CLKX cycle delay before setting PRSEN bit.

This helps internal synchronization of all the clocks (FSX/CLKX). This also
makes the prescalers and the clock circuit respond to the stable clock
(FSX/CLKX, FSR,CLKR) edges. However, in any initialization sequence, the
prescaler clocks are stable after the first reload of the prescaler counters.

9.11.2 Prescaler Values in Multichannel Mode

Considerable attention must be paid in choosing the value of FSXCT in
multichannel mode. For 16-bit data, successive frame sync pulses occur
18 SCLKs after the previous frame sync pulse. In the multichannel mode, if all
4 channels are used, a new data word is transmitted after a period of 72 SCLKs
for a given channel. (A new frame sync can occur only after 72 SCLKs.) This
is the minimum requirement. The minimum value for FSXCT can be easily
found from the formula for calculating the FSX rate. This is done by applying
the condition that two frame syncs for a given channel must be separated by
at least (N * 18) SCLKs, where N is the number of channels in the multi-channel
mode. This condition is applicable for 16-bit mode, where successive frame
syncs are separated by 18 SCLKs. In 8-bit mode, the frame syncs are
separated by 10 SCLKs. PRSEN must be 1 for the FSXCT prescaler to operate
correctly.

ESSP Register Programming Considerations

9-41Synchronous Serial Port

Figure 9–14. Typical Four-Channel Codec Interface

CLKX

DX

DR

FSX

CLKR/FSX2

FSR/FSX3

IO0/FSX4

’C20x DSP

CODEC 1 CODEC 2 CODEC 3 CODEC 4

Figure 9–15. Four-Channel 8-Bit CODEC† Interface Timing Example

125µs

8-bit 8-bit 8-bit 8-bit

8-bit 8-bit 8-bit8-bit

CH1 CH2 CH3 CH4
xxx CLKS

1 8 11 21 31

CLKX

DX

DR

FSX

CLKR/FSX2

FSR

IO0
† CODEC – coder-decoder devices such as COMBO/VBAP type of telephony codecs

ESSP Register Programming Considerations

 9-42

Figure 9–16. Four-Channel 16-Bit CODEC† Interface Timing Example

125µs

16-bit 16-bit 16-bit 16-bit

16-bit 16-bit 16-bit16-bit

CH1 CH2 CH3 CH4
xxx CLKS

1 16 19 37 55

CLKX

DX

DR

FSX

CLKR/FSX2

FSR

IO0

34 52 71

† CODEC – coder-decoder devices such as COMBO/VBAP type of telephony codecs

E
S

S
P

 R
egister P

rogram
m

ing C
onsiderations

9-43
S

ynchronous S
erial P

ort

9.11.3 ESSP Serial Port Configurations

The ESSP port can be configured for two modes of operation, burst and continuous, by setting bits in
the SSPCR, SSPMC, and SSPST registers. Table 9–10 lists the SSP and ESSP functions, by option
number, available for both modes. Note that in continuous mode, the Multichannel and SPI functions
(options 10, 11, 12) are not available. Table 9–11 shows burst mode, and Table 9–12 shows continuous
mode.

Table 9–10. Options/Functions for Burst Mode and Continuous Mode

Register Bits Register Bits

ESSP Configuration CLKX FSX ESSP Configuration CLKX FSX

Option Function E I P E I P
FIFO-
rate† Option Function E I P E I P

FIFO-
rate†

1 SSP RESET – – – – – – – 9 SSP option with
CLKXCT‡

� � � �

2 SSP option‡ � � 10 Multichannel§ � � � �

3 SSP option with
FSXCT‡

� � � 11 Multichannel§ � � �

4 SSP option‡ � � � 12 SPI§ � � � �

5 SSP option‡ � � 13 Counter and SSP � � �

6 SSP option with
CLXCT‡

� � � 14 Counter and SSP � �

7 SSP option with
8-bit prescalers‡

� � � � 15 Counter and SSP � � �

8 SSP option‡ � � � � 16 Counter and SSP � �

Legend: E - External I - Internal P - Prescaled

† TXFIFO WRITE RATE: In this state, the frame sync is issued along with each word transmitted from the TXFIFO.
‡ SSP Option refers to all features of the standard SSP – without the use of the ESSP register bits. These options differ based on CLKX and FSX source.
§ Multichannel and SPI functions (options 10, 11, 12) are not available in continuous mode.

E
S

S
P

 R
egister P

rogram
m

ing C
onsiderations

9-44 Table 9–11. Serial Port Configuration – Burst Mode

O
p

SSPCR

Register SSPMC Register SSPST Register
p
t
i
o
n
s

F
S
M

M
C
M

T
X
M

S
S
P
R
S
T

S
P
I

C
H
B
1

C
H
B
0

M
M
O
D
E

G
P
I

C
H
L
T

G
P
C

F
S
N

F
S
X
O
X

F
S
X
S
T

C
L
N

C
L
X
O
X

P
R
S
E
N

B
Y
T
E

C
L
K
X

F
S
X

C
L
X
C
T

C
L
K
X

rate

F
S
X
C
T

F
S
X

rate

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E E Not used – Not used –

2 1 0 0 0 0 X X 0 0 X 0 0 X 0 0 X 0 0/1 E E Not used E CLKX Not used E FSX

3 1 0 1 0 0 X X 0 0 X 0 0 1 0 0 X 1 0/1 E I Not used E CLKX Used P FSX I FSX by FSXCT

4 1 0 1 0 0 X X 0 0 X 0 0 0 0 0 X X 0/1 E I Not used E CLKX Not used I FSX

5 1 1 0 0 0 X X 0 0 X 0 0 X 0 0 X 0 0/1 I E Not used 1/2 C1 Not used I FSX by TX FIFO write

6 1 1 0 0 0 X X 0 0 X 0 0 X 0 0 X 1 0/1 I E Used CLKX 1/2 C1 or P Not used E FSX

7 1 1 1 0 0 X X 0 0 X 0 0 1 0 0 X 1 0/1 I I Used CLKX 1/2 C1 or P Used E FSX

8 1 1 1 0 0 X X 0 0 X 0 0 0 0 0 X 0 0/1 I I Not used 1/2 C1 Not used Def by FSX/P FSXCT

9 1 1 1 0 0 X X 0 0 X 0 0 0 0 0 X 1 0/1 I I Used CLKX 1/2 C1 or P Not used Def by write to TX FIFO

10 1 1 1 0 0 0/1 0/1 1 0 0 0 0 1 0 0 X 1 0/1 I I Used 1/2 C1 or P Used Def by write to TX FIFO

11 1 0 1 0 0 0/1 0/1 1 0 0 0 0 1 0 0 X 1 0/1 E I Not used E CLKX Used FSX1 def by FSXCT†

12 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 X 1 0/1 I I Used 1/2 C1 or P Not used FSX1 def by FSXCT†

13 1 1 1 0 0 0 0 0 u u 1 0 0 0 0 0/1 1 0/1 I I U16 1/2 C1 U16 Def by write to TX FIFO

14 1 1 0 0 0 0 0 0 u u 1 0 X 0 0 0/1 1 0/1 I E U16 1/2 C1 U16 E

15 1 0 1 0 0 0 0 0 u u 1 0 0 0 0 0/1 1 0/1 E I U16 E U16 Def by write to TX FIFO

16 1 0 0 0 0 0 0 0 u u 1 0 X 0 0 0/1 1 0/1 E E U16 E U16 E

Legend: E - External 1/2 C1 - 1/2 CLKOUT1 U16 - Used by 16-bit Counter u - Defines other functions in the selected mode. 0 and 1 are valid options.
I - Internal P - Prescaled Def - Defined X - DON’T CARE, does not affect selected mode. Replace X with 0 while writing to registers.

†FSXCT defines FSX rate to be greater than (18x4) SCLKs for 16-bit data and (10x4) SCLKs for 8-bit data, or the FSX rate will be incorrect.

E
S

S
P

 R
egister P

rogram
m

ing C
onsiderations

9-45
S

ynchronous S
erial P

ort

Table 9–12. Serial Port Configuration – Continuous Mode

O
p

SSPCR

Register SSPMC Register SSPST Register
p
t
i
o
n
s

F
S
M

M
C
M

T
X
M

S
S
P
R
S
T

S
P
I

C
H
B
1

C
H
B
0

M
M
O
D
E

G
P
I

C
H
L
T

G
P
C

F
S
N

F
S
X
O
X

F
S
X
S
T

C
L
N

C
L
X
O
X

P
R
S
E
N

B
Y
T
E

C
L
K
X

F
S
X

C
L
X
C
T

C
L
K
X

rate

F
S
X
C
T

F
S
X

rate

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E E Not used – Not used –

2 0 0 0 0 0 X X 0 0 X 0 0 X 0 0 0 0 0/1 E E Not used E CLKX only Not used E

3 0 0 1 0 0 X X 0 0 X 0 0 1 0 0 X 1 0/1 E I Not used E CLKX only Used I FSX I FSX def by FSXCT

4 0 0 1 0 0 X X 0 0 X 0 0 0 0 0 X X 0/1 E I Not used E CLKX Not used TX FIFO write rate

5 0 1 0 0 0 X X 0 0 X 0 0 X 0 0 X 0 0/1 I E Not used 1/2 C1 Not used E FSX

6 0 1 0 0 0 X X 0 0 X 0 0 X 0 0 X 1 0/1 I E Used CLKX 1/2 C1 or P Not used E FSX

7 0 1 1 0 0 X X 0 0 X 0 0 1 0 0 X 1 0/1 I I Used CLKX 1/2 C1 or P Used Def by FSX P

8 0 1 1 0 0 X X 0 0 X 0 0 0 0 0 X 0 0/1 I I Not used 1/2 C1 Not used Def by write to TX FIFO

9 0 1 1 0 0 X X 0 0 X 0 0 0 0 0 X 1 0/1 I I Used CLKX 1/2 C1 or P Not used Def by write to TX FIFO

10 For options 10, 11, and 12,

11 there is no Multichannel or SPI function in the Continuous Mode of the SSP.

12 (FSM bit is a Don’t Care for this mode.)

13 0 1 1 0 0 0 0 0 u u 1 0 0 0 0 0/1 1 0/1 I I U16 1/2 C1 U16 Def by write to TX FIFO

14 0 1 0 0 0 0 0 0 u u 1 0 X 0 0 0/1 1 0/1 I E U16 1/2 C1 U16 E

15 0 0 1 0 0 0 0 0 u u 1 0 0 0 0 0/1 1 0/1 E I U16 E U16 Def by write to TX FIFO

16 0 0 0 0 0 0 0 0 u u 1 0 X 0 0 0/1 1 0/1 E E U16 E U16 E

Legend: E - External 1/2 C1 - 1/2 CLKOUT1 U16 - Used by 16-bit Counter u - Defines other functions in the selected mode. 0 and 1 are valid options.
I - Internal P - Prescaled Def - Defined X - DON’T CARE, does not affect selected mode. Replace X with 0 while writing to registers.

†FSXCT defines FSX rate to be greater than (18x4) SCLKs for 16-bit data and (10x4) SCLKs for 8-bit data, or the FSX rate will be incorrect.

10-1Asynchronous Serial Port

Asynchronous Serial Port

The ’C20x has an asynchronous serial port that can be used to transfer data
to and from other devices. The port has several important features:

� Full-duplex transmit and receive operations at the maximum transfer rate
� Data-word length of eight bits for both transmit and receive
� Capability for using one or two stop bits
� Double buffering in all modes to transmit and receive data
� Adjustable baud rate of up to 250,000 10-bit characters per second
� Automatic baud-rate detection logic

For examples of program code for the asynchronous serial port, see Appendix D,
Program Examples.

Topic Page

10.1 Overview of the Asynchronous Serial Port 10-2.

10.2 Components and Basic Operation 10-3.

10.3 Controlling and Resetting the Port 10-7.

10.4 Transmitter Operation 10-19.

10.5 Receiver Operation 10-20.

Chapter 10

Overview of the Asynchronous Serial Port

10-2

10.1 Overview of the Asynchronous Serial Port

The on-chip asynchronous serial port (ASP) provides easy serial data commu-
nication between host CPUs and the ’C20x or between two ’C20x devices. The
asynchronous mode of data communication is often referred to as UART (uni-
versal asynchronous receive and transmit). For transmissions, data written to
a transmit register is converted from an 8-bit parallel form to a 10- or 11-bit seri-
al form (the eight bits preceded by one start bit and followed by one or two stop
bits). Each of the ten or eleven bits is transmitted sequentially (LSB first) to a
transmit pin. For receptions, data is received one bit at a time (LSB first) at a
receive pin (one start bit, eight data bits, and one or two stop bits). The received
bits are converted from serial form to parallel form and stored in the lower eight
bits of a 16-bit receive register. Errors in data transfers are indicated by flags
and/or interrupts. The asynchronous serial port is reset 16 CLKOUT1 cycles
after the rising edge of the reset pin, during device reset.

The maximum rate for transmissions and receptions is determined by the rate
of the internal baud clock, which operates at a fraction of the rate of CLKOUT1.
The exact fraction is determined by the value in the 16-bit programmable
baud-rate divisor register (BRD). For receptions, you may enable (through
software) the auto-baud detection logic, which allows the ASP to lock to the
incoming data rate.

Components and Basic Operation

10-3Asynchronous Serial Port

10.2 Components and Basic Operation

Figure 10–1 shows the main components of the asynchronous serial port.

Figure 10–1. Asynchronous Serial Port Block Diagram

TXRXINT

ADTR

ARSR

ADTR

AXSR

Control
 logic

(transmit)

Control
 logic

(receive)

TXBaud-rate
generator

Sequence
control

Sequence
control

RX

TXRXINT

CLKOUT1

Internal data bus

10.2.1 Signals

Two types of signals are used in asynchronous serial port (ASP) operations:

� Data signal. A data signal carries data from the transmitter to the receiver.
Data is sent through the transmit pin (TX) on the transmitter and accepted
through the receive pin (RX) on the receiver. One-way serial port transmis-
sion requires one data signal; two-way transmission requires two data sig-
nals.

� Handshake signal.The data transfer can be improved by using bits
IO0–IO3 of the ASP control register (ASPCR) for handshaking.

Data is transmitted on a character-by-character basis. Each data frame con-
tains a start bit, eight data bits, and one or two stop bits. The transmit and re-
ceive sections are both double-buffered to allow continuous data transfers.

The pins used by the asynchronous serial port are summarized in Table 10–1.
Each of these pins has an associated signal with the same name.

Components and Basic Operation

10-4

Table 10–1. Asynchronous Serial Port Interface Pins

Pin Name Description

TX Asynchronous serial port data transmit pin. Transmits serial data from
the asynchronous serial port transmit shift register (AXSR).

RX Asynchronous serial port data receive pin. Receives serial data into the
asynchronous serial port receive shift register (ARSR).

IO0 General purpose I/O pin 0. Can be used for general purpose I/O or for
handshaking by the UART.

IO1 General purpose I/O pin 1. Can be used for general purpose I/O or for
handshaking by the UART.

IO2 General purpose I/O pin 2. Can be used for general purpose I/O or for
handshaking by the UART.

IO3 General purpose I/O pin 3. Can be used for general purpose I/O or for
handshaking by the UART.

10.2.2 Baud-Rate Generator

The baud-rate generator is a clock generator for the asynchronous serial port.
The output rate of the generator is a fraction of the CLKOUT1 rate and is con-
trolled by a 16-bit register, BRD, that you can read from and write to at I/O ad-
dress FFF7h. For a CLKOUT1 frequency of 40 MHz, the baud-rate generator
can generate baud rates as high as 2.5 megabits/s (250,000 characters/s) and
as low as 38.14 bits/s (3.81 characters/s).

10.2.3 Registers

Four on-chip registers allow you to transmit and receive data and to control the
operation of the port:

� Asynchronous data transmit and receive register (ADTR). The ADTR is a
16-bit read/write register for transmitting and receiving data. Data written
to the lower eight bits of the ADTR is transmitted by the asynchronous seri-
al port. Data received by the port is read from the lower eight bits of the
ADTR. The upper byte is read as zeros. The ADTR is an on-chip register
located at address FFF4h in I/O space.

� Asynchronous serial port control register (ASPCR). The ASPCR, at I/O
address FFF5h, contains bits for setting port modes, enabling or disabling
the automatic baud-rate detection logic, selecting the number of stop bits,
enabling or disabling interrupts, setting the default level on the TX pin, con-
figuring pins IO3–IO0, and resetting the port. Section 10.3.1 gives a de-
tailed description of the ASPCR.

Components and Basic Operation

10-5Asynchronous Serial Port

� I/O status register (IOSR). Bits in the IOSR indicate detection of the incom-
ing baud rate, various error conditions, the status of data transfers, detec-
tion of a break on the RX pin, the status of pins IO3–IO0, and detection of
changes on pins IO3–IO0. The IOSR is at address FFF6h in I/O space. For
detailed descriptions of the bits in the IOSR, see section 10.3.2.

� Baud-rate divisor register (BRD). The 16-bit value in the BRD is a divisor
used to determine the baud rate for data transfers. BRD (at address
FFF7h in I/O space) is either loaded by software or is loaded by the port
when the automatic baud-rate detection logic is enabled and samples the
incoming baud rate. Section 10.3.3 describes how to determine the BRD
value that will produce the desired baud rate.

Two other registers (not accessible to a programmer) control transfers be-
tween the ADTR and the pins:

� Asynchronous serial port transmit shift register (AXSR). During transmis-
sions, each data character is transferred from the ADTR to the AXSR. The
AXSR then shifts the character out (LSB first) through the TX pin.

� Asynchronous serial port receive shift register (ARSR). During receptions,
each data character is accepted, one bit at a time (LSB first), at the RX pin
and shifted into the ARSR. The ARSR then transfers the character to the
ADTR.

10.2.4 Interrupts

The asynchronous serial port has one hardware interrupt (TXRXINT), which
can be generated by various events (described in section 10.3.6). TXRXINT
leads the CPU to interrupt vector location 000Ch in program memory. The
branch at that location should lead to an interrupt service routine that identifies
the cause of the interrupt and then acts accordingly. TXRXINT has a priority
level of 9 (1 being highest).

TXRXINT is a maskable interrupt controlled by the interrupt mask register
(IMR) and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the ASP, clear the IFR bit (TXRXINT) in the
corresponding interrupt service routine, just before returning from the rou-
tine.

10.2.5 Basic Operation

Figure 10–2 shows a typical serial link between a ’C20x device and any host
CPU. In this mode of communication, any 8-bit character can be transmitted

Components and Basic Operation

 10-6

or received serially by way of the transmit data pin (TX) or the receive data pin
(RX), respectively. The data transmitted or received through the TX and RX
pins will be at TTL level. However, if the hosts are separated by a few feet or
more, the serial data lines must be buffered through line-drivers (RS-232 or
RS-485, depending on the application).

When an 8-bit character is written into the lower eight bits of the ADTR, the
data, in parallel form, is converted into a 10- or 11-bit character with one start
bit and one or two stop bits. This new 10- or 11-bit character is then converted
into a serial data stream and transmitted through the TX pin one bit at a time.
The bit duration is determined by the baud clock rate. The baud-rate divisor
register (BRD) is programmable and takes a 16-bit value, providing all the
industry-standard baud rate values.

Similarly, if a 10- or 11-bit data stream reaches the RX pin, the serial port sam-
ples the bit at the transmitted baud rate and converts the serial stream into an
8-bit parallel data character. The received 8-bit character is stored in the lower
eight bits of the ADTR.

Figure 10–2. Typical Serial Link Between a ’C20x Device and a Host CPU

’C20x

TX

RX

Host

RX

TX

Line drivers Line drivers

serial portserial port

Controlling and Resetting the Port

10-7Asynchronous Serial Port

10.3 Controlling and Resetting the Port

The asynchronous serial port is programmed through three on-chip registers
mapped to I/O space: the asynchronous serial port control register (ASPCR),
the I/O status register (IOSR), and the baud-rate divisor register (BRD). This
section describes the contents of each of these registers and also explains the
use of associated control features.

10.3.1 Asynchronous Serial Port Control Register (ASPCR)

The ASPCR controls the operation of the asynchronous serial port.
Figure 10–3 shows the fields in the 16-bit memory-mapped ASPCR and bit
descriptions follow the figure. All of the bits in the register are read/write, with
the exception of the reserved bits (12–10). The ASPCR is an on-chip register
mapped to address FFF5h in I/O space.

Figure 10–3. Asynchronous Serial Port Control Register (ASPCR)
— I/O-Space Address FFF5h

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁÁ
ÁÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

FREEÁÁÁÁÁ
ÁÁÁÁÁ

SOFT ÁÁÁÁ
ÁÁÁÁ

URSTÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved ÁÁÁÁÁ
ÁÁÁÁÁ

DIM ÁÁÁÁ
ÁÁÁÁ

TIM ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

R/W–0ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–0 ÁÁÁÁ
ÁÁÁÁ

R/W–0ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–0 ÁÁÁÁ
ÁÁÁÁ

R/W–0 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

RIM ÁÁÁÁÁ
ÁÁÁÁÁ

STB ÁÁÁÁ
ÁÁÁÁ

CADÁÁÁÁÁ
ÁÁÁÁÁ

SETBRKÁÁÁÁÁ
ÁÁÁÁÁ

CIO3 ÁÁÁÁ
ÁÁÁÁ

CIO2 ÁÁÁÁÁ
ÁÁÁÁÁ

CIO1 ÁÁÁÁ
ÁÁÁÁ

CIO0 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

R/W–0
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–0
ÁÁÁÁ
ÁÁÁÁ

R/W–0
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–0
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–0
ÁÁÁÁ
ÁÁÁÁ

R/W–0
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W–0
ÁÁÁÁ
ÁÁÁÁ

R/W–0
ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: 0 = Always as zeros; R=Read access; W=Write access; value following dash (–) is value after reset. ÁÁ
ÁÁ

Table 10–2. ASPCR — I/O Space Address FFF5h Bit Descriptions

Bit
No. Name Function

15 FREE This bit sets the port to function in emulation or run mode.

0 Emulation mode is selected. SOFT then determines which emulation mode
is enabled.

1 Free run mode is selected.

14 SOFT This bit is enabled when the FREE bit is 0. It determines the emulation mode.

0 Process stops immediately.

1 Process stops after word completion.

Controlling and Resetting the Port

 10-8

Table 10–2. ASPCR — I/O Space Address FFF5h Bit Descriptions (Continued)

Bit
No. FunctionName

13 URST Reset asynchronous serial port bit. URST is used to reset the asynchronous seri-
al port. At reset, URST = 0.

0 The port is in reset.

1 The port is enabled.

12–10 Reserved Always read as 0s.

9 DIM Delta interrupt mask. DIM selects whether or not delta interrupts are asserted on
the TXRXINT interrupt line. A delta interrupt is generated by a change on one of
the general-purpose I/O pins (IO3, IO2, IO1, or IO0).

0 Disables delta interrupts.

1 Enables delta interrupts.

8 TIM Transmit interrupt mask. TIM selects whether transmit interrupts are asserted on
the TXRXINT interrupt line. A transmit interrupt is generated by THRE (transmit
register empty indicator in the IOSR) when the transmit register (ADTR) empties.

0 Disables transmit interrupts.

1 Enables transmit interrupts.

7 RIM Receive interrupt mask. RIM selects whether receive interrupts are asserted on
the TXRXINT interrupt line. A receive interrupt is generated by one of these indi-
cators in the IOSR: BI (break interrupt), FE (framing error), OE (overflow error), or
DR (data ready).

0 Disables receive interrupts.

1 Enables receiver interrupts.

6 STB Stop bit selector. STB selects the number of stop bits used in transmission and
reception.

0 One stop bit is used in transmission and reception. This is the default value
at reset.

1 Two stop bits are used in transmission and reception.

5 CAD Calibrate A detect bit. CAD is used to enable and disable automatic baud-rate
alignment (auto-baud alignment).

0 Disables auto-baud alignment.

1 Enables auto-baud alignment.

Controlling and Resetting the Port

10-9Asynchronous Serial Port

Table 10–2. ASPCR — I/O Space Address FFF5h Bit Descriptions (Continued)

Bit
No. FunctionName

4 SETBRK Set break bit. Selects the output level of TX when the port is not transmitting.

0 The TX output is forced high when the port is not transmitting.

1 The TX output is forced low when the port is not transmitting.

3 CIO3 Configuration bit for IO3. CIO3 configures I/O pin 3 (IO3) as an input or as an out-
put.

0 IO3 is configured as an input. This is the default value at reset.

1 IO3 is configured as an output.

2 CIO2 Configuration bit for IO2. CIO2 configures I/O pin 2 (IO2) as an input or as an out-
put.

0 IO2 is configured as an input. This is the default value at reset.

1 IO2 is configured as an output.

1 CIO1 Configuration bit for IO1. CIO1 configures I/O pin 1 (IO1) as an input or as an out-
put.

0 IO1 is configured as an input. This is the default value at reset.

1 IO1 is configured as an output.

0 CIO0 Configuration bit for IO0. CIO0 configures I/O pin 0 (IO0) as an input or as an out-
put.

0 IO0 is configured as an input. This is the default value at reset.

1 IO0 is configured as an output.

Controlling and Resetting the Port

 10-10

10.3.2 I/O Status Register (IOSR)

The IOSR returns the status of the asynchronous serial port and of I/O pins
IO0–IO3. The IOSR is a 16-bit, on-chip register mapped to address FFF6h in
I/O space. Figure 10–4 shows the fields in the IOSR, and bit descriptions fol-
low the figure.

Figure 10–4. I/O Status Register (IOSR) — I/O-Space Address FFF6h
Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

15
ÁÁÁÁ
ÁÁÁÁ

14
ÁÁÁÁÁ
ÁÁÁÁÁ

13
ÁÁÁÁÁ
ÁÁÁÁÁ

12
ÁÁÁÁ
ÁÁÁÁ

11
ÁÁÁÁÁ
ÁÁÁÁÁ

10
ÁÁÁÁ
ÁÁÁÁ

9
ÁÁÁÁÁ
ÁÁÁÁÁ

8
Á
ÁÁ

Á
ÉÉÉÉÉ
ÉÉÉÉÉ

Reserved
ÁÁÁÁ
ÁÁÁÁ

ADC
ÁÁÁÁÁ
ÁÁÁÁÁ

BI
ÁÁÁÁÁ
ÁÁÁÁÁ

TEMT
ÁÁÁÁ
ÁÁÁÁ

THRE
ÁÁÁÁÁ
ÁÁÁÁÁ

FE
ÁÁÁÁ
ÁÁÁÁ

OE
ÁÁÁÁÁ
ÁÁÁÁÁ

DR
Á
ÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ0

ÁÁÁÁ
ÁÁÁÁR/W1C–0

ÁÁÁÁÁ
ÁÁÁÁÁR/W1C–0

ÁÁÁÁÁ
ÁÁÁÁÁR–1

ÁÁÁÁ
ÁÁÁÁR–1

ÁÁÁÁÁ
ÁÁÁÁÁR/W1C–0

ÁÁÁÁ
ÁÁÁÁR/W1C–0

ÁÁÁÁÁ
ÁÁÁÁÁR–0

Á
ÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ7

ÁÁÁÁ
ÁÁÁÁ6

ÁÁÁÁÁ
ÁÁÁÁÁ5

ÁÁÁÁÁ
ÁÁÁÁÁ4

ÁÁÁÁ
ÁÁÁÁ3

ÁÁÁÁÁ
ÁÁÁÁÁ2

ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁÁÁ
ÁÁÁÁÁ0

Á
ÁÁ

Á
Á

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

DIO3
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DIO2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

DIO1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

DIO0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IO3
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

IO2
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IO1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

IO0
Á
Á
ÁÁÁÁÁÁÁR/W1C–xÁÁÁÁR/W1C–xÁÁÁÁÁR/W1C–xÁÁÁÁÁR/W1C–x ÁÁÁÁR/W†–xÁÁÁÁÁR/W†–x ÁÁÁÁR/W†–xÁÁÁÁÁR/W†–x ÁÁ

Á
Á
Á

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: 0 = Always read as 0; R=Read access; W1C=Write 1 to this bit to clear it to 0; W = Write access;
value following dash (–) is value after reset (x means value not affected by reset).

† This bit can be written to only when it is configured as an output by the corresponding CIO bit in the ASPCR.

Á
Á
Á
ÁTable 10–3. IOSR — I/O Space Address FFF6h Bit Descriptions

Bit
No. Name Function

15 Reserved Always read as 0.

14 ADC A detect complete bit. If the CAD bit of the ASPCR is 1 and the character A or a is
received in the ADTR, ADC is set to 1. The character A or a remains in the ADTR
after it has been detected. To avoid an overrun error when the next character
arrives, the ADTR should be read immediately after ADC is set.

0 A or a has not been detected. No receive interrupt (TXRXINT) will be
generated.

1 A or a has been detected. If the CAD bit of the ASPCR is also 1, a receive
interrupt (TXRXINT) will be generated, regardless of the values of the DIM,
TIM, and RIM bits of the ASPCR. For as long as ADC = 1 and CAD = 1, a
receive interrupt will occur.

13 BI Break interrupt indicator. BI = 1 indicates that a break has been detected on the
RX pin. Write a 1 to this bit to clear it to 0. BI is also cleared to 0 at reset.

A break on the RX pin also generates an interrupt (TXRXINT).

Controlling and Resetting the Port

10-11Asynchronous Serial Port

Table 10–3. IOSR — I/O Space Address FFF6h Bit Descriptions (Continued)

Bit
No. FunctionName

12 TEMT Transmit empty indicator. TEMT = 1 indicates whether the transmit register
(ADTR) and/or transmit shift register (AXSR) are full or empty. This bit is set to 1
on reset.

0 The ADTR and/or AXSR are full.

1 The ADTR and the AXSR are empty; the ADTR is ready for a new
character to transmit.

11 THRE Transmit register (ADTR) empty indicator. THRE is set to 1 when the contents of
the transmit register (ADTR) are transferred to the transmit shift register (AXSR).
THRE is reset to 0 by the loading of the transmit register with a new character. A
device reset sets THRE to 1.

The emptying of the ADTR also generates an interrupt (TXRXINT).

0 The transmit register is not empty. Port operation is normal.

1 The transmit register is empty, indicating that it is ready to be loaded with a
new character.

10 FE Framing error indicator. FE indicates whether a valid stop bit has been detected
during reception. Clear the FE bit to 0 by writing a 1 to it. It is also cleared to 0 on
reset.

A framing error also generates an interrupt (TXRXINT).

0 No framing error is detected. Port operation is normal.

1 The character received did not have a valid (logic 1) stop bit.

9 OE Receive register (ADTR) overrun indicator. OE indicates whether an unread char-
acter has been overwritten. Clear the OE bit to 0 by writing a 1 to it. It is also
cleared to 0 on reset.

The occurrence of overrun also generates an interrupt (TXRXINT).

0 No overrun error is detected. The port is operating normally.

1 The last character in the ADTR was not read before the next character
overwrote it.

Controlling and Resetting the Port

 10-12

Table 10–3. IOSR — I/O Space Address FFF6h Bit Descriptions (Continued)

Bit
No. FunctionName

8 DR Data ready indicator for the receiver. This bit indicates whether a new character
has been received in the ADTR. This bit is automatically cleared to zero when the
receive register (ADTR) is read or when the device is reset.

The reception of a new character into the ADTR also generates an interrupt
(TXRXINT).

0 The receive register (ADTR) is empty.

1 A character has been completely received and should be read from the
receive register (ADTR).

7 DIO3 Change detect bit for IO3. DIO3 indicates whether a change has occurred on the
IO3 pin. A change can be detected only when IO3 is configured as an input by the
CIO3 bit of the ASPCR (CIO3 = 0) and the serial port is enabled by the URST bit
of the ASPCR (URST = 1). Writing a 1 to DIO3 clears it to 0.

The detection of a change on the IO3 pin also generates an interrupt (TXRXINT).

0 No change is detected on IO3.

1 A change is detected on IO3.

6 DIO2 Change detect bit for IO2. DIO2 indicates whether a change has occurred on the
IO2 pin. A change can be detected only when IO2 is configured as an input by the
CIO2 bit of the ASPCR (CIO2 = 0) and the serial port is enabled by the URST bit
of the ASPCR (URST = 1). Writing a 1 to DIO2 clears it to 0.

The detection of a change on the IO2 pin also generates an interrupt (TXRXINT).

0 No change is detected on IO2.

1 A change is detected on IO2.

5 DIO1 Change detect bit for IO1. DIO1 indicates whether a change has occurred on the
IO1 pin. A change can be detected only when IO1 is configured as an input by the
CIO1 bit of the ASPCR (CIO1 = 0) and the serial port is enabled by the URST bit
of the ASPCR (URST = 1). Writing a 1 to DIO1 clears it to 0.

The detection of a change on the IO1 pin also generates an interrupt (TXRXINT).

0 No change is detected on IO1.

1 A change is detected on IO1.

Controlling and Resetting the Port

10-13Asynchronous Serial Port

Table 10–3. IOSR — I/O Space Address FFF6h Bit Descriptions (Continued)

Bit
No. FunctionName

4 DIO0 Change detect bit for IO0. DIO0 indicates whether a change has occurred on the
IO0 pin. A change can be detected only when IO0 is configured as an input by the
CIO0 bit of the ASPCR (CIO0 = 0) and the serial port is enabled by the URST bit
of the ASPCR (URST = 1). Writing a 1 to DIO0 clears it to 0.

The detection of a change on the IO0 pin also generates an interrupt (TXRXINT).

0 No change is detected on IO0.

1 A change is detected on IO0.

3 IO3 Status bit for IO3. When the IO3 pin is configured as an input (by the CIO3 bit of
the ASPCR), this bit reflects the current level on the IO3 pin.

0 The IO3 signal is low.

1 The IO3 signal is high.

2 IO2 Status bit for IO2. When the IO2 pin is configured as an input (by the CIO2 bit of
the ASPCR), this bit reflects the current level on the IO2 pin.

0 The IO2 signal is low.

1 The IO2 signal is high.

1 IO1 Status bit for IO1. When the IO1 pin is configured as an input (by the CIO1 bit of
the ASPCR), this bit reflects the current level on the IO1 pin.

0 The IO1 signal is low.

1 The IO1 signal is high.

0 IO0 Status bit for IO0. When the IO0 pin is configured as an input (by the CIO0 bit of
the ASPCR), this bit reflects the current level on the IO0 pin.

0 The IO0 signal is low.

1 The IO0 signal is high.

Note: If IO0–3 pins have been configured as outputs, IO0–3 bits can be written with either a 1 or 0 to reflect on the I/O pins (0–3)
respectively.

Controlling and Resetting the Port

 10-14

10.3.3 Baud-Rate Divisor Register (BRD)

The baud rate of the asynchronous serial port can be set to many different
rates by means of the BRD, an on-chip register located at address FFF7h in
I/O space. Equation 10–1 shows how to set the BRD value to get the desired
baud rate. When the BRD contains 0, the ASP will not transmit or receive any
character. At reset, BRD = 0001h.

Equation 10–1. Value Needed in the BRD
BRD value in decimal = CLKOUT1 frequency

16 × desired baud rate

Table 10–4 lists common baud rates and the corresponding hexadecimal val-
ue that should be in the BRD for a given CLKOUT1 frequency.

Table 10–4. Common Baud Rates and the Corresponding BRD Values

BRD Value in Hexadecimal

Baud
Rate

CLKOUT1 = 20 MHz
(50 ns)

CLKOUT1 = 28.57 MHz
(35 ns)

CLKOUT1 = 40 MHz
(25 ns)

1200 0411 05CC 0823

2400 0208 02E6 0411

4800 0104 0173 0208

9600 0082 00B9 0104

19200 0041 005C 0082

10.3.4 Using Automatic Baud-Rate Detection

The ASP contains auto-baud detection logic, which allows the ASP to lock to
the incoming data rate. The following steps explain the sequence by which the
detection logic could be implemented:

1) Enable auto-baud detection by setting the CAD bit in the ASPCR to 1 and
ADC bit in the IOSR to zero.

2) Receive from a host the ASCII character A or a as the first character, at
any desired baud rate definable in the BRD register. If the first character
received is A or a, the serial port will lock to the incoming baud rate (the
rate of the host), and the BRD register will be updated to the incoming baud
rate value.

3) Baud-rate detection is indicated by a TXRXINT interrupt (mapped to vec-
tor location 000Ch) if TXRXINT is unmasked in the interrupt mask register
and is globally enabled by the INTM bit of status register ST0. This inter-
rupt occurs regardless of the values of the DIM, TIM, and RIM bits in the
ASPCR.

Controlling and Resetting the Port

10-15Asynchronous Serial Port

4) Following the baud detection interrupt, the ADTR should be read to clear
the A or a character from the receive buffer. If the ADTR is not cleared, any
subsequent character received will set the OE bit in the IOSR, indicating
an overrun error.

5) Once the baud rate is detected, both the CAD and ADC bits must be
cleared; write 0 to CAD and write 1 to ADC. If CAD is not cleared, the auto
baud-detection logic will try to lock to the incoming character speed. In
addition, for as long as ADC = 1 and CAD = 1, receive interrupts will be
generated.

10.3.5 Using I/O Pins IO3, IO2, IO1, and IO0

Pins IO3, IO2, IO1, and IO0 can be individually configured as inputs or outputs
and can be used as handshake control for the asynchronous serial port or as
general-purpose I/O pins. They are software-controlled through the asynchro-
nous serial port control register (ASPCR) and the I/O status register (IOSR),
as shown in Figure 10–5.

Figure 10–5. Example of the Logic for Pins IO0–IO3

Level change
detect

10

DIO3 DIO2 DIO1 DIO0 IO3 IO2 IO1 IO0

Delta interrupt

IOSR

DIM bit

DIM CIO3 CIO2 CIO1 CIO0

GP I/O
pin IO0

ASPCR

FFF6h

FFF5h

Delta Interrupt Mask Configure I/O pins (IN or OUT)

Change on I/O pin Current level of I/O pin

Controlling and Resetting the Port

10-16

The four LSBs of the ASPCR, bits CIO0–CIO3, are for configuring each pin as
an input or an output. For example, as shown in the figure, setting CIO0 to 1
configures IO0 as an output; setting CIO0 to 0 configures IO0 as an input. At
reset, CIO0–CIO3 are all cleared to 0, making all four of the the pins inputs.
Table 10–5 summarizes the configuration of the pins.

Table 10–5. Configuring Pins IO0–IO3 with ASPCR Bits CIO0–CIO3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CIO0
Bit

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IO0
Pin

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CIO1
Bit

ÁÁÁ
ÁÁÁ
ÁÁÁ

IO1
Pin

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CIO2
Bit

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IO2
Pin

ÁÁÁ
ÁÁÁ
ÁÁÁ

CIO3
Bit

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IO3
Pin

0 Input 0 Input 0 Input 0 Input

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

Output ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ
OutputÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

Output ÁÁÁ
ÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

Output

When pins IO0–IO3 are configured as inputs

When pins IO0–IO3 are configured as inputs, the eight LSBs of the IOSR allow
you to monitor these four pins. Each of the IOSR bits 3–0, called IO3, IO2, IO1,
and IO0, can be used to read the current logic level (high or low) of the signal
at the corresponding pin. Each of the bits 7–4, called DIO3, DIO2, DIO1, and
DIO0, is used to track a change from a previous known or unknown signal val-
ue at the corresponding pin. When a change is detected on one of the pins,
the corresponding detect bit is set to 1, and an interrupt request is sent to the
CPU on the TXRXINT interrupt line. You can clear each of the detect bits to
0 by writing a 1 to it. DIO3–DIO0 are only useful when the pins are configured
as inputs and the serial port is enabled by the URST bit of the ASPCR
(URST = 1). Table 10–6 summarizes what IOSR bits 0–7 indicate when IO0–
IO3 are inputs.

Controlling and Resetting the Port

10-17Asynchronous Serial Port

Table 10–6. Viewing the Status of Pins IO0–IO3 With IOSR Bits IO0–IO3 and DIO0–DIO3

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IOSR Bit
Number
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IOSR Bit
Name

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

When IO0–IO3 are inputs,
this bit indicates...

ÁÁÁ
ÁÁÁ
ÁÁÁ0 IO0 Current logic level (0 or 1) on pin IO0

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

IO1 ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Current logic level (0 or 1) on pin IO1 ÁÁÁ
ÁÁÁ

2 IO2 Current logic level (0 or 1) on pin IO2
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

3
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IO3
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Current logic level (0 or 1) on pin IO3
ÁÁÁ
ÁÁÁ
ÁÁÁ4 DIO0† Change detected (1) or not detected (0)

on pin IO0 (when IO0 is an input)

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5 ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DIO1† ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Change detected (1) or not detected (0)
on pin IO1 (when IO1 is an input)

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ

ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

6 ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DIO2† ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Change detected (1) or not detected (0)
on pin IO2 (when IO2 is an input)

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ

ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

7 ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DIO3† ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Change detected (1) or not detected (0)
on pin IO3 (when IO3 is an input)

ÁÁÁ
ÁÁÁ
ÁÁÁ

† Write a 1 to this bit to clear it to 0.

When pins IO0–IO3 are configured as outputs

When pins IO0–IO3 are configured as outputs, you can write to the four LSBs
(IO3–IO0) of the IOSR. The value you write to each bit becomes the new logic
level at the corresponding pin. For example, if you write a 0 to bit 2, the logic
level at pin IO2 changes to low; if you write a 1 to bit 2, the logic level on IO2
changes to high.

10.3.6 Using Interrupts

The asynchronous serial port interrupt (TXRXINT) can be generated by three
types of interrupts:

� Transmit interrupts. A transmit interrupt is generated when the ADTR
empties during transmission. This indicates that the port is ready to accept
a new transmit character. In addition to generating the interrupt, the port
sets the THRE bit of the IOSR to 1. Transmit interrupts can be disabled by
the TIM bit of the ASPCR.

� Receive interrupts. Any one of the following events will generate a receive
interrupt:

� The ADTR holds a new character. This event is also indicated by the
DR bit of the IOSR (DR = 1).

Controlling and Resetting the Port

 10-18

� Overrun occurs. The last character in the ADTR was not read before
the next character overwrote it. Overrun also sets the OE bit of the
IOSR to 1.

� A framing error occurs. The character received did not have a valid
(logic 1) stop bit. This event is also indicated by the FE bit of the IOSR
(FE = 1).

� A break has been detected on the RX pin. This event also sets the BI
bit of the IOSR to 1.

� The character A or a has been detected in the ADTR by the auto-baud
detect logic. This event also sets the ADC bit of the IOSR to 1. This
interrupt will occur regardless of the values of the DIM, TIM, and RIM
bits of the ASPCR.

With the exception of the A detect interrupt, receive interrupts can be dis-
abled by the RIM bit of the ASPCR.

� Delta interrupts. This type of interrupt is generated if a change takes place
on one of the I/O lines (IO0, IO1, IO2, or IO3) when the lines are used for
ASP control (when DIM = 1 in the ASPCR). The event is also indicated by
the corresponding detect bit (DIO0, DIO1, DIO2, or DIO3) in the IOSR.
Delta interrupts can be disabled by the DIM bit of the ASPCR.

TXRXINT leads the CPU to interrupt vector location 000Ch in program
memory. The branch at that location should lead to an interrupt service routine
that identifies the cause of the interrupt and then acts accordingly. TXRXINT
has a priority level of 9 (1 being highest).

TXRXINT is a maskable interrupt and is controlled by the interrupt mask regis-
ter (IMR) and interrupt flag register (IFR).

Note:

To avoid a double interrupt from the ASP, clear the IFR bit (TXRXINT) in the
corresponding interrupt service routine, just before returning from the rou-
tine.

Transmitter Operation

10-19Asynchronous Serial Port

10.4 Transmitter Operation

The transmitter consists of an 8-bit transmit register (ADTR) and an 8-bit trans-
mit shift register (AXSR). Data to be transmitted is written to the ADTR, and
then the port transfers the data to the AXSR. Data written to the transmit regis-
ter should be written in right-justified form, with the LSB as the rightmost bit.
Data from the AXSR is shifted out on the TX pin in the serial form shown in
Figure 10–6 (the number of stop bits depends on the value of the STB bit in
the ASPCR). When the serial port is not transmitting, TX should be held high
by clearing the SETBRK bit of the ASPCR (SETBRK = 0).

Figure 10–6. Data Transmit

Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 6 Bit 7 Stop 1 Stop 2

Transmission is started by a write to the ADTR. If the AXSR is empty, data from
the ADTR is transferred to the AXSR. If the AXSR is full, then data is kept in
the ADTR, and existing data in the AXSR is shifted out to the sequence control
logic. If both the AXSR and ADTR are full and the CPU tries to write to the
ADTR, the write is not allowed, and existing data in both registers is main-
tained.

If the transmit register is empty and interrupt TXRXINT is unmasked (in the
IMR) and enabled (by the INTM bit), an interrupt is generated. When the ADTR
empties, the THRE bit of the IOSR is set to 1. The bit is cleared when a charac-
ter is loaded into the transmit register. Bit 12 (TEMT) of the IOSR is set if both
the transmit and transmit shift registers are empty.

The sequence control logic constructs the transmit frame by sending out a
start bit followed by the data bits from the AXSR and either one or two stop bits.

Here is a summary of asynchronous mode transmission:

1) An interrupt (TXRXINT) is generated if the transmit register is empty.

2) If AXSR is empty, the data is transferred from ADTR to AXSR.

3) A start bit is transmitted to TX, followed by eight data bits (LSB first), and
the stop bit(s).

4) For the next transmission, the process begins again from step 1.

To avoid double interrupts, the interrupt service routine should clear TXRXINT
in the interrupt flag register (IFR), just before forcing a return from the routine.
Take special care when using this interrupt; it will be generated frequently for
as long as the transmit register is empty.

Receiver Operation

10-20

10.5 Receiver Operation

The receiver includes two internal 8-bit registers: the receive register (ADTR)
and receive shift register (ARSR). The data received at the RX pin should have
the serial form shown in Figure 10–7 (the number of stop bits required de-
pends on the value of the STB bit in the ASPCR).

Figure 10–7. Data Receive

Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 6 Bit 7 Stop 1 Stop 2

Data is received on the RX pin, and the negative-edge detect logic initiates a
receive operation and checks for a start bit. After the eight data bits are re-
ceived, a stop bit (or bits) should be received, indicating the end of that block.
If a valid stop bit is not received, a framing error has occurred; in response, the
FE bit in the ASPCR is set to 1, and a TXRXINT interrupt is generated. Then
normal reception continues, and the receiver looks for the next start bit.

Once a valid stop bit is received, data is then transferred to the ADTR, and an
interrupt (TXRXINT) is sent to the CPU. The DR bit of the IOSR is set to indi-
cate that a character has been received in the receive register, ADTR. (DR is
cleared to 0 when the ADTR is read.) The ARSR is now available to receive
another character.

If ADTR is not read before new data is transferred into the ADTR, the overflow
error (OE) flag is set in the IOSR.

In summary, asynchronous mode reception involves the following events:

1) A negative edge is received on RX to indicate a start bit. A test is performed
to indicate whether a start bit is valid.

2) If the start bit is valid, eight data bits are shifted into ARSR (LSB first).

3) A stop bit is received to indicate end of reception. (If a stop bit is not re-
ceived, a framing error is indicated.)

4) Data is transferred from ARSR to ADTR.

5) An interrupt is sent to the CPU once data has been placed in the ADTR.

6) Reception is complete. The receiver waits for another negative transition.

To avoid double interrupts, the interrupt service routine should clear TXRXINT
in the interrupt flag register (IFR) just before forcing a return from the routine.

11-1

TMS320C209

All ’C20x devices use the same central processing unit (CPU), bus structure,
and instruction set, but the ’C209 has some notable differences. This chapter
compares features on the ’C209 with those on other ’C20x devices and then
provides information specific to the ’C209 in the areas of memory and I/O
spaces, interrupts, and on-chip peripherals.

Topic Page

11.1 ’C209 Versus Other ’C20x Devices 11-2.

11.2 ’C209 Memory and I/O Spaces 11-5.

11.3 ’C209 Interrupts 11-10.

11.4 ’C209 On-Chip Peripherals 11-15.

Chapter 11

’C209 Versus Other ’C20x Devices

 11-2

11.1 ’C209 Versus Other ’C20x Devices

This section explains the differences between the ’C209 and other ’C20x de-
vices and concludes with a table to help you find the other information in this
manual that applies to the ’C209.

11.1.1 What Is the Same

The following components and features are identical on all ’C20x devices, in-
cluding the ’C209:

� Central processing unit
� Status registers ST0 and ST1
� Assembly language instructions
� Addressing modes
� Global data memory
� Program-address generation logic
� General-purpose I/O pins BIO and XF

11.1.2 What Is Different

The important differences between the ’C209 and other ’C20x devices are as
follows:

� Peripherals:

� The ’C209 has no serial ports.

� The wait-state generator can be programmed to generate either no
wait states or one wait state. Other ’C20x devices provide zero to
seven wait states.

� The wait-state generator does not provide separate wait states for the
upper and lower halves of program memory.

� The ’C209 supports address visibility mode (enabled with the wait-
state generator control register). In this mode, the device passes the
internal program address to the external address bus when this bus is
not used for an external access.

� The ’C209 clock generator supports only two options: multiply-by-two
(�2) and divide-by-two (÷2).

� The ’C209 does not have a CLK register; thus it cannot prevent the
CLKOUT1 signal from appearing on the CLKOUT1 pin.

� The ’C209 does not have I/O pins IO3, IO2, IO1, and IO0.

’C209 Versus Other ’C20x Devices

11-3TMS320C209

� Memory and I/O Spaces:

� The I/O addresses of the peripheral registers are different on the
’C209.

� The ’C209 does not support the ’C20x HOLD operation.

� Interrupts:

� The ’C209 has four maskable interrupt lines, none of them shared.
The other devices have six interrupt lines, one shared by the INT2 and
INT3 pins.

� The ’C209 does not have an interrupt control register (ICR) because
INT2 and INT3 have their own interrupt lines.

� Although the interrupt flag register (IFR) and interrupt mask register
(IMR) are used in the same way on all ’C20x device, the ’C209 has
fewer flag and mask bits because it does not have serial ports.

� On the ’C209, interrupts INT2 and INT3 have their own interrupt lines
and, thus, have their own interrupt vectors. On other ’C20x devices,
INT2 and INT3 share an interrupt line and, thus, share one interrupt
vector.

� The ’C209 has an interrupt acknowledge pin (IACK), which allows ex-
ternal detection of when an interrupt has been acknowledged.

� The ’C209 has two pins for reset: RS and RS; other ’C20x devices
have only RS.

11.1.3 Where to Find the Information You Need About the TMS320C209

For information about: Look here:

Assembly language instructions Chapter 7, Assembly Language
Instructions

Clock generator Main description Chapter 8, On-Chip Peripherals

Options and configuration Section 11.4.1 (page 11-15)

CPU Chapter 3, Central Processing Unit

Data-address generation Chapter 6, Addressing Modes

I/O Space Main description Chapter 4, Memory

Effect of READY pin Section 11.2 (page 11-5)

Control register locations Table 11–3 (page 11-9)

’C209 Versus Other ’C20x Devices

 11-4

For information about: Look here:

Interrupts Main description Chapter 5, Program Control

Vector locations Table 11–4 (page 11-10)

Flag and mask registers Section 11.3.1 (page 11-12)

Interrupt acknowledge pin Section 11.3.2 (page 11-14)

Memory Main description Chapter 4, Memory

Address maps Figure 11–1 (page 11-6)

Configuration Section 11.2 (page 11-5)

Pipeline Chapter 5, Program Control

Power-down mode Chapter 5, Program Control

Program-address generation Chapter 5, Program Control

Program control Chapter 5, Program Control

Stack Chapter 5, Program Control

Status registers Chapter 5, Program Control

Timer Main description Chapter 8, On-Chip Peripherals

Configuration Section 11.4.2 (page 11-16)

Wait-state generator Main description Chapter 8, On-Chip Peripherals

Configuration Section 11.4.3 (page 11-17)

’C209 Memory and I/O Spaces

11-5TMS320C209

11.2 ’C209 Memory and I/O Spaces

The ’C209 does not have an on-chip bootloader and does not support the
’C20x HOLD operation. Figure 11–1 shows the ’C209 address map. The on-
chip program and data memory available on the ’C209 consists of:

� ROM (4K words, for program memory)

� SARAM (4K words, for program and/or data memory)

� DARAM B0 (256 words, for program or data memory)

� DARAM B1 (256 words, for data memory)

� DARAM B2 (32 words, for data memory)

’C209 Memory and I/O Spaces

11-6

Figure 11–1.’C209 Address Maps

’C209 Program ’C209 Data

FFFFh

2000h
1FFFh

1000h
0FFFh

0800h

0400h
03FFh

0300h
02FFh

0200h
01FFh

0080h
007Fh

0060h
005Fh

0000h

External
(local and/or global)

(RAMEN = 0)
External

(RAMEN = 1);
On-chip SARAM

(RAMEN = 1)
Reserved

(RAMEN = 0);
External

DARAM B1§
On-chip

Reserved (CNF = 1)
B0‡ (CNF = 0);

On-chip DARAM

Reserved

DARAM B2
On-chip

reserved addresses
registers and

Memory-mapped0000h

0FFFh
1000h

On-chip ROM

1FFFh
2000h

FDFFh
FE00h

(RAMEN = 1);
External

(RAMEN = 0)

External (CNF = 0)
Reserved (CNF = 1);

External

On-chip SARAM

FEFFh
FF00h

FFFFh

On-chip DARAM
B0† (CNF = 1);

External (CNF = 0)

Reserved
07FFh

(MP/MC = 0)

(MP/MC = 1)
External

Interrupts (on-chip)

003Fh

Interrupts (external)
(MP/MC = 0)

(MP/MC = 1)

’C209 I/O
0000h

FFFFh
reserved addresses

registers and
I/O-mapped

External

8000h
7FFFh

External FF00h
FEFFh

FF10h
FF0Fh

Reserved for
test/emulation

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh
are referred to here as reserved when CNF = 1.

‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are
referred to here as reserved.

§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to here as
reserved.

’C209 Memory and I/O Spaces

11-7TMS320C209

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
any addresses labeled Reserved. This includes any data-memory
address in the range 0000h–005Fh that is not designated for an
on-chip register and any I/O address in the range FF00h–FFFFh
that is not designated for an on-chip register.

You select or deselect the ROM by changing the level on the MP/MC pin at re-
set:

� When MP/MC = 0 (low) at reset, the device is configured as a microcom-
puter. The on-chip ROM is enabled and is accessible at addresses
0000h–0FFFh. The device fetches the reset vector from on-chip ROM.

� When MP/MC = 1 (high) at reset, the device is configured as a micropro-
cessor, and addresses 0000h–0FFFh are used to access external
memory. The device fetches the reset vector from external memory.

Regardless of the value of MP/MC, the ’C20x fetches its reset vector at loca-
tion 0000h of program memory.

The addresses assigned to the on-chip SARAM are shared by program
memory and data memory. The RAMEN signal allows you to toggle the data
addresses 1000h–1FFFh and the program addresses 1000h–1FFFh between
on-chip memory and external memory:

� When RAMEN = 1 (high), program addresses 1000h–1FFFh and data ad-
dresses 1000h–1FFFh are mapped to the same physical locations in the
on-chip SARAM. For example, 1000h in program memory and 1000h in
data memory point to the same physical location in the on-chip SARAM.
Thus, the 4K words of on-chip SARAM are accessible for program and/or
data space.

Note:

When RAMEN = 1, program addresses 1000h–1FFFh and data addresses
1000h–1FFFh are one and the same. When writing data to these locations
be careful not to overwrite existing program instructions.

� When RAMEN = 0 (low), program addresses 1000h–1FFFh (4K) are
mapped to external program memory and data addresses 1000h–1FFFh

’C209 Memory and I/O Spaces

11-8

(4K) are mapped to external data memory. Thus, a total of 8K additional
addresses (4K program and 4K data) are available for external memory.

DARAM blocks B1 and B2 are fixed, but DARAM block B0 may be mapped to
program space or data space, depending on the value of the CNF bit (bit 12
of status register ST1):

� When CNF = 0, B0 is mapped to data space and is accessible at data ad-
dresses 0200h–02FFh. Note that the addressable external program
memory increases by 512 words. At reset, CNF = 0.

� When CNF = 1, B0 is mapped to program space and is accessible at pro-
gram addresses FF00h–FFFFh.

Table 11–1 lists the available program memory configurations for the ’C209;
Table 11–2 lists the data-memory configurations. Note these facts:

� Program-memory addresses 0000h–003Fh are used for the interrupt vec-
tors.

� Data-memory addresses 0000h–005Fh contain on-chip memory-mapped
registers and reserved memory.

� Two other on-chip data-memory ranges are always reserved:
0080h–01FFh and 0400h–07FFh.

Table 11–1. ’C209 Program-Memory Configuration Options

MP/MC RAMEN CNF
ROM
(hex)

SARAM
(hex)

DARAM B0
(hex)

External
(hex)

Reserved
(hex)

0 0 0 0000–0FFF – – 1000–FFFF –

0 0 1 0000–0FFF – FF00–FFFF 1000–FDFF FE00–FEFF

0 1 0 0000–0FFF 1000–1FFF – 2000–FFFF –

0 1 1 0000–0FFF 1000–1FFF FF00–FFFF 2000–FDFF FE00–FEFF

1 0 0 – – – 0000–FFFF –

1 0 1 – – FF00–FFFF 0000–FDFF FE00–FEFF

1 1 0 – 1000–1FFF – 0000–0FFF

2000–FFFF

–

1 1 1 – 1000–1FFF FF00–FFFF 0000–0FFF

2000–FDFF

FE00–FEFF

’C209 Memory and I/O Spaces

11-9TMS320C209

Table 11–2. ’C209 Data-Memory Configuration Options

RAMEN CNF
DARAM B0

(hex)
DARAM B1

(hex)
DARAM B2

(hex)
SARAM

(hex)
External

(hex)
Reserved

(hex)

0 0 0200–02FF 0300–03FF 0060–007F – 0800–FFFF 0000–005F

0080–01FF

0400–07FF

0 1 – 0300–03FF 0060–007F – 0800–FFFF 0000–005F

0080–02FF

0400–07FF

1 0 0200–02FF 0300–03FF 0060–007F 1000–1FFF 2000–FFFF 0000–005F

0080–01FF

0400–0FFF

1 1 – 0300–03FF 0060–007F 1000–1FFF 2000–FFFF 0000–005F

0080–02FF

0400–0FFF

A portion of the on-chip I/O space contains the control registers listed in
Table 11–3.The corresponding registers on other ’C20x devices are not at the
addresses shown in this table. When accessing the I/O-mapped registers on
the ’C209, also keep in mind the following:

� The READY pin must be pulled high to permit reads from or writes to regis-
ters mapped to internal I/O space. This is not true for other ’C20x devices.

� The IS (I/O select) and R/W (read/write) signals are visible on their pins
during reads from or writes to registers mapped to internal I/O space. On
other ’C20x devices, none of the interface signals are visible during inter-
nal I/O accesses.

Table 11–3. ’C209 On-Chip Registers Mapped to I/O Space

I/O Address Name Description

FFFCh TCR Timer control register

FFFDh PRD Timer period register

FFFEh TIM Timer counter register

FFFFh WSGR Wait-state generator control register

Note: The corresponding registers on other ’C20x devices are not at these addresses.

’C209 Interrupts

 11-10

11.3 ’C209 Interrupts

Table 11–4 lists the interrupts available on the ’C209 and shows their vector
locations. In addition, it shows the priority of each of the hardware interrupts.
Note that a device reset can be initiated in either of two ways: by driving the
RS pin low or by driving the RS pin high. The K value shown for each interrupt
vector location is the operand to be used with the INTR instruction if you want
to force a branch to that location.

Table 11–4. ’C209 Interrupt Locations and Priorities
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

K†

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Vector
Location

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Name

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Priority

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Function

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0h ÁÁÁÁÁ
ÁÁÁÁÁ

RS or RS‡ÁÁÁÁÁ
ÁÁÁÁÁ

1 (highest) ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Hardware reset (nonmaskable)

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-maskable interrupt #1

ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

4h ÁÁÁÁÁ
ÁÁÁÁÁ

INT2 ÁÁÁÁÁ
ÁÁÁÁÁ

5 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-maskable interrupt #2

ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

6h ÁÁÁÁÁ
ÁÁÁÁÁ

INT3 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-maskable interrupt #3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

8h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TINT
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-maskable interrupt #4:
timer interrupt

ÁÁÁÁ
ÁÁÁÁ

5
ÁÁÁÁ
ÁÁÁÁ

Ah
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

8
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Reserved

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Ch
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

9
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁ
ÁÁÁÁ

Eh ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Reserved

ÁÁÁÁ
ÁÁÁÁ

8 ÁÁÁÁ
ÁÁÁÁ

10h ÁÁÁÁÁ
ÁÁÁÁÁ

INT8 ÁÁÁÁÁ
ÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

9
ÁÁÁÁ
ÁÁÁÁ

12h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT9
ÁÁÁÁÁ
ÁÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

10
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

14h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT10
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

16h ÁÁÁÁÁ
ÁÁÁÁÁ

INT11 ÁÁÁÁÁ
ÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

18h ÁÁÁÁÁ
ÁÁÁÁÁ

INT12 ÁÁÁÁÁ
ÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ

13
ÁÁÁÁ
ÁÁÁÁ

1Ah
ÁÁÁÁÁ
ÁÁÁÁÁ

INT13
ÁÁÁÁÁ
ÁÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

14
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1Ch
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT14
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.

‡ The ’C209 has two pins for triggering a hardware reset: RS and RS. If either RS is driven low
or RS is driven high, the device will be reset.

’C209 Interrupts

11-11TMS320C209

Table 11–4. ’C209 Interrupt Locations and Priorities (Continued)

ÁÁÁ
ÁÁÁ
ÁÁÁ

K†

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Vector
Location

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Name

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Priority

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function

ÁÁÁ
ÁÁÁ

15ÁÁÁÁÁ
ÁÁÁÁÁ

1Eh ÁÁÁÁÁ
ÁÁÁÁÁ

INT15 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

16ÁÁÁÁÁ
ÁÁÁÁÁ

20h ÁÁÁÁÁ
ÁÁÁÁÁ

INT16 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ
ÁÁÁ

17
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

22h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TRAP
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

TRAP instruction vector

ÁÁÁ
ÁÁÁ

18ÁÁÁÁÁ
ÁÁÁÁÁ

24h ÁÁÁÁÁ
ÁÁÁÁÁ

NMI ÁÁÁÁ
ÁÁÁÁ
3 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Nonmaskable interrupt

ÁÁÁ
ÁÁÁ

19ÁÁÁÁÁ
ÁÁÁÁÁ

26h ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
2 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Reserved

ÁÁÁ
ÁÁÁ

20
ÁÁÁÁÁ
ÁÁÁÁÁ

28h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT20
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁ
ÁÁÁ
ÁÁÁ

21
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2Ah
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT21
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

22ÁÁÁÁÁ
ÁÁÁÁÁ

2Ch ÁÁÁÁÁ
ÁÁÁÁÁ

INT22 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

23ÁÁÁÁÁ
ÁÁÁÁÁ

2Eh ÁÁÁÁÁ
ÁÁÁÁÁ

INT23 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

24
ÁÁÁÁÁ
ÁÁÁÁÁ

30h
ÁÁÁÁÁ
ÁÁÁÁÁ

INT24
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt
ÁÁÁ
ÁÁÁ
ÁÁÁ

25
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

32h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT25
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

26ÁÁÁÁÁ
ÁÁÁÁÁ

34h ÁÁÁÁÁ
ÁÁÁÁÁ

INT26 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

27ÁÁÁÁÁ
ÁÁÁÁÁ

36h ÁÁÁÁÁ
ÁÁÁÁÁ

INT27 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ28
ÁÁÁÁÁ
ÁÁÁÁÁ38h

ÁÁÁÁÁ
ÁÁÁÁÁINT28

ÁÁÁÁ
ÁÁÁÁ–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁUser-defined software interruptÁÁÁ

ÁÁÁ
ÁÁÁ

29
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

3Ah
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

INT29
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
–

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

User-defined software interrupt

ÁÁÁ
ÁÁÁ

30ÁÁÁÁÁ
ÁÁÁÁÁ

3Ch ÁÁÁÁÁ
ÁÁÁÁÁ

INT30 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁ
ÁÁÁ

31ÁÁÁÁÁ
ÁÁÁÁÁ

3Eh ÁÁÁÁÁ
ÁÁÁÁÁ

INT31 ÁÁÁÁ
ÁÁÁÁ
– ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
User-defined software interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.

‡ The ’C209 has two pins for triggering a hardware reset: RS and RS. If either RS is driven low
or RS is driven high, the device will be reset.

’C209 Interrupts

 11-12

11.3.1 ’C209 Interrupt Registers

As with other ’C20x devices, the maskable interrupts of the ’C209 are
controlled by an interrupt flag register (IFR) and an interrupt mask register
(IMR). Figure 11–2 shows the IFR and Figure 11–3 shows the IMR. Each of
the figures is followed by descriptions of the bits.

Figure 11–2.’C209 Interrupt Flag Register (IFR) — Data-Memory Address 0006h

15 4 3 2 1 0
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved TINT INT3 INT2 INT1

0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Note: 0 = Always read as zeros; R = Read access; W1C = Write 1 to this bit to clear it to 0;
value following dash (–) is value after reset.

Table 11–5. ’C209 IFR — Data Memory Address 0006h Bit Descriptions

Bit
No. Name Function

15–4 Reserved Bits 15–4 are reserved and are always read as 0s.

3 TINT Timer interrupt flag. Bit 3 indicates whether interrupt TINT is pending (whether
TINT is requesting acknowledgment from the CPU).

0 Interrupt TINT is not pending.

1 Interrupt TINT is pending.

2 INT3 Interrupt 3 flag. Bit 2 indicates whether INT3 is pending (whether INT3 is request-
ing acknowledgment from the CPU).

0 INT3 is not pending.

1 INT3 is pending.

1 INT2 Interrupt 2 flag. Bit 1 indicates whether INT2 is pending (whether INT2 is request-
ing acknowledgment from the CPU).

0 INT2 is not pending.

1 INT2 is pending.

0 INT1 Interrupt 1 flag. Bit 0 indicates whether INT1 is pending (whether INT1 is request-
ing acknowledgment from the CPU).

0 INT1 is not pending.

1 INT1 is pending.

’C209 Interrupts

11-13TMS320C209

Figure 11–3.’C209 Interrupt Mask Register (IMR) — Data-Memory Address 0004h

15 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved TINT INT3 INT2 INT1

0 R/W–0 R/W–0 R/W–0 R/W–0

Note: Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (–) is value after reset.

Table 11–6. ’C209 IMR — Data Memory Address 0004h Bit Descriptions

Bit
No. Name Function

15–4 Reserved Bits 15–4 are reserved and are always read as 0s.

3 TINT Timer interrupt mask. Mask or unmask the internal timer interrupt, TINT, with this
bit.

0 TINT is masked.

1 TINT is unmasked.

2 INT3 Interrupt 3 mask. Unmask external interrupt INT3 by writing a 1 to this bit.

0 INT3 is masked.

1 INT3 is unmasked.

1 INT2 Interrupt 2 mask. Unmask external interrupt INT2 by writing a 1 to this bit.

0 INT2 is masked.

1 INT2 is unmasked.

0 INT1 Interrupt 1 mask. Unmask external interrupt INT1 by writing a 1 to this bit.

0 INT1 is masked.

1 INT1 is unmasked.

’C209 Interrupts

11-14

11.3.2 IACK Pin

On the ’C209, the interrupt acknowledge signal is available at the external
IACK pin. The CPU generates this signal while it fetches the first word of any
of the interrupt vectors, whether the interrupt was requested by hardware or
by software. IACK is not affected by wait states; IACK goes low only on the first
cycle of the read when wait states are used. At reset, the interrupt acknowl-
edge signal is generated in the same manner as for a maskable interrupt.

Your external hardware can use the IACK signal to determine when the pro-
cessor acknowledges an interrupt. Additionally, when IACK goes low, the
hardware can sample the address pins (A15–A0) to determine which interrupt
the processor is acknowledging. Since the interrupt vectors are spaced apart
by two words, address pins A1–A4 can be decoded at the falling edge of IACK
to identify the interrupt being acknowledged.

’C209 On-Chip Peripherals

11-15TMS320C209

11.4 ’C209 On-Chip Peripherals

The ’C209 has these on-chip peripherals:

� Clock generator. The clock generator is fundamentally the same on all
’C20x devices, including the ’C209. However, the ’C209 is limited to the
two clock modes described in section 11.4.1.

� Timer. The timer is also fundamentally the same. The difference here is
that the timer control register (TCR) on the ’C209 does not offer bits for
configuring timer emulation modes. Section 11.4.2 describes the ’C209
TCR.

� Wait-state generator. The wait-state generators of the ’C20x devices
operate similarly; however, the ’C209 wait-state generator is different from
that of other ’C20x devices in these ways:

� It offers zero or one wait states (not zero to seven).

� It cannot produce separate wait states for the lower (0000h–7FFFh)
and upper (8000h–FFFFh) halves of program space.

� It provides a bit for enabling or disabling address visibility mode. In this
mode (not available on other ’C20x devices), the ’C209 passes the
internal program address to the external address bus when this bus is
not used for an external access.

The ’C209 generator is programmable by way of the ’C209 wait-state
generator control register (WSGR) and is described section 11.4.3.

11.4.1 ’C209 Clock Generator Options

The ’C209 includes two clock modes: divide-by-2 (÷2) and multiply-by-2 (×2).
The ÷2 mode operates the CPU at half the input clock rate. The ×2 option
doubles the input clock and phase-locks the output clock with the input clock.
To enable the ÷2 mode, tie the CLKMOD pin low. To enable the ×2 mode, tie
CLKMOD high. For each clock mode, Table 11–7 shows the generated CPU
clock rate and shows the state of CLKMOD, the internal oscillator, and the
internal phase lock loop (PLL).

Notes:

� Change CLKMOD only while the reset signal (RS or RS) is active.

� The PLL requires approximately 2200 cycles to lock the output clock
signal to the input clock signal. When setting the ×2 mode, keep the reset
(RS or RS) signal active until at least three cycles after the PLL has
stabilized.

’C209 On-Chip Peripherals

11-16

Table 11–7. ’C209 Input Clock Modes

ÁÁÁÁÁ
ÁÁÁÁÁ

Clock ModeÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 Rate ÁÁÁÁÁ
ÁÁÁÁÁ

CLKMODÁÁÁÁÁ
ÁÁÁÁÁ

Oscillator ÁÁÁÁ
ÁÁÁÁ

PLL

ÁÁÁÁÁ
ÁÁÁÁÁ

÷ 2 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 = CLKIN ÷ 2ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

Enabled ÁÁÁÁ
ÁÁÁÁ

Disabled
ÁÁÁÁÁ
ÁÁÁÁÁ

× 2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

CLKOUT1 = CLKIN × 2
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

Disabled
ÁÁÁÁ
ÁÁÁÁ

Enabled

Remember the following points when configuring the clock mode:

� The modes cannot be configured dynamically. After you change the level
on CLKMOD, the mode is not changed until a hardware reset is executed
(RS low or RS high).

� The clock doubler mode uses an internal phase-locked loop (PLL) that re-
quires approximately 2200 cycles to lock. Delay the rising edge of RS (or
the falling edge of RS) until at least three cycles after the PLL has stabi-
lized. When the PLL is used, the duty cycle of the CLKIN signal is more
flexible, but the minimum duty cycle should not be less than 10 nanosec-
onds. When the PLL is not used, no phase-locking time is necessary, but
the minimum pulse width must be 45% of the minimum clock cycle.

11.4.2 ’C209 Timer Control Register (TCR)

Figure 11–4 shows the bit fields of the ’C209 TCR, and descriptions of the bit
fields follow the figure.

Figure 11–4.’C209 Timer Control Register (TCR) — I/O Address FFFCh

15–10 9–6 5 4 3–0

ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved PSC TRB TSS TDDR

0 R/W–0 R/W–0 W–0 R/W–0

Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash (–) is value after reset.

Table 11–8. ’C209 TCR — I/O Address FFFCh Bit Descriptions

Bit
No. Name Function

15–10 Reserved TCR bits 10–15 are reserved and are always read as 0s.

9–6 PSC Timer prescaler counter. These four bits hold the current prescale count for the
timer. For every CLKOUT1 cycle that the PSC value is greater than 0, the PSC
decrements by one. One CLKOUT1 cycle after the PSC reaches 0, the PSC is
loaded with the contents of the TDDR, and the timer counter register (TIM) decre-
ments by one. The PSC is also reloaded whenever the timer reload bit (TRB) is
set by software. The PSC can be checked by reading the TCR, but it cannot be
set directly. It must get its value from the timer divide-down register (TDDR). At
reset, the PSC is set to 0.

’C209 On-Chip Peripherals

11-17TMS320C209

Table 11–8. ’C209 TCR — I/O Address FFFCh Bit Descriptions (Continued)

Bit
No. FunctionName

5 TRB Timer reload bit. When you write a 1 to TRB, the TIM is loaded with the value in
the PRD, and the prescaler counter (PSC) is loaded with the value in the timer
divide-down register (TDDR). The TRB bit is always read as zero.

4 TSS Timer stop status bit. TSS is a 1-bit flag that stops or starts the timer. To stop the
timer, set TSS to 1. To start or restart the timer, set TSS to 0. At reset, TSS is
cleared to 0 and the timer immediately starts.

3–0 TDDR Timer divide-down register. Every (TDDR + 1) CLKOUT1 cycles, the timer counter
register (TIM) decrements by one. At reset, the TDDR bits are cleared to 0. If you
want to increase the overall timer count by an integer factor, write this factor mi-
nus one to the four TDDR bits. When the prescaler counter (PSC) value is 0, one
CLKOUT1 cycle later, the contents of the TDDR reload the PSC, and the TIM
decrements by 1. TDDR also reloads the PSC whenever the timer reload bit
(TRB) is set by software.

11.4.3 ’C209 Wait-State Generator

As with other ’C20x devices, the ’C209 offers two options for generating wait
states:

� The READY signal. With the READY signal, you can externally generate
any number of wait states.

� The on-chip wait-state generator. With the ’C209 wait-state generator, you
can internally generate zero or one wait state.

The ’C209 wait-state generator inserts a wait state to a given memory space
(data, program, or I/O) if the corresponding bit in WSGR is set to 1, regardless
of the condition of the READY signal. As with other ’C20x devices, the READY
signal can then be used to further extend wait states. The WSGR control bits
are all set to 1 by reset, so that the device can operate from slow memory after
reset. To avoid bus conflicts, writes from the ’C209 always take two CLKOUT1
cycles each.

To control the wait-state generator, you read from or write to the wait-state gen-
erator control register (WSGR), mapped to I/O memory location FFFFh.
Figure 11–5 shows the register’s bit layout, and descriptions of the bits follow.
The WSGR also enables or disables address visibility mode.

’C209 On-Chip Peripherals

 11-18

Figure 11–5.’C209 Wait-State Generator Control Register (WSGR) — I/O Address FFFFh

15–4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

Reserved AVIS ISWS DSWS PSWS

0 W–1 W–1 W–1 W–1

Note: 0 = Always read as zeros; W = Write access; value following dash (–) is value after reset.

Table 11–9. ’C209 WSGR — I/O Address FFFFh Bit Descriptions

Bit
No. Name Function

15–4 Reserved Bits 15–4 are reserved and are always read as 0s.

3 AVIS Address visibility mode. AVIS = 1 enables the address visibility mode of the de-
vice. In this mode, the device provides a method of tracing internal code opera-
tion: it passes the internal program address to the address bus when this bus is
not used for an external access. At reset, AVIS is set to 1. For production sys-
tems, the AVIS bit should be cleared to 0 to reduce power and noise. (AVIS does
not generate a wait state.)

2 ISWS I/O-space wait-state bit. When ISWS = 1, one wait state will be applied to all
reads from off-chip I/O space. When ISWS = 0, no wait states are generated for
off-chip I/O space. At reset, this bit is set to 1.

1 DSWS Data-space wait-state bit. When DSWS = 1, one wait state will be applied to all
reads from off-chip data space. When DSWS = 0, no wait states are generated for
off-chip data space. At reset, this bit is set to 1.

0 PSWS Program-space wait-state bit. When PSWS = 1, one wait state will be applied to
all reads from off-chip program space. When PSWS = 0, no wait states are gener-
ated for off-chip program space. At reset, this bit is set to 1.

A-1

Appendix A

Register Summary

For the status and control registers of the ’C20x devices, this appendix
summarizes:

� Their addresses
� Their reset values
� The functions of their bits

Topic Page

A.1 Addresses and Reset Values A-2.

A.2 Register Descriptions A-4.

Appendix A

Addresses and Reset Values

 A-2

A.1 Addresses and Reset Values

The following tables list the ’C20x registers, the addresses at which they can
be accessed, and their reset values. Note that the registers mapped to internal
I/O space on the ’C209 are at addresses different from those of other ’C20x
devices. In addition, the ’C209 wait-state generator control register has a dif-
ferent reset value because there are only four control bits in the register.

Table A–1. Reset Values of the Status Registers

Name Reset Value (Binary) Description

ST0 XXX0 X11X XXXX XXXX Status register 0

ST1 XXX0 X111 1111 1100 Status register 1

Notes: 1) No addresses are given for ST0 and ST1 because they can be accessed only by the CLRC, SETC, LST, and SST
instructions.

2) X: Reset does not affect these bits.

Table A–2. Addresses and Reset Values of On-Chip Registers Mapped to Data Space

Name Data-Memory Address Reset Value Description

IMR 0004h 0000h Interrupt mask register

GREG 0005h 0000h Global memory allocation register

IFR 0006h 0000h Interrupt flag register

Table A–3. Addresses and Reset Values of On-Chip Registers Mapped to
I/O Space

I/O Address

Name ’C209 Other ’C20x Reset Value Description

CLK – FFE8h 0000h CLKOUT1-pin control (CLK) register

ICR – FFECh 0000h Interrupt control register

SDTR – FFF0h xxxxh Synchronous data transmit and receive register

SSPCR – FFF1h 0030h Synchronous serial port control register

ADTR – FFF4h xxxxh Asynchronous data transmit and receive register

ASPCR – FFF5h 0000h Asynchronous serial port control register

IOSR – FFF6h 18xxh I/O status register

Note: An x in the reset value represents one to four bits that are either not affected by reset or dependent on pin levels at reset.

Addresses and Reset Values

A-3Register Summary

Table A–3. Addresses and Reset Values of On-Chip Registers Mapped to
I/O Space (Continued)

I/O Address

Name DescriptionReset ValueOther ’C20x’C209

BRD – FFF7h 0001h Baud-rate divisor register

TCR FFFCh FFF8h 0000h Timer control register

PRD FFFDh FFF9h FFFFh Timer period register

TIM FFFEh FFFAh FFFFh Timer counter register

WSGR FFFFh FFFCh 0FFFh Wait-state generator control register

Note: An x in the reset value represents one to four bits that are either not affected by reset or dependent on pin levels at reset.

Register Descriptions

 A-4

A.2 Register Descriptions

The following figures summarize the content of the ’C20x status and control
registers that are divided into fields. (The other registers contain no control
bits; they simply hold a single 16-bit value.) Each figure in this section provides
information in this way:

� The value shown in the register is the value after reset. If the value of a
particular bit is not affected by reset or depends on pin levels at reset, that
bit will contain an X.

� Each unreserved bit field or set of bits has a callout that very briefly de-
scribes its effect on the processor.

� Each non-reserved bit field or set of bits is labeled with one or more of the
following symbols:

� R indicates that your software can read the bit field but cannot write to
it.

� W indicates that your software can read the bit field and write to it.

� W1C indicates that writing a 1 to the bit field clears it to 0; writing a 0
has no effect.

When both read access and write access apply to a bit field, two of these
symbols are shown, separated by / (a forward slash): R/W or R/W1C.

� Where needed, footnotes provide additional information for a particular
figure.

Register Descriptions

A-5Register Summary

Status Register ST0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X 0 X ÉÉÉ
ÉÉÉ

1† 1 X X X X X X X X X

ARP OV OVM INTM DP

All unmasked interrupts enabled
All unmasked interrupts disabled

0
1

Auxiliary register pointer

Selects the current page
(0, 1, 2, ..., 511) in
data memory

Data page pointer

R/W R/W R/W

Selects the current auxiliary register
(0, 1, 2, 3, 4, 5, 6, or 7)

R/W

Accumulator results overflow normally.
Overflow mode selected

0
1

Flag is reset
Overflow detected in accumulator

0
1

R/W

Interrupt mode

Overflow mode

Overflow flag

† This reserved bit is always read as 1. Writes have no effect.

Status Register ST1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X 0 X 1 1 ÉÉ
ÉÉ

1†ÉÉ
ÉÉ

1†ÉÉÉ
ÉÉÉ

1†ÉÉ
ÉÉ

1† 1ÉÉÉ
ÉÉÉ

1†ÉÉ
ÉÉ

1† 0 0

ARB CNF TC SXM C XF PM

Auxiliary register pointer buffer

Product shift mode

R/W R/W R/W

Holds previous ARP value

R/W

Holds results of various software tests

DARAM B0 mapped to data memory
DARAM B0 mapped to program memory

0
1

R/WR/W

Test/control flag

Sign extension suppressed
Sign extension mode selected

0
1

R/W

Carry not generated/borrow generated
Carry generated/borrow not generated

0
1

XF pin low
XF pin high

0
1

No shift
Left shift of 1
Left shift of 4
Right shift of 6, sign extended

0
1
0
1

0
0
1
1

Carry bit

XF pin status

Sign-extension mode

DARAM B0 configuration

† These reserved bits are always read as 1s. Writes have no effect.

Register Descriptions

 A-6

’C20x Interrupt Flag Register (IFR) — Except ’C209 — Data-Memory Address 0006h
15 6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

0 0 0 0 0 0 0

Reserved † TXRXINT XINT RINT TINT INT2/INT3 HOLD/INT1

R/W1C

Neither INT2 nor INT3 pending
INT2 and/or INT3 pending

0
1

Interrupt TXRXINT not pending
Interrupt TXRXINT pending

0
1

Interrupt XINT not pending
Interrupt XINT pending

0
1

Interrupt RINT not pending
Interrupt RINT pending

0
1

Interrupt TINT not pending
Interrupt TINT pending

0
1

0
1

HOLD/INT1 not pending
HOLD/INT1 pending

R/W1C R/W1C R/W1C R/W1C R/W1C

Receive interrupt flag

Transmit interrupt flag

Transmit/receive interrupt flag

HOLD/INT1 flag

Timer interrupt flag

INT2/INT3 flag

† These reserved bits are always read as 0s. Writes have no effect.

Interrupt Flag Register (IFR) — ’C209 — Data-Memory Address 0006h
15 4 3 2 1 0
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

0 0 0 0 0

Reserved † TINT INT3 INT2 INT1

R/W1CR/W1C

INT2 not pending
INT2 pending

0
1

Interrupt TINT not pending
Interrupt TINT pending

0
1

INT3 not pending
INT3 pending

0
1

0
1

INT1 not pending
INT1 pending

R/W1C R/W1C

INT1 flag

Timer interrupt flag

INT2 flag

INT3 flag

† These reserved bits are always read as 0s. Writes have no effect.

Register Descriptions

A-7Register Summary

Interrupt Mask Register (IMR) — Except ’C209 — Data-Memory Address 0004h
15 6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉ

0 0 0 0 0 0 0

Reserved † TXRXINT XINT RINT TINT INT2/INT3 HOLD/INT1

R/W

INT2 and INT3 masked
INT2 and INT3 unmasked

0
1

Interrupt TXRXINT masked
Interrupt TXRXINT unmasked

0
1

Interrupt XINT masked
Interrupt XINT unmasked

0
1

Interrupt RINT masked
Interrupt RINT unmasked

0
1

Interrupt TINT masked
Interrupt TINT unmasked

0
1

0
1

HOLD/INT1 masked
HOLD/INT1 unmasked

R/W R/W R/W R/W R/W

Receive interrupt mask

Transmit interrupt mask

Transmit/receive interrupt mask

HOLD/INT1 mask

Timer interrupt mask

INT2/INT3 mask

† These reserved bits are always read as 0s. Writes have no effect.

Interrupt Mask Register (IMR) — ’C209 — Data-Memory Address 0004h
15 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

0 0 0 0 0

Reserved † TINT INT3 INT2 INT1

R/W

INT2 masked
INT2 unmasked

0
1

Interrupt TINT masked
Interrupt TINT unmasked

0
1

INT3 masked
INT3 unmasked

0
1

0
1

INT1 masked
INT1 unmasked

R/W R/W R/W

INT1 mask

INT2 mask

INT3 mask

Timer interrupt mask

† These reserved bits are always read as 0s. Writes have no effect.

Register Descriptions

 A-8

Interrupt Control Register (ICR) — I/O Address FFECh
15 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ

0 0 0 0 0 0

Reserved † MODE FINT3 FINT2 MINT3 MINT2

INT3 request will not reach CPU.
INT3 request will reach CPU.

0
1

Double-edge mode. HOLD/INT1 pin both negative- and positive-edge sensitive
Single-edge mode. HOLD/INT1 pin only negative-edge sensitive

0
1

INT3 not pending
INT3 pending

0
1

INT2 not pending
INT2 pending

0
1

0
1

INT2 request will not reach CPU.
INT2 request will reach CPU.

R/W R/W1C R/W1C R/W R/W

HOLD/INT1 pin mode

INT3 flag

INT2 flag

INT3 mask

INT2 mask

† These reserved bits are always read as 0s. Writes have no effect.

Register Descriptions

A-9Register Summary

Timer Control Register (TCR) — Except ’C209 — I/O Address FFF8h
15 12 11 10 9 6 5 4 3 0

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

0 0 0 0 0 0 0

Reserved † FREE SOFT PSC TRB TSS TDDR

Start or restart timer.
Stop timer.0

0
1
1

Stop after the next decrement of the TIM (hard stop).
Stop after the TIM decrements to 0 (soft stop).
Free run
Free run

Holds current prescale count for the timer

0
10

1
0
1

Emulation/run mode

Timer prescaler counter

Write 1 to reload timer counters.
Always read as 0

Timer reload bit

Timer stop status bit

Holds next value to be loaded into PSC
Timer divide-down register

R/WR/W
R/W R/W W R/W

† These reserved bits are always read as 0s. Writes have no effect.

Timer Control Register (TCR) — ’C209 — I/O Address FFFCh
15 10 9–6 5 4 3–0

ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ

0 0 0 0 0

Reserved † PSC TRB TSS TDDR

R/W

Timer reload bit

Start or restart timer.
Stop timer.

0
1

Timer stop status bit

Holds next value to be loaded into the PSC
Timer divide-down register

Holds the current prescale count for the timer
Timer prescaler counter

Write 1 to reload timer counters. Always read as 0.

R/W W R/W

† These reserved bits are always read as 0s. Writes have no effect.

Register Descriptions

A-10

Wait-State Generator Control Register (WSGR) — Except ’C209— I/O Address FFFCh
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

0 1 1 1 1 1 1 1 1 1 1 1 1

Reserved † ISWS DSWS PSUWS PSLWS

R/W

0
0
1
1
0
0
1
1

0 wait states
1 wait state
2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

0
0
0
0
1
1
1
1

Lower program
wait states

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0 wait states
1 wait state
2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

0
0
0
0
1
1
1
1

Upper program
wait states

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0 wait states
1 wait state
2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

0
0
0
0
1
1
1
1

Data wait states
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0 wait states
1 wait state
2 wait states
3 wait states
4 wait states
5 wait states
6 wait states
7 wait states

0
0
0
0
1
1
1
1

I/O wait states
0
1
0
1
0
1
0
1

R/W R/W R/W

† These reserved bits are always read as 0s. Writes have no effect.

Wait-State Generator Control Register (WSGR) — ’C209 — I/O Address FFFFh
15 4 3 2 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

0 1 1 1 1

Reserved † AVIS ISWS DSWS PSWS

R/W

0 wait states
1 wait state

0
1

Program wait states

0 wait states
1 wait state

0
1

Data wait states

0 wait states
1 wait state

I/O wait states
0
1

Address visibility mode disabled
Address visibility mode enabled

0
1

R/W R/W R/W

Address visibility mode

† These reserved bits are always read as 0s. Writes have no effect.

Register Descriptions

A-11Register Summary

CLK Register — I/O Address FFE8h
15 1 0

ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

0 0

Reserved † CLKOUT1

0
1

CLKOUT1 signal available at CLKOUT1 pin
CLKOUT1 signal not available at CLKOUT1 pin

R/W

CLKOUT1 pin control

† These reserved bits are always read as 0s. Writes have no effect.

Register Descriptions

 A-12

Synchronous Serial Port Status Register (SSPST) — I/O Address FFF2h

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁ
ÁÁÁÁ

14 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

13 ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÍÍÍÍ
ÍÍÍÍ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁDRP FSN FSXOX FSXST

Status
Reserved CLN CLXOX PRSEN

0
1

Normal polarity
Inverted polarity

0
1

FSX rate is data-write rate in FIFO
FSX is from prescaler FSXCT

0
1

Normal polarity
Inverted polarityStatus of DR pin

Set to 1 if FSXCT prescaler/
GP counter reaches zero.

Polarity for shift clock

Frame sync polarity

Internal FSX selection bit

0
1

Input clock is CLOCKOUT1
Input clock is CLKX

Input clock source bit (GPC)

0
1

Disable prescaler
Enable prescaler

Prescale clock enable

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁ
ÁÁÁÁ

6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁTX FIFO Status RX FIFO Status SGNEX BYTE

000
001
010
011
100

FIFO empty
1 word to transmit
2 words to transmit
3 words to transmit
4 words to transmit

000
001
010
011
100

FIFO empty
FIFO has 1 word
FIFO has 2 words
FIFO has 3 words
FIFO has 4 words 0

1
Disable sign extension
Enable sign extension

0
1

16 bits
8 bits

Transmit FIFO status

Receive FIFO status

Sign extension

Data word size

Register Descriptions

A-13Register Summary

Synchronous Serial Port Multichannel Control Register (SSPMC) — I/O Address FFF3h

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

15 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

14 7ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

ÁÁ
ÁÁSSPRST Reserved

0
1

No action
Reset

SSP reset

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

6
ÁÁÁÁÁ
ÁÁÁÁÁ

5
ÁÁÁÁÁ
ÁÁÁÁÁ

4
ÁÁÁÁÁ
ÁÁÁÁÁ

3
ÁÁÁÁÁ
ÁÁÁÁÁ

2
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁ
ÁÁ

SPI CH1 CH0 MMODE GPI CHLT GPC

0
1

Disable SPI mode
Enable SPI mode

0
1

Disable multichannel option
Enable multichannel option

0
1

GPC has no interrupts
Selects SSP’s transmit interrupt as GPC interrupt

0
1

Normal operation (counter running)
Stop counter

0
1

Prescalers used for FSX and CLKX scaling
Prescalers used as 16-bit GP counter

SPI mode

Multichannel mode

GPC counter interrupt

16-bit counter halt

GPC counter bit

0
0
1
1

1 channel
2 channels
3 channels
4 channels

0
1
0
1

Select number of channels

Register Descriptions

 A-14

Synchronous Serial Port Counter Register (SSPCT) — I/O Address FFFBh

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15 8ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

7 0Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Á
ÁFSXCT CLXCT

8-bit prescaler value for
frame-sync prescaler or
high byte for GP counter

8-bit prescaler value for
CLKX prescaler or
low byte for GP counter

Register Descriptions

A-15Register Summary

Program Memory Status Register (PMST) — I/O Address FFE4h

ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

15 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
14 4ÁÁÁÁÁ

ÁÁÁÁÁ
3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

X ÁÁ
ÁÁFRDN Reserved LEVEXT8 DON PON MP/MC

0
1

Use RD as read
Use inverted R/W as read

0
1

Microcomputer
Microprocessor

Fast read enable

Latches the level of
the EXT8 pin at reset

Microprocessor/Microcomputer

0
0
1
1

SARAM not mapped
SARAM in PM at 8000h
SARAM in DM at 800h
SARAM in PM and DM

0
1
0
1

SARAM mapping

Register Descriptions

 A-16

Synchronous Serial Port Control Register (SSPCR) — I/O Address FFF1h

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁ
ÁÁÁÁ

14 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

13 ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁFREE SOFT TCOMP RFNE FT1 FT0 FR1 FR0

0
1
0
1

Immediate stop
Stop after completion of word
Free run
Free run

0
0
1
1

0
1

Transmit buffer empty.
Transmit buffer not empty.

0
1

Receive buffer empty.
Receive buffer holds data.

0
1
0
1

Transmit buffer can accept 1 or more words.
Transmit buffer can accept 2 or more words.
Transmit buffer can accept 3 or 4 words.
Transmit buffer empty (can accept 4 words).

0
0
1
1

0
1
0
1

Receive buffer not empty.
Receive buffer holds 2 or more words.
Receive buffer holds 3 or 4 words.
Receive buffer full.

0
0
1
1

Emulation/run mode Generate XINT when . . .

Generate RINT when . . .

R/WR/W
R R

R/WR/W R/W R/W

Transmit FIFO buffer status

Receive FIFO buffer status

ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁ
ÁÁÁÁ

6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁOVF IN0 XRST RRST TXM MCM FSM DLB

0
1

No overflow condition
Overflow detected in receive buffer

0
1

Level on CLKR pin is low.
Level on CLKR pin is high.

0
1

Transmitter in reset
Transmitter enabled

0
1

Receiver in reset
Receiver enabled

0
1

External frame sync source
Internal frame sync source

0
1

External clock source
Internal clock source

0
1

Continuous mode
Burst mode

0
1

Digital loopback mode disabled
Digital loopback mode enabled

R/W R/W R/W R/WR/WR R R/W

Overflow flag

CLKR pin status

Transmitter reset

Receiver reset

Transmit frame sync source

Transmit clock source

Frame sync mode

Digital loopback mode

Register Descriptions

A-17Register Summary

Asynchronous Serial Port Control Register (ASPCR) — I/O Address FFF5h

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁÁ
ÁÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁFREE SOFT URST Reserved † DIM TIM

Immediate stop
Process stops after character completion.
Free run
Free run

0
1

Port in reset
Port enabled

Disables transmit interrupts
Enables transmit interrupts

0
1

Disables delta interrupts
Enables delta interrupts

0
1

0
1
0
1

0
0
1
1

Emulation/run mode

R/WR/W
R/W R/W R/W

Port reset

Delta interrupt mask

Transmit interrupt mask

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

7
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

6
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

3
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁ
ÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁRIM STB CAD SETBRK CIO3 CIO2 CIO1 CIO0

0
1

Disables receive interrupts
Enables receive interrupts

0
1

One stop bit for transmission and reception
Two stop bits for transmission and reception

0
1

Disables auto-baud alignment
Enables auto-baud alignment when ADC = 0

0
1

TX output forced high
TX output forced low

0
1

IO3 configured as input
IO3 configured as output

0
1

IO2 configured as input
IO2 configured as output

0
1

IO1 configured as input
IO1 configured as output

0
1

IO0 configured as input
IO0 configured as output

R/W R/W R/W R/W R/W R/W R/W R/W

Receive interrupt mask

Number of stop bits

Auto-baud alignment

TX pin level between transmissions

IO3 pin configuration

IO2 pin configuration

IO1 pin configuration

IO0 pin configuration

† These reserved bits are always read as 0s. Writes have no effect.

Register Descriptions

 A-18

I/O Status Register (IOSR) — I/O Address FFF6h

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

15 ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁÁ
ÁÁÁÁÁ

10 ÁÁÁÁ
ÁÁÁÁ

9 ÁÁÁÁÁ
ÁÁÁÁÁ

8 Á
ÁÁÁ

ÁÁ
ÉÉÉÉ
ÉÉÉÉ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 Á
ÁReserved † ADC‡ BI‡ TEMT THRE‡ FE‡ OE‡ DR‡

RR/W1C R/W1C

0
1

Normal operation.
CAD bit of ASPCR is 1 and A or a
is received in ADTR.

0
1

Normal operation
Break has been detected on RX pin.

0
1

ADTR and/or AXSR are full.
ADTR and AXSR are empty; ADTR is
ready for a new character to transmit.

0
1

Transmit register not empty. Port operation normal.
Transmit register empty. Port ready to receive new
character.

0
1

No framing error detected.
Character received did not have a valid stop bit.

0
1

No overrun error detected.
Last character in ADTR was not read
before the next character overwrote it.

0
1

Receive register empty
Character has been completely
received.

A detect complete bit

Break interrupt indicator

Transmit empty indicator

Transmit register empty indicator

Data ready indicator for receiver

Framing error indicator

Receive register overrun indicator

R/W1C R R/W1C R

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X Á
ÁDIO3‡ DIO2‡ DIO1‡ DIO0‡ IO3§ IO2§ IO1§ IO0§

R/WR/W1C R/W1C

0
1

No change detected on IO2
Change detected on IO2

0
1

No change detected on IO1
Change detected on IO1

0
1

No change detected on IO0
Change detected on IO0

0
1

IO3 signal low
IO3 signal high

0
1

IO2 signal low
IO2 signal high

0
1

IO1 signal low
IO1 signal high

0
1

IO0 signal low
IO0 signal high

Change detect bit for IO2

Change detect bit for IO1

Change detect bit for IO0

IO3 pin status

IO0 pin status

IO2 pin status

IO1 pin status

0
1

No change detected on IO3
Change detected on IO3

Change detect bit for IO3

R/W1C R/W1C R/W R/W R/W

† This reserved bit is always read as 0. Writes have no effect.
‡ When any one of these bits changes in response to the specified event, an interrupt request is generated on the TXRXINT line.
§ This bit can be written to only when the corresponding pin is configured (in the ASPCR) as an output.

B-1TMS320F206 Flash Serial Loader

Appendix A

TMS320F206 Flash Serial Loader

The TMS320F206 devices are shipped with a serial bootloader code in the
flash 0 array. This appendix explains the memory map, serial port
connections, and a level 1 flow chart for the ’F206 serial loader. There is also
a functional description section that contains information regarding software
modules, operation, and host utility loading status/modes for the ’F206.

Topic Page

B.1 TMS320F206 Flash Serial Loader Features B-2.

B.2 Functional Description B-3.

B.3 Serial Loader Code B-6.

Appendix B

TMS320F206 Flash Serial Loader Features

 B-2

B.1 TMS320F206 Flash Serial Loader Features

The serial loader for the TMS320F206 device facilitates initial programming
of flash arrays. This section describes functional aspects of the serial loader
and gives a quick start for flash programming.

B.1.1 Revision 2.0 Software Features

See the Revision 2.0 serial flash programming and PC/host serial
communication utilities on the TI web for details and source at www.ti.com
under C2000 DSP devices.

B.1.2 ’F206 Memory Map for the Serial Loader

Figure B–1. ’F206 Memory Map and Serial Port Connections

TMS320F206

PC/host7FFFh

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

ÑÑÑÑ
ÑÑÑÑ

SSP

UART

data
program

Flash

(COFFA.out)
level 2‡

serial loader
SARAM

0C00h –DM
or

8400h –PM

0800h –DM
or

8000h –PM

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

flash variables
B1 RAM

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

Flash 1 array

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑ

level 1†
serial loader
Flash 0 array

†Level 1 – Program shipped with Flash 0 array
‡Level 2 – Program that will be loaded using Level 1 code

Functional Description

B-3TMS320F206 Flash Serial Loader

B.2 Functional Description

B.2.1 Software Modules

The flash serial loader utility is intended for programming the on-chip flash
(32k) of the TMS320F206 device. The flash serial loader utility contains three
software modules:

� Serial Loader Level 1
� Host Serial Communication Utility
� Serial Loader Level 2

The serial loader level 1 module resides in the on-chip flash, specifically flash
0 array at 0x0000h. All the ’F206 devices, rev. 2.0 and above, shipped from
TI will contain this code pre–programmed in flash 0. The level 1 module’s serial
communication code communicates through the on-chip UART to a host
computer to load any application code to its internal memory.

The host serial communication utility module (F206sldr.exe) is a Windows ’95
program for IBM/PC compatibles which use PC COM ports to communicate
with ’F206 devices. The host utility communicates with level 1 code on the
’F206 device to download flash algorithms and flash data to be programmed.

The serial loader level 2 module contains the flash control and flash algo-
rithms. The level 2 code is loaded into internal memory using the level 1 code
and host utility.

B.2.2 Operation

Figure B–1 shows a typical configuration between the ’F206 device and a host
system. At power on reset, the level 1 software resident in the ’F206’s on-chip
flash initializes the UART or the SSP. This initialization is contingent on the sta-
tus of the BIO pin. If the BIO pin is high, the UART loader is enabled. The UART
loader enables auto-baud detect logic and waits for characters through the
UART port. Figure B–2 explains the software logic in detail.

The host PC sends ascii character ’a’ as the first character through the serial
link to the ’F206. On receipt of a valid ’a’ the level 1 software logic locks to
incoming data rate, updates its baud rate register, and echoes character ’a’
back to the host. After receiving a valid echo from the DSP, the host sends
the level 2 algorithm code to the ’F206. The level 2 code takes control of the
DSP core. The level 2 code handshakes with the host to receive flash data for
flash programming.

B.2.3 Host Utility Loading Status and Modes

The host utility communicates with level 2 code until the programming is done
and updates the communication status window (both successful completion

Functional Description

 B-4

and error code, if any). The host activates its communication status through
the DTR and RTS signals on its serial port as well as on the host monitor. The
DTR signal goes low when it receives a valid echo of character ’a’ from the
’F206 device. This indicates that band lock is successful and DTS remains low
until the flash programming is complete. If during the loading process any error
occurs, the RTS signal goes active low. It remains low indicating that there was
an error in the current loading process. If LEDs (light emitting devices) are add-
ed to these signals, they provide visual indication of loading status at the re-
mote end (at the ’F206 device side).

The host software runs in either continuous mode or single device mode. In
the single device mode, the host program halts after loading/programming the
device. In the continuous mode, the host software resends character ’a’ and
waits for a valid echo to proceed with the loading process. This logic runs con-
tinuously until the program is aborted. The continuous mode enables multiple
device programming without manual interaction on the host terminal.

Functional Description

B-5TMS320F206 Flash Serial Loader

Figure B–2. TMS320F206 Flash Serial Loader – ’F206 Level 1 Flow Chart

Done

(run address)
destination address

Branch to

Disable interrupts

?
length=0

Code

Yes

No

destination address
Move code to

Receive serial data

No

Yes

Header_done
=1 ?

Receive serial data

character received
Echo every

Receive header code

Yes

Echo “a”

No

Yes

No

?
char=“a”

First

Receive UART data

Enable UART loader
only

are external
CLKX/R & FSX/R

16–bit word,
burst mode,

Enable SSP loader

?
BIO pin=0

B0 in PM
Initialize DSP,

level 1
F206 serial loader

Serial Loader Code

 B-6

B.3 Serial Loader Code

B.3.1 ’F206 Serial Loader Code – Level 1

* Program : usload_2.asm *
* Function: F206 Serial loader Code –Level 1 *
* Loads code/data either through UART or SSP *
* if BIO pin is low at boot/reset time *
* Uart starts in autobaud mode, receive *
* ”a” or ”A”as first character. *
* The cpu will wait indefinitely for first *
* character to be ”a” or”A”. On receipt of ”a” or*
* ”A” uart data will be loaded as valid code. *
* Receive data format : *
* First character ”A” or ”a” *
* Header : Destination/Load/Run *
* start address 1 word *
* Program code/length 2 word *
* Program code/data from 3 word *
* After data load the, interrupts will be *
* disabled and PC will jump to the Destination *
* /Load/Run address. *
* *
* Revision : 1.1 *
* Written by: Sam Saba/ASP/St,TX Date: 7/17/97 *

.title ” Serial loader” ; Title

.copy ”finit.h” ; Variable and register declaration

.text
b start
b inpt1 ; INT1 – These interrupt vector locations

; are with RET, for safety.
b inpt23 ; INT2/INT3 – The exact interrupt routine address

; need to be specified here when
; interrupt routines are used

b time ; TINI Timer interrupt
b codrx ; RX_Sync interrupt

;
b codtx ; TX_SYNC interrupt
b uart ; TX/RX Uart port interrupt

start: setc CNF ; Block B0 in PM
 ldp #0h ; set DP=0
 setc INTM ; Disable all interrupts
* UART initialization *

splk #0ffffh,ifr ; clear interrupts
splk #0000h,B2S_0
out B2S_0, wsgr ; Set zero wait states
splk #0006h,B2S_0
out B2S_0, pmst ; Set SARAM in DM and PM

*Uart initialization with autobaud enable
splk #0c0a0h,B2S_0 ; reset the UART by writing 0
out B2S_0, aspcr ; 1 stop bit, rx interrupt, input i/o
splk #0e0a0h,B2S_0 ; CDC=1 enable

Serial Loader Code

B-7TMS320F206 Flash Serial Loader

out B2S_0,aspcr
splk #4fffh,B2S_0 ; enable ADC bit
out B2S_0,iosr ; enable auto baud
splk #20h,imr ; Enable UART interrupt only
bcnd sspld,bio ; If BIO is low use SSP loader
b uartld

*SSP initialization, if BIO pin = 0 at boot/reset, else UART loader enabled
sspld: splk #0c00ah,B2S_0 ; Initialize SSP in Burst mode

out B2S_0,sspcr ; External Clocks, 16 bit word
splk #0c03ah, B2S_0 ; Interrupt on 1 word in FIFO
out B2S_0, sspcr
splk #8h,imr ; Enable SSP RX interrupt only

uartld : lacc #0
lar ar1,#B2 ; Point B2_RAM start address
mar *,ar1
rpt #16
sacl *+ ; Clear B2 memory
lar ar1,#00h ; Clear pointers
lar ar2,#00h ;
lar ar3,#00h
clrc intm

wait: idle ;
bit B2FM_8,15 ; Wait until Data_move ready flag
bcnd wait,ntc
splk #0,B2FM_8
lacl B2PA_2 ; Load destination address
tblw B2PD_5 ; Move data to the current destination address
add #1 ; Increment destination address+1
sacl B2PA_2 ; save next destination address
banz wait,*–
setc intm ; Disable interrupts
lacl B2PA_3 ; Point to Destination/Load/Run address
bacc ; Branch to Program address
b wait

uart:
in B2S_0,aspcr
bit B2S_0,10 ; Check CDC =1
bcnd nrcv,ntc ; If 0 , start receive, autobaud done
in B2S_1,iosr ; load input status from iosr
bit B2S_1,1 ; check if auto baud bit is set,else return
bcnd nauto,ntc ; and wait for Auto baud detect receive
splk #4000h,B2S_1 ; Auto baud detect done
out B2S_1,iosr ; clear ADC
splk #0e080h,B2S_1
out B2S_1, aspcr ; Disable CDC bit/ auto baud
in B2S_1,adtr ; Dummy read to discard ”a”
out B2S_1,adtr ; Echo back ”a”

nauto: in B2S_1,adtr ; Dummy read to clear uart rx buffer
b skip ; Exit and wait for ”a”

nrcv: in B2S_0,iosr ; Load input status from iosr
bit B2S_0,7 ; bit 8 in the data
bcnd skip,ntc ; IF DR=0 no echo, return
mar *,ar1 ; Valid UART data, Point to Word index reg.
bit B2D_6,15 ; Check if bit0 of word index =1,low byte

Serial Loader Code

 B-8

 bcnd lbyte,tc ; received!
 in B2S_1,adtr ; No, Hi byte received!
 out B2S_1,adtr ; Echo receive data
 lacc B2S_1,8 ; Align to upper byte
 sacl B2D_7 ; Save aligned word
 mar *+ ; Increment Word Index
 sar ar1,B2D_6 ; Store high_byte flag
 splk #0,B2FM_8 ; Reset Data/word move flag as only hi–byte recd!
 b skip ; wait for next byte
lbyte: in B2S_0,adtr ; Receive second byte/low byte
 out B2S_0,adtr ; Echo received data
 lacc B2S_0,0
 and #0ffh ; Clear high byte
 or B2D_7 ; Add high byte to the word
 sacl B2PD_5 ; store 16–bit word at ar1
 mar *+ ; 1+
 sar ar1,B2D_6 ; Save the count
 bit B2FH_9,15 ; Check Header_done flag
 bcnd smove,tc ; No, if 2 words received update Data_move flag
 lar ar0,#2
 cmpr 0
 bcnd word2,ntc
 sacl B2PA_2 ; Store destination/Load/Run address
 sacl B2PA_3 ; Store destination/Load/Run address
 b skip ;
word2: lar ar0,#4 ; Check if 4 words recvd, update program length
 cmpr 0 ; Program length register
 bcnd skip,ntc ; Else exit
 lar ar2,B2PD_5 ; Yes received!,Load PM length in AR2
 sar ar2, B2PL_4 ; Save program length
 splk #1,B2FH_9 ; Set Header_done flag
 b skip
smove: mar *,ar2
 splk #1h,B2FM_8 ; Set UART Data_move ready flag
skip: splk #6600h,B2S_0
 out B2S_0,iosr ; Clear all Interrupt sources
 splk #0020h, ifr ; Clear interrupt in ifr!
 clrc intm
 ret
* SSP loader code!
codrx:
 in B2S_0,sdtr ; Load Scratch register
 out B2S_0,sdtr ; Echo received data
 mar *,ar3 ; Set Word index register as ar3
 mar *+ ; Increment word index
 lar ar0,#1 ; If word index =1 save Program start address
 cmpr 0
 bcnd pmad,tc
 lar ar0,#2 ; If index =2 save Program length
 cmpr 0
 bcnd plen,tc
 lacc B2S_0,0
 sacl B2PD_5,0 ; Store received word
 splk #1h,B2FM_8 ; Set SSP Data_move ready flag

Serial Loader Code

B-9TMS320F206 Flash Serial Loader

 b skips,ar2
pmad: lacc B2S_0,0 ; Store destinations start address at
 sacl B2PA_2 ; B2PA_2 and B2PA_3
 sacl B2PA_3
 b skips,ar2
plen: lar ar2,B2S_0 ; Store Program length at B2PL_4
 sar ar2,B2PL_4
skips: splk #8h,ifr ; Clear interrupt flag
 clrc intm
 ret
inpt1: ret
inpt23: ret
time: ret
codtx: ret
 .end ; Assembler module end directive –optional

Serial Loader Code

 B-10

B.3.2 ’F206 Serial Loader Code – Level 1 Only

* Include file with I/O register declarations *
* For usload_2.asm Serial loader Level 1 only *
* *
* Written by Sam Saba,TI Houston 4/17/97 *

.mmregs
* On–chip register equates
*Flash control registers
f_access0 .set 0ffe0h
f_access1 .set 0ffe1h
pmst .set 0ffe4h
* CLKOUT
clk1 .set 0ffe8h
* INTERRUPT CONTROL
icr .set 0ffech
* SYNC PORT
sdtr .set 0fff0h
sspcr .set 0fff1h
* UART
adtr .set 0fff4h
aspcr .set 0fff5h
iosr .set 0fff6h
brd .set 0fff7h
* TIMER
tcr .set 0fff8h
prd .set 0fff9h
tim .set 0fffah
* WAIT STATES
wsgr .set 0fffch
* Variables
B2 .set 60h
B2S_0 .set B2+0h ; Scratch registers
B2S_1 .set B2+1h
B2PA_2 .set B2+2h ; Program start address
B2PA_3 .set B2+3h ; Program start address
B2PL_4 .set B2+4h ; Program Length
B2PD_5 .set B2+5h ; Program Code/Data
B2D_6 .set B2+6h ; Variables
B2D_7 .set B2+7h
B2FM_8 .set B2+8h ; Flag for start Data move – Data_move
B2FH_9 .set B2+9h ; Flag for Header receive – Header_done
B2FD_a .set B2+0ah ; Flag for data move complete – Data_ready
B2FSH .set B2+0bh ; High word check sum
B2FSL .set B2+0ch ; Low word check sum

C-1

Appendix A

TMS320C1x/C2x/C20x/C5x
Instruction Set Comparison

This appendix contains a table that compares the TMS320C1x, TMS320C2x,
TMS320C20x, and TMS320C5x instructions alphabetically. Each table entry
shows the syntax for the instruction, indicates which devices support the
instruction, and describes the operation of the instruction. Section C.1 shows
a sample table entry and describes the symbols and abbreviations used in the
table.

The TMS320C2x, TMS320C20x, and TMS320C5x devices have enhanced
instructions; enhanced instructions are single mnemonics that perform the
functions of several similar instructions. Section C.2 summarizes the
enhanced instructions.

This appendix does not cover topics such as opcodes, instruction timing, or
addressing modes; in addition to this book, the following documents cover
such topics in detail:

TMS320C1x User’s Guide (literature number SPRU013)

TMS320C2x User’s Guide (literature number SPRU014)

TMS320C5x User’s Guide (literature number SPRU056)

Topic Page

C.1 Using the Instruction Set Comparison Table C-2.

C.2 Enhanced Instructions C-5.

C.3 Instruction Set Comparison Table C-6.

Appendix C

Using the Instruction Set Comparison Table

 C-2

C.1 Using the Instruction Set Comparison Table

To help you read the comparison table, this section provides an example of a
table entry and a list of acronyms.

C.1.1 An Example of a Table Entry

In cases where more than one syntax is used, the first syntax is usually for di-
rect addressing and the second is usually for indirect addressing. Where three
or more syntaxes are used, the syntaxes are normally specific to a device.

This is how the AND instruction appears in the table:

Syntax 1x 2x 2xx 5x Description

AND dma

AND {ind} [, next ARP]

AND #lk [, shift]

√

√

√

√

√

√

√

√

√

√

AND With Accumulator

TMS320C1x and TMS320C2x devices: AND the
contents of the addressed data-memory location with
the 16 LSBs of the accumulator. The 16 MSBs of the
accumulator are ANDed with 0s.

TMS320C20x and TMS320C5x devices: AND the
contents of the addressed data-memory location or a
16-bit immediate value with the contents of the
accumulator. The 16 MSBs of the accumulator are
ANDed with 0s. If a shift is specified, left shift the
constant before the AND. Low-order bits below and
high-order bits above the shifted value are treated as
0s.

The first column, Syntax, states the mnemonic and the syntaxes for the AND
instruction.

The checks in the second through the fifth columns, 1x, 2x, 2xx, and 5x, indi-
cate the devices that can be used with each of the syntaxes.

1x refers to the TMS320C1x devices
2x refers to the TMS320C2x devices, including TMS320C25
2xx refers to the TMS320C20x devices
5x refers to the TMS320C5x devices

In this example, you can use the first two syntaxes with TMS320C1x,
TMS320C2x, TMS320C20x, and TMS320C5x devices, but you can use the
last syntax only with TMS320C20x and TMS320C5x devices.

The sixth column, Description, briefly describes how the instruction functions.
Often, an instruction functions slightly differently for the different devices: read
the entire description before using the instruction.

Using the Instruction Set Comparison Table

C-3TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

C.1.2 Symbols and Acronyms Used in the Table

The following table lists the instruction set symbols and acronyms used
throughout this chapter:

Table C–1. Symbols and Acronyms Used in the Instruction Set Comparison Table

Symbol Description Symbol Description

 lk 16-bit immediate value INTM interrupt mask bit

k 8-bit immediate value INTR interrupt mode bit

{ind} indirect address OV overflow bit

ACC accumulator P program bus

ACCB accumulator buffer PA port address

AR auxiliary register PC program counter

ARCR auxiliary register compare PM product shifter mode

ARP auxiliary register pointer pma program-memory address

BMAR block move address register RPTC repeat counter

BRCR block repeat count register shift, shiftn shift value

C carry bit src source address

DBMR dynamic bit manipulation register ST status register

dma data-memory address SXM sign-extension mode bit

DP data-memory page pointer TC test/control bit

dst destination address T temporary register

FO format status list TREGn TMS320C5x temporary register (0–2)

FSX external framing pulse TXM transmit mode status register

IMR interrupt mask register XF XF pin status bit

Using the Instruction Set Comparison Table

 C-4

Based on the device, this is how the indirect addressing operand {ind} is
interpreted:

{ind} ’C1x : { * | *+ | *– }
’C2x : { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }
’C20x : { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }
’C5x: { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }

where the possible options are separated by vertical bars (|). For example:

ADD { ind }

is interpreted as:

’C1x devices ADD { * | *+ | *– }
’C2x devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }
’C20x devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }
’C5x devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }

Based on the device, these are the sets of values for shift, shift1, and shift2:

shift ’C1x : 0–15 (shift of 0–15 bits)
’C2x : 0–15 (shift of 0–15 bits)
’C20x : 0–16 (shift of 0–16 bits)
’C5x: 0–16 (shift of 0–16 bits)

shift1 ’C1x : n/a
’C2x : 0–15 (shift of 0–15 bits)
’C20x : 0–16 (shift of 0–16 bits)
’C5x: 0–16 (shift of 0–16 bits)

shift2 ’C1x : n/a
’C2x : n/a
’C20x : 0–15 (shift of 0–15 bits)
’C5x: 0–15 (shift of 0–15 bits)

In some cases, the sets are smaller; in these cases, the valid sets are given
in the Description column of the table.

Enhanced Instructions

C-5TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

C.2 Enhanced Instructions

An enhanced instruction is a single mnemonic that performs the functions of
several similar instructions. For example, the enhanced instruction ADD
performs the ADD, ADDH, ADDK, and ADLK functions and replaces any of
these other instructions at assembly time. For example, when a program using
ADDH is assembled for the ’C20x or ’C5x, ADDH is replaced by an ADD
instruction that performs the same function. These enhanced instructions are
valid for TMS320C2x, TMS320C20x, and TMS320C5x devices (not
TMS320C1x).

Table C–2 below summarizes the enhanced instructions and the functions that
the enhanced instructions perform (based on TMS320C1x/2x mnemonics).

Table C–2. Summary of Enhanced Instructions

Enhanced
Instruction Includes These Operations

ADD ADD, ADDH, ADDK, ADLK

AND AND, ANDK

BCND BBNZ, BBZ, BC, BCND, BGEZ, BGZ, BIOZ, BLEZ, BLZ,
BNC, BNV, BNZ, BV, BZ

BLDD BLDD, BLKD

BLDP BLDP, BLKP

CLRC CLRC, CNFD, EINT, RC, RHM, ROVM, RSXM, RTC,
RXF

LACC LAC, LACC, LALK, ZALH

LACL LACK, LACL, ZAC, ZALS

LAR LAR, LARK, LRLK

LDP LDP, LDPK

LST LST, LST1

MAR LARP, MAR

MPY MPY, MPYK

OR OR, ORK

RPT RPT, RPTK

SETC CNFP, DINT, SC, SETC, SHM, SOVM, SSXM, STC, SXF

SUB SUB, SUBH, SUBK

Instruction Set Comparison Table

 C-6

C.3 Instruction Set Comparison Table

Syntax 1x 2x 2xx 5x Description

ABS √ √ √ √ Absolute Value of Accumulator

If the contents of the accumulator are less than zero,
replace the contents with the 2s complement of the
contents. If the contents are ≥ 0, the accumulator is not
affected.

ADCB √ Add ACCB to Accumulator With Carry

Add the contents of the ACCB and the value of the
carry bit to the accumulator. If the result of the addition
generates a carry from the accumulator’s MSB, the
carry bit is set to 1.

ADD dma [, shift]

ADD {ind} [, shift [, next ARP]]

ADD # k

ADD # lk [, shift2]

√

√

√

√

√

√

√

√

√

√

√

√

Add to Accumulator With Shift

TMS320C1x and TMS320C2x devices: Add the
contents of the addressed data-memory location to the
accumulator; if a shift is specified, left shift the contents
of the location before the add. During shifting,
low-order bits are zero filled, and high-order bits are
sign extended.

TMS320C20x and TMS320C5x devices: Add the
contents of the addressed data-memory location or an
immediate value to the accumulator; if a shift is
specified, left shift the data before the add. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

ADDB √ Add ACCB to Accumulator

Add the contents of the ACCB to the accumulator.

ADDC dma

ADDC {ind} [, next ARP]

√

√

√

√

√

√

Add to Accumulator With Carry

Add the contents of the addressed data-memory
location and the carry bit to the accumulator.

ADDH dma

ADDH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Add High to Accumulator

Add the contents of the addressed data-memory
location to the 16 MSBs of the accumulator. The LSBs
are not affected. If the result of the addition generates
a carry, the carry bit is set to 1.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: If the result of the addition generates a carry
from the accumulator’s MSB, the carry bit is set to 1.

Instruction Set Comparison Table

C-7TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

ADDK #k √ √ √ Add to Accumulator Short Immediate

TMS320C1x devices: Add an 8-bit immediate value to
the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Add an 8-bit immediate value, right justified,
to the accumulator with the result replacing the
accumulator contents. The immediate value is treated
as an 8-bit positive number; sign extension is
suppressed.

ADDS dma

ADDS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Add to Accumulator With Sign Extension
Suppressed

Add the contents of the addressed data-memory
location to the accumulator. The value is treated as a
16-bit unsigned number; sign extension is suppressed.

ADDT dma

ADDT {ind} [, next ARP]

√

√

√

√

√

√

Add to Accumulator With Shift Specified by T
Register

Left shift the contents of the addressed data-memory
location by the value in the 4 LSBs of the T register; add
the result to the accumulator. If a shift is specified, left
shift the data before the add. During shifting, low-order
bits are zero filled, and high-order bits are sign
extended if SXM = 1.

TMS320C20x and TMS320C5x devices: If the result of
the addition generates a carry from the accumulator’s
MSB, the carry bit is set to 1.

ADLK # lk [, shift] √ √ √ Add to Accumulator Long Immediate With Shift

Add a 16-bit immediate value to the accumulator; if a
shift is specified, left shift the value before the add.
During shifting, low-order bits are zero filled, and
high-order bits are sign extended if SXM = 1.

ADRK #k √ √ √ Add to Auxiliary Register Short Immediate

Add an 8-bit immediate value to the current auxiliary
register.

Instruction Set Comparison Table

 C-8

Syntax Description5x2xx2x1x

AND dma

AND {ind} [, next ARP]

AND #lk [, shift]

√

√

√

√

√

√

√

√

√

√

AND With Accumulator

TMS320C1x and TMS320C2x devices: AND the
contents of the addressed data-memory location with
the 16 LSBs of the accumulator. The 16 MSBs of the
accumulator are ANDed with 0s.

TMS320C20x and TMS320C5x devices: AND the
contents of the addressed data-memory location or a
16-bit immediate value with the contents of the
accumulator. The 16 MSBs of the accumulator are
ANDed with 0s. If a shift is specified, left shift the
constant before the AND. Low-order bits below and
high-order bits above the shifted value are treated as
0s.

ANDB √ AND ACCB to Accumulator

AND the contents of the ACCB to the accumulator.

ANDK # lk [, shift] √ √ √ AND Immediate With Accumulator With Shift

AND a 16-bit immediate value with the contents of the
accumulator; if a shift is specified, left shift the constant
before the AND.

APAC √ √ √ √ Add P Register to Accumulator

Add the contents of the P register to the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, left shift the contents of the P
register as defined by the PM status bits.

APL [#lk] ,dma

APL [#lk,] {ind} [, next ARP]

√

√

AND Data-Memory Value With DBMR or Long
Constant

AND the data-memory value with the contents of the
DBMR or a long constant. If a long constant is
specified, it is ANDed with the contents of the
data-memory location. The result is written back into
the data-memory location previously holding the first
operand. If the result is 0, the TC bit is set to 1;
otherwise, the TC bit is cleared.

B pma

B pma [, {ind} [, next ARP]]

√

√ √

Branch Unconditionally

Branch to the specified program-memory address.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP as specified.

Instruction Set Comparison Table

C-9TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

B[D] pma [, {ind} [, next ARP]] √ Branch Unconditionally With Optional Delay

Modify the current auxiliary register and ARP as
specified and pass control to the designated
program-memory address. If you specify a delayed
branch (BD), the next two instruction words (two
1-word instructions or one 2-word instruction) are
fetched and executed before branching.

BACC √ √ Branch to Address Specified by Accumulator

Branch to the location specified by the 16 LSBs of the
accumulator.

BACC [D] √ Branch to Address Specified by Accumulator
With Optional Delay

Branch to the location specified by the 16 LSBs of the
accumulator.

If you specify a delayed branch (BACCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.

BANZ pma

BANZ pma [, {ind} [, next ARP]]

√

√ √

Branch on Auxiliary Register Not Zero

If the contents of the 9 LSBs of the current auxiliary
register (TMS320C1x) or the contents of the entire
current auxiliary register (TMS320C2x) are ≠ 0, branch
to the specified program-memory address.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP (if specified) or decrement the
current AR (default). TMS320C1x devices: Decrement
the current AR.

BANZ [D] pma [, {ind} [, next
ARP]]

√ Branch on Auxiliary Register Not Zero With
Optional Delay

If the contents of the current auxiliary register are ≠ 0,
branch to the specified program-memory address.
Modify the current AR and ARP as specified, or
decrement the current AR.

If you specify a delayed branch (BANZD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.

Instruction Set Comparison Table

 C-10

Syntax Description5x2xx2x1x

BBNZ pma [, {ind} [, next ARP]] √ √ √ Branch on Bit ≠ Zero

If the TC bit = 1, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: If the –p
porting switch is used, modify the current AR and ARP
as specified.

BBZ pma [, {ind} [, next ARP]]

BBZ pma

√ √ √

√

Branch on Bit = Zero

If the TC bit = 0, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BC pma [, {ind} [, next ARP]]

BC pma

√

√

√

√

Branch on Carry

If the C bit = 1, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BCND pma, cond1 [, cond2] [, ...] √ Branch Conditionally

Branch to the program-memory address if the
specified conditions are met. Not all combinations of
conditions are meaningful.

BCND[D] pma, cond1
[, cond2] [, ...]

√ Branch Conditionally With Optional Delay

Branch to the program-memory address if the
specified conditions are met. Not all combinations of
conditions are meaningful.

If you specify a delayed branch (BCNDD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.

Instruction Set Comparison Table

C-11TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

BGEZ pma

BGEZ pma [, {ind} [, next ARP]]

√

√

√ √

√

Branch if Accumulator ≥ Zero

If the contents of the accumulator ≥ 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BGZ pma

BGZ pma [, {ind} [, next ARP]]

√

√

√ √

√

Branch if Accumulator > Zero

If the contents of the accumulator are > 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BIOZ pma

BIOZ pma [, {ind} [, next ARP]]

√

√

√ √

√

Branch on I/O Status = Zero

If the BIO pin is low, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BIT dma, bit code

BIT {ind}, bit code [, next ARP]

√

√

√

√

√

√

Test Bit

Copy the specified bit of the data-memory value to the
TC bit in ST1.

BITT dma

BITT {ind} [, next ARP]

√

√

√

√

√

√

Test Bit Specified by T Register

TMS320C2x and TMS320C20x devices: Copy the
specified bit of the data-memory value to the TC bit in
ST1. The 4 LSBs of the T register specify which bit is
copied.

TMS320C5x devices: Copy the specified bit of the
data-memory value to the TC bit in ST1. The 4 LSBs
of the TREG2 specify which bit is copied.

Instruction Set Comparison Table

 C-12

Syntax Description5x2xx2x1x

BLDD # lk, dma

BLDD # lk, {ind} [, next ARP]

BLDD dma, #lk

BLDD {ind}, #lk [, next ARP]

BLDD BMAR, dma

BLDD BMAR, {ind} [, next ARP]

BLDD dma BMAR

BLDD {ind}, BMAR [, next ARP]

√

√

√

√

√

√

√

√

√

√

√

√

Block Move From Data Memory to Data Memory

Copy a block of data memory into data memory. The
block of data memory is pointed to by src, and the
destination block of data memory is pointed to by dst.

TMS320C20x devices: The word of the source and/or
the destination space can be pointed to with a long
immediate value or a data-memory address. You can
use the RPT instruction with BLDD to move
consecutive words, pointed to indirectly in data
memory, to a contiguous program-memory space. The
number of words to be moved is 1 greater than the
number contained in the RPTC at the beginning of the
instruction.

TMS320C5x devices: The word of the source and/or
the destination space can be pointed to with a long
immediate value, the contents of the BMAR, or a
data-memory address. You can use the RPT
instruction with BLDD to move consecutive words,
pointed to indirectly in data memory, to a contiguous
program-memory space. The number of words to be
moved is 1 greater than the number contained in the
RPTC at the beginning of the instruction.

BLDP dma

BLDP {ind} [, next ARP]

√

√

Block Move From Data Memory to Program
Memory

Copy a block of data memory into program memory
pointed to by the BMAR. You can use the RPT
instruction with BLDP to move consecutive words,
indirectly pointed to in data memory, to a contiguous
program-memory space pointed to by the BMAR.

BLEZ pma

BLEZ pma [, {ind} [, next ARP]]

√

√

√

√

√

√

Branch if Accumulator ≤ Zero

If the contents of the accumulator are ≤ 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

Instruction Set Comparison Table

C-13TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

BLKD dma1, dma2

BLKD dma1, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Data Memory to Data Memory

Move a block of words from one location in data
memory to another location in data memory. Modify the
current AR and ARP as specified. RPT or RPTK must
be used with BLKD, in the indirect addressing mode,
if more than one word is to be moved. The number of
words to be moved is 1 greater than the number
contained in RPTC at the beginning of the instruction.

BLKP pma, dma

BLKP pma, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Program Memory to Data
Memory

Move a block of words from a location in program
memory to a location in data memory. Modify the
current AR and ARP as specified. RPT or RPTK must
be used with BLKD, in the indirect addressing mode,
if more than one word is to be moved. The number of
words to be moved is 1 greater than the number
contained in RPTC at the beginning of the instruction.

BLPD†#pma, dma

BLPD†#pma, {ind} [, next ARP]

BLPD† BMAR, dma

BLPD†BMAR, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Program Memory to Data
Memory

Copy a block of program memory into data memory.
The block of program memory is pointed to by src, and
the destination block of data memory is pointed to by
dst.

TMS320C20x devices: The word of the source space
can be pointed to with a long immediate value. You can
use the RPT instruction with BLPD to move
consecutive words that are pointed at indirectly in data
memory to a contiguous program-memory space.

TMS320C5x devices: The word of the source space
can be pointed to with a long immediate value or the
contents of the BMAR. You can use the RPT instruction
with BLPD to move consecutive words that are pointed
at indirectly in data memory to a contiguous
program-memory space.

BLZ pma

BLZ pma [, {ind} [, next ARP]]

√

√

√

√

√ Branch if Accumulator < Zero

If the contents of the accumulator are < 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

† BLDD and BLPD are TMS320C5x and TMS320C20x instructions for the BLKD and BLKP instructions in the TMS320C2x and
TMS320C1 devices. The assembler converts TMS320C2x code to BLKB and BLKP.

Instruction Set Comparison Table

 C-14

Syntax 1x 2x 2xx 5x Description

BNC pma [, {ind} [, next ARP]] √ √ √ Branch on No Carry

If the C bit = 0, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BNV pma [, {ind} [, next ARP]] √ √ √ Branch if No Overflow

If the OV flag is clear, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BNZ pma

BNZ pma [, {ind} [, next ARP]]

√

√ √ √

Branch if Accumulator ≠ Zero

If the contents of the accumulator ≠ 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BSAR [shift] √ Barrel Shift

In a single cycle, execute a 1- to 16-bit right arithmetic
barrel shift of the accumulator. The sign extension is
determined by the sign-extension mode bit in ST1.

BV pma

BV pma [, {ind} [, next ARP]]

√

√ √ √

Branch on Overflow

If the OV flag is set, branch to the specified
program-memory address and clear the OV flag.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Modify the current AR and ARP as specified.

TMS320C20x and TMS320C5x devices: To modify the
AR and ARP, use the –p porting switch.

Instruction Set Comparison Table

C-15TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

BZ pma

BZ pma [, {ind} [, next ARP]]

√

√

√ √ Branch if Accumulator = Zero

If the contents of the accumulator = 0, branch to the
specified program-memory address.

TMS320C2x, TMS320C20x and TMS320C5x
devices: Modify the current AR and ARP as specified.

TMS320C20x and TMS320C5x devices: To modify the
AR and ARP, use the –p porting switch.

CALA √ √ √ Call Subroutine Indirect

The contents of the accumulator specify the address
of a subroutine. Increment the PC, push the PC onto
the stack, then load the 12 (TMS320C1x) or 16
(TMS320C2x/C20x) LSBs of the accumulator into the
PC.

CALA [D] √ Call Subroutine Indirect With Optional Delay

The contents of the accumulator specify the address
of a subroutine. Increment the PC and push it onto the
stack; then load the 16 LSBs of the accumulator into
the PC.

If you specify a delayed branch (CALAD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

CALL pma

CALL pma [,{ind} [, next ARP]]

√

√ √

Call Subroutine

The contents of the addressed program-memory
location specify the address of a subroutine. Increment
the PC by 2, push the PC onto the stack, then load the
specified program-memory address into the PC.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP as specified.

CALL [D] pma [, {ind} [, next
ARP]]

√ Call Unconditionally With Optional Delay

The contents of the addressed program-memory
location specify the address of a subroutine. Increment
the PC and push the PC onto the stack; then load the
specified program-memory address (symbolic or
numeric) into the PC. Modify the current AR and ARP
as specified.

If you specify a delayed branch (CALLD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

Instruction Set Comparison Table

 C-16

Syntax Description5x2xx2x1x

CC pma, cond1 [, cond2] [, ...] √ Call Conditionally

If the specified conditions are met, control is passed to
the pma. Not all combinations of conditions are
meaningful.

CC[D] pma, cond1 [, cond2] [, ...] √ Call Conditionally With Optional Delay

If the specified conditions are met, control is passed to
the pma. Not all combinations of conditions are
meaningful.

If you specify a delayed branch (CCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

CLRC control bit √ √ Clear Control Bit

Set the specified control bit to a logic 0. Maskable
interrupts are enabled immediately after the CLRC
instruction executes.

CMPL √ √ √ Complement Accumulator

Complement the contents of the accumulator (1s
complement).

CMPR CM √ √ √ Compare Auxiliary Register With AR0

Compare the contents of the current auxiliary register
to AR0, based on the following cases:

If CM = 002, test whether AR(ARP) = AR0.

If CM = 012, test whether AR(ARP) < AR0.

If CM = 102, test whether AR(ARP) > AR0.

If CM = 112, test whether AR(ARP) ≠ AR0.

If the result is true, load a 1 into the TC status bit;
otherwise, load a 0 into the TC bit. The comparison
does not affect the tested registers.

TMS320C5x devices: Compare the contents of the
auxiliary register with the ARCR.

CNFD √ √ √ Configure Block as Data Memory

Configure on-chip RAM block B0 as data memory.
Block B0 is mapped into data-memory locations
512h–767h.

TMS320C5x devices: Block B0 is mapped into
data-memory locations 512h–1023h.

Instruction Set Comparison Table

C-17TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

CNFP √ √ √ Configure Block as Program Memory

Configure on-chip RAM block B0 as program memory.
Block B0 is mapped into program-memory locations
65280h–65535h.

TMS320C5x devices: Block B0 is mapped into
data-memory locations 65024h–65535h.

CONF 2-bit constant √ Configure Block as Program Memory

Configure on-chip RAM block B0/B1/B2/B3 as
program memory. For information on the memory
mapping of B0/B1/B2/B3, see the TMS320C2x User’s
Guide.

CPL [#lk,] dma

CPL [#lk,] {ind} [, next ARP]

√

√

Compare DBMR or Immediate With Data Value

Compare two quantities: If the two quantities are
equal, set the TC bit to 1; otherwise, clear the TC bit.

CRGT √ Test for ACC > ACCB

Compare the contents of the ACC with the contents of
the ACCB, then load the larger signed value into both
registers and modify the carry bit according to the
comparison result. If the contents of ACC are greater
than or equal to the contents of ACCB, set the carry bit
to 1.

CRLT √ Test for ACC < ACCB

Compare the contents of the ACC with the contents of
the ACCB, then load the smaller signed value into both
registers and modify the carry bit according to the
comparison result. If the contents of ACC are less than
the contents of ACCB, clear the carry bit.

DINT √ √ √ √ Disable Interrupts

Disable all interrupts; set the INTM to 1. Maskable
interrupts are disabled immediately after the DINT
instruction executes. DINT does not disable the
unmaskable interrupt RS; DINT does not affect the
IMR.

DMOV dma

DMOV {ind} [, next ARP]

√

√

√

√

√

√

√

√

Data Move in Data Memory

Copy the contents of the addressed data-memory
location into the next higher address. DMOV moves
data only within on-chip RAM blocks.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: The on-chip RAM blocks are B0 (when
configured as data memory), B1, and B2.

Instruction Set Comparison Table

 C-18

Syntax Description5x2xx2x1x

EINT √ √ √ √ Enable Interrupts

Enable all interrupts; clear the INTM to 0. Maskable
interrupts are enabled immediately after the EINT
instruction executes.

EXAR √ Exchange ACCB With ACC

Exchange the contents of the ACC with the contents
of the ACCB.

FORT 1-bit constant √ Format Serial Port Registers

Load the FO with a 0 or a 1. If FO = 0, the registers are
configured to receive/transmit 16-bit words. If FO = 1,
the registers are configured to receive/transmit 8-bit
bytes.

IDLE √ √ √ Idle Until Interrupt

Forces an executing program to halt execution and
wait until it receives a reset or an interrupt. The device
remains in an idle state until it is interrupted.

IDLE2 √ Idle Until Interrupt—Low-Power Mode

Removes the functional clock input from the internal
device; this allows for an extremely low-power mode.
The IDLE2 instruction forces an executing program to
halt execution and wait until it receives a reset or
unmasked interrupt.

IN dma, PA

IN {ind}, PA [, next ARP]

√

√

√

√

√

√

√

√

Input Data From Port

Read a 16-bit value from one of the external I/O ports
into the addressed data-memory location.

TMS320C1x devices: This is a 2-cycle instruction.
During the first cycle, the port address is sent to
address lines A2/PA2–A0/PA0; DEN goes low,
strobing in the data that the addressed peripheral
places on data bus D15–D0.

TMS320C2x devices: The IS line goes low to indicate
an I/O access, and the STRB, R/W, and READY
timings are the same as for an external data-memory
read.

TMS320C20x and TMS320C5x devices: The IS line
goes low to indicate an I/O access, and the STRB, RD,
and READY timings are the same as for an external
data-memory read.

Instruction Set Comparison Table

C-19TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

INTR K √ √ Soft Interrupt

Transfer program control to the program-memory
address specified by K (an integer from 0 to 31). This
instruction allows you to use your software to execute
any interrupt service routine. The interrupt vector
locations are spaced apart by two addresses (0h, 2h,
4h, ... , 3Eh), allowing a two-word branch instruction to
be placed at each location.

LAC dma [, shift]

LAC {ind} [, shift [, next ARP]]

√

√

√

√

√

√

√

√

Load Accumulator With Shift

Load the contents of the addressed data-memory
location into the accumulator. If a shift is specified, left
shift the value before loading it into the accumulator.
During shifting, low-order bits are zero filled, and
high-order bits are sign extended if SXM = 1.

LACB √ Load Accumulator With ACCB

Load the contents of the accumulator buffer into the
accumulator.

LACC dma [, shift1]

LACC {ind} [, shift1 [, next ARP]]

LACC # lk [, shift2]

√

√

√

√

√

√

√

√

√

Load Accumulator With Shift

Load the contents of the addressed data-memory
location or the 16-bit constant into the accumulator. If
a shift is specified, left shift the value before loading it
into the accumulator. During shifting, low-order bits are
zero filled, and high-order bits are sign extended if
SXM = 1.

LACK 8-bit constant √ √ √ √ Load Accumulator Immediate Short

Load an 8-bit constant into the accumulator. The 24
MSBs of the accumulator are zeroed.

LACL dma

LACL {ind} [, next ARP]

LACL # k

√

√

√

√

√

√

Load Low Accumulator and Clear High
Accumulator

Load the contents of the addressed data-memory
location or zero-extended 8-bit constant into the 16
LSBs of the accumulator. The MSBs of the
accumulator are zeroed. The data is treated as a 16-bit
unsigned number.

TMS320C20x: A constant of 0 clears the contents of
the accumulator to 0 with no sign extension.

Instruction Set Comparison Table

 C-20

Syntax Description5x2xx2x1x

LACT dma

LACT {ind} [, next ARP]

√

√

√

√

√

√

Load Accumulator With Shift Specified by T
Register

Left shift the contents of the addressed data-memory
location by the value specified in the 4 LSBs of the T
register; load the result into the accumulator. If a shift
is specified, left shift the value before loading it into the
accumulator. During shifting, low-order bits are zero
filled, and high-order bits are sign extended if SXM = 1.

LALK # lk [, shift] √ √ √ Load Accumulator Long Immediate With Shift

Load a 16-bit immediate value into the accumulator. If
a shift is specified, left shift the constant before loading
it into the accumulator. During shifting, low-order bits
are zero filled, and high-order bits are sign extended if
SXM = 1.

LAMM dma

LAMM {ind} [, next ARP]

√

√

Load Accumulator With Memory-Mapped
Register

Load the contents of the addressed memory-mapped
register into the low word of the accumulator. The 9
MSBs of the data-memory address are cleared,
regardless of the current value of DP or the 9 MSBs of
AR (ARP).

LAR AR, dma

LAR AR, {ind} [, next ARP]

LAR AR, #k

LAR AR, #lk

√

√

√

√

√

√

√

√

√

√

√

√

Load Auxiliary Register

TMS320C1x and TMS320C2x devices: Load the
contents of the addressed data-memory location into
the designated auxiliary register.

TMS320C25, TMS320C20x, and TMS320C5x
devices: Load the contents of the addressed
data-memory location or an 8-bit or 16-bit immediate
value into the designated auxiliary register.

LARK AR, 8-bit constant √ √ √ √ Load Auxiliary Register Immediate Short

Load an 8-bit positive constant into the designated
auxiliary register.

LARP 1-bit constant

LARP 3-bit constant

√

√ √ √

Load Auxiliary Register Pointer

TMS320C1x devices: Load a 1-bit constant into the
auxiliary register pointer (specifying AR0 or AR1).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load a 3-bit constant into the auxiliary
register pointer (specifying AR0–AR7).

Instruction Set Comparison Table

C-21TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

LDP dma

LDP {ind} [, next ARP]

LDP #k

√

√

√

√

√

√

√

√

√

√

Load Data-Memory Page Pointer

TMS320C1x devices: Load the LSB of the contents of
the addressed data-memory location into the DP
register. All high-order bits are ignored. DP = 0 defines
page 0 (words 0–127), and DP = 1 defines page 1
(words 128–143/255).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load the 9 LSBs of the addressed
data-memory location or a 9-bit immediate value into
the DP register. The DP and 7-bit data-memory
address are concatenated to form 16-bit data-memory
addresses.

LDPK 1-bit constant

LDPK 9-bit constant

√

√ √ √

Load Data-Memory Page Pointer Immediate

TMS320C1x devices: Load a 1-bit immediate value
into the DP register. DP = 0 defines page 0 (words
0–127), and DP = 1 defines page 1 (words
128–143/255).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load a 9-bit immediate into the DP register.
The DP and 7-bit data-memory address are
concatenated to form 16-bit data-memory addresses.
DP � 8 specifies external data memory. DP = 4
through 7 specifies on-chip RAM blocks B0 or B1.
Block B2 is located in the upper 32 words of page 0.

LMMR dma, #lk

LMMR {ind}, #lk [, next ARP]

√

√

Load Memory-Mapped Register

Load the contents of the memory-mapped register
pointed at by the 7 LSBs of the direct or indirect
data-memory value into the long immediate addressed
data-memory location. The 9 MSBs of the
data-memory address are cleared, regardless of the
current value of DP or the 9 MSBs of AR (ARP).

LPH dma

LPH {ind} [, next ARP]

√

√

√

√

√

√

Load High P Register

Load the contents of the addressed data-memory
location into the 16 MSBs of the P register; the LSBs
are not affected.

LRLK AR, lk √ √ √ Load Auxiliary Register Long Immediate

Load a 16-bit immediate value into the designated
auxiliary register.

LST dma

LST {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load Status Register

Load the contents of the addressed data-memory
location into the ST (TMS320C1x) or into ST0
(TMS320C2x/2xx/5x).

Instruction Set Comparison Table

 C-22

Syntax Description5x2xx2x1x

LST #n, dma

LST #n, {ind} [, next ARP]

√

√

√

√

√

√

Load Status Register n

Load the contents of the addressed data-memory
location into STn.

LST1 dma

LST1 {ind} [, next ARP]

√

√

√

√

√

√

Load ST1

Load the contents of the addressed data-memory
location into ST1.

LT dma

LT {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x).

LTA dma

LTA {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register and Accumulate Previous
Product

Load the contents of the addressed data-memory
location into T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x) and add the contents of the P
register to the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, shift the contents of the P
register as specified by the PM status bits.

LTD dma

LTD {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register, Accumulate Previous Product,
and Move Data

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x), add the contents of the P
register to the accumulator, and copy the contents of
the specified location into the next higher address
(both data-memory locations must reside in on-chip
data RAM).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, shift the contents of the P
register as specified by the PM status bits.

LTP dma

LTP {ind} [, next ARP]

√

√

√

√

√

√

Load T Register, Store P Register in Accumulator

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x). Store the contents of the
product register into the accumulator.

LTS dma

LTS {ind} [, next ARP]

√

√

√

√

√

√

Load T Register, Subtract Previous Product

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x). Shift the contents of the
product register as specified by the PM status bits, and
subtract the result from the accumulator.

Instruction Set Comparison Table

C-23TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

MAC pma, dma

MAC pma, {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as
specified by the PM status bits) to the accumulator.

MACD dma, pma

MACD pma, {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate With Data Move

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as
specified by the PM status bits) to the accumulator. If
the data-memory address is in on-chip RAM block B0,
B1, or B2, copy the contents of the address to the next
higher address.

MADD dma

MADD {ind} [, next ARP]

√

√

Multiply and Accumulate With Data Move and
Dynamic Addressing

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as defined
by the PM status bits) into the accumulator. The
program-memory address is contained in the BMAR;
this allows for dynamic addressing of coefficient
tables.

MADD functions the same as MADS, with the addition
of data move for on-chip RAM blocks.

MADS dma

MADS {ind} [, next ARP]

√

√

Multiply and Accumulate With Dynamic
Addressing

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as defined
by the PM status bits) into the accumulator. The
program-memory address is contained in the BMAR;
this allows for dynamic addressing of coefficient
tables.

MAR dma

MAR {ind} [, next ARP]

√

√

√

√

√

√

√

√

Modify Auxiliary Register

Modify the current AR or ARP as specified. MAR acts
as NOP in indirect addressing mode.

MPY dma

MPY {ind} [, next ARP]

MPY #k

MPY #lk

√

√

√

√

√

√

√

√

√

√

√

√

Multiply

TMS320C1x and TMS320C2x devices: Multiply the
contents of the T register by the contents of the
addressed data-memory location; place the result in
the P register.

TMS320C20x and TMS320C5x devices: Multiply the
contents of the T register (TMS320C20x) or TREG0
(TMS320C5x) by the contents of the addressed
data-memory location or a 13-bit or 16-bit immediate
value; place the result in the P register.

Instruction Set Comparison Table

 C-24

Syntax Description5x2xx2x1x

MPYA dma

MPYA {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate Previous Product

Multiply the contents of the T register (TMS320C2x/
2xx) or TREG0 (TMS320C5x) by the contents of the
addressed data-memory location; place the result in
the P register. Add the previous product (shifted as
specified by the PM status bits) to the accumulator.

MPYK 13-bit constant √ √ √ √ Multiply Immediate

Multiply the contents of the T register (TMS320C2x/
2xx) or TREG0 (TMS320C5x) by a signed 13-bit
constant; place the result in the P register.

MPYS dma

MPYS {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Subtract Previous Product

Multiply the contents of the T register (TMS320C2x/
2xx) or TREG0 (TMS320C5x) by the contents of the
addressed data-memory location; place the result in
the P register. Subtract the previous product (shifted
as specified by the PM status bits) from the
accumulator.

MPYU dma

MPYU {ind} [, next ARP]

√

√

√

√

√

√

Multiply Unsigned

Multiply the unsigned contents of the T register
(TMS320C2x/2xx) or TREG0 (TMS320C5x) by the
unsigned contents of the addressed data-memory
location; place the result in the P register.

NEG √ √ √ Negate Accumulator

Negate (2s complement) the contents of the
accumulator.

NMI √ √ Nonmaskable Interrupt

Force the program counter to the nonmaskable
interrupt vector location 24h. NMI has the same effect
as a hardware nonmaskable interrupt.

NOP √ √ √ √ No Operation

Perform no operation.

NORM

NORM {ind}

√

√

√

√

√

√

Normalize Contents of Accumulator

Normalize a signed number in the accumulator.

OPL [#lk,] dma

OPL [#lk,] {ind} [, next ARP]

√

√

OR With DBMR or Long Immediate

If a long immediate is specified, OR it with the value at
the specified data-memory location; otherwise, the
second operand of the OR operation is the contents of
the DBMR. The result is written back into the
data-memory location previously holding the first
operand.

Instruction Set Comparison Table

C-25TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

OR dma

OR {ind} [, next ARP]

OR #lk [, shift]

√

√

√

√

√

√

√

√

√

√

OR With Accumulator

TMS320C1x and TMS320C2x devices: OR the 16
LSBs of the accumulator with the contents of the
addressed data-memory location. The 16 MSBs of the
accumulator are ORed with 0s.

TMS320C20x and TMS320C5x devices: OR the 16
LSBs of the accumulator or a 16-bit immediate value
with the contents of the addressed data-memory
location. If a shift is specified, left-shift before ORing.
Low-order bits below and high-order bits above the
shifted value are treated as 0s.

ORB √ OR ACCB With Accumulator

OR the contents of the ACCB with the contents of the
accumulator. ORB places the result in the
accumulator.

ORK #lk [, shift] √ √ √ OR Immediate With Accumulator with Shift

OR a 16-bit immediate value with the contents of the
accumulator. If a shift is specified, left-shift the
constant before ORing. Low-order bits below and
high-order bits above the shifted value are treated as
0s.

OUT dma, PA

OUT {ind}, PA [, next ARP]

√

√

√

√

√

√

√

√

Output Data to Port

Write a 16-bit value from a data-memory location to the
specified I/O port.

TMS320C1x devices: The first cycle of this instruction
places the port address onto address lines
A2/PA2–A0/PA0. During the same cycle, WE goes low
and the data word is placed on the data bus D15–D0.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: The IS line goes low to indicate an I/O access;
the STRB, R/W, and READY timings are the same as
for an external data-memory write.

PAC √ √ √ √ Load Accumulator With P Register

Load the contents of the P register into the
accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the load, shift the P register as
specified by the PM status bits.

Instruction Set Comparison Table

 C-26

Syntax Description5x2xx2x1x

POP √ √ √ √ Pop Top of Stack to Low Accumulator

Copy the contents of the top of the stack into the 12
(TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the
accumulator and then pop the stack one level. The
MSBs of the accumulator are zeroed.

POPD dma

POPD {ind} [, next ARP]

√

√

√

√

√

√

Pop Top of Stack to Data Memory

Transfer the value on the top of the stack into the
addressed data-memory location and then pop the
stack one level.

PSHD dma

PSHD {ind} [, next ARP]

√

√

√

√

√

√

Push Data-Memory Value Onto Stack

Copy the addressed data-memory location onto the
top of the stack. The stack is pushed down one level
before the value is copied.

PUSH √ √ √ √ Push Low Accumulator Onto Stack

Copy the contents of the 12 (TMS320C1x) or 16
(TMS320C2x/2xx/5x) LSBs of the accumulator onto
the top of the hardware stack. The stack is pushed
down one level before the value is copied.

RC √ √ √ Reset Carry Bit

Reset the C status bit to 0.

RET √ √ √ Return From Subroutine

Copy the contents of the top of the stack into the PC
and pop the stack one level.

RET[D] √ Return From Subroutine With Optional Delay

Copy the contents of the top of the stack into the PC
and pop the stack one level.

If you specify a delayed branch (RETD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the return.

RETC cond1 [, cond2] [, ...] √ Return Conditionally

If the specified conditions are met, RETC performs a
standard return. Not all combinations of conditions are
meaningful.

Instruction Set Comparison Table

C-27TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

RETC[D] cond1 [, cond2] [, ...] √ Return Conditionally With Optional Delay

If the specified conditions are met, RETC performs a
standard return. Not all combinations of conditions are
meaningful.

If you specify a delayed branch (RETCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the return.

RETE √ Enable Interrupts and Return From Interrupt

Copy the contents of the top of the stack into the PC
and pop the stack one level. RETE automatically
clears the global interrupt enable bit and pops the
shadow registers (stored when the interrupt was
taken) back into their corresponding strategic
registers. The following registers are shadowed: ACC,
ACCB, PREG, ST0, ST1, PMST, ARCR, INDX,
TREG0, TREG1, TREG2.

RETI √ Return From Interrupt

Copy the contents of the top of the stack into the PC
and pop the stack one level. RETI also pops the values
in the shadow registers (stored when the interrupt was
taken) back into their corresponding strategic
registers. The following registers are shadowed: ACC,
ACCB, PREG, ST0, ST1, PMST, ARCR, INDX,
TREG0, TREG1, TREG2.

RFSM √ Reset Serial Port Frame Synchronization Mode

Reset the FSM status bit to 0.

RHM √ √ Reset Hold Mode

Reset the HM status bit to 0.

ROL √ √ √ Rotate Accumulator Left

Rotate the accumulator left one bit.

ROLB √ Rotate ACCB and Accumulator Left

Rotate the ACCB and the accumulator left by one bit;
this results in a 65-bit rotation.

ROR √ √ √ Rotate Accumulator Right

Rotate the accumulator right one bit.

RORB √ Rotate ACCB and Accumulator Right

Rotate the ACCB and the accumulator right one bit;
this results in a 65-bit rotation.

Instruction Set Comparison Table

 C-28

Syntax Description5x2xx2x1x

ROVM √ √ √ √ Reset Overflow Mode

Reset the OVM status bit to 0; this disables overflow
mode.

RPT dma

RPT {ind} [, next ARP]

RPT #k

RPT #lk

√

√

√

√

√

√

√

√

√

√

Repeat Next Instruction

TMS320C2x devices: Load the 8 LSBs of the
addressed value into the RPTC; the instruction
following RPT is executed the number of times
indicated by RPTC + 1.

TMS320C20x and TMS320C5x devices: Load the 8
LSBs of the addressed value or an 8-bit or 16-bit
immediate value into the RPTC; the instruction
following RPT is repeated n times, where n is RPTC+1.

RPTB pma √ Repeat Block

RPTB repeats a block of instructions the number of
times specified by the memory-mapped BRCR without
any penalty for looping. The BRCR must be loaded
before RPTB is executed.

RPTK #k √ √ √ Repeat Instruction as Specified by Immediate
Value

Load the 8-bit immediate value into the RPTC; the
instruction following RPTK is executed the number of
times indicated by RPTC + 1.

RPTZ #lk √ Repeat Preceded by Clearing the Accumulator
and P Register

Clear the accumulator and product register and repeat
the instruction following RPTZ n times, where n = lk +1.

RSXM √ √ √ Reset Sign-Extension Mode

Reset the SXM status bit to 0; this suppresses sign
extension on shifted data values for the following
arithmetic instructions: ADD, ADDT, ADLK, LAC,
LACT, LALK, SBLK, SUB, and SUBT.

RTC √ √ √ Reset Test/Control Flag

Reset the TC status bit to 0.

RTXM √ Reset Serial Port Transmit Mode

Reset the TXM status bit to 0; this configures the serial
port transmit section in a mode where it is controlled by
an FSX.

RXF √ √ √ Reset External Flag

Reset XF pin and the XF status bit to 0.

Instruction Set Comparison Table

C-29TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

SACB √ Store Accumulator in ACCB

Copy the contents of the accumulator into the ACCB.

SACH dma [, shift]

SACH {ind} [, shift [, next ARP]]

√

√

√

√

√

√

√

√

Store High Accumulator With Shift

Copy the contents of the accumulator into a shifter.
Shift the entire contents 0, 1, or 4 bits (TMS320C1x) or
from 0 to 7 bits (TMS320C2x/2xx/5x), and then copy
the 16 MSBs of the shifted value into the addressed
data-memory location. The accumulator is not
affected.

SACL dma

SACL dma [, shift]

SACL {ind} [, shift [, next ARP]]

√

√ √

√

√

√

√

√

Store Low Accumulator With Shift

TMS320C1x devices: Store the 16 LSBs of the
accumulator into the addressed data-memory
location. A shift value of 0 must be specified if the ARP
is to be changed.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Store the 16 LSBs of the accumulator into the
addressed data-memory location. If a shift is specified,
shift the contents of the accumulator before storing.
Shift values are 0, 1, or 4 bits (TMS320C20) or from 0
to 7 bits (TMS320C2x/2xx/5x).

SAMM dma

SAMM {ind} [, next ARP]

√

√

Store Accumulator in Memory-Mapped Register

Store the low word of the accumulator in the addressed
memory-mapped register. The upper 9 bits of the data
address are cleared, regardless of the current value of
DP or the 9 MSBs of AR (ARP).

SAR AR, dma

SAR AR, {ind} [, next ARP]

√

√

√

√

√

√

√

√

Store Auxiliary Register

Store the contents of the specified auxiliary register in
the addressed data-memory location.

SATH √ Barrel-Shift Accumulator as Specified
by T Register 1

If bit 4 of TREG1 is a 1, barrel-shift the accumulator
right by 16 bits; otherwise, the accumulator is
unaffected.

SATL √ Barrel-Shift Low Accumulator as Specified
by T Register 1

Barrel-shift the accumulator right by the value
specified in the 4 LSBs of TREG1.

SBB √ Subtract ACCB From Accumulator

Subtract the contents of the ACCB from the
accumulator. The result is stored in the accumulator;
the accumulator buffer is not affected.

Instruction Set Comparison Table

 C-30

Syntax Description5x2xx2x1x

SBBB √ Subtract ACCB From Accumulator With Borrow

Subtract the contents of the ACCB and the logical
inversion of the carry bit from the accumulator. The
result is stored in the accumulator; the accumulator
buffer is not affected. Clear the carry bit if the result
generates a borrow.

SBLK # lk [, shift] √ √ √ Subtract From Accumulator Long Immediate
With Shift

Subtract the immediate value from the accumulator. If
a shift is specified, left shift the value before
subtracting. During shifting, low-order bits are zero
filled, and high-order bits are sign extended if SXM =
1.

SBRK #k √ √ √ Subtract From Auxiliary Register Short
Immediate

Subtract the 8-bit immediate value from the
designated auxiliary register.

SC √ √ √ Set Carry Bit

Set the C status bit to 1.

SETC control bit √ √ Set Control Bit

Set the specified control bit to a logic 1. Maskable
interrupts are disabled immediately after the SETC
instruction executes.

SFL √ √ √ Shift Accumulator Left

Shift the contents of the accumulator left one bit.

SFLB √ Shift ACCB and Accumulator Left

Shift the concatenation of the accumulator and the
ACCB left one bit. The LSB of the ACCB is cleared to
0, and the MSB of the ACCB is shifted into the carry bit.

SFR √ √ √ Shift Accumulator Right

Shift the contents of the accumulator right one bit. If
SXM = 1, SFR produces an arithmetic right shift. If
SXM = 0, SFR produces a logic right shift.

SFRB √ Shift ACCB and Accumulator Right

Shift the concatenation of the accumulator and the
ACCB right 1 bit. The LSB of the ACCB is shifted into
the carry bit. If SXM = 1, SFRB produces an arithmetic
right shift. If SXM = 0, SFRB produces a logic right shift.

SFSM √ Set Serial Port Frame Synchronization Mode

Set the FSM status bit to 1.

Instruction Set Comparison Table

C-31TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

SHM √ √ Set Hold Mode

Set the HM status bit to 1.

SMMR dma, #lk

SMMR {ind}, #lk [, next ARP]

√

√

Store Memory-Mapped Register

Store the memory-mapped register value, pointed at
by the 7 LSBs of the data-memory address, into the
long immediate addressed data-memory location. The
9 MSBs of the data-memory address of the
memory-mapped register are cleared, regardless of
the current value of DP or the upper 9 bits of AR(ARP).

SOVM √ √ √ √ Set Overflow Mode

Set the OVM status bit to 1; this enables overflow
mode. (The ROVM instruction clears OVM.)

SPAC √ √ √ √ Subtract P Register From Accumulator

Subtract the contents of the P register from the
contents of the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the subtraction, shift the contents of
the P register as specified by the PM status bits.

SPH dma

SPH {ind} [, next ARP]

√

√

√

√

√

√

Store High P Register

Store the high-order bits of the P register (shifted as
specified by the PM status bits) at the addressed
data-memory location.

SPL dma

SPL {ind} [, next ARP]

√

√

√

√

√

√

Store Low P Register

Store the low-order bits of the P register (shifted as
specified by the PM status bits) at the addressed
data-memory location.

SPLK # lk, dma

SPLK # lk, {ind} [, next ARP]

√ √

√

Store Parallel Long Immediate

Write a full 16-bit pattern into a memory location. The
parallel logic unit (PLU) supports this bit manipulation
independently of the ALU, so the accumulator is
unaffected.

SPM 2-bit constant √ √ √ Set P Register Output Shift Mode

Copy a 2-bit immediate value into the PM field of ST1.
This controls shifting of the P register as shown below:

PM = 002 Multiplier output is not shifted.
PM = 012 Multiplier output is left shifted one place

and zero filled.
PM = 102 Multiplier output is left shifted four places
 and zero filled.
PM = 112 Multiplier output is right shifted six places

and sign extended; the LSBs are lost.

Instruction Set Comparison Table

 C-32

Syntax Description5x2xx2x1x

SQRA dma

SQRA {ind} [, next ARP]

√

√

√

√

√

√

Square and Accumulate Previous Product

Add the contents of the P register (shifted as specified
by the PM status bits) to the accumulator. Then load
the contents of the addressed data-memory location
into the T register (TMS320C2x/2xx) or TREG0
(TMS320C5x), square the value, and store the result
in the P register.

SQRS dma

SQRS {ind} [, next ARP]

√

√

√

√

√

√

Square and Subtract Previous Product

Subtract the contents of the P register (shifted as
specified by the PM status bits) to the accumulator.
Then load the contents of the addressed data-memory
location into the T register (TMS320C2x/2xx) or
TREG0 (TMS320C5x), square the value, and store the
result in the P register.

SST dma

SST {ind} [, next ARP]

√

√

√

√

√

√

√

√

Store Status Register

Store the contents of the ST (TMS320C1x) or ST0
(TMS320C2x/2xx/5x) in the addressed data-memory
location.

SST #n, dma

SST #n, {ind} [, next ARP]

√

√

√

√

Store Status Register n

Store STn in data memory.

SST1 dma

SST1 {ind} [, next ARP]

√

√

√

√

√

√

Store Status Register ST1

Store the contents of ST1 in the addressed
data-memory location.

SSXM √ √ √ Set Sign-Extension Mode

Set the SXM status bit to 1; this enables sign
extension.

STC √ √ √ Set Test/Control Flag

Set the TC flag to 1.

STXM √ Set Serial Port Transmit Mode

Set the TXM status bit to 1.

Instruction Set Comparison Table

C-33TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

SUB dma [, shift]

SUB {ind} [, shift [, next ARP]]

SUB #k

SUB #lk [, shift2]

√

√

√

√

√

√

√

√

√

√

√

√

Subtract From Accumulator With Shift

TMS320C1x and TMS320C2x devices: Subtract the
contents of the addressed data-memory location from
the accumulator. If a shift is specified, left shift the
value before subtracting. During shifting, low-order
bits are zero filled, and high-order bits are sign
extended if SXM = 1.

TMS320C20x and TMS320C5x devices: Subtract the
contents of the addressed data-memory location or an
8- or 16-bit constant from the accumulator. If a shift is
specified, left shift the data before subtracting. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

SUBB dma

SUBB {ind} [, next ARP]

√

√

√

√

√

√

Subtract From Accumulator With Borrow

Subtract the contents of the addressed data-memory
location and the value of the carry bit from the
accumulator. The carry bit is affected in the normal
manner.

SUBC dma

SUBC {ind} [, next ARP]

√

√

√

√

√

√

√

√

Conditional Subtract

Perform conditional subtraction. SUBC can be used
for division.

SUBH dma

SUBH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Subtract From High Accumulator

Subtract the contents of the addressed data-memory
location from the 16 MSBs of the accumulator. The 16
LSBs of the accumulator are not affected.

SUBK #k √ √ √ Subtract From Accumulator Short Immediate

Subtract an 8-bit immediate value from the
accumulator. The data is treated as an 8-bit positive
number; sign extension is suppressed.

SUBS dma

SUBS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Subtract From Low Accumulator With Sign
Extension Suppressed

Subtract the contents of the addressed data-memory
location from the accumulator. The data is treated as
a 16-bit unsigned number; sign extension is
suppressed.

Instruction Set Comparison Table

 C-34

Syntax Description5x2xx2x1x

SUBT dma

SUBT {ind} [, next ARP]

√

√

√

√

√

√

Subtract From Accumulator With Shift Specified
by T Register

Left shift the data-memory value as specified by the 4
LSBs of the T register (TMS320C2x/2xx) or TREG1
(TMS320C5x), and subtract the result from the
accumulator. If a shift is specified, left shift the
data-memory value before subtracting. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

SXF √ √ √ Set External Flag

Set the XF pin and the XF status bit to 1.

TBLR dma

TBLR {ind} [, next ARP]

√

√

√

√

√

√

√

√

Table Read

Transfer a word from program memory to a
data-memory location. The program-memory address
is in the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x)
LSBs of the accumulator.

TBLW dma

TBLW {ind} [, next ARP]

√

√

√

√

√

√

√

√

Table Write

Transfer a word from data-memory to a
program-memory location. The program-memory
address is in the 12 (TMS320C1x) or 16
(TMS320C2x/2xx/5x) LSBs of the accumulator.

TRAP √ √ √ Software Interrupt

The TRAP instruction is a software interrupt that
transfers program control to program-memory
address 30h (TMS320C2x) or 22h (TMS320C20x/5x)
and pushes the PC + 1 onto the hardware stack. The
instruction at address 30h or 22h may contain a branch
instruction to transfer control to the TRAP routine.
Putting the PC + 1 on the stack enables an RET
instruction to pop the return PC.

XC n, cond1 [, cond2] [, ...] √ Execute Conditionally

Execute conditionally the next n instruction words
where 1 ≤ n ≤ 2. Not all combinations of conditions are
meaningful.

Instruction Set Comparison Table

C-35TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

XOR dma

XOR {ind} [, next ARP]

XOR #lk [, shift]

√

√

√

√

√

√

√

√

√

√

Exclusive-OR With Accumulator

TMS320C1x and TMS320C2x devices: Exclusive-OR
the contents of the addressed data-memory location
with 16 LSBs of the accumulator. The MSBs are not
affected.

TMS320C20x and TMS320C5x devices:
Exclusive-OR the contents of the addressed
data-memory location or a 16-bit immediate value with
the accumulator. If a shift is specified, left shift the
value before performing the exclusive-OR operation.
Low-order bits below and high-order bits above the
shifted value are treated as 0s.

XORB √ Exclusive-OR of ACCB With Accumulator

Exclusive-OR the contents of the accumulator with the
contents of the ACCB. The results are placed in the
accumulator.

XORK #lk [, shift] √ √ √ Exclusive-OR Immediate With Accumulator With
Shift

Exclusive-OR a 16-bit immediate value with the
accumulator. If a shift is specified, left shift the value
before performing the exclusive-OR operation.
Low-order bits below and high-order bits above the
shifted value are treated as 0s.

XPL [#lk,] dma

XPL [#lk ,] {ind} [, next ARP]

√

√

Exclusive-OR of Long Immediate or DBMR
With Addressed Data-Memory Value

If a long immediate value is specified, exclusive OR it
with the addressed data-memory value; otherwise,
exclusive OR the DBMR with the addressed
data-memory value. Write the result back to the
data-memory location. The accumulator is not
affected.

ZAC √ √ √ √ Zero Accumulator

Clear the contents of the accumulator to 0.

ZALH dma

ZALH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Zero Low Accumulator and Load High
Accumulator

Clear the 16 LSBs of the accumulator to 0 and load the
contents of the addressed data-memory location into
the 16 MSBs of the accumulator.

Instruction Set Comparison Table

 C-36

Syntax Description5x2xx2x1x

ZALR dma

ZALR {ind} [, next ARP]

√

√

√

√

√

√

Zero Low Accumulator, Load High Accumulator
With Rounding

Load the contents of the addressed data-memory
location into the 16 MSBs of the accumulator. The
value is rounded by 1/2 LSB; that is, the 15 LSBs of the
accumulator (0–14) are cleared and bit 15 is set to 1.

ZALS dma

ZALS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Zero Accumulator, Load Low Accumulator With
Sign Extension Suppressed

Load the contents of the addressed data-memory
location into the 16 LSBs of the accumulator. The 16
MSBs are zeroed. The data is treated as a 16-bit
unsigned number.

ZAP √ Zero the Accumulator and Product Register

The accumulator and product register are zeroed. The
ZAP instruction speeds up the preparation for a repeat
multiply/accumulate.

ZPR √ Zero the Product Register

The product register is cleared.

D-1

Appendix A

Program Examples

This appendix provides:

� A brief introduction to the process for generating executable program files.

� Sample programs for implementing simple routines and using interrupts,
I/O pins, the timer, and the serial ports.

This appendix is not intended to teach you how to use the software develop-
ment tools. The following documents cover these tools in detail:

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide
(literature number SPRU018)

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide
(literature number SPRU024)

TMS320C2xx C Source Debugger User’s Guide
(literature number SPRU151)

For further information about ordering these documents, see Related
Documentation From Texas Instruments on page vi of the Preface. For source
code and examples, refer to the TI web site at www.ti.com and follow the DSP
path to the ’C20x DSP.

Topic Page

D.1 About These Program Examples D-2.

D.2 Shared Program Code D-5.

D.3 Task-Specific Program Code D-8.

D.4 Introduction to Generating Bootloader Code D-23.

Appendix D

About These Program Examples

 D-2

D.1 About These Program Examples

Figure D–1 illustrates the basic process for creating assembly language files
and then generating executable files from them:

1) Use the ’C2xx assembler to create:

� A command file (c203.cmd in the figure) that defines address ranges
according to the architecture of the particular ’C2xx device

� An assembly language program (test.asm in the figure)

2) Assemble the program. The command shown under Step 2 in the figure
generates an object file and a file containing a listing of assembler errors
encountered.

3) Use the linker to bring together the information in the object file and the
command file and create an executable file (test.out in the figure). The
command shown also generates a map file, which explains how the linker
assigned the individual sections in the memory.

Note:

The procedure here applies to the PC development environment and is giv-
en only as an example.

Figure D–1. Procedure for Generating Executable Files

Step 1
Using assembler, create command file

c203.cmd
and source program

test.asm

Step 2
Assemble source program
dspa test.asm -l -v2xx -s

Step 3
Run linker

dsplnk test.obj c203.cmd -o test.out -m test.map

Output files
test.lst – Error listings

test.obj – assembled file

Output files
test.out – executable file

test.map – map file

About These Program Examples

About These Program Examples

D-3Program Examples

The program examples in section D.2 and section D.3 consist of code for
shared files and task-specific files. Table D–1 describes the shared programs.
Shared files contain code that is used by multiple task-specific files. The task-
specific programs are described in Table D–2. Every task-specific file that
uses the header files includes them by way of the .copy assembler directive:

.copy ”init.h”

.copy ”vector.h”

The assembler brings together the .h files and .asm file. The linker links
assembled files according to the device architecture defined in the linker com-
mand file (c203.cmd).

Section D.4 contains an introduction to the procedure for using the assembler
and linker to generate code for the bootloader. Program examples are also giv-
en in that section.

Table D–1. Shared Programs in This Appendix

Program Functional Description See ...

c203.cmd Command file that defines size and placement of address blocks for
the program, data, and I/O spaces

Example D–1, page D-5

init.h Header file that declares space for variables and constants; declares
initial values for variables; designates labels for the addresses of the
control registers mapped to on-chip I/O space; contains comments
that explain the functions of the control registers

Example D–2, page D-6

vector.h Header file that fills the interrupt vector locations with branches to the
corresponding interrupt service routines or with other values

Example D–3, page D-7

Table D–2. Task-Specific Programs in This Appendix

Program Functional Description See ...

delay.asm Creates simple nested delay loops, measurable through XF and I/O pins Example D–4,
page D-8

timer.asm Generates periodic timer interrupt, XF and I/O pins toggle at the interrupt
rate

Example D–5,
page D-9

intr1.asm Causes XF pin to toggle at the rate of the interrupt signal on the INT1 pin Example D–6,
page D-10

hold.asm Explains the software logic for implementing a HOLD operation Example D–7,
page D-11

intr23.asm Accepts an interrupt signal on INT2 or INT3. Toggles XF pin for each
interrupt.

Example D–8,
page D-12

About These Program Examples

 D-4

Table D–2. Task-Specific Programs in This Appendix (Continued)

Program Functional Description See ...

uart.asm Causes the asynchronous serial port to transmit a test message
continuously at 1200 baud. Baud rate is 1200 at 50-ns cycle time.

Example D–9,
page D-13

echo.asm Echoes the character received by the asynchronous serial port at 1200
baud

Example D–10,
page D-14

autobaud.asm Causes the asynchronous serial port to lock on to the incoming baud rate
and echoes the received character. The first character received should
be a or A.

Example D–11,
page D-16

bitio.asm Toggles XF bit in response to delta interrupts and sends a character
through the asynchronous serial port

Example D–12,
page D-18

ssp.asm Causes the synchronous serial port to send words in continuous mode
with internal shift clock and frame synchronization

Example D–13,
page D-20

ad55.asm Implements simple loopback with a TLC320AD55C codec chip interfaced
to the synchronous serial port

Example D–14,
page D-21

Shared Program Code

D-5Program Examples

D.2 Shared Program Code

Example D–1. Generic Command File (c203.cmd)

/* Title: c203.cmd */
/* Generic command file for linking TMS320C20x assembler files */
/* input files: *.obj files */
/* output files: *.out file */
/* Map files: *.map file (optional) */
/* TMS320C20x architecture declaration for linker use */

MEMORY
{

PAGE 0: /* PM – Program memory */

EX1_PM :ORIGIN=0H , LENGTH=0FEFFH /* External program RAM */

B0_PM :ORIGIN=0FF00H, LENGTH=0100H /* BLOCK MAP IN CNF=1 */

PAGE 1: /* DM – Data memory */

REGS :ORIGIN=0H , LENGTH=60H /* MEM–MAPPED REGS */
BLK_B2 :ORIGIN=60H , LENGTH=20H /* BLOCK B2 */
BLK_B0 :ORIGIN=200H , LENGTH=100H /* BLOCK B0 */
BLK_B1 :ORIGIN=300H , LENGTH=100H /* BLOCK B1 */
EX1_DM :ORIGIN=0800H , LENGTH=7800H /* EXTERNAL DATA RAM */
GM_DM :ORIGIN=8000H , LENGTH=8000H /* External DATA RAM AS GLOBAL*/

PAGE 2: /* I/O SPACE */
IO_IN :ORIGIN=0FF00H, LENGTH=0FFH /* I/O MAPPED PERIPHERAL */
IO_EX :ORIGIN=0000H, LENGTH=0FF00H /* EXT. I/O MAPPED PERIPHERAL */

}

SECTIONS
/* Linker directive to specify section placement in the memory map */

{
vectors :{} > EX1_PM PAGE 0 /* Vectors at 0x0000 */
.text :{} > EX1_PM PAGE 0 /* .text placed after vectors */
.bss :{} > EX1_DM PAGE 1 /* .bss in 0x800 in DM */
 new :{} > BLK_B2 PAGE 1 /* new in 0x0060 in DM */
.data :{} > 0x0370 PAGE 1 /* .data at 0x0370 in DM */
}

Shared Program Code

 D-6

Example D–2. Header File With I/O Register Declarations (init.h)

* File: init.h *
* Include file with I/O register declarations *

.mmregs ; Include reserved words

.bss dmem,10 ; Undefined variables space

.def ini_d, start,codtx ; Directive for symbol address
; generation in the current module
; –optional

ini_d: .usect ”new”,10 ; Example of undefined variable space
; with the segment’s name as ”new”

.data ; Example of including dummy constants
; –optional

.word 055aah

.word 0aa55h

* On–chip register equates
* CLKOUT
clk1 .set 0ffe8h
* INTERRUPT CONTROL
icr .set 0ffech
* SYNC PORT
sdtr .set 0fff0h
sspcr .set 0fff1h
* UART
adtr .set 0fff4h
aspcr .set 0fff5h
iosr .set 0fff6h
brd .set 0fff7h
* TIMER
tcr .set 0fff8h
prd .set 0fff9h
tim .set 0fffah
* WAIT STATES
wsgr .set 0fffch

* Variables
rxbuf .set 0300h
size .set 00020h
del .set 0010h

Shared Program Code

D-7Program Examples

Example D–3. Header File With Interrupt Vector Declarations (vector.h)

* File: vector.h *
* File defines Interrupt vector labels *

.sect ”vectors”
b start ; reset vector – Jump to label start on reset
b inpt1 ; INT1 interrupt
b inpt23 ; INT2/INT3 interrupt
b timer ; TINT Timer interrupt
b codrx ; RX_Sync interrupt
b codtx ; TX_SYNC interrupt
b uart ; TX/RX Uart port interrupt

; Reserved and s/w interrupt vector locations
.space 45*16 ; Directive for filling zeros in PM space
.word 1,2,3,4,5 ; Example for constant loading

Task-Specific Program Code

 D-8

D.3 Task-Specific Program Code

Example D–4. Implementing Simple Delay Loops (delay.asm)

* File: delay.asm *
* Function: Delay loop. XF and I/O 3 pins toggle after each delay *

.title ”Delay routine” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text

start: clrc cnf ; Map block B0 to data memory
ldp #0h ; set DP=0
setc INTM ; Disable all interrupts
splk #0000h, 60h ; Set zero wait states
out 60h, wsgr
splk #0e00ch,60h ; Define iosr for bit I/O in aspcr
out 60h,aspcr
lar ar0,#del ; Initialize ar0
mar *,ar7 ; Set ARP to ar7
splk #0008h,6eh ; data for setting bit I/O 3
splk #0000h,6fh ; data for clearing bit I/O 3
splk #0ffffh,60h ; Inner repeat loop size
lar ar7,#del

loop: clrc xf ; xf=0
out 6fh,iosr ; bit 3=0

dely1: rpt 60h ; @ 50ns, this loop gives 3.4 ms approx.
nop
banz dely1,ar7 ; delay = 17*3.4 = 57.8 ms approx.
lar ar7,#del
setc xf ; xf=1
out 6eh,iosr ; bit 3=1

dely2: rpt 60h ; @ 50ns, this loop gives 3.4 ms approx.
nop
banz dely2,ar7 ; delay = 17*3.4 = 57.8 ms approx.
lar ar7,#del
b loop

inpt1: ret ; Unused interrupts
inpt23: ret ; have dummy returns for safety
timer: ret
uart: ret
codtx: ret
codrx: ret

.end ; Assembler module end directive –optional

Task-Specific Program Code

D-9Program Examples

Example D–5. Testing and Using the Timer (timer.asm)

* File: timer.asm *
* Function: Timer test code *
* PRD=0x00ff,TDDR=f @ 50ns, gives an interrupt interval=205us *
* PRD=0xffff,TDDR=0 @ 50ns, gives an interrupt interval=3.27ms*
* Timer interval measurable on I/O 2,3 or xf pins *

.title ”Timer Test” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc CNF ; Map block B0 to data memory

ldp #0h ; set DP=0
setc INTM ; Disable all interrupts
splk #0000h,60h
out 60h, wsgr ; Set zero wait states
splk #0ffffh,ifr ; clear interrupts
splk #0004h,imr ; enable timer interrupt
splk #0e00ch, 60h ; configure bit I/O I03 and IO2 as outputs
out 60h, aspcr ; set the aspcr for the above
mar *,ar1
lar ar1,#rxbuf
splk #0004h,61h ; bit value to set I/O 2
splk #0008h,62h ; bit value to set I/O 3
out 61h,iosr ; set the bit 2 = high, 3= zero
splk #0000h, 63h
splk #00ffh, 64h
out 64h, prd ; set PRD=0x00ffh
out 63h, tim ; set TIM=0x0000
splk #0c2fh, 64h ; PSC, TDDR are zero, reload, restart
out 64h, tcr
clrc intm
clrc xf

wait: out 62h,iosr ; set io2=0
idle
clrc xf
b wait

timer: setc xf ; xf =1
in 68h,tcr ; Read tcr,prd, tim regs.
in 69h,prd
in 6ah,tim
out 61h,iosr ; set io2=1
clrc intm
ret

inpt1: ret ; Unused interrupt routines
inpt23: ret
codtx: ret
codrx: ret
uart: ret

.end ; Assembler module end directive –optional

Task-Specific Program Code

 D-10

Example D–6. Testing and Using Interrupt INT1 (intr1.asm)

* File: intr1.asm *
* Function: Interrupt test code *
* For each INT1 interrupt XF,I/O pins IO3 and IO2 will toggle and *
* transmit char ’c’ through UART *

.title ”Interrupt 1 Test” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc CNF ; Map block B0 to data memory

ldp #0h ; set DP=0
setc INTM ; Disable all interrupts
splk #0ffffh, ifr ; clear interrupts
splk #0001h, imr ; Enable int1 interrupts
splk #0010h, 60h
out 60h,icr ; Enable Intr1 in mode bit/ICR
splk #0000h, 60h
out 60h, wsgr ; Set zero wait states
splk #0e00ch, 60h ; configure I03 and IO2 as outputs
out 60h, aspcr ; set the aspcr for the above
splk #0411h, 60h ; default baud rate 1200, for UART @50 ns
out 60h,brd
mar *,ar1 ; Initialize AR pointer with AR1
lar ar1,#rxbuf
lar ar0,#size ; set counter limit
splk #0004h,61h ; set bit I/O 2
splk #0008h,62h ; set bit I/O 3
splk #0063h,63h ; set tx data
clrc INTM
clrc XF

wait: out 61h,iosr ; toggle IO2/3
idle
clrc XF ; toggle xf
b wait

inpt1: in 65h, icr ; Read icr
out 62h, iosr ; toggle IO2/3
out 65h, adtr ; send icr value through UART to check

; interrupt source
setc XF ; toggle xf
clrc INTM
ret

timer: ret
inpt23: ret
uart: ret
codtx: ret
codrx: ret

.end ; Assembler module end directive
; –optional

Task-Specific Program Code

D-11Program Examples

Example D–7. Implementing a HOLD Operation (hold.asm)

* File: hold.asm *
* Function: HOLD test code *
* Check for HOLDA toggle for HOLD requests in MODE 0 *
* Check for XF toggle on HOLD/INT1 requests in MODE 1 *

.title ” HOLD Test ” ; Title

.mmregs
icr .set 0FFECh ; Interrupt control register in I/O space
icrshdw .set 060h ; scratch pad location

* Interrupt vectors
.text

reset B main ; 0–reset , Branch to main program on reset
int1h B int1_hold ; 1–external interrupt 1 or HOLD

.space 40*16

*********Interrupt service routine ISR for HOLD logic*************************

main: splk #0001h,imr
clrc intm

wait: b wait
int1_hold:

; Perform any desired context save
ldp #0
in icrshdw, icr ; save the contents of ICR register
lacl #010h ; load ACC with mask for MODE bit
and icrshdw ; Filter out all bits except MODE bit
bcnd int1,neq ; Branch if MODE bit is 1, else in HOLD mode
lacc imr, 0 ; load ACC with interrupt mask register
splk #1, imr ; mask all interrupts except interrupt1/HOLD
idle ; enter HOLD mode, issues HOLDA

; and the busses will be in tristate
splk #1, ifr ; Clear HOLD/INT1 flag to prevent

; re–entering HOLD mode
sacl imr ; restore interrupt mask register
; Perform necessary context restore

clrc intm ; enable all interrupts
ret ; return from HOLD interrupt

int1: nop ; Replace this with desired INT1 interrupt
nop ; service routine
setc xf ; Dummy toggle to check the loop entry
clrc xf ; in MODE 1
splk #0001,ifr
clrc intm ; enable all interrupts
ret ; return from interrupts

Task-Specific Program Code

 D-12

Example D–8. Testing and Using Interrupts INT2 and INT3 (intr23.asm)

* File: intr23.asm *
* Function: Interrupt test code *
* Interrupt on INT2 or INT3 will toggle IO3 and IO2 bits *
* and icr value copied in the Buffer @300 *

.title ” Interrupt 2/3 Test” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc CNF ; Map block B0 to data memory

ldp #0h ; set DP=0
setc INTM ; Disable all interrupts
splk #0ffffh, ifr ; clear interrupts
splk #0002h, imr ; Enable int1 interrupts
splk #0003h, 60h
out 60h, icr ; Enable Int2 and 3 in ICR
splk #0000h, 60h
out 60h, wsgr ; Set zero wait states
splk #0e00ch, 60h ; configure the I03 and IO2 as outputs
out 60h, aspcr ; set the aspcr for the above
mar *, ar1 ; ARP=ar1
lar ar1, #rxbuf
lar ar0, #size ; set counter limit
splk #0004h, 61h ; set bit I/O 2
splk #0008h, 62h ; set bit I/O 3
splk #0063h, 63h ; set tx data
clrc intm
clrc xf

wait: out 61h, iosr ; toggle I/O 2
idle
clrc xf ; toggle xf bit
b wait

inpt23: in 65h, icr ; Read icr
in *+, icr ; Capture icr in buffer @300
mar *,ar0
banz skip, ar1
lar ar1, #rxbuf
lar ar0, #size

skip: out 62h, iosr ; toggle IO2/3
setc xf ; toggle xf
out 65h, icr ; clear interrupt 2/3 flag bit
clrc intm
ret

timer: ret
inpt1: ret
uart: ret
codtx: ret
codrx: ret

.end ; Assembler module end directive
; –optional

Task-Specific Program Code

D-13Program Examples

Example D–9. Asynchronous Serial Port Transmission (uart.asm)

* File: uart.asm *
* Function: UART Test Code *
* Continuously sends ’’C203 UART is fine’ at 1200 baud. *

.title ” UART Test” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc CNF ; Map block B0 to data memory

ldp #0h ; set DP=0
setc INTM ; Disable all interrupts

* UART initialization *
splk #0ffffh,ifr ; clear interrupts
splk #0000h,60h
out 60h, wsgr ; Set zero wait states
splk #0c180h,61h ; reset the UART by writing 0
out 61h, aspcr ; 1 stop bit, tx interrupt, input i/o
splk #0e180h,61h ; Enable the serial port
out 61h,aspcr
splk #4fffh,62h
out 62h,iosr ; disable auto baud
splk #0411h, 63h ; set baud rate =1200 @ 20-MHz CLKOUT1
out 63h, brd
splk #20h,imr ; enable UART interrupt
mar *,ar1 ; ARP=ar1
lar ar1,#rxbuf

* Load data at DM300 ; ’c203 UART is fine!’ – xmit data
splk #0063h,*+ ; ascii value for the above characters
splk #0032h,*+
splk #0030h,*+
splk #0033h,*+
splk #0020h,*+

splk #0055h,*+
splk #0041h,*+
splk #0052h,*+
splk #0054h,*+
splk #0020h,*+

splk #0069h,*+
splk #0073h,*+
splk #0020h,*+

splk #0066h,*+
splk #0069h,*+
splk #006eh,*+
splk #0065h,*+
splk #0020h,*+
splk #0021h,*+
splk #0021h,*+
splk #0020h,*+

Task-Specific Program Code

 D-14

Example D–9. Asynchronous Serial Port Transmission (uart.asm) (Continued)

lar ar1,#rxbuf
lar ar0, #20 ; load buffer size
mar *,ar1 ; load data pointer
clrc intm

wait: clrc xf ; toggle xf bit
idle
b wait

uart: setc xf ; toggle xf bit
splk #0ffffh,67h
out *+,adtr ; transmit character from data buffer@300
mar *,ar0
banz skip,ar1 ; check if size=0, and reload
lar ar1,#rxbuf
lar ar0,#20 ; set size = character length

skip: splk #0020h,ifr ; Clear ifr bit
clrc intm
ret

inpt1: ret
inpt23: ret
timer: ret
codtx: ret
codrx: ret

.end ; Assembler module end directive
; –optional

Example D–10. Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm)

* File: echo.asm *
* Function: UART Test Code *
* Continuously echoes data received by UART at 1200 baud. *
* Received data will be stored in the buffer @300 *

.title ” UART/ASP loop back” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc CNF ; Map block B0 to data memory

ldp #0h ; set DP=0
setc INTM ; Disable all interrupts

Task-Specific Program Code

D-15Program Examples

Example D–10. Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm)
(Continued)

* UART initialization *
splk #0ffffh,ifr ; clear interrupts
splk #0000h,60h
out 60h, wsgr ; Set zero wait states
splk #0c080h,61h ; reset the UART by writing 0
out 61h, aspcr ; 1 stop bit, rx interrupt, input i/o
splk #0e080h,61h
out 61h,aspcr
splk #4fffh,62h
out 62h,iosr ; disable auto baud
splk #0411h, 63h ; set baud rate =1200 @ 20MHz CLKOUT1
out 63h, brd
splk #20h,imr ; enable UART interrupt
mar *,ar1

* Load data at DM300
lar ar1,#rxbuf
lar ar0, #size ; load buffer size
mar *,ar1 ; load data pointer
clrc intm

wait: clrc xf ; toggle xf bit
idle
b wait

uart: setc xf ; toggle xf bit
; Check receive flag bit in iosr

in 68h,iosr ; load input status from iosr
bit 68h,7 ; bit 8 in the data
bcnd skip,ntc ; IF DR=0 no echo, return
in *,adtr ; read and save at 300h
out *+,adtr ; echo
mar *,ar0
banz skip,ar1 ; check if size=0, and reload
lar ar1,#rxbuf
lar ar0,#size

skip: splk #0020h, ifr ; Clear interrupt in ifr!
clrc intm
ret

inpt1: ret
inpt23: ret
timer: ret
codtx: ret
codrx: ret

.end ; Assembler module end directive
; –optional

Task-Specific Program Code

 D-16

Example D–11. Testing and Using Automatic Baud-Rate Detection on
Asynchronous Serial Port (autobaud.asm)

* File: autobaud.asm *
* Function: UART,auto baud test *
* Locks to incoming baud rate if the first character *
* is ”A” or ”a” & continuously echoes data received *
* through the port. *

* Once detection is complete, if the CAD and ADC bits are not *
* disabled and the interrupt is enabled, the ISR will occur for *
* all characters received and will change the baud setting again. *

.title ”Auto_baud detect” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text

start: clrc CNF ; Map block B0 to data memory
ldp #0h ; set DP=0
setc INTM ; Disable all interrupts

* UART initialization *
splk #0ffffh,ifr ; clear interrupts
splk #0000h,60h
out 60h, wsgr ; Set zero wait states
splk #0c0a0h,61h ; reset the UART by writing 0
out 61h, aspcr ; 1 stop bit, rx interrupt, input i/o
splk #0e0a0h,61h ; CAD=1 enable
out 61h,aspcr
splk #4fffh,62h ; enable ADC bit
out 62h,iosr ; disable auto baud
splk #0000h, 63h ; set baud rate =0000 @ 20-MHz CLKOUT1
out 63h, brd
splk #20h,imr ; enable UART interrupt
mar *,ar1
lar ar1,#rxbuf

* Load data at DM300
lar ar1,#rxbuf
lar ar0, #size ; load buffer size
mar *,ar1 ; load data pointer
clrc intm

wait: clrc xf
idle
b wait

Task-Specific Program Code

D-17Program Examples

Example D–11. Testing and Using Automatic Baud-Rate Detection on
Asynchronous Serial Port (autobaud.asm) (Continued)

uart:
setc xf
in 68h,iosr ; load input status from iosr
bit 68h,1 ; check if auto baud bit is set
bcnd rcv,ntc ; branch normal receive
splk #4fffh,67h ; clear ADC
out 67h,iosr
splk #0e080h,67h
out 67h, aspcr ; Disable CAD bit/auto baud

rcv: in 68h,iosr ; check for DR bit
bit 68h,7 ; bit 8 in the data
bcnd skip,ntc ; IF DR=0 no echo, return
in *,adtr ; read and save at 300h
out *+,adtr ; echo
mar *,ar0
banz skip,ar1 ; check if size=0, and reload
lar ar1,#rxbuf
lar ar0,#size

skip: splk #0020h,ifr ; Clear ifr
clrc intm
ret

inpt1: ret
inpt23: ret
timer: ret
codtx: ret
codrx: ret

.end ; Assembler module end directive
; –optional

Task-Specific Program Code

 D-18

Example D–12. Testing and Using Asynchronous Serial Port Delta Interrupts (bitio.asm)

* File: bitio.asm *
* Function: Delta interrupt test code *
* Accepts delta interrupt on IO pins 3 and 2 *
* If bit level changes on bit 7, send character ’c’ *
* through UART & toggle xf pin. *
* If bit level changes on bit 6, send character ’i’ *
* through UART & toggle xf pin. *
* The delta bits are cleared after interrupt service *

.title ”BIT IO Interrupt Test” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc CNF ; Map block B0 to data memory

ldp #0h ; set DP=0
setc INTM ; Disable all interrupts

* UART initialization *
splk #0ffffh,ifr ; clear interrupts
splk #0000h,60h
out 60h, wsgr ; Set zero wait states
splk #0c200h,61h ; reset the UART by writing 0
out 61h, aspcr ; 1 stop bit, Delta interrupt,

; input i/o
splk #0e200h,61h
out 61h,aspcr
splk #4fffh,62h
out 62h,iosr ; disable auto baud
splk #0411h, 63h ; set baud rate =1200 @ 20-MHz CLKOUT1
out 63h, brd
splk #20h,imr ; enable UART interrupt
splk #0063h,65h ; transmit value = 0063h =’c’
splk #0069h,67h ; transmit value = 0063h =’i’
mar *,ar1
lar ar1,#rxbuf

* Load data at DM300 *
lar ar1,#rxbuf
lar ar0, #size ; load buffer size
mar *,ar1 ; load data pointer
clrc intm ; disable interrupts for polling

wait:
idle
b wait

Task-Specific Program Code

D-19Program Examples

Example D–12. Testing and Using Asynchronous Serial Port Delta Interrupts(bitio.asm)
(Continued)

uart: setc xf ; toggle xf bit
in 68h,iosr ; Bit i/o check
bit 68h,8 ; bit address 7 I/O 3 BIT IS SET?

; required bit place = complement 7 !
bcnd poll,ntc ; NO then check FOR I/O 2
clrc tc
out 65h, adtr ; transmit 63h =’c’
splk #0080h,6bh ; reset delta bit
out 6bh,iosr ; THE DELTA INTERRUPTS WILL BE ALWAYS

; COMING IF THIS IS NOT CLEARED!!!
clrc xf ; clear xf bit
splk #20h,ifr ; clear ifr bits
clrc intm
ret

poll: in 68h,iosr
bit 68h,9 ; bit address 6 I/O 2 bit is set?
bcnd poll1,ntc
clrc tc
out 67h, adtr ; if set transmit 69h = ’i’
splk #0040h,6bh ; reset delta bit
out 6bh,iosr

poll1: clrc xf ; clear xf bit
splk #20h,ifr ; clear ifr bits
clrc intm
ret

inpt1: ret
inpt23: ret
timer: ret
codtx: ret
codrx: ret

.end ; Assembler module end directive
; –optional

Task-Specific Program Code

 D-20

Example D–13. Synchronous Serial Port Continuous Mode Transmission (ssp.asm)

* File: ssp.asm *
* Function: Continuous transmit in CONTINUOUS mode *
* Internal shift clock and frame sync *
* Transmit FIFO level is set to 4 *

.title ”SSP Continuous mode” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc cnf ; Map block B0 to data memory

ldp #0h ; set DP=0
setc INTM ; Disable all interrupts
splk #0000h, 60h ; Set zero wait states
out 60h, wsgr
splk #0cc0ch,60h ; reset the serial port by writing
out 60h, sspcr ; zeros at NOR/RES
splk #0cc3ch,60h ; enable Sync port, 4 word fifo,
out 60h,sspcr ; internal clocks, Continuous mode

; Use sspcr= #0cc3eh for Burst mode
splk #1717h,61h ; dummy data for tx
splk #7171h,63h
splk #0aa55h,64h
splk #55aah,62h ; transmit 55aah on tx
splk #10h,imr ; enable xinit interrupt
clrc intm ; enable INTM
out 62h,sdtr ; Xmit once to start
out 61h,sdtr ; transmit interrupts
out 63h,sdtr
out 64h,sdtr

loop: clrc xf ; clear xf flag
idle
b loop

codtx: setc xf ; set xf bit
out 62h,sdtr ; transmit 0x55aah again
out 61h,sdtr ; transmit 1717h
out 63h,sdtr ; transmit 7171h
out 64h,sdtr ; transmit aa55h
splk #0010h, ifr ; clear ifr flag
clrc intm
ret

codrx: ret
inpt1: ret
inpt23: ret
timer: ret
uart: ret

.end ; Assembler module end directive
; –optional

Task-Specific Program Code

D-21Program Examples

Example D–14. Using Synchronous Serial Port With Codec Device (ad55.asm)

* File: ad55.asm *
* Function: Burst mode simple loop back on AD55 CODEC *
* CODEC master clock 10 MHz *
* Simple I/O at 9.6-kHz sampling *

.title ”AD55 codec simple I/O” ; Title

.copy ”init.h” ; Variable and register declaration

.copy ”vector.h” ; Vector label declaration

.text
start: clrc cnf ; Map block B0 to data memory

ldp #0h ; set DP=0
setc intm ; Disable all interrupts
splk #0000h, 60h ; Set zero wait states
out 60h,wsgr
splk #0c002h,60h ; Initialize SSP
out 60h, sspcr ; reset the serial port by writing
splk #0c032h,60h ; zeros to reset bits,
out 60h,sspcr ; enable Sync port, 1 word fifo,

; CLX/FSR as inputs. Burst mode

main: splk #08h,imr ; enable RINT interrupt
splk #0ffffh, ifr ; reset ifr flags
mar *,ar1 ; load ar1 with rx buffer
lar ar1, #rxbuf
lar ar0, #size

* 0 0 R/W’ reg_add data ; AD55 command reg. bits
*D15 14 13 12 – 8 7–0

splk #0000h, 60h ; reg0 nop
splk #0304h, 61h ; reg1 9.6khz sampling
splk #0200h, 62h ; default data 00
splk #0301h, 63h ; default data 01
splk #0401h, 64h ; default data 01
splk #0508h, 65h ; default data 08
splk #0001h, 66h ; secondary comm. request data
out 66h,sdtr ; request sec. comm.
out 61h,sdtr ; send reg1 data for 9.6-Khz sampling
out 60h,sdtr ; send 0x0000 after programming
clrc intm ; Enable SSP interrupts

loop: clrc xf ; clear xf flag
idle ; Wait for SSP interrupt
b loop

Task-Specific Program Code

 D-22

Example D–14. Using Synchronous Serial Port With Codec Device (ad55.asm)
(Continued)

codtx: splk #0010h, ifr ; clear tx intr flag
clrc intm
ret

codrx: setc xf ; toggle xf bit
in *,sdtr ; Read ADC value
lacc *+,0 ; Make LSB zero
and #0fffeh,0 ; to avoid secondary
sacl 6ah,0 ; request for codec
out 6ah,sdtr ; Send ADC value to DAC
mar *,ar0
banz skip,ar1 ; Check buffer limits
lar ar1,#rxbuf
lar ar0,#size

skip: splk #0008h, ifr ; Clear ifr flag
clrc intm
ret

inpt1: ret
inpt23: ret
timer: ret
uart: ret

.end ; Assembler module end directive
; –optional

Introduction to Generating Bootloader Code

D-23Program Examples

D.4 Introduction to Generating Bootloader Code

The ’C2xx on-chip bootloader boots software from an 8-bit external EPROM
to a 16-bit external RAM at reset. This section introduces to the procedure for
using Texas Instruments development tools to generate the code that will be
loaded into the EPROM.

Note:

The procedure in this section is given only as an example. This procedure
may have to be modified to suit different applications.

For more details, refer to the TMS320C1x/C2x/C2xx/C5x Assembly
Language Tools User’s Guide (literature number SPRU018).

The process for generating bootloader code uses these basic steps:

1) Write the following code by using the TMS320C1x/C2x/C2xx/C5x
assembler:

� The code that you wish to have loaded into the EPROM. Program
code is listed after a .text assembler directive (see any of the programs
in section D.3).

� A linker command file that defines the architecture of the particular
’C2xx device being used. Example D–15 shows a command file for
the ’C203. Note that the file declares the .text section at 0000h. This is
necessary because the bootloader transfers the code to the external
RAM beginning at address 0000h.

2) Assemble the code. Use the –v2xx option (for ’C2xx assembly) in the
assemble command.

3) Link the assembled file with the command file by using the
TMS320C1x/C2x/C2xx/C5x linker.

4) Write a hex conversion command file (an ASCII file) that contains options
and directives for the TMS320C1x/C2x/C2xx/C5x hex conversion utility.
Example D–16 shows such a file.

5) Use the hex conversion command file with the hex conversion utility to
generate the boot code in an ASCII hexadecimal format suitable for load-
ing into an EPROM programmer. The command file in Example D–16 se-
lects the Intel format.

Introduction to Generating Bootloader Code

 D-24

Example D–15. Linker Command File

MEMORY
{
PAGE 0: /* PM – Program memory */
EX1_PM :ORIGIN=0H , LENGTH=0FEFFH /* External program RAM */
B0_PM :ORIGIN=0FF00H, LENGTH=0100H /* BLOCK MAP IN CNF=1 */
PAGE 1: /* DM – Data memory */
REGS :ORIGIN=0H , LENGTH=60H /* MEM–MAPPED REGS */
BLK_B2 :ORIGIN=60H , LENGTH=20H /* BLOCK B2 */
BLK_B0 :ORIGIN=200H , LENGTH=100H /* BLOCK B0, */
BLK_B1 :ORIGIN=300H , LENGTH=100H /* BLOCK B1 */
EX1_DM :ORIGIN=0800H , LENGTH=7800H /* EXTERNAL DATA RAM */
GM_DM :ORIGIN=8000H , LENGTH=8000H /* External DATA RAM AS GLOBAL */
PAGE 2: /* I/O SPACE */
IO_IN :ORIGIN=0FF00H, LENGTH=0FFH /* I/O MAPPED PERIPHERAL */
IO_EX :ORIGIN=0000H , LENGTH=0FF00H /* EXT. I/O MAPPED PERIPHERAL */
}

SECTIONS
/* Linker directive to specify section placement in the memory map */
{

.text :{} > EX1_PM PAGE 0
}

Example D–16. Hex Conversion Utility Command File

dsphex boot.cmd
/* boot.cmd file an example */
test.out /* File for boot code in COFF format*/
–i /* option to generate Intel hex format */
–o test.i0 /* Name of the output file */
–byte /* 16–bit code is converted into byte */

/* stack to suit 8–bit ROM. */
–order MS /* The byte order is higher byte first followed by */

/* lower order byte */
–memwidth 8
–romwidth 8
–boot
SECTIONS
{ .text:boot }

E-1

Appendix A

Submitting ROM Codes to TI

The size of a printed circuit board is a consideration in many DSP applications.
To make full use of the board space, Texas Instruments offers this ROM code
option that reduces the chip count and provides a single-chip solution. This op-
tion allows you to use a code-customized processor for a specific application
while taking advantage of:

� Greater memory expansion
� Lower system cost
� Less hardware and wiring
� Smaller PCB

If a routine or algorithm is used often, it can be programmed into the on-chip
ROM of a TMS320 DSP. TMS320 programs can also be expanded by using
external memory; this reduces chip count and allows for a more flexible pro-
gram memory. Multiple functions are easily implemented by a single device,
thus enhancing system capabilities.

TMS320 development tools are used to develop, test, refine, and finalize the
algorithms. The microprocessor/microcomputer (MP/MC) mode is available
on all ROM-coded TMS320 DSP devices when accesses to either on-chip or
off-chip memory are required. The microprocessor mode is used to develop,
test, and refine a system application. In this mode of operation, the TMS320
acts as a standard microprocessor by using external program memory. When
the algorithm has been finalized, the code can be submitted to Texas Instru-
ments for masking into the on-chip program ROM. At that time, the TMS320
becomes a microcomputer that executes customized programs from the on-
chip ROM. Should the code need changing or upgrading, the TMS320 can
once again be used in the microprocessor mode. This shortens the field-
upgrade time and avoids the possibility of inventory obsolescence.

Figure E–1 illustrates the procedural flow for developing and ordering
TMS320 masked parts. When ordering, there is a one-time, nonrefundable
charge for mask tooling. A minimum production order per year is required for
any masked-ROM device. ROM codes will be deleted from the TI system one
year after the final delivery.

Appendix E

 E-2

Figure E–1. TMS320 ROM Code Submittal Flow Chart

Customer TMS320 Design

Customer submits:
— TMS320 New Code Release Form
— Print Evaluation and Acceptance Form (PEAF)
— Purchase order for mask prototypes
— TMS320 code

Texas Instruments responds:
— Customer code input into TI system
— Code sent back to customer for verification

Customer
approves
algorithm

TI produces prototypes

Customer
approves

prototypes (minimum
production order

required)

TMS320 production

Yes

Yes

No

No

Submitting ROM Codes to TI

E-3Submitting ROM Codes to TI

The TMS320 ROM code may be submitted in one of the following forms:

� Attachment to an email

� 3-1/2-in floppy: COFF format from macro-assembler/linker (preferred)

When code is submitted to TI for masking, the code is reformatted to accom-
modate the TI mask-generation system. System-level verification by the cus-
tomer is therefore necessary to ensure the reformatting remains transparent
and does not affect the execution of the algorithm. The formatting changes in-
volve the removal of address-relocation information (the code address begins
at the base address of the ROM in the TMS320 device and progresses without
gaps to the last address of the ROM) and the addition of data in the reserved
locations of the ROM for device ROM test. Because these changes have been
made, a checksum comparison is not a valid means of verification.

With each masked-device order, the customer must sign a disclaimer that
states:

The units to be shipped against this order were assembled, for expe-
diency purposes, on a prototype (that is, nonproduction qualified)
manufacturing line, the reliability of which is not fully characterized.
Therefore, the anticipated inherent reliability of these prototype units
cannot be expressly defined.

and a release that states:

Any masked ROM device may be resymbolized as TI standard
product and resold as though it were an unprogrammed version of
the device, at the convenience of Texas Instruments.

The use of the ROM-protect feature does not hold for this release statement.
Additional risk and charges are involved when the ROM-protect feature is
selected. Contact the nearest TI Field Sales Office for more information on pro-
cedures, leadtimes, and cost associated with the ROM-protect feature.

Submitting ROM Codes to TI

F-1

Appendix A

Design Considerations for
Using XDS510 Emulator

This appendix assists you in meeting the design requirements of the Texas
Instruments XDS510 emulator with respect to IEEE-1149.1 designs and
discusses the XDS510 cable (manufacturing part number 2617698-0001).
This cable is identified by a label on the cable pod marked JTAG 3/5V and sup-
ports both standard 3-V and 5-V target system power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which
is based on the IEEE 1149.1 standard.

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada
(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667 Telex: 833233

Topic Page

F.1 Designing Your Target System’s Emulator Connector
(14-Pin Header) F-2.

F.2 Bus Protocol F-4.

F.3 Emulator Cable Pod F-5.

F.4 Emulator Cable Pod Signal Timing F-6.

F.5 Emulation Timing Calculations F-7.

F.6 Connections Between the Emulator and the Target System F-10.

F.7 Physical Dimensions for the 14-Pin Emulator Connector F-14.

F.8 Emulation Design Considerations F-16.

Appendix F

Designing Your Target System’s Emulator Connector (14-Pin Header)

 F-2

F.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
JTAG target devices support emulation through a dedicated emulation port.
This port is accessed directly by the emulator and provides emulation func-
tions that are a superset of those specified by IEEE 1149.1. To communicate
with the emulator, your target system must have a 14-pin header (two rows of
seven pins) with the connections that are shown in Figure F–1. Table F–1
describes the emulation signals.

Although you can use other headers, the recommended unshrouded, straight
header has these DuPont connector systems part numbers:

� 65610–114
� 65611–114
� 67996–114
� 67997–114

Figure F–1. 14-Pin Header Signals and Header Dimensions

TDI 3 4 GND

TDO 7 8 GND

TMS 1 2 TRST

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1
† While the corresponding female position on the cable connector is plugged to prevent improper

connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the
schematics and wiring diagrams in this appendix.

Designing Your Target System’s Emulator Connector (14-Pin Header)

F-3Design Considerations for Using XDS510 Emulator

Table F–1. 14-Pin Header Signal Descriptions

Signal Description
Emulator †

State
Target †

State

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

GND Ground

PD(VCC) Presence detect. Indicates that the emulation
cable is connected and that the target is
powered up. PD should be tied to VCC in the
target system.

I O

TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod. This
signal can be used to drive the system test
clock.

O I

TCK_RET Test clock return. Test clock input to the
emulator. May be a buffered or unbuffered
version of TCK.

I O

TDI Test data input O I

TDO Test data output I O

TMS Test mode select O I

TRST‡ Test reset O I

† I = input; O = output
‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

Bus Protocol

 F-4

F.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS and TDI inputs are sampled on the rising edge of the TCK signal
of the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup time before the next device’s TDI signal.
This timing scheme minimizes race conditions that would occur if both TDO
and TDI were timed from the same TCK edge. The penalty for this timing
scheme is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that the device expects a bus master to provide
bus slave compatible timings. The XDS510 provides timings that meet the bus
slave rules.

Emulator Cable Pod

F-5Design Considerations for Using XDS510 Emulator

F.3 Emulator Cable Pod

Figure F–2 shows a portion of the emulator cable pod. The functional features
of the pod are:

� TDO and TCK_RET can be parallel-terminated inside the pod if required
by the application. By default, these signals are not terminated.

� TCK is driven with a 74LVT240 device. Because of the high-current drive
(32-mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied to
TCK_RET, you can use the parallel terminator in the pod.

� TMS and TDI can be generated from the falling edge of TCK_RET, accord-
ing to the IEEE 1149.1 bus slave device timing rules.

� TMS and TDI are series-terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You can also provide your
own test clock for greater flexibility.

Figure F–2. Emulator Cable Pod Interface

100 Ω

TL7705A
RESIN

270 Ω

JP2

180 Ω

TCK_RET (pin 9)�

EMU1 (pin 14)

EMU0 (pin 13)
74AS1034

GND (pins 4,6,8,10,12)

TRST (pin 2)

TCK (pin 11)�

10.368 MHz

33 Ω

33 Ω

TDI (pin 3)

TMS (pin 1)

TDO (pin 7)

74LVT240

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD(VCC) (pin 5)

5 V

5 V

74AS1004

Y

Y

Y

Y

A

† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an
optional target system test clock source.

Emulator Cable Pod Signal Timing

 F-6

F.4 Emulator Cable Pod Signal Timing

Figure F–3 shows the signal timings for the emulator cable pod. Table F–2
defines the timing parameters illustrated in the figure. These timing parame-
ters are calculated from values specified in the standard data sheets for the
emulator and cable pod and are for reference only. Texas Instruments does
not test or guarantee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure F–3. Emulator Cable Pod Timings

TDO

TMS, TDI

TCK_RET

6
5

4

3
2

1

Table F–2. Emulator Cable Pod Timing Parameters

No. Parameter Description Min Max Unit

1 tc(TCK) Cycle time, TCK_RET 35 200 ns

2 tw(TCKH) Pulse duration, TCK_RET high 15 ns

3 tw(TCKL) Pulse duration, TCK_RET low 15 ns

4 td(TMS) Delay time, TMS or TDI valid for TCK_RET low 6 20 ns

5 tsu(TDO) Setup time, TDO to TCK_RET high 3 ns

6 th(TDO) Hold time, TDO from TCK_RET high 12 ns

Emulation Timing Calculations

F-7Design Considerations for Using XDS510 Emulator

F.5 Emulation Timing Calculations

Example F–1 and Example F–2 help you calculate emulation timings in your
system. For actual target timing parameters, see the appropriate data sheet
for the device you are emulating.

The examples use the following assumptions:

tsu(TTMS) Setup time, target TMS or TDI to TCK
high 10 ns

td(TTDO) Delay time, target TDO from TCK low 15 ns

td(bufmax) Delay time, target buffer maximum 10 ns

td(bufmin) Delay time, target buffer minimum 1 ns

tbufskew Skew time, target buffer between two
devices in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

tTCKfactor Duty cycle, assume a 40/60% duty cycle
clock

0.4
(40%)

Also, the examples use the following values from Table F–2 on page F-6:

td(TMSmax) Delay time, emulator TMS or TDI from
TCK_RET low, maximum

20 ns

tsu(TDOmin) Setup time, TDO to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS or TDI path, called tpd(TCK_RET-TMS/TDI) (propaga-
tion delay time)

� The TCK_RET-to-TDO path, called tpd(TCK_RET-TDO)

In the examples, the worst-case path delay is calculated to determine the
maximum system test clock frequency.

Emulation Timing Calculations

 F-8

Example F–1. Key Timing for a Single-Processor System Without Buffers

t
pd �TCK_RET-TMS�TDI� �

�td �TMSmax� � tsu �TTMS��
tTCKfactor

�
(20 ns � 10 ns)

0.4
� 75 ns, or 13.3 MHz

tpd �TCK_RET–TDO� �
�td �TTDO� � tsu �TDOmin��

tTCKfactor

�
(15 ns � 3 ns)

0.4
� 45 ns, or 22.2 MHz

In this case, because the TCK_RET-to-TMS/TDI path requires more time to
complete, it is the limiting factor.

Example F–2. Key Timing for a Single- or Multiple-Processor System With Buffered Input
and Output

tpd (TCK_RET-TMS�TDI) �
�td (TMSmax)

� tsu (TTMS)
� t bufskew

�
tTCKfactor

�
(20 ns � 10 ns � 1.35 ns)

0.4

� 78.4 ns, or 12.7 MHz

tpd (TCK_RET–TDO) �
�td (TTDO)

� tsu (TDOmin) � td (bufmax)
�

t TCKfactor

� 70 ns, or 14.3 MHz

�
(15 ns � 3 ns � 10 ns)

0.4

In this case also, because the TCK_RET-to-TMS/TDI path requires more time
to complete, it is the limiting factor.

Emulation Timing Calculations

F-9Design Considerations for Using XDS510 Emulator

In a multiprocessor application, it is necessary to ensure that the EMU0 and
EMU1 lines can go from a logic low level to a logic high level in less than 10
µs, this parameter is called rise time, tr. This can be calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� × 16 × 15 pF)

= 5(4.7 × 103 � × 16 × 15 = no –12 F)

= 5(1128 × 10 –9 �

= 5.64 µs

Connections Between the Emulator and the Target System

 F-10

F.6 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the JTAG target system. You must supply the correct signal buffering, test
clock inputs, and multiple processor interconnections to ensure proper emula-
tor and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can
be either input or output. In general, these two pins are used as both input and
output in multiprocessor systems to handle global run/stop operations. EMU0
and EMU1 signals are applied only as inputs to the XDS510 emulator header.

F.6.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than 6 inches, the emulation signals must be buffered. If the distance
is less than 6 inches, no buffering is necessary. Figure F–4 shows the simpler,
no-buffering situation.

The distance between the header and the JTAG target device must be no more
than 6 inches. The EMU0 and EMU1 signals must have pullup resistors con-
nected to VCC to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor
is suggested for most applications.

Figure F–4. Emulator Connections Without Signal Buffering

VCC

Emulator header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 inches or less

Figure F–5 shows the connections necessary for buffered transmission sig-
nals. The distance between the emulation header and the processor is greater
than 6 inches. Emulation signals TMS, TDI, TDO, and TCK_RET are buffered
through the same device package.

Connections Between the Emulator and the Target System

F-11Design Considerations for Using XDS510 Emulator

Figure F–5. Emulator Connections With Signal Buffering

VCC

Emulator header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater than
6 inches

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to
provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for
most applications.

The input buffers for TMS and TDI should have pullup resistors connected to
VCC to hold these signals at a known value when the emulator is not con-
nected. A resistor value of 4.7 kΩ or greater is suggested.

To have high-quality signals (especially the processor TCK and the emulator
TCK_RET signals), you may have to employ special care when routing the
printed wiring board trace. You also may have to use termination resistors to
match the trace impedance. The emulator pod provides optional internal paral-
lel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series
termination.

Because TRST is an asynchronous signal, it should be buffered as needed to
ensure sufficient current to all target devices.

Connections Between the Emulator and the Target System

 F-12

F.6.2 Using a Target-System Clock

Figure F–6 shows an application with the system test clock generated in the
target system. In this application, the emulator’s TCK signal is left uncon-
nected.

Figure F–6. Target-System-Generated Test Clock

NC

System test clock

VCC

Emulator header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater than
6 inches

VCC

Note: When the TMS and TDI lines are buffered, pullup resistors must be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits in generating the test clock in the target system:

� The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

� In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.

Connections Between the Emulator and the Target System

F-13Design Considerations for Using XDS510 Emulator

F.6.3 Configuring Multiple Processors

Figure F–7 shows a typical daisy-chained multiprocessor configuration that
meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals are buffered to isolate the processors from the emulator and
provide adequate signal drive for the target system. One of the benefits of this
interface is that you can slow down the test clock to eliminate timing problems.
Follow these guidelines for multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals must be buffered through
the same physical device package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emulator
is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO.

Figure F–7. Multiprocessor Connections

TDITDI TDOTDO

JTAG deviceJTAG device

VCC

Emulator header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1 VCC

Physical Dimensions for the 14-Pin Emulator Connector

 F-14

F.7 Physical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable
that connects to the emulator, an active cable pod, and a short section of jack-
eted cable that connects to the target system. The overall cable length is
approximately 3 feet 10 inches. Figure F–8 and Figure F–9 (page F-15) show
the physical dimensions for the target cable pod and short cable. The cable
pod box is nonconductive plastic with four recessed metal screws.

Figure F–8. Pod/Connector Dimensions

0.90 in.,
nominal

2.70 in., nominal

4.50 in., nominal

9.50 in., nominal

See Figure F–9

Emulator cable pod

Short, jacketed cable

Connector

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified. Pin-to-pin spacing on the connec-
tor is 0.100 inches in both the X and Y planes.

Physical Dimensions for the 14-Pin Emulator Connector

F-15Design Considerations for Using XDS510 Emulator

Figure F–9. 14-Pin Connector Dimensions

0.100 inch,
nominal

(pin spacing)

Key, pin 6

0.100 inch,
nominal
(pin spacing)

0.87 inch,
nominal

0.66 inch,
nominal

0.20 i nch,
nominal

Cable

Connector, side view

Connector, front view

Cable

1

3

5

7

9

11

13

2

4

6

8

10

12

14

2 rows of pins

Emulation Design Considerations

 F-16

F.8 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),
which can simultaneously add all four secondary JTAG scan paths to the main
scan path. It also describes the use of the emulation pins and the configuration
of multiple processors.

F.8.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices. As described in the Advanced Logic and Bus Interface Logic Data
Book, the SPL is compatible with the JTAG emulation scanning. The SPL is
capable of adding any combination of its four secondary scan paths into the
main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
and isolation than a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of
processors.

TI emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL). However, you can
have multiple SPLs on the main scan path.

Scan path selectors are not supported by this emulation system. The TI
ACT8999 scan path selector is similar to the SPL, but it can add only one of
its secondary scan paths at a time to the main JTAG scan path. Thus, global
emulation operations are not assured with the scan path selector.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure F–10 shows how to connect a secondary
scan path to an SPL.

Emulation Design Considerations

F-17Design Considerations for Using XDS510 Emulator

Figure F–10. Connecting a Secondary JTAG Scan Path to a Scan Path Linker

TDI

TCK

TDO

TRST

TMS

TDO

TRST

TCK

TMS

TDI

DTDI0

DTMS0

DTDO0

DTCK

TDO

TRST

TCK

TMS

TDI

SPL

JTAG 0

JTAG N
DTDI1

DTMS1

DTDO1

DTDI2

DTMS2

DTDO2

DTDI3

DTMS3

DTDO3

. .
 .

The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL. The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL’s DTCK signal. The
TMS signal on each device on the secondary scan path is driven by the respec-
tive DTMS signals on the SPL.

DTDO0 on the SPL is connected to the TDI signal of the first device on the sec-
ondary scan path. DTDI0 on the SPL is connected to the TDO signal of the last
device in the secondary scan path. Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it. If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although degradation is less likely for DTMSn signals, you may
also need to buffer them for the same reasons.

Emulation Design Considerations

 F-18

F.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL)

Example F–3 and Example F–4 help you to calculate the key emulation tim-
ings in the SPL secondary scan path of your system. For actual target timing
parameters, see the appropriate device data sheet for your target device.

The examples use the following assumptions:

tsu(TTMS) Setup time, target TMS/TDI to TCK high 10 ns

td(TTDO) Delay time, target TDO from TCK low 15 ns

td(bufmax) Delay time, target buffer, maximum 10 ns

td(bufmin) Delay time, target buffer, minimum 1 ns

t(bufskew) Skew time, target buffer, between two
devices in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Duty cycle, TCK assume a 40/60% clock 0.4
(40%)

Also, the examples use the following values from the SPL data sheet:

td(DTMSmax) Delay time, SPL DTMS/DTDO from TCK
low, maximum

31 ns

tsu(DTDLmin) Setup time, DTDI to SPL TCK high,
minimum

7 ns

td(DTCKHmin) Delay time, SPL DTCK from TCK high,
minimum

2 ns

td(DTCKLmax) Delay time, SPL DTCK from TCK low,
maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK-DTMS)

� The TCK-to-DTDI path, called tpd(TCK-DTDI)

Emulation Design Considerations

F-19Design Considerations for Using XDS510 Emulator

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Example F–3. Key Timing for a Single-Processor System Without Buffering (SPL)

tpd �TCK-DTMS� �

�td �DTMSmax� � td �DTCKHmin� � tsu �TTMS�
�

tTCKfactor

�
(31 ns � 2 ns � 10 ns)

0.4

� 107.5 ns, or 9.3 MHz

t
pd �TCK-DTDI�

�
�t

d �TTDO�� t
d �DTCKLmax�

� t
su �DTDLmin�

�
tTCKfactor

�
(15 ns � 16 ns � 7 ns)

0.4

� 9.5 ns, or 10.5 MHz

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Example F–4. Key Timing for a Single- or Multiprocessor-System With Buffered Input
and Output (SPL)

tpd (TCK-TDMS) �

�td (DTMSmax) � t�DTCKHmin� � tsu (TTMS) � t(bufskew)�
tTCKfactor

�
(31 ns � 2 ns � 10 ns � 1.35 ns)

0.4

� 110.9 ns, or 9.0 MHz

tpd (TCK–DTDI) �

�td (TTDO) � td �DTCKLmax� � tsu (DTDLmin)
� td (bufskew)�

tTCKfactor

� 120 ns, or 8.3 MHz

�
(15 ns � 15 ns � 7 ns � 10 ns)

0.4

In this case, the TCK-to-DTDI path is the limiting factor.

Emulation Design Considerations

 F-20

F.8.3 Using Emulation Pins

The EMU0/1 pins of TI devices are bidirectional, 3-state output pins. When in
an inactive state, these pins are at high impedance. When the pins are active,
they provide one of two types of output:

� Signal Event. The EMU0/1 pins can be configured via software to signal
internal events. In this mode, driving one of these pins low can cause
devices to signal such events. To enable this operation, the EMU0/1 pins
function as open-collector sources. External devices such as logic analyz-
ers can also be connected to the EMU0/1 signals in this manner. If such
an external source is used, it must also be connected via an open-collector
source.

� External Count. The EMU0/1 pins can be configured via software as
totem-pole outputs for driving an external counter. If the output of more
than one device is configured for totem-pole operation, then these devices
can be damaged. The emulation software detects and prevents this condi-
tion. However, the emulation software has no control over external
sources on the EMU0/1 signal. Therefore, all external sources must be
inactive when any device is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1
pins are driven low. This feature combined with the signal event output, allows
one TI device to halt all other TI devices on a given event for system-level de-
bugging.

If you route the EMU0/1 signals between multiple boards, they require special
handling because they are more complex than normal emulation signals.
Figure F–11 shows an example configuration that allows any processor in the
system to stop any other processor in the system. Do not tie the EMU0/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is
used.

Emulation Design Considerations

F-21Design Considerations for Using XDS510 Emulator

Figure F–11.EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns

Open-
collector

drivers

EMU0/1-IN

Backplane

Target board m

TCK

XCNT_ENABLE

To emulator EMU0

PAL
Pullup
resistor

Open-
collector

drivers

Target board 1

EMU0/1

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Pullup
resistor

Pullup
resistor

Notes: 1) The low time on EMU0/1-IN should be at least one TCK cycle and less than 10 �s. Software sets the EMU0/1-OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall times of less than 25 ns, the modifi-
cation shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false edges
during the RUNB command or when the external counter selected from the debugger analysis menu is used.

These seven important points apply to the circuitry shown in Figure F–11 and
the timing shown in Figure F–12:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied
together on each board.

� At the board edge, the EMU0/1 signals are split to provide both input and
output connections. This is required to prevent the open-collector drivers
from acting as latches that can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors must
be installed as required.

Emulation Design Considerations

 F-22

� The bused EMU0/1 signals go into a programmable logic array device
PAL� whose function is to generate a low pulse on the EMU0/1-IN signal
when a low level is detected on the EMU0/1-OUT signal. This pulse must
be longer than one TCK period to affect the devices but less than 10 µs
to avoid possible conflicts or retriggering once the emulation software
clears the device’s pins.

� During a RUNB debugger command or other external analysis count, the
EMU0/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMU0 becomes a proces-
sor-halted signal. During a RUNB or other external analysis count, the
EMU0/1-IN signal to all boards must remain in the high (disabled) state.
You must provide some type of external input (XCNT_ENABLE) to the
PAL� to disable the PAL� from driving EMU0/1-IN to a low state.

� If you use sources other than TI processors (such as logic analyzers) to
drive EMU0/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or
directly to a test bus controller.

Figure F–12. Suggested Timings for the EMU0 and EMU1 Signals

EMU0/1-IN

EMU0/1-OUT

TCK

Emulation Design Considerations

F-23Design Considerations for Using XDS510 Emulator

Figure F–13. EMU0/1 Configuration With Additional AND Gate to Meet Timing
Requirements of Greater Than 25 ns

Open-
collector

drivers

EMU0/1-IN

Backplane

Target board m

TCK

XCNT_ENABLE

To Emulator EMU0

PAL
Pullup
resistor

Open-
collector

drivers

Target board 1

EMU0/1

EMU1 signal from other boards

EMU1AND

To emulator EMU1

Circuitry required for >25-ns
rise/fall time modification

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Up to
m boards

Pullup
resistor

Pullup
resistor

Notes: 1) The low time on EMU0/1-IN should be at least one TCK cycle and less than 10 �s. Software will set the EMU0/1-OUT
port to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall time of greater than 25 ns, the
modification shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false
edges during the RUNB command or when the external counter selected from the debugger analysis menu is used.

Emulation Design Considerations

 F-24

You do not need to have devices on one target board stop devices on another
target board using the EMU0/1 signals (see the circuit in Figure F–14). In this
configuration, the global-stop capability is lost. It is important not to overload
EMU0/1 with more than 16 devices.

Figure F–14. EMU0/1 Configuration Without Global Stop

EMU0/1

To emulator

. . .

EMU0/1

. . .Device Device

EMU0/1

. . .

. . .

. . .

1 n

Device Device
1 n

. . .

Target board m

Target board 1

Pullup
resistor

Pullup
resistor

Pullup
resistor

Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rise/fall times of less than 25 ns. Rise times
of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter
selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1 signals from the
individual boards must be ANDed together (as shown in Figure F–14) to produce an EMU0/1 signal for the emulator.

F.8.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header. The TBC is described in the Texas Instruments
Advanced Logic and Bus Interface Logic Data Book. Figure F–15 shows the
scan path connections of n devices to the TBC.

Emulation Design Considerations

F-25Design Considerations for Using XDS510 Emulator

Figure F–15. TBC Emulation Connections for n JTAG Scan Paths

JTAG0

JTAGNTDI

EMU1

TMS

TDO

EMU0

TRST

TCK

TDO

TCK

TRST

EMU1

EMU0

TMS

TDI

Clock

TDI1

TDI0

TCKO

TMS5/EVNT3

TMS4/EVNT2

TMS3/EVNT1

TMS2/EVNT0

TMS1

TMS0

TDO

TCKI

VCC

TBC

In the system design shown in Figure F–15, the TBC emulation signals TCKI,
TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target
devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-
tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.
The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the
main JTAG scan path is driven by the TBC’s TCKO pin.

On the TBC, the TMS0 pin drives the TMS pins on each device on the main
JTAG scan path. TDO on the TBC connects to TDI on the first device on the
main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path. Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC’s
TMS5/EVNT3 signal for software control or by logic on the board itself.

G-1

Appendix A

Glossary

A
A0–A15: Collectively, the external address bus; the 16 pins are used in par-

allel to address external data memory, program memory, or I/O space.

ACC: See accumulator.

ACCH: Accumulator high word. The upper 16 bits of the accumulator. See
also accumulator.

ACCL: Accumulator low word. The lower 16 bits of the accumulator. See
also accumulator.

accumulator: A 32-bit register that stores the results of operations in the
central arithmetic logic unit (CALU) and provides an input for subsequent
CALU operations. The accumulator also performs shift and rotate opera-
tions.

ADC bit: A detect complete bit. Bit 14 of the I/O status register (IOSR); a flag
bit used in the implementation of automatic baud-rate detection in the
asynchronous serial port.

address: The location of program code or data stored in memory.

addressing mode: A method by which an instruction interprets its operands
to acquire the data it needs. See also direct addressing; immediate ad-
dressing; indirect addressing.

address visibility bit (AVIS): A bit in the ’C209’s wait-state generator con-
trol register (WSGR) that allows the internal program address to appear
at the ’C209 address pins. This allows the internal program address to
be traced.

ADTR: Asynchronous data transmit and receive register. A 16-bit register
used by the on-chip asynchronous serial port. Data to transmit is written
to the 8 LSBs of the ADTR, and received data is read from the 8 LSBs
of the ADTR. See also ARSR.

analog-to-digital (A/D) converter: A circuit that translates an analog signal
to a digital signal.

Appendix G

G-2

AR: See auxiliary register.

AR0–AR7: Auxiliary registers 0 through 7. See auxiliary register.

ARAU: See auxiliary register arithmetic unit (ARAU).

ARB: See auxiliary register pointer buffer (ARB).

ARP: See auxiliary register pointer (ARP).

ARSR: Asynchronous serial port receive shift register. A 16-bit register in the
on-chip asynchronous serial port that receives data from the RX pin one
bit at a time. When full, ARSR transfers its data to the ADTR. See also
ADTR.

ASPCR: Asynchronous serial port control register. A 16-bit register used to
control the on-chip asynchronous serial port; contains bits for setting port
modes, enabling or disabling the automatic baud-rate detection logic, se-
lecting the number of stop bits, enabling or disabling interrupts, setting
the default level on the TX pin, configuring pins IO3–IO0, and resetting
the port.

auxiliary register: One of eight 16-bit registers (AR7–AR0) used as point-
ers to addresses in data space. The registers are operated on by the aux-
iliary register arithmetic unit (ARAU) and are selected by the auxiliary
register pointer (ARP).

auxiliary register arithmetic unit (ARAU): A 16-bit arithmetic unit used to
increment, decrement, or compare the contents of the auxiliary registers.
Its primary function is manipulating auxiliary register values for indirect
addressing.

auxiliary register pointer (ARP): A 3-bit field in status register ST0 that
points to the current auxiliary register.

auxiliary register pointer buffer (ARB): A 3-bit field in status register ST1
that holds the previous value of the auxiliary register pointer (ARP).

AVIS: See address visibility bit (AVIS).

AXSR: Asynchronous serial port transmit shift register. A 16-bit register in
the asynchronous serial port that receives data from the ADTR and
transfers it one bit at a time to the TX pin. See also ADTR; TX pin.

B
B0: An on-chip block of dual-access RAM that can be configured as either

data memory or program memory, depending on the value of the CNF
bit in status register ST1.

B1: An on-chip block of dual-access RAM available for data memory.

Glossary

G-3Glossary

B2: An on-chip block of dual-access RAM available for data memory.

baud-rate divisor register (BRD): A register for the asynchronous serial
port that is used to set the serial port’s baud rate.

BI bit: Break interrupt bit. Bit 13 of the I/O status register (IOSR); indicates
when a break is detected on the asynchronous receive (RX) pin.

BIO pin : A general-purpose input pin that can be tested by conditional
instructions that cause a branch when an external device drives BIO low.

bit-reversed indexed addressing : A method of indirect addressing that
allows efficient I/O operations by resequencing the data points in a
radix-2 FFT program. The direction of carry propagation in the ARAU is
reversed.

bootloader: A built-in segment of code that transfers code from an 8-bit
external source to a 16-bit external program destination at reset.

BOOT pin: The pin that enables the on-chip bootloader. When BOOT is held
low, the processor executes the bootloader program after a hardware
reset. When BOOT is held high, the processor skips execution of the
bootloader and accesses off-chip program-memory at reset.

BR: Bus request pin. This pin is tied to the BR signal, which is asserted when
a global data memory access is initiated.

branch: A switching of program control to a nonsequential program-
memory address.

BRD: See baud-rate divisor register (BRD).

burst mode: A synchronous serial port mode in which the transmission or
reception of each word is preceded by a frame synchronization pulse.
See also continuous mode.

C
C bit: See carry bit (C).

CAD bit: Calibrate A detect bit. Bit 5 of the ASPCR; enables and disables
the automatic baud-rate detection logic of the on-chip asynchronous
serial port.

CALU: See central arithmetic logic unit (CALU).

carry bit: Bit 9 of status register ST1; used by the CALU for extended
arithmetic operations and accumulator shifts and rotates. The carry bit
can be tested by conditional instructions.

Glossary

 G-4

central arithmetic logic unit (CALU): The 32-bit wide main arithmetic logic
unit for the ’C2xx CPU that performs arithmetic and logic operations. It
accepts 32-bit values for operations, and its 32-bit output is held in the
accumulator.

CIO0–CIO3 bits: Bits 0–3 of the asynchronous serial port control register
(ASPCR); they individually configure pins IO0–IO3 as either inputs or
outputs. For example, CIO0 configures the IO0 pin. See also DIO0–DIO3
bits; IO0–IO3 bits.

CLK register: CLKOUT1-pin control register. Bit 0 of determines whether
the CLKOUT1 signal is available at the CLKOUT1 pin.

CLKIN: Input clock signal. A clock source signal supplied to the on-chip
clock generator at the CLKIN/X2 pin or generated internally by the on-
chip oscillator. The clock generator divides or multiplies CLKIN to pro-
duce the CPU clock signal, CLKOUT1.

CLKMOD pin: (On the ’C209 only) Determines whether the on-chip clock
generator is running in the divide-by-two or multiply-by-two mode. See
also clock mode.

CLKOUT1: Master clock output signal. The output signal of the on-chip
clock generator. The CLKOUT1 high pulse signifies the CPU’s logic
phase (when internal values are changed), and the CLKOUT1 low pulse
signifies the CPU’s latch phase (when the values are held constant).

CLKOUT1 cycle: See CPU cycle.

CLKOUT1-pin control register: See CLK register.

CLKR: Receive clock input pin. A pin that receives an external clock signal
to clock data from the DR pin into the synchronous serial port receive shift
register (RSR).

CLKX: Transmit clock input/output pin. A pin used to clock data from the syn-
chronous serial port transmit shift register to the DX pin. If the serial port
is configured to accept an external clock, this pin receives the clock sig-
nal. If the port is configured to generate an internal clock, this pin trans-
mits the clock signal.

clock mode (clock generator): One of the modes which sets the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal CLKIN. The ’C209 has two clock modes (÷2 and ×2); other
’C2xx devices have four clock modes (÷2, ×1, ×2, and ×4).

clock mode (synchronous serial port): See clock mode bit (MCM).

clock mode bit (MCM): Bit 2 of the synchronous serial port control register
(SSPCR); determines whether the source signal for clocking synchro-
nous serial port transfers is external or internal.

Glossary

G-5Glossary

CNF bit: DARAM configuration bit. Bit 12 in status register ST1. CNF is used
to determine whether the on-chip RAM block B0 is mapped to program
space or data space.

codec: A device that codes in one direction of transmission and decodes in
another direction of transmission.

COFF: Common object file format. An output format that promotes modular
programming by supporting sections; the format of files created by the
TMS320C1x/C2x/C2xx/C5x assembler and linker.

context saving/restoring : Saving the system status when the device en-
ters a subroutine (such as an interrupt service routine) and restoring the
system status when exiting the subroutine. On the ’C2xx, only the pro-
gram counter value is saved and restored automatically; other context
saving and restoring must be performed by the subroutine.

continuous mode: A synchronous serial port mode in which only one frame
synchronization pulse is necessary to transmit or receive several con-
secutive packets at maximum frequency. See also burst mode.

CPU: Central processing unit. The ’C2xx CPU is the portion of the processor
involved in arithmetic, shifting, and Boolean logic operations, as well as
the generation of data- and program-memory addresses. The CPU in-
cludes the central arithmetic logic unit (CALU), the multiplier, and the
auxiliary register arithmetic unit (ARAU).

CPU cycle: The time required for the CPU to go through one logic phase
(during which internal values are changed) and one latch phase (during
which the values are held constant).

current AR: See current auxiliary register.

current auxiliary register: The auxiliary register pointed to by the auxiliary
register pointer (ARP). The auxiliary registers are AR0 (ARP = 0)
through AR7 (ARP = 7). See also auxiliary register; next auxiliary regis-
ter.

current data page: The data page indicated by the content of the data page
pointer (DP). See also data page; DP.

D
D0–D15: Collectively, the external data bus; the 16 pins are used in parallel

to transfer data between the ’C2xx and external data memory, program
memory, or I/O space.

DARAM: Dual-access RAM. RAM that can be accessed twice in a single
CPU clock cycle. For example, your code can read from and write to DA-
RAM in the same clock cycle.

Glossary

 G-6

DARAM configuration bit (CNF): See CNF bit.

data-address generation logic: Logic circuitry that generates the address-
es for data memory reads and writes. This circuitry, which includes the
auxiliary registers and the ARAU, can generate one address per ma-
chine cycle. See also program-address generation logic.

data page: One block of 128 words in data memory. Data memory contains
512 data pages. Data page 0 is the first page of data memory (addresses
0000h–007Fh); data page 511 is the last page (addresses
FF80h–FFFFh). See also data page pointer (DP); direct addressing.

data page 0: Addresses 0000h–007Fh in data memory; contains the
memory-mapped registers, a reserved test/emulation area for special in-
formation transfers, and the scratch-pad RAM block (B2).

data page pointer (DP): A 9-bit field in status register ST0 that specifies
which of the 512 data pages is currently selected for direct address gen-
eration. When an instruction uses direct addressing to access a data-
memory value, the DP provides the nine MSBs of the data-memory ad-
dress, and the instruction provides the seven LSBs.

data-read address bus (DRAB): A 16-bit internal bus that carries the ad-
dress for each read from data memory.

data read bus (DRDB): A 16-bit internal bus that carries data from data
memory to the CALU and the ARAU.

data-write address bus (DWAB): A 16-bit internal bus that carries the ad-
dress for each write to data memory.

data write bus (DWEB): A 16-bit internal bus that carries data to both pro-
gram memory and data memory.

decode phase: The phase of the pipeline in which the instruction is de-
coded. See also pipeline; instruction-fetch phase; operand-fetch phase;
instruction-execute phase.

delta interrupt: An asynchronous serial port interrupt (TXRXINT) that is
generated if a change takes place on one of these general-purpose I/O
pins: IO0, IO1, IO2, or IO3.

digital loopback mode: A synchronous serial port test mode in which the
receive pins are connected internally to the transmit pins on the same de-
vice. This mode, enabled or disabled by the DLB bit, allows you to test
whether the port is operating correctly.

DIM: Delta interrupt mask bit. Bit 9 of the asynchronous serial port control
register (ASPCR); enables or disables delta interrupts.

GlossaryGlossary

G-7Glossary

DIO0–DIO3 bits: Bits 4–7 of the IOSR. If the asynchronous serial port is en-
abled (the URST bit of the ASPCR is 1), these bits are used to track a
change from a previous known or unknown signal value at the corre-
sponding I/O pin (IO0–IO3). For example, DIO0 indicates a change on
the IO0 pin. See also CIO0–CIO3 bits; IO0–IO3 bits.

direct addressing: One of the methods used by an instruction to address
data-memory. In direct addressing, the data-page pointer (DP) holds the
nine MSBs of the address (the current data page), and the instruction
word provides the seven LSBs of the address (the offset). See also indi-
rect addressing.

DIV2/DIV1: Two pins used together to determine the clock mode of the ’C2xx
clock generator (÷2, ×1, ×2, or ×4). (The ’C209 uses the CLKMOD pin
and has only two clock modes, ÷2 and ×2.)

divide-down value: The value in the timer divide-down register (TDDR).
This value is the prescale count for the on-chip timer. The larger the di-
vide-down value, the slower the timer interrupt rate.

DLB bit: Bit 0 of the synchronous serial port control register (SSPCR); en-
ables or disables digital loopback mode for the on-chip synchronous seri-
al port. See also digital loopback mode.

DP: See data page pointer (DP).

DR bit: Data ready indicator for the receiver. Bit 8 of the I/O status register
(IOSR); indicates whether a new 8-bit character has been received in the
ADTR of the asynchronous serial port.

DR pin: Serial data receive pin. A synchronous serial port pin that receives
serial data. As each bit is received at DR, the bit is transferred serially into
the receive shift register (RSR).

DRAB: See data-read address bus (DRAB).

DRDB: See data read bus (DRDB).

DS: Data memory select pin. The ’C2xx asserts DS to indicate an access to
external data memory (local or global).

DSWS: Data-space wait-state bit(s). A value in the wait-state generator con-
trol register (WSGR) that determines the number of wait states applied
to reads from and writes to off-chip data space. On the ’C209, DSWS is
bit 1 of the WSGR; on other ’C2xx devices, DSWS is bits 8–6.

dual-access RAM : See DARAM.

dummy cycle: A CPU cycle in which the CPU intentionally reloads the pro-
gram counter with the same address.

Glossary

 G-8

DWAB: See data-write address bus (DWAB).

DWEB: See data write bus (DWEB).

DX pin: Serial data transmit pin. The pin on which data is transmitted serially
from the synchronous serial port; accepts a data word one bit at a time
from the transmit shift register (XSR).

E
execute phase: The fourth phase of the pipeline; the phase in which the

instruction is executed. See also pipeline; instruction-fetch phase;
instruction-decode phase; operand-fetch phase.

external interrupt: A hardware interrupt triggered by an external event
sending an input through an interrupt pin.

F
FE bit: Framing error indicator bit. Bit 10 of I/O status register (IOSR); indi-

cates whether a valid stop bit has been detected during the reception of
a character into the asynchronous serial port.

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is
stored and then retrieved in the same order in which it was stored. The
synchronous serial port has two four-word-deep FIFO buffers: one for its
transmit operation and one for its receive operation.

flash memory: Electronically erasable and programmable, nonvolatile
(read-only) memory.

FR0/FR1: FIFO receive-interrupt bits. Bits 8 and 9 of the synchronous serial
port control register (SSPCR); together they set an interrupt trigger
condition based on the number of words in the receive FIFO buffer.

frame synchronization (frame sync) mode: One of two modes in the syn-
chronous serial port that determine whether frame synchronization
pulses are necessary between consecutive data transfers. See also
burst mode; continuous mode.

frame synchronization (frame sync) pulse: A pulse that signals the start
of a transmission from or reception into the synchronous serial port.

framing error: An error that occurs when a data character received by the
asynchronous serial port does not have a valid stop bit. See also FE bit.

FREE bit (asynchronous serial port): Bit 15 of the asynchronous serial
port control register (ASPCR); determines whether the port is in free-run
mode or an emulation mode. When FREE = 0, bit 14 (SOFT) determines
which emulation mode is selected.

Glossary

G-9Glossary

FREE bit (synchronous serial port): Bit 15 of the synchronous serial port
control register (SSPCR); determines whether the port is in free-run
mode or an emulation mode. When FREE = 0, bit 14 (SOFT) determines
which emulation mode is selected.

FREE bit (timer): Bit 11 of the timer control register (TCR); determines
whether the timer is in free-run mode or an emulation mode. When
FREE = 0, bit 14 (SOFT) determines which emulation mode is selected.
FREE and SOFT are not available in the TCR of the ’C209.

FSM bit: Bit 1 of the synchronous serial port control register (SSPCR); deter-
mines the frame synchronization mode for the synchronous serial port.
See also burst mode; continuous mode.

FSR pin: Receive frame synchronization pin. This input pin accepts a frame
sync pulse that initiates the reception process of the synchronous serial
port.

FSX pin: Transmit frame synchronization pin. This input/output pin accepts/
generates a frame sync pulse that initiates the transmission process of
the synchronous serial port. If the port is configured for accepting an ex-
ternal frame sync pulse, the FSX pin receives the pulse. If the port is con-
figured for generating an internal frame sync pulse, the FSX pin transmits
the pulse.

FT0/FT1: FIFO transmit-interrupt bits. Bits 10 and 11 of the synchronous se-
rial port control register (SSPCR); together they set an interrupt trigger
condition based on the number of words in the transmit FIFO buffer.

G

general-purpose input/output pins: Pins that can be used to accept input
signals and/or send output signals but are not linked to specific uses.
These pins are the input pin BIO, the output pin XF, and the input/output
pins IO0, IO1, IO2, and IO3. (IO0–IO3 are not available on the ’C209.)

global data space : One of the four ’C2xx address spaces. The global data
space can be used to share data with other processors within a system
and can serve as additional data space. See also local data space.

GREG: Global memory allocation register. A memory-mapped register
used for specifying the size of the global data memory. Addresses not
allocated by the GREG for global data memory are available for local
data memory.

Glossary

G-10

H
hardware interrupt: An interrupt triggered through physical connections

with on-chip peripherals or external devices.

HOLD: An input signal that allows external devices to request control of the
external buses. If an external device drives the HOLD/INT1 pin low and
the CPU sends an acknowledgement at the HOLDA pin, the external de-
vice has control of the buses until it drives HOLD high or a nonmaskable
hardware interrupt is generated. If HOLD is not used, it should be pulled
high.

HOLDA: HOLD acknowledge signal. An output signal sent to the HOLDA pin
by the CPU in acknowledgement of a properly initiated HOLD operation.
When HOLDA is low, the processor is in a holding state and the address,
data, and memory-control lines are available to external circuitry.

HOLD operation: An operation on the ’C2xx that allows for direct memory
access of external memory and I/O devices. A HOLD operation is initi-
ated by a HOLD/INT1 interrupt. When the corresponding interrupt ser-
vice routine executes an IDLE instruction, the external buses enter the
high-impedance state and the HOLDA signal is asserted. The buses re-
turn to their normal state, and the HOLD operation is concluded, when
the processor exits the IDLE state.

I
IACK: See interrupt acknowledge signal (IACK).

IC: (Used in earlier documentation.) See interrupt control register (ICR).

ICR: See interrupt control register (ICR).

IFR: See interrupt flag register (IFR).

immediate addressing: One of the methods for obtaining data values used
by an instruction; the data value is a constant embedded directly into the
instruction word; data memory is not accessed.

immediate operand/immediate value: A constant given as an operand in
an instruction that is using immediate addressing.

IMR: See interrupt mask register (IMR).

IN0: Bit 6 of the synchronous serial port control register (SSPCR); allows you
to use the CLKR pin as a bit input. IN0 indicates the current logic level
on CLKR.

Glossary

G-11Glossary

indirect addressing: One of the methods for obtaining data values used by
an instruction. When an instruction uses indirect addressing, data
memory is addressed by the current auxiliary register. See also direct ad-
dressing.

input clock signal: See CLKIN.

input/output status register: See I/O status register (IOSR).

input shifter: A 16- to 32-bit left barrel shifter that shifts incoming 16-bit data
from 0 to 16 positions left relative to the 32-bit output.

instruction-decode phase: The second phase of the pipeline; the phase in
which the instruction is decoded. See also pipeline; instruction-fetch
phase; operand-fetch phase; instruction-execute phase.

instruction-execute phase: The fourth phase of the pipeline; the phase in
which the instruction is executed. See also pipeline; instruction-fetch
phase; instruction-decode phase; operand-fetch phase.

instruction-fetch phase: The first phase of the pipeline; the phase in which
the instruction is fetched from program-memory. See also pipeline;
instruction-decode phase; operand-fetch phase; instruction-execute
phase.

instruction register (IR): A 16-bit register that contains the instruction be-
ing executed.

instruction word: A 16-bit value representing all or half of an instruction. An
instruction that is fully represented by 16 bits uses one instruction word.
An instruction that must be represented by 32 bits uses two instruction
words (the second word is a constant).

INT1–INT3: Three external pins used to generate general-purpose hard-
ware interrupts.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent to the CPU that (when not masked or disabled)
forces the CPU into a subroutine called an interrupt service routine (ISR).
This signal can be triggered by an external device, an on-chip peripheral,
or an instruction (INTR, NMI, or TRAP).

interrupt acknowledge signal (IACK): An output signal on the ’C209 that
indicates that an interrupt has been received and that the program count-
er is fetching the interrupt vector that will force the processor into the ap-
propriate interrupt service routine.

interrupt control register (ICR): A 16-bit register used to differentiate
HOLD and INT1 and to individually mask and flag INT2 and INT3.

Glossary

 G-12

interrupt flag register (IFR): A 16-bit memory-mapped register that indi-
cates pending interrupts. Read the IFR to identify pending interrupts and
write to the IFR to clear selected interrupts. Writing a 1 to any IFR flag
bit clears that bit to 0.

interrupt latency: The delay between the time an interrupt request is made
and the time it is serviced.

interrupt mask register (IMR): A 16-bit memory-mapped register used to
mask external and internal interrupts. Writing a 1 to any IMR bit position
enables the corresponding interrupt (when INTM = 0).

interrupt mode bit (INTM): Bit 9 in status register ST0; either enables all
maskable interrupts that are not masked by the IMR or disables all mask-
able interrupts.

interrupt service routine (ISR) : A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt trap: See interrupt service routine (ISR).

interrupt vector: A branch instruction that leads the CPU to an interrupt ser-
vice routine (ISR).

interrupt vector location: An address in program memory where an inter-
rupt vector resides. When an interrupt is acknowledged, the CPU
branches to the interrupt vector location and fetches the interrupt vector.

INTM bit: See interrupt mode bit (INTM).

IO0–IO3 bits: Bits 0–3 of the IOSR. When pins IO0–IO3 are configured as
inputs, these bits reflect the current logic levels on the pins. For example,
the IO0 bit reflects the level on the IO0 pin. See also CIO0–CIO3 bits;
DIO0–DIO3 bits.

IO0–IO3 pins: Four pins that can be individually configured as inputs or out-
puts. These pins can be used for interfacing the asynchronous serial port
or as general-purpose I/O pins. See also CIO0–CIO3 bits; DIO0–DIO3
bits; IO0–IO3 bits.

I/O-mapped register: One of the on-chip registers mapped to addresses in
I/O (input/output) space. These registers, which include the registers for
the on-chip peripherals, must be accessed with the IN and OUT instruc-
tions. See also memory-mapped register.

I/O status register (IOSR): A register in the asynchronous serial port that
provides status information about signals IO0–IO3 and about transfers
in progress.

IOSR: See I/O status register (IOSR).

Glossary

G-13Glossary

IR: See instruction register (IR).

IS: I/O space select pin. The ’C2xx asserts IS to indicate an access to exter-
nal I/O space.

ISR: See interrupt service routine (ISR).

ISWS: I/O-space wait-state bit(s). A value in the wait-state generator control
register (WSGR) that determines the number of wait states applied to
reads from and writes to off-chip I/O space. On the ’C209, ISWS is bit 2
of the WSGR; on other ’C2xx devices, ISWS is bits 11–9.

L
latch phase: The phase of a CPU cycle during which internal values are held

constant. See also logic phase; CLKOUT1.

local data space: The portion of data-memory addresses that are not allo-
cated as global by the global memory allocation register (GREG). If none
of the data-memory addresses are allocated for global use, all of data
space is local. See also global data space.

logic phase: The phase of a CPU cycle during which internal values are
changed. See also latch phase; CLKOUT1.

long-immediate value: A 16-bit constant given as an operand of an
instruction that is using immediate addressing.

LSB : Least significant bit. The lowest order bit in a word. When used in plural
form (LSBs), refers to a specified number of low-order bits, beginning
with the lowest order bit and counting to the left. For example, the four
LSBs of a 16-bit value are bits 0 through 3. See also MSB.

M
machine cycle: See CPU cycle.

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software. See also nonmaskable interrupt.

master clock output signal: See CLKOUT1.

master phase: See logic phase.

MCM bit: See clock mode bit (MCM).

memory-mapped register: One of the on-chip registers mapped to ad-
dresses in data memory. See also I/O-mapped register.

microcomputer mode: A mode in which the on-chip ROM or flash memory
is enabled. This mode is selected with the MP/MC pin. See also MP/MC
pin; microprocessor mode.

Glossary

 G-14

microprocessor mode: A mode in which the on-chip ROM or flash memory
is disabled. This mode is selected with the MP/MC pin. See also MP/MC
pin; microcomputer mode.

micro stack (MSTACK): A register used for temporary storage of the pro-
gram counter (PC) value when an instruction needs to use the PC to ad-
dress a second operand.

MIPS: Million instructions per second.

MODE bit: Bit 4 of the interrupt control register (ICR); determines whether
the HOLD/INT1 pin is only negative-edge sensitive or both negative- and
positive-edge sensitive.

MP/MC pin : A pin that indicates whether the processor is operating in micro-
processor mode or microcomputer mode. MP/MC high selects micropro-
cessor mode; MP/MC low selects microcomputer mode.

MSB: Most significant bit. The highest order bit in a word. When used in plu-
ral form (MSBs), refers to a specified number of high-order bits, begin-
ning with the highest order bit and counting to the right. For example, the
eight MSBs of a 16-bit value are bits 15 through 8. See also LSB.

MSTACK: See micro stack.

multiplier: A part of the CPU that performs 16-bit × 16-bit multiplication and
generates a 32-bit product. The multiplier operates using either signed
or unsigned 2s-complement arithmetic.

N
next AR: See next auxiliary register.

next auxiliary register: The register that will be pointed to by the auxiliary
register pointer (ARP) when an instruction that modifies ARP is finished
executing. See also auxiliary register; current auxiliary register.

NMI: A hardware interrupt that uses the same logic as the maskable inter-
rupts but cannot be masked. It is often used as a soft reset. See also
maskable interrupt; nonmaskable interrupt.

nonmaskable interrupt: An interrupt that can be neither masked by the in-
terrupt mask register (IMR) nor disabled by the INTM bit of status register
ST0.

NPAR: Next program address register. Part of the program-address genera-
tion logic. This register provides the address of the next instruction to the
program counter (PC), the program address register (PAR), the micro
stack (MSTACK), or the stack.

GlossaryGlossary

G-15Glossary

O
OE: Receiver register overrun indicator bit. Bit 9 of the I/O status register

(IOSR); indicates whether overrun has occurred in the receiver of the
asynchronous serial port (that is, whether an unread character in the
ADTR has been overwritten by a new character).

operand: A value to be used or manipulated by an instruction; specified in
the instruction.

operand-fetch phase: The third phase of the pipeline; the phase in which
an operand or operands are fetched from memory. See also pipeline;
instruction-fetch phase; instruction-decode phase; instruction-execute
phase.

output shifter: 32- to 16-bit barrel left shifter. Shifts the 32-bit accumulator
output from 0 to 7 bits left for quantization management, and outputs ei-
ther the 16-bit high or low half of the shifted 32-bit data to the data write
bus (DWEB).

OV bit: Overflow flag bit. Bit 12 of status register ST0; indicates whether the
result of an arithmetic operation has exceeded the capacity of the accu-
mulator.

overflow (in a register): A condition in which the result of an arithmetic op-
eration exceeds the capacity of the register used to hold that result.

overflow (in the synchronous serial port): A condition in which the re-
ceive FIFO buffer of the port is full and another word is received in the
RSR. (None of the contents of the FIFO buffer are overwritten by this new
word.)

overflow mode: The mode in which an overflow in the accumulator will
cause the accumulator to be loaded with a preset value. If the overflow
is in the positive direction, the accumulator will be loaded with its most
positive number. If the overflow is in the negative direction, the accumu-
lator will be filled with its most negative number.

overrun: A condition in the receiver of the asynchronous serial port. Overrun
occurs when an unread character in the ADTR is overwritten by a new
character.

OVF bit: Overflow bit (synchronous serial port). Bit 7 of the synchronous se-
rial port control register (SSPCR); indicates when the receive FIFO buff-
er of the port is full and another word is received in the RSR. (None of
the contents of the FIFO buffer are overwritten by this new word.)

OVM bit: Overflow mode bit. Bit 11 of status register ST0; enables or dis-
ables overflow mode. See also overflow mode.

Glossary

G-16

P
PAB: See program address bus (PAB).

PAR: Program address register. A register that holds the address currently
being driven on the program address bus for as many cycles as it takes
to complete all memory operations scheduled for the current machine
cycle.

PC: See program counter (PC).

PCB: Printed circuit board.

pending interrupt: A maskable interrupt that has been successfully re-
quested but is awaiting acknowledgement by the CPU.

period register: See PRD.

pipeline : A method of executing instructions in an assembly line fashion.
The ’C2xx pipeline has four independent phases. During a given CPU
cycle, four different instructions can be active, each at a different stage
of completion. See also instruction-fetch phase; instruction-decode
phase; operand-fetch phase; instruction-execute phase.

PLL: Phase lock loop circuit.

PM bits: See product shift mode bits (PM).

power-down mode: The mode in which the processor enters a dormant
state and dissipates considerably less power than during normal opera-
tion. This mode is initiated by the execution of an IDLE instruction. During
a power-down mode, all internal contents are maintained so that opera-
tion continues unaltered when the power-down mode is terminated. The
contents of all on-chip RAM also remains unchanged.

PRD: Timer period register. A 16-bit memory-mapped register that specifies
the main period for the on-chip timer. When the timer counter register
(TIM) is decremented past zero, the TIM is loaded with the value in the
PRD. See also TDDR.

PRDB: See program read bus (PRDB).

PREG: See product register (PREG).

prescaler counter: See PSC.

product register (PREG): A 32-bit register that holds the results of a multi-
ply operation.

product shifter: A 32-bit shifter that performs a 0-, 1-, or 4-bit left shift, or
a 6-bit right shift of the multiplier product based on the value of the prod-
uct shift mode bits (PM).

Glossary

G-17Glossary

product shift mode: One of four modes (no-shift, shift-left-by-one, shift-left-
by-four, or shift-right-by-six) used by the product shifter.

product shift mode bits (PM): Bits 0 and 1 of status register ST1; they iden-
tify which of four shift modes (no-shift, left-shift-by-one, left-shift-by-four,
or right-shift-by-six) will be used by the product shifter.

program address bus (PAB): A 16-bit internal bus that provides the ad-
dresses for program-memory reads and writes.

program-address generation logic: Logic circuitry that generates the ad-
dresses for program memory reads and writes, and an operand address
in instructions that require two registers to address operands. This cir-
cuitry can generate one address per machine cycle. See also data-ad-
dress generation logic.

program control logic: Logic circuitry that decodes instructions, manages
the pipeline, stores status of operations, and decodes conditional opera-
tions.

program counter (PC): A register that indicates the location of the next
instruction to be executed.

program read bus (PRDB): A 16-bit internal bus that carries instruction
code and immediate operands, as well as table information, from pro-
gram memory to the CPU.

PS: Program select pin. The ’C2xx asserts PS to indicate an access to exter-
nal program memory.

PSC: Timer prescaler counter. Bits 9–6 of the timer control register (TCR);
specifies the prescale count for the on-chip timer.

PSLWS: Lower program-space wait-state bits. A value in the wait-state gen-
erator control register (WSGR) that determines the number of wait states
applied to reads from and writes to off-chip lower program space (ad-
dresses 0000h–7FFFh). PSLWS is not available on the ’C209; instead,
see PSWS. On other ’C2xx devices, PSLWS is bits 2–0 of the WSGR.
See also PSUWS.

PSUWS: Upper program-space wait-state bits. A value in the wait-state gen-
erator control register (WSGR) that determines the number of wait states
applied to reads from and writes to off-chip upper program space (ad-
dresses 8000h–FFFFh). PSUWS is not available on the ’C209; instead,
see PSWS. On other ’C2xx devices, PSUWS is bits 5–3 of the WSGR.
See also PSLWS.

PSWS: Program-space wait-state bit. Bit 0 of the ’C209 wait-state generator
control register (WSGR). PSWS determines the number of wait states
applied to reads from off-chip program memory space.

GlossaryGlossary

G-18

R
RAMEN: RAM enable pin. This pin enables or disables on-chip single-ac-

cess RAM.

RD: Read select pin. The ’C2xx asserts RD to request a read from external
program, data, or I/O space. RD can be connected directly to the output
enable pin of an external device.

READY: External device ready pin. Used to create wait states externally.
When this pin is driven low, the ’C2xx waits one CPU cycle and then tests
READY again. After READY is driven low, the ’C2xx does not continue
processing until READY is driven high.

receive interrupt (asynchronous serial port): An interrupt (TXRXINT)
caused during reception by any one of these events: the ADTR holds a
new character; overrun occurs; a framing error occurs; a break has been
detected on the RX pin; a character A or a has been detected in the ADTR
by the automatic baud-rate detection logic.

receive interrupt (synchronous serial port): See RINT.

receive interrupt mask bit (RIM): Bit 7 of the asynchronous serial port con-
trol register (ASPCR); enables or disables receive interrupts of the
asynchronous serial port.

receive pin (asynchronous serial port): See RX pin.

receive pin (synchronous serial port): See DR pin.

receive register (asynchronous serial port): See ADTR.

receive register (synchronous serial port): See SDTR.

receive reset (RRST) bit: Bit 4 of the synchronous serial port control regis-
ter (SSPCR); resets the receiver portion of the synchronous serial port.

receive shift register (asynchronous serial port): See ARSR.

receive shift register (synchronous serial port): See RSR.

repeat counter (RPTC): A 16-bit register that counts the number of times
a single instruction is repeated. RPTC is loaded by an RPT instruction.

reset: A way to bring the processor to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at address 0000h.

reset pin (RS , also RS on ’C209): This pin causes a reset.

reset vector: The interrupt vector for reset.

Glossary

G-19Glossary

return address: The address of the instruction to be executed when the
CPU returns from a subroutine or interrupt service routine.

RFNE bit: Receive FIFO buffer not empty bit. Bit 12 of the synchronous seri-
al port control register (SSPCR); indicates whether the receive FIFO
buffer of the synchronous serial port contains data to be read.

RIM bit: See receive interrupt mask bit (RIM).

RINT: Receive interrupt (synchronous serial port). An interrupt (RINT) gen-
erated during reception based on the number of words in the receive
FIFO buffer. The trigger condition (the desired number of words in the
buffer) is determined by the values of the receive-interrupt bits (FR1 and
FR0) of the synchronous serial port control register (SSPCR).

RPTC: See repeat counter (RPTC).

RRST: Receive reset bit. Bit 4 of the synchronous serial port control register
(SSPCR); resets the receiver portion of the synchronous serial port.

RS: Reset pin. When driven low, causes a reset on any ’C2xx device, includ-
ing the ’C209.

RS: Reset pin. (On the ’C209 only) When driven high, causes a reset.

RSR: Receive shift register. Shifts data serially into the synchronous serial
port from the DR pin. See also XSR.

R/W: Read/write pin. Indicates the direction of transfer between the ’C2xx
and external program, data, or I/O space.

RX pin: Asynchronous receive pin. During reception in the asynchronous
serial port, this pin accepts a character one bit at a time, transferring it
to the ARSR.

S
SARAM: Single-access RAM. RAM that can accessed (read from or written

to) once in a single CPU cycle.

scratch-pad RAM: Another name for DARAM block B2 in data space (32
words).

SDTR: Synchronous data transmit and receive register. An I/O-mapped
read/write register that sends data to the transmit FIFO buffer and ex-
tracts data from the receive FIFO buffer.

SETBRK: Bit 4 of the asynchronous serial port control register (ASPCR);
selects the output level (high or low) on the TX pin when the port is not
transmitting.

Glossary

 G-20

short-immediate value: An 8-, 9-, or 13-bit constant given as an operand
of an instruction that is using immediate addressing.

sign bit: The MSB of a value when it is seen by the CPU to indicate the sign
(negative or positive) of the value.

sign extend: Fill the unused high order bits of a register with copies of the
sign bit in that register.

sign-extension mode (SXM) bit : Bit 10 of status register ST1; enables or
disables sign extension in the input shifter. It also differentiates between
logic and arithmetic shifts of the accumulator.

single-access RAM: See SARAM.

slave phase: See latch phase.

SOFT bit (asynchronous serial port): Bit 14 in the asynchronous serial
port control register (ASPCR); a special emulation bit that is used in con-
junction with bit 15 (FREE) to determine the state of an asynchronous
serial port transfer when a software breakpoint is encountered during
emulation. When FREE = 0, SOFT determines the emulation mode. See
also FREE bit (asynchronous serial port).

SOFT bit (synchronous serial port): Bit 14 of the synchronous serial port
control register (SSPCR); a special emulation bit that is used in conjunc-
tion with bit 15 (FREE) to determine the state of a synchronous serial port
transfer when a software breakpoint is encountered during emulation.
When FREE = 0, SOFT determines the emulation mode. See also FREE
bit (synchronous serial port).

SOFT bit (timer): Bit 10 of the timer control register (TCR); a special emula-
tion bit that is used in conjunction with bit 11 (FREE) to determine the
state of the timer when a software breakpoint is encountered during
emulation. When FREE = 0, SOFT determines the emulation mode.
SOFT and FREE are not available in the TCR of the ’C209. See also
FREE bit (timer).

software interrupt: An interrupt caused by the execution of an INTR, NMI,
or TRAP instruction.

software stack: A program control feature that allows you to extend the
hardware stack into data memory with the PSHD and POPD instructions.
The stack can be directly stored and recovered from data memory, one
word at time. This feature is useful for deep subroutine nesting or protec-
tion against stack overflow.

SSPCR: Synchronous serial port control register. A 16-bit I/O-mapped regis-
ter that you write to when setting the configuration of the synchronous
serial port and that you read when obtaining the status of the port.

Glossary

G-21Glossary

ST0 and ST1: See status registers ST0 and ST1.

stack: A block of memory reserved for storing return addresses for subrou-
tines and interrupt service routines. The ’C2xx stack is 16 bits wide and
eight levels deep.

start bit: Every 8-bit data value transmitted or received by the asynchronous
serial port must be preceded by a start bit, a logic 0 pulse.

status registers ST0 and ST1: Two 16-bit registers that contain bits for de-
termining processor modes, addressing pointer values, and indicating
various processor conditions and arithmetic logic results. These regis-
ters can be stored into and loaded from data memory, allowing the status
of the machine to be saved and restored for subroutines.

STB bit: Stop bit selector. Bit 6 of the asynchronous serial port control regis-
ter (ASPCR); selects the number of stop bits (one or two) used in trans-
mission and reception.

stop bit: Every 8-bit data value transmitted or received by the asynchronous
serial port must be followed by one or two stop bits, each a logic 1 pulse.
The number of stop bits required depends on the STB bit of the ASPCR.

STRB: External access active strobe. The ’C2xx asserts STRB during ac-
cesses to external program, data, or I/O space.

SXM bit: See sign-extension mode bit (SXM).

T
TC bit: Test/control flag bit. Bit 11 of status register ST1; stores the results

of test operations done in the central arithmetic logic unit (CALU) or the
auxiliary register arithmetic unit (ARAU). The TC bit can be tested by
conditional instructions.

TCOMP: Transmission complete bit. Bit 13 of the synchronous serial port
control register (SSPCR); indicates when all data in the transmit FIFO
buffer of the synchronous serial port has been transmitted.

TCR: Timer control register. A 16-bit register that controls the operation of
the on-chip timer.

TDDR: See timer divide-down register (TDDR).

temporary register (TREG): A 16-bit register that holds one of the oper-
ands for a multiply operation; the dynamic shift count for the LACT,
ADDT, and SUBT instructions; or the dynamic bit position for the BITT
instruction.

TEMT bit: Transmit empty indicator. Bit 12 of the I/O status register (IOSR);
indicates whether the transmit register (ADTR) and/or the transmit shift
register (AXSR) of the asynchronous serial port are full or empty.

Glossary

 G-22

THRE bit: Transmit register empty indicator. Bit 11 of the I/O status register
(IOSR); indicates when the contents of the transmit register (ADTR) are
transferred to the transmit shift register (AXSR).

TIM bit: Transmit interrupt mask bit. Bit 8 of the asynchronous serial port
control register (ASPCR); enables or disables transmit interrupts of the
asynchronous serial port.

TIM register: See timer counter register (TIM).

timer counter register (TIM): A 16-bit memory-mapped register that holds
the main count for the on-chip timer. See also timer prescaler counter
(PSC).

timer divide-down register (TDDR): Bits 3–0 of the timer control register
(TCR); specifies the timer divide-down period for the on-chip timer. When
the timer prescaler counter (PSC) decrements past zero, the PSC is
loaded with the value in the TDDR. See also timer period register (PRD).

timer interrupt (TINT): See TINT.

timer period register (PRD): A 16-bit memory-mapped register that speci-
fies the main period for the on-chip timer. When the timer counter register
(TIM) is decremented past zero, the TIM is loaded with the value in the
PRD. See also TDDR.

timer prescaler counter (PSC): Bits 9–6 of the timer control register (TCR);
specifies the prescale count for the on-chip timer.

timer reload bit (TRB): Bit 5 of the timer control register (TCR); when TRB
is set, the timer counter register (TIM) is loaded with the value of the timer
period register (PRD), and the prescaler counter (PSC) is loaded with the
value of the timer divide-down register (TDDR).

timer stop status bit (TSS): Bit 4 of the TCR. TSS is used to start and stop
the timer.

TINT: Timer interrupt. An interrupt generated by the timer on the next
CLKOUT1 cycle after the main counter (TIM register) decrements to 0

TOS: Top of stack. Top level of the 8-level last-in, first-out hardware stack.

TOUT: Timer output pin. Provides access to an output signal based on the
rate of the on-chip timer. On the next CLKOUT1 cycle after the main
counter (TIM register) decrements to 0, a signal is sent to TOUT.

transmit interrupt (asynchronous serial port): An interrupt (TXRXINT)
generated when the transmit register (ADTR) empties during transmis-
sion. This condition indicates that the ADTR is ready to accept a new
transmit character.

Glossary

G-23Glossary

transmit interrupt (synchronous serial port): See XINT.

transmit mode (TXM) bit: Bit 3 of the synchronous serial port control regis-
ter (SSPCR); determines whether the source signal for frame synchro-
nization is external or internal.

transmit pin (asynchronous serial port): See TX pin.

transmit pin (synchronous serial port): See DX pin.

transmit/receive interrupt (TXRXINT): The CPU interrupt used to respond
to a delta interrupt, receive interrupt, or transmit interrupt from the
asynchronous serial port. All three of these interrupt types request
TXRXINT and use the single TXRXINT interrupt vector. See also delta
interrupt; receive interrupt; transmit interrupt.

transmit register (asynchronous serial port): See ADTR.

transmit register (synchronous serial port): See SDTR.

transmit reset (XRST) bit: Bit 5 of the synchronous serial port control regis-
ter (SSPCR); resets the transmitter portion of the synchronous serial
port.

transmit shift register (asynchronous serial port): Also called AXSR, this
register shifts data serially out of the asynchronous serial port through
the TX pin. See also ARSR.

transmit shift register (synchronous serial port): Also called XSR, this
register shifts data serially out of the synchronous serial port through the
DX pin. See also RSR.

TRB: See timer reload bit (TRB).

TREG: See temporary register (TREG).

TSS bit: See timer stop status bit (TSS).

TTL: Transistor-to-transistor logic.

TX pin: Asynchronous transmit pin. The pin on which data is transmitted
serially from the asynchronous serial port; accepts a character one bit at
a time from the transmit shift register (AXSR).

TXM: Transmit mode bit. Bit 3 of the synchronous serial port control register
(SSPCR); determines whether the source signal for frame synchroniza-
tion is external or internal.

TXRXINT: See transmit/receive interrupt (TXRXINT).

Glossary

G-24

U
UART: Universal asynchronous receiver and transmitter. Used as another

name for the asynchronous serial port.

URST: Reset asynchronous serial port bit. Bit 13 of the asynchronous serial
port control register (ASPCR); resets the asynchronous port.

V
vector: See interrupt vector.

vector location: See interrupt vector location.

W
wait state : A CLKOUT1 cycle during which the CPU waits when reading

from or writing to slower external memory.

wait-state generator : An on-chip peripheral that generates a limited num-
ber of wait states for a given off-chip memory space (program, data, or
I/O). Wait states are set in the wait-state generator control register
(WSGR).

WE: Write enable pin. The ’C2xx asserts WE to request a write to external
program, data, or I/O space.

WSGR: Wait-state generator control register. This register, which is mapped
to I/O memory, controls the wait-state generator.

X
XF bit: XF-pin status bit. Bit 4 of status register ST1 that is used to read or

change the logic level on the XF pin.

XF pin: External flag pin. A general-purpose output pin whose status can be
read or changed by way of the XF bit in status register ST1.

XINT: Transmit interrupt (synchronous serial port). An interrupt generated
during transmission based on the number of words in the transmit FIFO
buffer. The trigger condition (the desired number of words in the buffer)
is determined by the values of the transmit-interrupt bits (FT1 and FT0)
of the synchronous serial port control register (SSPCR).

XRST: Transmit reset bit. Bit 5 of the synchronous serial port control register
(SSPCR); resets the transmitter portion of the synchronous serial port.

XSR: Transmit shift register. Shifts data serially out of the synchronous serial
port through the DX pin. See also RSR.

GlossaryGlossary

G-25Glossary

Z
zero fill: Fill the unused low or high order bits in a register with zeros.

Glossary

Index

Index-1

Index

* operand 6-10
*+ operand 6-10
*– operand 6-10
*0+ operand 6-10
*0– operand 6-10
*BR0+ operand 6-11
*BR0– operand 6-11
14-pin connector

dimensions F-15
14-pin header

header signals F-2
JTAG F-2

4-level pipeline operation 5-7

A
A0–A15 (external address bus)

definition 4-3
shown in figure 4-6, 4-10, 4-13, 4-17, 4-31

ABS instruction 7-21
absolute value (ABS instruction) 7-21
accumulator

definition G-1
description 3-9
shifting and storing high and low words,

diagrams 3-11
accumulator instructions

absolute value of accumulator (ABS) 7-21
add PREG to accumulator (APAC) 7-37
add PREG to accumulator and load TREG

(LTA) 7-93
add PREG to accumulator and multiply

(MPYA) 7-116
add PREG to accumulator and square specified

value (SQRA) 7-168
add PREG to accumulator, load TREG, and

move data (LTD) 7-95

accumulator instructions (continued)
add PREG to accumulator, load TREG, and

multiply (MAC) 7-102
add PREG to accumulator, load TREG, multiply,

and move data (MACD) 7-106
add value plus carry to accumulator

(ADDC) 7-27
add value to accumulator (ADD) 7-23
add value to accumulator with shift specified by

TREG (ADDT) 7-31
add value to accumulator with sign extension

suppressed (ADDS) 7-29
AND accumulator with value (AND) 7-34
branch to location specified by accumulator

(BACC) 7-40
call subroutine at location specified by accumula-

tor (CALA) 7-58
complement accumulator (CMPL) 7-64
divide using accumulator (SUBC) 7-180
load accumulator (LACC) 7-74
load accumulator using shift specified by TREG

(LACT) 7-78
load accumulator with PREG (PAC) 7-134
load accumulator with PREG and load TREG

(LTP) 7-98
load high bits of accumulator with rounding

(ZALR) 7-196
load low bits and clear high bits of accumulator

(LACL) 7-75
negate accumulator (NEG) 7-122
normalize accumulator (NORM) 7-126
OR accumulator with value (OR) 7-129
pop top of stack to low accumulator bits

(POP) 7-135
push low accumulator bits onto stack

(PUSH) 7-141
rotate accumulator left by one bit (ROL) 7-144
rotate accumulator right by one bit (ROR) 7-145
shift accumulator left by one bit (SFL) 7-157
shift accumulator right by one bit (SFR) 7-158

Index

Index-2

accumulator instructions (continued)
store high byte of accumulator to data memory

(SACH) 7-148
store low byte of accumulator to data memory

(SACL) 7-150
subtract conditionally from accumulator

(SUBC) 7-180
subtract PREG from accumulator (SPAC) 7-160
subtract PREG from accumulator and load TREG

(LTS) 7-100
subtract PREG from accumulator and multiply

(MPYS) 7-118
subtract PREG from accumulator and square

specified value (SQRS) 7-170
subtract value and logical inversion of carry bit

from accumulator (SUBB) 7-178
subtract value from accumulator (SUB) 7-174
subtract value from accumulator with shift speci-

fied by TREG (SUBT) 7-184
subtract value from accumulator with sign exten-

sion suppressed (SUBS) 7-182
XOR accumulator with data value (XOR) 7-193

ADC bit 10-10

ADD instruction 7-23

ADDC instruction 7-27

address generation
data memory

direct addressing 6-4
immediate addressing 6-2
indirect addressing 6-9

program memory 5-2
hardware 5-3

address maps
’C203 4-23
’C209 11-6
data page 0 4-8

address visibility mode (AVIS bit) 11-18

addressing
bit-reversed indexed 6-10, G-3

addressing modes
definition G-1
direct

description 6-4
examples 6-6
figure 6-5
opcode format 6-5 to 6-7
role of data page pointer (DP) 6-4

immediate 6-2

addressing modes (continued)
indirect

description 6-9
effects on auxiliary register pointer

(ARP) 6-14 to 6-16
effects on current auxiliary register 6-14 to

6-16
examples 6-15
modifying auxiliary register content 6-17
opcode format 6-12 to 6-14
operands 6-9
operation types 6-14 to 6-16
options 6-9
possible opcodes 6-14 to 6-16

overview 6-1

ADDS instruction 7-29

ADDT instruction 7-31

ADRK instruction 7-33

ADTR (asynchronous serial port transmit and re-
ceive register) 10-4

AND instruction 7-34

APAC instruction 7-37

applications
TMS320 devices 1-3

ARAU (auxiliary register arithmetic unit) 3-12

ARAU and related logic
block diagram 3-12

ARB (auxiliary register pointer buffer) 3-16

architecture of ’C2xx 2-1 to 2-14

arithmetic logic unit
central (CALU) 3-9

ARP (auxiliary register pointer) 3-16

ARSR (asynchronous serial port receive shift regis-
ter) 10-5

ASPCR (asynchronous serial port control regis-
ter) 10-7
configuring pins IO0–IO3 as inputs/out-

puts 10-16
quick reference A-17

asynchronous
reception 10-20
transmission 10-19

asynchronous serial port
basic operation 10-5
baud rates

common 10-14
setting 10-14

Index

Index-3

asynchronous serial port (continued)
baud-rate detection logic

detecting A or a character (ADC bit) 10-10
enabling/disabling (CAD bit) 10-8

block diagram 10-3
components 10-3
configuration 10-7
delta interrupts 10-18

enabling/disabling (DIM bit) 10-8
emulation modes (FREE and SOFT bits) 10-7
features 10-1
interrupts (TXRXINTs)

flag bit (TXRXINT) 5-21
introduction 10-5
mask bit in IMR (TXRXINT) 5-23
mask bits in ASPCR (DIM, TIM, RIM) 10-8
priority 5-16
three types 10-17
vector location 5-16

introduction 2-12
overrun in receiver, detecting (OE bit) 10-11
overview 10-2
receive interrupts 10-17

enabling/disabling (RIM bit) 10-8
receive pin (RX)

definition 10-4
detecting break on (BI bit) 10-10

receiver operation 10-20
reset conditions 5-36
resetting (URST bit) 10-8
signals 10-3

data 10-3
handshake 10-3

stop bit(s)
detecting invalid (FE bit) 10-11
setting number of (STB bit) 10-8

transmit interrupts 10-17
enabling/disabling (TIM bit) 10-8

transmit pin (TX)
definition 10-4
output level between transmissions (SETBRK

bit) 10-9
transmitter operation 10-19

asynchronous serial port registers
baud-rate divisor register (BRD) 10-14
control register (ASPCR) 10-7

configuring pins IO0–IO3 as inputs/
outputs 10-16

quick reference A-17

asynchronous serial port registers (continued)
I/O status register (IOSR)

description 10-10
quick reference A-17

introduction 10-4
receive register (ADTR)

detecting overrun in (OE bit) 10-11
detecting when empty (DR bit) 10-12

receive shift register (ARSR) 10-5
receive/transmit register (ADTR) 10-4
transmit register (ADTR)

detecting when empty (THRE bit) 10-11
detecting when it and AXSR are empty (TEMT

bit) 10-11
transmit shift register (AXSR) 10-5

detecting when it and ADTR are empty (TEMT
bit) 10-11

transmit/receive register (ADTR) 10-4

automatic baud-rate detection 10-14

auxiliary register arithmetic unit (ARAU)
description 3-12

auxiliary register instructions
add short immediate value to current auxiliary

register (ADRK) 7-33
branch if current auxiliary register not zero

(BANZ) 7-41
compare current auxiliary register with AR0

(CMPR) 7-65
load specified auxiliary register (LAR) 7-80
modify auxiliary register pointer (MAR) 7-111
modify current auxiliary register (MAR) 7-111
store specified auxiliary register (SAR) 7-152
subtract short immediate value from current aux-

iliary register (SBRK) 7-154

auxiliary register pointer (ARP) 3-16, G-2

auxiliary register pointer buffer (ARB) 3-16, G-2

auxiliary register update (ARU) code 6-13

auxiliary registers (AR0–AR7)
block diagram 3-12
current auxiliary register 6-9

role in indirect addressing 6-9 to 6-18
update code (ARU) 6-13

description 3-12 to 3-14
general uses for 3-14
instructions that modify content 6-17
next auxiliary register 6-11
used in indirect addressing 3-12

Index

Index-4

AVIS bit 11-18

AXSR (asynchronous serial port transmit shift
register) 10-5

B
B instruction 7-39

BACC instruction 7-40

BANZ instruction 7-41

baud-rate
detection procedure 10-14
divisor register (BRD) 10-14
generator 10-4

BCND instruction 7-43

BI bit 10-10

BIO pin 8-18 to 8-19

BIT instruction 7-45

bit-reversed indexed addressing 6-10, G-3

BITT instruction 7-47

BLDD instruction 7-49

block diagrams
’C2xx overall 2-2
ARAU and related logic 3-12
arithmetic logic section of CPU 3-8
asynchronous serial port 10-3
auxiliary registers (AR0–AR7) and ARAU 3-12
bus structure 2-4
CPU (selected sections) 3-2
input scaling section of CPU 3-3
multiplication section of CPU 3-5
program-address generation 5-2
synchronous serial port 9-3
timer 8-8

block move instructions
block move from data memory to data memory

(BLDD) 7-49
block move from program memory to data

memory (BLPD) 7-54

BLPD instruction 7-54

Boolean logic instructions
AND 7-34
CMPL (complement/NOT) 7-64
OR 7-129
XOR (exclusive OR) 7-193

BOOT (boot load pin)
definition 4-4

bootloader 4-30 to 4-38
boot source (EPROM)

choosing an EPROM 4-30
connecting the EPROM 4-31
programming the EPROM 4-32

diagram 4-30 to 4-38
enabling 4-33
execution 4-34
generating code for EPROM D-23 to D-24
program code 4-37

BR (bus request pin)
definition 4-3
shown in figure 4-13, 4-31

branch instructions
branch conditionally (BCND) 7-43
branch if current auxiliary register not zero

(BANZ) 7-41
branch to location specified by accumulator

(BACC) 7-40
branch to NMI interrupt vector location

(NMI) 7-124
branch to specified interrupt vector location

(INTR) 7-71
branch to TRAP interrupt vector location

(TRAP) 7-192
branch unconditionally (B) 7-39
call subroutine at location specified by accumula-

tor (CALA) 7-58
call subroutine conditionally (CC) 7-60
call subroutine unconditionally (CALL) 7-59
conditional, overview 5-11
return conditionally from subroutine

(RETC) 7-143
return unconditionally from subroutine

(RET) 7-142
unconditional, overview 5-8

BRD (baud-rate divisor register) 10-14

buffered signals
JTAG F-10

buffering F-10

burst mode
definition G-3
error conditions 9-27
reception 9-22
transmission

with external frame sync 9-17
with internal frame sync 9-16

bus devices F-4

bus protocol in emulator system F-4

Index

Index-5

bus request pin (BR)
definition 4-3
shown in figure 4-13, 4-31

buses
block diagram 2-4
data read bus (DRDB) 2-3
data write bus (DWEB) 2-3
data-read address bus (DRAB) 2-3
data-write address bus (DWAB) 2-3
program address bus (PAB)

definition 2-3
used in program-memory address

generation 5-3
program read bus (PRDB) 2-3

C
C (carry bit)

affected during SFL and SFR instructions 7-157
to 7-159

definition 3-16
involved in accumulator events 3-10
used during ROL and ROR instructions 7-144

to 7-146

’C209 device 11-1 to 11-18
comparison to other ’C2xx devices 11-2

differences in interrupts 11-3
differences in memory and I/O spaces 11-3
differences in peripherals 11-2
similarities 11-2

interrupts 11-10
locating ’C209 information in this manual

(table) 11-3
memory and I/O spaces 11-5
on-chip peripherals 11-15

cable
target system to emulator F-1 to F-25

cable pod F-5, F-6

CAD bit 10-8

CALA instruction 7-58

CALL instruction 7-59

call instructions
call subroutine at location specified by

accumulator (CALA) 7-58
call subroutine conditionally (CC) 7-60
call subroutine unconditionally (CALL) 7-59
conditional, overview 5-12
unconditional, overview 5-8

CALU (central arithmetic logic unit)
definition G-4
description 3-9

carry bit (C)
affected during SFL and SFR instructions 7-157

to 7-159
definition 3-16
involved in accumulator events 3-10
used during ROL and ROR instructions 7-144

to 7-146
CC instruction 7-60
central arithmetic logic section of CPU 3-8
CIO0–CIO3 (bits)

configuring pins IO0–IO3 as inputs/
outputs 10-16

CLK register
description 8-7
quick reference A-11
reset condition 5-36

CLKIN signal 8-4 to 8-6
CLKMOD pin 11-15, G-4
CLKOUT1 bit 8-7
CLKOUT1 signal 8-4 to 8-6

definition G-4
turning CLKOUT1 pin on and off 8-7

CLKOUT1-pin control (CLK) register
description 8-7
quick reference A-11
reset condition 5-36

CLKR pin
as bit input (IN0 bit) 9-10
definition 9-4

CLKX pin 9-4
clock generator 8-4 to 8-6

’C209 clock options 11-15 to 11-18
introduction 2-11
modes

’C203/C204 8-5
’C209 11-15 to 11-18

clock mode bit (MCM) 9-11
clock modes

clock generator
’C203/C204 8-5
’C209 11-15

synchronous serial port 9-11
CLRC instruction 7-62
CMPL instruction 7-64
CMPR instruction 7-65

Index

Index-6

CNF (DARAM configuration bit) 3-16

code compatibility 1-5

codec
definition G-5

conditional instructions 5-10 to 5-13
conditional branch 5-11 to 5-13
conditional call 5-12 to 5-13
conditional return 5-12 to 5-13
conditions that may be tested 5-10
stabilization of conditions 5-11
using multiple conditions 5-10

configuration
memory

global data 4-11
RAM (dual-access)

’C203 4-24
’C209 11-8

RAM (single-access) 11-7
ROM, ’C209 11-7

multiprocessor F-13

connector
14-pin header F-2
dimensions, mechanical F-14
DuPont F-2

continuous mode
error conditions 9-27
reception 9-23
transmission

with external frame sync 9-20
with internal frame sync 9-19

control instructions (summary) 7-9

CPU 3-1 to 3-18
accumulator 3-9
arithmetic logic section 3-8
auxiliary register arithmetic unit (ARAU) 3-12
block diagram (partial) 3-2
CALU (central arithmetic logic unit) 3-9
central arithmetic logic unit (CALU) 3-9
definition G-5
input scaling section/input shifter 3-3
key features 1-5
multiplication section 3-5
output shifter 3-11
overview 2-5
product shifter 3-6

product shift modes 3-7
status registers ST0 and ST1 3-15

current auxiliary register 6-9
add short immediate value to (ADRK instruc-

tion) 7-33
branch if not zero (BANZ instruction) 7-41
compare with AR0 (CMPR instruction) 7-65
increment or decrement (MAR instruc-

tion) 7-111
role in indirect addressing 6-9 to 6-18
subtract short immediate value from (SBRK in-

struction) 7-154
update code (ARU) 6-13

D
D0–D15 (external data bus)

definition 4-3, G-5
shown in figure 4-6, 4-10, 4-13, 4-17, 4-31

DARAM (dual-access RAM)
configuration

’C203 4-24
’C209 11-8

description 2-7

DARAM configuration bit (CNF) 3-16

data memory
address map

’C203 4-23
’C209 11-6
data page 0 4-8

caution about reserved addresses 4-24, 11-7
configuration

RAM (dual-access)
’C203 4-24
’C209 11-8

RAM (single-access) 11-7
data page pointer (DP) 3-16
external interfacing

caution about proper timing 4-9
global 4-13
local 4-9

global 4-11
local 4-7
on-chip registers mapped to 4-8

data memory select pin (DS)
definition 4-3
shown in figure 4-10, 4-13

data page 0 4-8
caution about test/emulation addresses 4-8

Index

Index-7

data page pointer (DP)
caution about initializing DP 6-5
definition 3-16
load (LDP instruction) 7-83
role in direct addressing 6-4

data read bus (DRDB) 2-3
data write bus (DWEB) 2-3
data-read address bus (DRAB) 2-3
data-scaling shifter

at input of CALU 3-3
at output of CALU 3-11

data-write address bus (DWAB) 2-3
delta interrupts

description 10-18
enabling/disabling (DIM bit) 10-8

device reset 5-35
diagnostic applications F-24
digital loopback mode 9-26
DIM bit 10-8
dimensions

12-pin header F-20
14-pin header F-14
mechanical, 14-pin header F-14

DIO0–DIO3 (bits)
detecting change on pins IO0–IO3 10-17

direct addressing
description 6-4
examples 6-6
figure 6-5
opcode format 6-5 to 6-7
role of data page pointer (DP) 6-4

direct memory access (using HOLD opera-
tion) 4-18
during reset 4-20
example 4-19
terminating correctly 4-20

DIV1 and DIV2 pins 8-5, G-7
divide (SUBC instruction) 7-180
DLB bit 9-11
DMOV instruction 7-66
DP (data page pointer)

caution about initializing DP 6-5
definition 3-16
load (LDP instruction) 7-83
role in direct addressing 6-4

DR bit 10-12
DR pin 9-4

DRAB (data-read address bus) 2-3
DRDB (data read bus) 2-3
DS (data memory select pin)

definition 4-3
shown in figure 4-10, 4-13

DSWS bit(s)
’C203/C204 8-16
’C209 11-18

dual-access RAM (DARAM) G-5
configuration

’C203 4-24
’C209 11-8

description 2-7
DuPont connector F-2
DWAB (data-write address bus) 2-3
DWEB (data write bus) 2-3
DX pin 9-4

E
EMU0/1

configuration F-21, F-23, F-24
emulation pins F-20
IN signals F-21
rising edge modification F-22

EMU0/1 signals F-2, F-3, F-6, F-7, F-13, F-18
emulation

configuring multiple processors F-13
JTAG cable F-1
pins F-20
timing calculations F-7 to F-9, F-18 to F-26
using scan path linkers F-16

emulation capability 2-13
emulation modes (FREE and SOFT bits)

asynchronous serial port 10-7
synchronous serial port 9-9

emulation timing F-7
emulator

cable pod F-5
connection to target system, JTAG mechanical

dimensions F-14 to F-25
designing the JTAG cable F-1
emulation pins F-20
pod interface F-5
pod timings F-6
signal buffering F-10 to F-13
target cable, header design F-2 to F-3

enhanced instructions B-3, C-5

Index

Index-8

error conditions
asynchronous serial port

framing error (FE bit) 10-11
overrun (OE bit) 10-11

synchronous serial port
burst mode 9-27
continuous mode 9-27

examples of ’C2xx program code D-1 to D-24

external access active strobe (STRB) 4-3

external address bus (A0–A15)
definition 4-3
shown in figure 4-6, 4-10, 4-13, 4-17, 4-31

external data bus (D0–D15)
definition 4-3
shown in figure 4-6, 4-10, 4-13, 4-17, 4-31

external device ready pin (READY)
definition 4-4
generating wait states with 8-15

external interfacing
diagrams 4-6, 4-10, 4-13, 4-17

external oscillator
using (diagram) 8-5

F
FE bit 10-11

features summary 1-5

FIFO buffers
introduction 9-5

FINT2 bit 5-26

FINT3 bit 5-26

flag bits
I/O status register (IOSR) 10-10
interrupt control register (ICR) 5-18
interrupt flag register (IFR) 5-18

flash memory (on-chip)
introduction 2-9

flow charts
interrupt operation

maskable interrupts 5-20
nonmaskable interrupts 5-29
requesting INT2 and INT3 5-18

TMS320 ROM code submittal E-2

FR1 and FR0 bits 9-10

frame synchronization mode (FSM bit) 9-11

framing error (FE bit) 10-11

FREE bit 9-9
asynchronous serial port 10-7
timer 8-11

FSM bit 9-11
FSR pin 9-4
FSX pin 9-4
FT1 and FT0 bits 9-9

G
general-purpose I/O pins 8-18 to 8-21

input
BIO 8-18 to 8-19
IO0–IO3 10-15 to 10-16

output
IO0–IO3 10-15 to 10-16, 10-17
XF 8-19

generating executable files
figure D-2

generating wait states with 8-15
generators (on-chip)

baud-rate generator 10-4
clock generator 8-4 to 8-6

’C209 clock options 11-15 to 11-18
wait-state generator 8-15 to 8-17

’C209 11-17 to 11-18
global data memory 4-11

configuration 4-11
external interfacing 4-13

global memory allocation register (GREG) 4-11
GREG (global memory allocation register) 4-11

H
hardware interrupts

definition 5-15
nonmaskable external 5-27
priorities 5-16
types 5-15

hardware reset 5-35
header

14-pin F-2
dimensions, 14-pin F-2

HOLD (HOLD operation request pin)
definition 4-4
use in HOLD operation 4-18

HOLD acknowledge pin (HOLDA)
definition 4-4
use in HOLD operation 4-18

Index

Index-9

HOLD operation
description 4-18
during reset 4-20
example 4-19
terminating correctly 4-20

HOLD operation request pin (HOLD)
definition 4-4
use in HOLD operation 4-18

HOLD/INT1 bit
in interrupt flag register (IFR) 5-22
in interrupt mask register (IMR) 5-24

HOLD/INT1 interrupt
flag bit 5-22
mask bit 5-24
priority 5-16
vector location 5-16

HOLD/INT1 pin
mode set by MODE bit 5-24

HOLDA (HOLD acknowledge pin)
definition 4-4
use in HOLD operation 4-18

I
I/O

general-purpose pins
input

BIO 8-18 to 8-19
IO0–IO3 10-15 to 10-17

output
IO0–IO3 10-15 to 10-17
XF 8-19

parallel ports 4-16
serial ports

asynchronous 10-1 to 10-20
introduction 2-12
synchronous 9-1 to 9-42

I/O space
accessing 4-16
address map 4-14
caution about reserved addresses 4-15
description 4-14
external interfacing 4-16
instructions

transfer data from data memory to I/O space
(OUT) 7-132

transfer data from I/O space to data memory
(IN) 7-69

I/O space (continued)
on-chip registers mapped to

’C203/C204 4-16
’C209 11-9
accessing 4-16

pins for external interfacing 4-3

I/O space select pin (IS)
definition 4-3
shown in figure 4-17

I/O status register (IOSR)
description 10-10
detecting change on pins IO0–IO3 10-17
quick reference A-18
reading current logic level on pins

IO0–IO3 10-17

I/O-mapped registers
addresses and reset values A-2

IACK signal 11-13

ICR (interrupt control register) 5-24 to 5-42
bits 5-26
quick reference A-8

IDLE instruction 7-68

IEEE 1149.1 specification
bus slave device rules F-4

IFR (interrupt flag register) 5-20 to 5-42
bits

’C203/C204 5-21
’C209 11-12

clearing interrupts 5-20
quick reference A-6

immediate addressing 6-2

IMR (interrupt mask register) 5-23 to 5-42
bits

’C203/C204 5-23
’C209 11-13

in interrupt acknowledgement process 5-19
quick reference A-7

IN instruction 7-69

IN0 bit 9-10

indirect addressing
description 6-9
effects on auxiliary register pointer (ARP) 6-14

to 6-16
effects on current auxiliary register 6-14 to 6-16
examples 6-15
modifying auxiliary register content 6-17
opcode format 6-12 to 6-14
operands 6-10

Index

Index-10

indirect addressing (continued)
operation types 6-14 to 6-16
options 6-9
possible opcodes 6-14 to 6-16

input clock modes
’C203/C204 8-5
’C209 11-15

input scaling section of CPU 3-3

input shifter 3-3

input/output status register (IOSR)
description 10-10
detecting change on pins IO0–IO3 10-17
reading current logic level on pins

IO0–IO3 10-17

instruction register (IR)
definition G-11

instruction set
key features 1-6

instructions 7-1 to 7-20
Boolean logic

AND 7-34
CMPL (complement/NOT) 7-64
OR 7-129
XOR (exclusive OR) 7-193

compared with those of other TMS320
devices B-1 to B-10, C-1 to C-36

conditional 5-10 to 5-13
branch (BCND) 7-43
call (CC) 7-60
conditions that may be tested 5-10
return (RETC) 7-143
stabilization of conditions 5-11
using multiple conditions 5-10

CPU halt until hardware interrupt (IDLE) 7-68
delay/no operation (NOP) 7-125
descriptions 7-20

how to use 7-12
enhanced B-3, C-5
idle until hardware interrupt (IDLE) 7-68
interrupt

branch to NMI interrupt vector location
(NMI) 7-124

branch to specified interrupt vector location
(INTR) 7-71

branch to TRAP interrupt vector location
(TRAP) 7-192

instructions (continued)
negate accumulator (NEG) 7-122
no operation (NOP) 7-125
normalize (NORM) 7-126
OR 7-129
power down until hardware interrupt

(IDLE) 7-68
repeat next instruction n times

description (RPT) 7-146
introduction 5-14

stack
pop top of stack to data memory

(POPD) 7-137
pop top of stack to low accumulator bits

(POP) 7-135
push data memory value onto stack

(PSHD) 7-139
push low accumulator bits onto stack

(PUSH) 7-141
status registers ST0 and ST1

clear control bit (CLRC) 7-62
load (LST) 7-87
load data page pointer (LDP) 7-83
modify auxiliary register pointer (MAR) 7-111
set control bit (SETC) 7-155
set product shift mode (SPM) 7-167
store (SST) 7-172

summary 7-2 to 7-11
test bit specified by TREG (BITT) 7-47
test specified bit (BIT) 7-45

INT1 bit (’C209)
in interrupt flag register (IFR) 11-12
in interrupt mask register (IMR) 11-13

INT1 interrupt
’C203/C204

flag bit (HOLD/INT1) 5-22
mask bit (HOLD/INT1) 5-24
priority 5-16
vector location 5-16

’C209
flag bit 11-12
mask bit 11-13
priority 11-10
vector location 11-10

INT2 bit (’C209)
in interrupt flag register (IFR) 11-12
in interrupt mask register (IMR) 11-13

Index

Index-11

INT2 interrupt
’C203/C204

flag bits
FINT2 5-26
INT2/INT3 5-22

masking/unmasking in ICR 5-27
masking/unmasking in IMR 5-24
priority 5-16
vector location 5-16

’C209
flag bit 11-12
mask bit 11-13
priority 11-10
vector location 11-10

INT2/INT3 bit
in interrupt flag register (IFR) 5-22
in interrupt mask register (IMR) 5-24

INT20–INT31 (interrupts), vector locations
’C203/C204 5-17
’C209 11-11

INT3 bit (’C209)
in interrupt flag register (IFR) 11-12
in interrupt mask register (IMR) 11-13

INT3 interrupt
’C203/C204

flag bits
FINT3 5-26
INT2/INT3 5-22

masking/unmasking in ICR 5-27
masking/unmasking in IMR 5-24
priority 5-16
vector location 5-16

’C209
flag bit 11-12
mask bit 11-13
priority 11-10
vector location 11-10

INT8–INT16 (interrupts), vector locations
’C203/C204 5-16 to 5-17
’C209 11-10

interfacing
to external global data memory 4-13
to external I/O space 4-16
to external local data memory 4-9
to external program memory 4-5

internal oscillator

using (diagram) 8-4
interrupt 5-15 to 5-34

definitions 5-15, G-11
hardware interrupt

definition 5-15
priorities

’C203/C204 5-16
’C209 11-10

interrupt mode bit (INTM) 3-16
use in enabling/disabling maskable inter-

rupts 5-19
interrupt service routines (ISRs) 5-29 to 5-30

ISRs within ISRs 5-30
saving and restoring context 5-29 to 5-30

latency 5-31 to 5-32
after execution of RET 5-32
during execution of CLRC INTM 5-32
minimum latency 5-31

maskable interrupt 5-18 to 5-20
acknowledgement conditions 5-19
definition 5-15
enabling/disabling with INTM bit 5-19
flag bits in ICR 5-24
flag bits in IFR 5-20
flow chart of operation 5-20
flow chart of requesting INT2 and INT3 5-18
interrupt mode bit (INTM) 3-16
masking/unmasking in ICR 5-24 to 5-42
masking/unmasking in IMR 5-23 to 5-42

nonmaskable interrupt 5-27 to 5-29
definition 5-15
flow chart of operation 5-29
hardware-initiated 5-27
software-initiated 5-27

operation (three phases) 5-15
pending interrupt (IFR flag set) 5-20 to 5-22
phases of operation 5-15
priorities

’C203/C204 5-16
’C209 11-10
in interrupt acknowledgement process 5-19

registers
interrupt control register (ICR) 5-24
interrupt flag register (IFR) 5-20 to 5-22

’C209 11-12
interrupt mask register (IMR) 5-23 to 5-24

’C209 11-13

Index

Index-12

interrupt (continued)
software interrupt

definition 5-15
instructions 5-27

special cases
clearing ICR flag bits 5-25
clearing IFR flag bit after INTR instruc-

tion 5-21
clearing IFR flag bits set by serial port inter-

rupts 5-21
controlling INT2 and INT3 with ICR 5-25
requesting INT2 and INT3 5-18

table 5-16
vector locations

’C203/C204 5-16
’C209 11-10

interrupt acknowledge signal (IACK) 11-13
interrupt control register (ICR) 5-24 to 5-42

bits 5-26
quick reference A-8

interrupt flag register (IFR) 5-20 to 5-42
bits

’C203/C204 5-21
’C209 11-12

clearing interrupts 5-20
quick reference A-6

interrupt latency
definition G-12
description 5-31

interrupt mask register (IMR) 5-23 to 5-42
bits

’C203/C204 5-23
’C209 11-13

in interrupt acknowledgement process 5-19
quick reference A-7

interrupt mode bit (INTM) 3-16
interrupt phases of operation 5-15
interrupt service routines (ISRs) 5-29

definition G-12
ISRs within ISRs 5-30
saving and restoring context 5-29

INTM (interrupt mode bit) 3-16
effect on power-down mode 5-40
in interrupt acknowledgement process 5-19

INTR instruction 7-71
introduction 5-27
operand (K) values

’C203/C204 5-16
’C209 11-10

introduction
TMS320 devices 1-2
TMS320C2xx devices 1-4

IO0–IO3 (bits) 10-13
reading current logic level on pins

IO0–IO3 10-17
IO0–IO3 (pins) 10-15 to 10-17
IOSR (I/O status register)

detecting change on pins IO0–IO3 10-17
quick reference A-18
reading current logic level on pins

IO0–IO3 10-17
IR (instruction register)

definition G-11
IS (I/O space select pin)

definition 4-3
shown in figure 4-17

ISR (interrupt service routine) 5-29 to 5-30
definition G-12
ISRs within ISRs 5-30
saving and restoring context 5-29 to 5-30

ISWS bit(s)
’C203/C204 8-16
’C209 11-18

J
JTAG F-16
JTAG emulator

buffered signals F-10
connection to target system F-1 to F-25
no signal buffering F-10

K
key features of the ’C2xx 1-5

L
LACC instruction 7-74
LACL instruction 7-75
LACT instruction 7-78
LAR instruction 7-80
latch phase of CPU cycle G-13
latency, interrupt 5-31 to 5-32

after execution of RET 5-32
during execution of CLRC INTM 5-32
minimum latency 5-31

Index

Index-13

LDP instruction 7-83

local data memory
address map

’C203 4-23
’C209 11-6

configuration
RAM (dual-access)

’C203 4-24
’C209 11-8

RAM (single-access) 11-7
description 4-7
external interfacing 4-9

caution about proper timing 4-9
pages of (diagram) 4-7

logic instructions
AND 7-34
CMPL (complement/NOT) 7-64
OR 7-129
XOR (exclusive OR) 7-193

logic phase of CPU cycle G-13

long immediate addressing 6-2

LPH instruction 7-85

LST instruction 7-87

LT instruction 7-91

LTA instruction 7-93

LTD instruction 7-95

LTP instruction 7-98

LTS instruction 7-100

M
MAC instruction 7-102

MACD instruction 7-106

MAR instruction 7-111

mask bits
asynchronous serial port control register

(ASPCR) 10-8
interrupt control register (ICR) 5-24
interrupt mask register (IMR) 5-23

maskable interrupts 5-18
acknowledgement conditions 5-19
definition 5-15
enabling/disabling with INTM bit 5-19
flag bits in ICR 5-24
flag bits in IFR 5-20
flow chart of operation 5-20
flow chart of requesting INT2 and INT3 5-18

maskable interrupts (continued)
masking/unmasking in ICR 5-24
masking/unmasking in IMR 5-23

MCM bit 9-11

memory
address map

’C203 4-23
’C209 11-6
data page 0 4-8

available on TMS320C2xx devices 2-7
available types 1-5
bootloader 4-30

boot source (EPROM) 4-30
diagram 4-30
enabling 4-33
execution 4-34
generating code for EPROM D-23 to D-24
program code 4-37

data page pointer (DP) 3-16
device-specific information 4-22
direct memory access (using HOLD opera-

tion) 4-18
during reset 4-20
example 4-19
terminating correctly 4-20

external interfacing
global data memory 4-13
I/O ports 4-16
local data memory 4-9
program memory 4-5

flash, introduction 2-9
global data memory 4-11 to 4-13
HOLD operation 4-18 to 4-21

during reset 4-20
example 4-19
terminating correctly 4-20

introduction 4-2
local data memory

description 4-7 to 4-10
pages of (diagram) 4-7

on-chip memory, advantages 4-2
organization 4-2
overview 2-7
pins for external interfacing 4-3
program memory 4-5 to 4-6

address generation logic 5-2
address sources 5-3

Index

Index-14

memory (continued)
RAM (dual-access)

configuration
’C203 4-24
’C209 11-8

description 2-7
RAM (single-access)

configuration 11-7
description 2-8

reset conditions 5-35
ROM

configuration, ’C209 11-7
introduction 2-8

memory instructions
block move from data memory to data memory

(BLDD) 7-49
block move from program memory to data

memory (BLPD) 7-54
move data after add PREG to accumulator, load

TREG, and multiply (MACD) 7-106
move data to next higher address in data

memory (DMOV) 7-66
move data, load TREG, and add PREG to accu-

mulator (LTD) 7-95
store long immediate value to data memory

(SPLK) 7-165
table read (TBLR) 7-186
table write (TBLW) 7-189
transfer data from data memory to I/O space

(OUT) 7-132
transfer data from I/O space to data memory

(IN) 7-69
transfer word from data memory to program

memory (TBLW) 7-189
transfer word from program memory to data

memory (TBLR) 7-186

memory-mapped registers
addresses and reset values A-2

micro stack (MSTACK) 5-6

microprocessor/microcomputer pin (MP/MC)
definition 4-4
use in configuring memory, ’C209 11-7

MINT2 bit 5-27

MINT3 bit 5-27

MODE bit 5-26
used in HOLD operation 4-18

MP/MC (microprocessor/microcomputer pin)
definition 4-4
use in configuring memory, ’C209 11-7

MPY instruction 7-113

MPYA instruction 7-116

MPYS instruction 7-118

MPYU instruction 7-120

MSTACK (micro stack) 5-6

multicycle instructions 5-31

multiplication section of CPU 3-5

multiplier
description 3-5
introduction 2-6

multiply instructions
multiply (include load to TREG) and accumulate

previous product (MAC) 7-102
multiply (include load to TREG), accumulate

previous product, and move data
(MACD) 7-106

multiply (MPY) 7-113
multiply and accumulate previous product

(MPYA) 7-116
multiply and subtract previous product

(MPYS) 7-118
multiply unsigned (MPYU) 7-120
square specified value after accumulating pre-

vious product (SQRA) 7-168
square specified value after subtracting previous

product from accumulator (SQRS) 7-170

N
NEG instruction 7-122

next auxiliary register 6-11

next program address register (NPAR)
definition G-14
shown in figure 5-2

NMI hardware interrupt
description 5-27
priority

’C203/C204 5-17
’C209 11-11

vector location
’C203/C204 5-17
’C209 11-11

NMI instruction 7-124
introduction 5-28
vector location

’C203/C204 5-17
’C209 11-11

Index

Index-15

nonmaskable interrupts 5-27
definition 5-15
flow chart of operation 5-29
hardware-initiated 5-27
software-initiated 5-27

NOP instruction 7-125

NORM instruction 7-126

NPAR (next program address register)
definition G-14
shown in figure 5-2

O
OE bit 10-11

off-chip (external) memory
’C203 4-23
’C209 11-6

on-chip generators
baud-rate generator 10-4
clock generator 8-4

’C209 clock options 11-15
wait-state generator 8-15

’C209 11-17
on-chip memory

advantages 4-2
flash, introduction 2-9
RAM (dual-access)

available
’C203 4-23
’C209 11-6

configuration
’C203 4-24
’C209 11-8

description 2-7
RAM (single-access)

available, ’C209 11-6
configuration 11-7
description 2-8

ROM
available, ’C209 11-6
configuration, ’C209 11-7
introduction 2-8

on-chip peripherals
asynchronous serial port 10-1 to 10-20
available types 1-6
clock generator 8-4 to 8-6

’C209 clock options 11-15 to 11-18
control of 8-2 to 8-3
general-purpose I/O pins 8-18 to 8-21

on-chip peripherals (continued)
overview 2-11
register locations and reset values 8-2
reset conditions 5-36, 8-2
synchronous serial port 9-1 to 9-42
timer 8-8 to 8-14
wait-state generator 8-15 to 8-17

’C209 11-17 to 11-18
on-chip registers mapped to data space

addresses and reset values A-2
quick reference figures A-4

on-chip registers mapped to I/O space
addresses and reset values A-2
quick reference figures A-4

on-chip ROM E-1
opcode format

direct addressing 6-5
immediate addressing 6-2
indirect addressing 6-12

OR instruction 7-129
oscillator 8-4
OUT instruction 7-132
output modes

external count F-20
signal event F-20

output shifter 3-11
OV (overflow flag bit) 3-16
overflow in accumulator

detecting (OV bit) 3-16
enabling/disabling overflow mode (OVM

bit) 3-17
overflow in synchronous serial port

burst mode 9-27
continuous mode 9-28
detecting (OVF bit) 9-10

overflow mode bit (OVM) 3-17
effects on accumulator 3-10

OVF bit 9-10

P
PAB (program address bus)

definition 2-3
used in program-memory address genera-

tion 5-3
PAC instruction 7-134
packages

available types 1-6

Index

Index-16

pages of data memory
figure 6-4

PAL F-21, F-22, F-24
PAR (program address register)

definition G-16
shown in figure 5-2

parallel I/O ports 4-14
PC (program counter) 5-3

description 5-3
loading 5-4
shown in figure 5-2

peripherals (on-chip)
asynchronous serial port 10-1 to 10-20
available types 1-6
clock generator 8-4 to 8-6

’C209 clock options 11-15 to 11-18
control of 8-2 to 8-3
general-purpose I/O pins 8-18 to 8-21
overview 2-11
register locations and reset values 8-2
reset conditions 5-36, 8-2
synchronous serial port 9-1 to 9-42
timer 8-8 to 8-14
wait-state generator 8-15 to 8-17

’C209 11-17 to 11-18
phase lock loop (PLL) 8-4
pins

asynchronous serial port 10-4
CLKOUT1 8-7
clock generator

CLKIN/X2 8-4
CLKMOD 11-15
DIV1 and DIV2 8-5
X1 8-4

general-purpose
BIO 8-18
IO0–IO3 10-15
XF 8-19

I/O and memory 4-3
IACK (’C209) 11-13
memory and I/O 4-3
READY 8-15
synchronous serial port 9-4
timer (TOUT) 8-8
wait-state (READY) 8-15

pipeline
operation 5-7

PM (product shift mode bits) 3-17
POP instruction 7-135

pop operation (diagram) 5-6

POPD instruction 7-137

power saving features 1-6

power-down mode 5-40

PRD G-22

PRD (timer period register) 8-12 to 8-13, G-22 to
G-26

PRDB (program read bus) 2-3

PREG (product register) 3-6

PREG instructions
add PREG to accumulator (APAC) 7-37
add PREG to accumulator and load TREG

(LTA) 7-93
add PREG to accumulator and multiply

(MPYA) 7-116
add PREG to accumulator and square specified

value (SQRA) 7-168
add PREG to accumulator, load TREG, and

move data (LTD) 7-95
add PREG to accumulator, load TREG, and

multiply (MAC) 7-102
add PREG to accumulator, load TREG, multiply,

and move data (MACD) 7-106
load high bits of PREG (LPH) 7-85
set PREG output shift mode (SPM) 7-167
store high word of PREG to data memory

(SPH) 7-161
store low word of PREG to data memory

(SPL) 7-163
store PREG to accumulator (PAC instruc-

tion) 7-134
store PREG to accumulator and load TREG

(LTP) 7-98
subtract PREG from accumulator (SPAC) 7-160
subtract PREG from accumulator and load TREG

(LTS) 7-100
subtract PREG from accumulator and multiply

(MPYS) 7-118
subtract PREG from accumulator and square

specified value (SQRS) 7-170

product register (PREG) 3-6

product shift mode bits (PM) 3-17

product shift modes 3-7

product shifter 3-6

program address bus (PAB)
definition 2-3
used in program-memory address genera-

tion 5-3

Index

Index-17

program address register (PAR)
definition G-16
shown in figure 5-2

program control features
address generation, program memory 5-2
branch instructions

conditional 5-11
unconditional 5-8

call instructions
conditional 5-12
unconditional 5-8

conditional instructions 5-10 to 5-13
conditions that may be tested 5-10 to 5-13
stabilization of conditions 5-11 to 5-13
using multiple conditions 5-10

pipeline operation 5-7
program counter (PC) 5-3

loading 5-4
repeating a single instruction 5-14
reset conditions 5-35
return instructions

conditional 5-12
unconditional 5-9

stack 5-4
status registers ST0 and ST1 3-15

bits 3-15

program counter (PC) 5-3
description 5-3
loading 5-4
shown in figure 5-2

program examples D-1 to D-24
about the examples D-2
asynchronous serial port

automatic baud-rate detection test D-16
delta interrupts D-18
transmission D-13
transmission loopback test D-14

boot loader code
command file D-24
hex conversion file D-24

command file (generic) D-5
delay loops D-8
header file with I/O register declarations D-6
header file with interrupt vector

declarations D-7
HOLD operation D-11
interrupt INT1 D-10
interrupts INT2 and INT3 D-12

program examples (continued)
synchronous serial port

transmission (continuous mode) D-20
using with codec D-21

timer D-9

program memory
address generation logic 5-2

micro stack (MSTACK) 5-6
program counter (PC) 5-3
stack 5-4

address map
’C203 4-23
’C209 11-6

address sources 5-3
configuration

RAM (dual-access)
’C203 4-24
’C209 11-8

RAM (single-access) 11-7
ROM, ’C209 11-7

description 4-5
external interfacing 4-5

caution about proper timing 4-5

program memory select pin (PS)
definition 4-3
shown in figure 4-6

program read bus (PRDB) 2-3

program-address generation (diagram) 5-2

protocol
bus, in emulator system F-4

PS (program memory select pin)
definition 4-3
shown in figure 4-6

PSC (timer prescaler counter)
’C203/C204 8-11
’C209 11-16
definition G-17

PSHD instruction 7-139

PSLWS bits 8-16

PSUWS bits 8-16

PSWS bit 11-18

PUSH instruction 7-141

push operation (diagram) 5-5

Index

Index-18

R

R/W (read/write pin) 4-4

RAM (on-chip)
dual-access

configuration
’C203 4-24
’C209 11-8

description 2-7
single-access

configuration 11-7
description 2-8

RAMEN (single-access RAM enable pin)
definition 4-4
use in configuring memory 11-7

RD (read select pin)
definition 4-4
shown in figure 4-6, 4-10, 4-13, 4-31

read select pin (RD)
definition 4-4
shown in figure 4-6, 4-10, 4-13, 4-31

read/write pin (R/W) 4-4

READY (external device ready pin)
definition 4-4
generating wait states with 8-15

receive interrupt
asynchronous serial port 10-17

enabling/disabling (RIM bit) 10-8
synchronous serial port 9-6

receive pin
asynchronous serial port (RX) 10-4

detecting break on (BI bit) 10-10
synchronous serial port (DR) 9-4

receive register
asynchronous serial port (ADTR) 10-4

detecting overrun in (OE bit) 10-11
detecting when empty (DR bit) 10-12

synchronous serial port (SDTR) 9-5

receive shift register
asynchronous serial port (ARSR) 10-5
synchronous serial port (RSR) 9-5

register summary A-1 to A-18

registers
addresses and reset values A-2
asynchronous serial port

baud-rate divisor register (BRD) 10-14
control register (ASPCR) 10-7
I/O status register (IOSR) 10-10
receive shift register (ARSR) 10-5
transmit shift register (AXSR) 10-5

auxiliary registers, current auxiliary
register 6-13

auxiliary registers (AR0–AR7)
current auxiliary register 6-9
next auxiliary register 6-11

baud-rate divisor register (BRD) 10-14
CLKOUT1-pin control (CLK) register 8-7
I/O status register (IOSR) 10-10
interrupt control register (ICR) 5-24 to 5-42
interrupt flag register (IFR) 5-20 to 5-22

’C209 11-12 to 11-18
interrupt mask register (IMR) 5-23 to 5-24

’C209 11-13 to 11-18
mapped to data page 0 4-8
mapped to I/O space

’C203/C204 4-16
’C209 11-9
accessing 4-16

quick reference A-1 to A-18
serial port 9-32
status registers ST0 and ST1 3-15
timer

control register (TCR)
’C203/C204 8-10
’C209 11-17

counter register (TIM) 8-12, G-22
divide-down register (TDDR)

’C203/C204 8-12
’C209 11-17

period register (PRD) 8-12, G-22
prescaler counter (PSC)

’C203/C204 8-11
’C209 11-16

wait-state generator control register (WSGR)
’C203/C204 8-16
’C209 11-18

repeat (RPT) instruction
description 7-146
introduction 5-14

repeat counter (RPTC) 5-14

Index

Index-19

repeating a single instruction 5-14

reset 5-35
at same time as HOLD operation 4-20
introduction 5-27
priority

’C203/C204 5-16
’C209 11-10

vector location
’C203/C204 5-16
’C209 11-10

reset values of on-chip registers
mapped to data space 5-37, A-2
mapped to I/O space 5-37, A-2
status registers ST0 and ST1 A-2

RET instruction 7-142

RETC instruction 7-143

return instructions
conditional, overview 5-12
return conditionally from subroutine

(RETC) 7-143
return unconditionally from subroutine

(RET) 7-142
unconditional, overview 5-9

RFNE bit 9-9

RIM bit 10-8

RINT bit
in interrupt flag register (IFR) 5-22
in interrupt mask register (IMR) 5-23

RINT interrupt
definition G-19
flag bit 5-22
mask bit 5-23
priority 5-16
vector location 5-16

ROL instruction 7-144

ROM, customized E-1 to E-3

ROM (on-chip)
configuration, ’C209 11-7
introduction 2-8

ROM codes
submitting to Texas Instruments E-1 to E-3

ROR instruction 7-145

RPT instruction 7-146

RPTC (repeat counter) 5-14

RRST bit 9-10

RS (reset)
at same time as HOLD operation 4-20
introduction 5-27
priority

’C203/C204 5-16
’C209 11-10

vector location
’C203/C204 5-16
’C209 11-10

RSR (synchronous serial port receive shift regis-
ter) 9-5

run/stop operation F-10

RUNB
debugger command F-20 to F-24

RUNB_ENABLE
input F-22

RX pin 10-4

S
SACH instruction 7-148

SACL instruction 7-150

SAR instruction 7-152

SARAM (single-access RAM)
configuration 11-7
definition G-19
description 2-8

SBRK instruction 7-154

scaling shifters
input shifter 3-3
introduction 2-5
output shifter 3-11
product shifter 3-6

product shift modes 3-7
scan path linkers F-16

secondary JTAG scan chain to an SPL F-17
suggested timings F-22
usage F-16

scan paths
TBC emulation connections for JTAG scan

paths F-25

scanning logic overview 2-13

SDTR (synchronous serial port transmit and receive
register) 9-5
using to access FIFO buffers 9-15

serial port
registers 9-32

Index

Index-20

serial ports
available on TMS320C2xx devices 2-12
introduction 2-12
reset conditions 5-36

serial-scan emulation capability 2-13

SETBRK bit 10-9

SETC instruction 7-155

SFL instruction 7-157

SFR instruction 7-158

shifters
input shifter 3-3
introduction 2-5
output shifter 3-11
product shifter 3-6

product shift modes 3-7
short immediate addressing 6-2

signal descriptions
14-pin header F-3

signals
buffered F-10
buffering for emulator connections F-10 to F-13
description, 14-pin header F-3
timing F-6

sign-extension mode bit (SXM)
definition 3-17
effect on CALU (central arithmetic logic

unit) 3-9
effect on input shifter 3-4

single-access RAM (SARAM)
configuration 11-7
definition G-19
description 2-8

single-access RAM enable pin (RAMEN)
definition 4-4
use in configuring memory 11-7

slave devices F-4

SOFT bit 9-9
asynchronous serial port 10-7
timer 8-11

software interrupts
definition 5-15
instructions 5-27

SPAC instruction 7-160

SPH instruction 7-161

SPL instruction 7-163

SPLK instruction 7-165

SPM instruction 7-167

SQRA instruction 7-168
SQRS instruction 7-170
SSPCR (synchronous serial port control regis-

ter) 9-8
quick reference A-16

SST instruction 7-172
stack 5-4

managing nested interrupt service routines 5-30
pop top of stack to data memory (POPD instruc-

tion) 7-137
pop top of stack to low accumulator bits (POP

instruction) 7-135
push data memory value onto stack (PSHD in-

struction) 7-139
push low accumulator bits onto stack (PUSH in-

struction) 7-141
status registers ST0 and ST1

addresses and reset values A-2
bits 3-15
clear control bit (CLRC instruction) 7-62
introduction 3-15
load (LST instruction) 7-87
load data page pointer (LDP instruction) 7-83
modify auxiliary register pointer (MAR instruc-

tion) 7-111
quick reference A-5
set control bit (SETC instruction) 7-155
set product shift mode (SPM instruction) 7-167
store (SST instruction) 7-172

STB bit 10-8
STRB (external access active strobe) 4-3
SUB instruction 7-174
SUBB instruction 7-178
SUBC instruction 7-180
SUBS instruction 7-182
SUBT instruction 7-184
SXM (sign-extension mode bit)

definition 3-17
effect on CALU (central arithmetic logic

unit) 3-9
effect on input shifter 3-4

synchronous serial port
basic operation 9-6
bit input from CLKR pin (IN0 bit) 9-10
block diagram 9-3
burst mode (introduction) 9-12
CLKR pin as bit input (IN0 bit) 9-10
clock source for transmission (MCM bit) 9-12
components 9-3

Index

Index-21

synchronous serial port (continued)
configuration 9-8
continuous mode (introduction) 9-12
controlling and resetting 9-8
digital loopback mode 9-26
emulation modes 9-26
error conditions

burst mode 9-27
continuous mode 9-27

features 9-1
FIFO buffers

detecting data in receive FIFO buffer (RFNE
bit) 9-9

detecting empty transmit FIFO buffer (TCOMP
bit) 9-9

introduction 9-5
managing contents with SDTR 9-15

frame sync modes (FSM bit) 9-12
frame sync source for transmission (TXM

bit) 9-12
interrupts (XINT and RINT)

flag bits 5-22
mask bits 5-23
priorities 5-16
receive (RINT) 9-6

controlling (FR1 and FR0 bits) 9-10
transmit (XINT) 9-6

controlling (FT1 and FT0 bits) 9-9
using 9-13
vector locations 5-16

introduction 2-12
overflow in receiver

burst mode 9-27
continuous mode 9-28
detecting (OVF bit) 9-10

overview 9-2
pins 9-4
receiver operation 9-22

burst mode 9-22
continuous mode 9-23

registers (overview) 9-5
reset conditions 5-36
resetting 9-13

receiver (RRST bit) 9-10
transmitter (XRST bit) 9-10

selecting mode of operation 9-12
selecting transmit clock source 9-12
selecting transmit frame sync source 9-12
signals 9-3
testing 9-25

synchronous serial port (continued)
transmitter operation 9-16

burst mode with external frame sync 9-17
burst mode with internal frame sync 9-16
continuous mode with external frame

sync 9-20
continuous mode with internal frame

sync 9-19
troubleshooting

bits for testing the port 9-25
error conditions

burst mode 9-27
continuous mode 9-27

underflow in transmitter
burst mode 9-27
continuous mode 9-27

synchronous serial port registers
control register (SSPCR)

description 9-8
quick reference A-16

FIFO buffers
detecting data in receive FIFO buffer (RFNE

bit) 9-9
detecting empty transmit FIFO buffer (TCOMP

bit) 9-9
introduction 9-5
managing contents with SDTR 9-15

overview 9-5
receive shift register (RSR) 9-5
transmit and receive register (SDTR) 9-5

using to access FIFO buffers 9-15
transmit shift register (XSR) 9-5

T
target cable F-14
target system

connection to emulator F-1 to F-25
target system emulator connector

designing F-2
target-system clock F-12
TBLR instruction 7-186
TBLW instruction 7-189
TC (test/control flag bit) 3-17

response to accumulator event 3-10
response to auxiliary register compare 3-14

TCK signal F-2, F-3, F-4, F-6, F-7, F-13, F-17,
F-18, F-25

TCOMP bit 9-9

Index

Index-22

TCR (timer control register) 8-10 to 8-12
’C209 11-16
quick reference A-9

TDDR (timer divide-down register)
’C203/C204 8-12
’C209 11-17
definition G-22

TDI signal F-2 to F-8, F-13, F-18

TDO signal F-4, F-5, F-8, F-19, F-25

temporary register (TREG) 3-6

TEMT bit 10-11

test bus controller F-22, F-24

test clock F-12
diagram F-12

test/control flag bit (TC) 3-17
response to accumulator event 3-10
response to auxiliary register compare 3-14

THRE bit 10-11

TIM (timer counter register) 8-12 to 8-13, G-22 to
G-26

TIM bit 10-8

timer 8-8 to 8-14
block diagram 8-8
control register (TCR) 8-10 to 8-12
counter register (TIM) 8-12 to 8-13, G-22 to

G-26
divide-down register (TDDR)

’C203/C204 8-12
’C209 11-17
definition G-22

interrupt (TINT)
’C203/C204

flag bit 5-22
mask bit 5-24
priority 5-16
vector location 5-16

’C209
flag bit 11-12
mask bit 11-13
priority 11-10
vector location 11-10

interrupt rate 8-13
operation 8-9 to 8-10
period register (PRD) 8-12 to 8-13, G-22 to

G-26
prescaler counter (PSC)

’C203/C204 8-11
’C209 11-16

reload

’C203/C204 8-11
’C209 11-17

reset 8-14
setting interrupt rate 8-13
stop/start

’C203/C204 8-12
’C209 11-17

timer control register (TCR) 8-10 to 8-12
’C209 11-16
quick reference A-9

timer counter register (TIM) 8-12 to 8-13, G-22 to
G-26

timer period register (PRD) 8-12 to 8-13, G-22 to
G-26

timing calculations F-7 to F-9, F-18 to F-26
TINT bit

’C203/C204
in interrupt flag register (IFR) 5-22
in interrupt mask register (IMR) 5-24

’C209
in interrupt flag register (IFR) 11-12
in interrupt mask register (IMR) 11-13

TINT interrupt
’C203/C204

flag bit 5-22
mask bit 5-24
priority 5-16
vector location 5-16

’C209
flag bit 11-12
mask bit 11-13
priority 11-10
vector location 11-10

definition G-22
TMS signal F-2 to F-8, F-13, F-17 to F-19, F-25
TMS/TDI inputs F-4
TMS320 devices

applications 1-3
overview 1-2

TMS320 ROM code submittal
flow chart E-2

TMS320C1x/C2x/C2xx/C5x instruction set
comparisons B-1 to B-10, C-1 to C-36

TMS320C209 device 11-1 to 11-18
comparison to other ’C2xx devices 11-2

differences in interrupts 11-3
differences in memory and I/O spaces 11-3
differences in peripherals 11-2
similarities 11-2

Index

Index-23

TMS320C209 device (continued)
interrupts 11-10
locating ’C209 information in this manual

(table) 11-3
memory and I/O spaces 11-5
on-chip peripherals 11-15

transmit interrupt
asynchronous serial port 10-17

enabling/disabling (TIM bit) 10-8
synchronous serial port 9-6

transmit pin
asynchronous serial port (TX) 10-4

output level between transmissions (SETBRK
bit) 10-9

synchronous serial port (DX) 9-4

transmit register
asynchronous serial port (ADTR) 10-4

detecting when empty (THRE bit) 10-11
detecting when it and AXSR are empty (TEMT

bit) 10-11
synchronous serial port (SDTR) 9-5

transmit shift register
asynchronous serial port (AXSR) 10-5

detecting when it and ADTR are empty (TEMT
bit) 10-11

synchronous serial port (XSR) 9-5

TRAP instruction 7-192
introduction 5-28
vector location

’C203/C204 5-17
’C209 11-11

TRB bit
’C203/C204 8-11
’C209 11-17

TREG (temporary register) 3-6

TREG instructions
load accumulator using shift specified by TREG

(LACT) 7-78
load TREG (LT) 7-91
load TREG and add PREG to accumulator

(LTA) 7-93
load TREG and store PREG to accumulator

(LTP) 7-98
load TREG and subtract PREG from accumulator

(LTS) 7-100
load TREG, add PREG to accumulator, and

move data (LTD) 7-95

TREG instructions (continued)
load TREG, add PREG to accumulator, and

multiply (MAC) 7-102
load TREG, add PREG to accumulator, multiply,

and move data (MACD) 7-106
TRST signal F-2, F-3, F-6, F-7, F-13, F-17, F-18,

F-25
TSS bit

’C203/C204 8-12
’C209 11-17

TX pin 10-4
TXM bit 9-10
TXRXINT bit

in interrupt flag register (IFR) 5-21
in interrupt mask register (IMR) 5-23

TXRXINT interrupt
flag bit 5-21
mask bit in IMR 5-23
priority 5-16
vector location 5-16

U
unconditional instructions

unconditional branch 5-8
unconditional call 5-8
unconditional return 5-9

underflow in synchronous serial port
burst mode 9-27
continuous mode 9-27

URST bit 10-8

W
wait states

definition G-24
for data space

’C203/C204 8-16
’C209 11-18

for I/O space
’C203/C204 8-16
’C209 11-18

for program space
’C203/C204 8-16
’C209 11-18

generating with READY signal 8-15
generating with wait-state generator

’C203/C204 8-15 to 8-18
’C209 11-17 to 11-18

Index

Index-24

wait-state generator 8-15 to 8-17
’C209 11-17 to 11-18
introduction 2-11

wait-state generator control register (WSGR) 8-16
’C209 11-18
quick reference A-10

WE (write enable pin)
definition 4-4
shown in figure 4-6, 4-10, 4-13, 4-17

write enable pin (WE)
definition 4-4
shown in figure 4-6, 4-10, 4-13, 4-17

WSGR (wait-state generator control register)
’C203/C204 8-16
’C209 11-18
quick reference A-10

X
XF bit (XF pin status bit) 3-17
XF pin 8-19

XINT bit
in interrupt flag register (IFR) 5-22
in interrupt mask register (IMR) 5-23

XINT interrupt
flag bit 5-22
mask bit 5-23
priority 5-16
vector location 5-16

XOR instruction 7-193

XRST bit 9-10

XSR (synchronous serial port transmit shift
register) 9-5

Z

ZALR instruction 7-196

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Information About Cautions
	Related Documentation From Texas Instruments
	Related Articles
	Trademarks
	If You Need Assistance...

	Contents
	Figures
	Tables
	Examples
	Introduction
	TMS320 Family
	History, Development, and Advantages of TMS320 DSPs
	Typical Applications for the TMS320 Family

	TMS320C20x Generation
	Key Features of the TMS320C20x

	Architectural Overview
	'C20x Bus Structure
	Central Processing Unit
	Central Arithmetic Logic Unit (CALU) and Accumulator
	Scaling Shifters
	Multiplier
	Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

	Memory and I/O Spaces
	Dual-Access On-Chip RAM
	Single-Access On-Chip Program/Data RAM
	Factory-Masked On-Chip ROM
	Flash Memory

	Program Control
	On-Chip Peripherals
	Clock Generator
	CLKOUT1-Pin Control (CLK) Register
	Hardware Timer
	Software-Programmable Wait-State Generator
	General-Purpose I/O Pins
	Serial Ports
	Synchronous serial port (SSP)
	Asynchronous serial port (ASP)

	Scanning-Logic Circuitry

	Central Processing Unit
	Input Scaling Section
	Multiplication Section
	Multiplier
	Product-Scaling Shifter

	Central Arithmetic Logic Section
	Central Arithmetic Logic Unit (CALU)
	Accumulator
	Output Data-Scaling Shifter

	Auxiliary Register Arithmetic Unit (ARAU)
	ARAU and Auxiliary Register Functions

	Status Registers ST0 and ST1

	Memory and I/O Spaces
	Overview of the Memory and I/O Spaces
	Pins for Interfacing to External Memory and I/O Spaces

	Program Memory
	Interfacing With External Program Memory

	Local Data Memory
	Data Page 0 Address Map
	Interfacing With External Local Data Memory

	Global Data Memory
	Interfacing With External Global Data Memory

	I/O Space
	Accessing I/O Space

	Direct Memory Access Using the HOLD Operation
	HOLD During Reset

	Device-Specific Information
	TMS320C203 Address Maps and Memory Configuration
	TMS320C206/LC206 Address Maps and Memory Configuration
	TMS320F206 Address Maps and Memory Configuration
	Flash Memory (EEPROM)
	PMST Register in the ’206 Family

	'C203 Bootloader
	Choosing an EPROM
	Connecting the EPROM to the Processor
	Programming the EPROM
	Enabling the Bootloader
	Bootloader Execution
	Bootloader Program

	'C206/LC206 Bootloader
	Boot-load Options
	Bootloader Operation
	'C206 Enhanced Bootloader (EXT8 High - Modes 2 to 9)
	Interrupt Vectoring
	Synchronous Serial Port (SSP) Boot Mode
	UART/Asynchronous Serial Port (ASP) Boot Mode (Mode 6)
	Parallel EPROM Boot Mode
	Parallel I/O Boot Mode (Mode 4 - 8 Bit, Mode 5 - 16 Bit)
	Warm-Boot Mode (Mode 9)
	'C203 Style Bootloader (EXT8 Low – Mode 1)
	Bootloader Program

	Program Control
	Program-Address Generation
	Program Counter (PC)
	Stack
	Micro Stack (MSTACK)

	Pipeline Operation
	Branches, Calls, and Returns
	Unconditional Branches
	Unconditional Calls
	Unconditional Returns

	Conditional Branches, Calls, and Returns
	Using Multiple Conditions
	Stabilization of Conditions
	Conditional Branches
	Conditional Calls
	Conditional Returns

	Repeating a Single Instruction
	Interrupts
	Interrupt Operation: Three Phases
	Interrupt Table
	Maskable Interrupts
	Interrupt Flag Register (IFR)
	Interrupt Mask Register (IMR)
	Interrupt Control Register (ICR)
	Controlling the HOLD/INT1 pin
	Controlling INT2 and INT3

	Nonmaskable Interrupts
	Interrupt Service Routines (ISRs)
	Saving and restoring register values
	Managing ISRs within ISRs

	Interrupt Latency
	Latency for pipeline protection
	Latency for stack overflow protection

	Context Saving During Interrupts

	Reset Operation
	TMS320C206/LC206 Reset and PLL Lock Conditions

	Power-Down Mode
	Normal Termination of Power-Down Mode
	Termination of Power-Down During a HOLD Operation

	Addressing Modes
	Immediate Addressing Mode
	Examples of Immediate Addressing

	Direct Addressing Mode
	Using Direct Addressing Mode
	Examples of Direct Addressing

	Indirect Addressing Mode
	Current Auxiliary Register
	Indirect Addressing Options
	Next Auxiliary Register
	Indirect Addressing Opcode Format
	Examples of Indirect Addressing
	Modifying Auxiliary Register Content

	Assembly Language Instructions
	Instruction Set Summary
	How To Use the Instruction Descriptions
	Syntax
	Operands
	Opcode
	Execution
	Status Bits
	Description
	Words
	Cycles
	Examples

	Instruction Descriptions
	ABS
	ADD
	ADDC
	ADDS
	ADDT
	ADRK
	AND
	APAC
	B
	BACC
	BANZ
	BCND
	BIT
	BITT
	BLDD
	BLPD
	CALA
	CALL
	CC
	CLRC
	CMPL
	CMPR
	DMOV
	IDLE
	IN
	INTR
	LACC
	LACL
	LACT
	LAR
	LDP
	LPH
	LST
	LT
	LTA
	LTD
	LTP
	LTS
	MAC
	MACD
	MAR
	MPY
	MPYA
	MPYS
	MPYU
	NEG
	NMI
	NOP
	NORM
	OR
	OUT
	PAC
	POP
	POPD
	PSHD
	PUSH
	RET
	RETC
	ROL
	ROR
	RPT
	SACH
	SACL
	SAR
	SBRK
	SETC
	SFL
	SFR
	SPAC
	SPH
	SPL
	SPLK
	SPM
	SQRA
	SQRS
	SST
	SUB
	SUBB
	SUBC
	SUBS
	SUBT
	TBLR
	TBLW
	TRAP
	XOR
	ZALR

	On-Chip Peripherals
	Control of On-Chip Peripherals
	Clock Generator
	Clock Generator Options

	CLKOUT1-Pin Control (CLK) Register
	Timer
	Timer Operation
	Timer Control Register (TCR)
	Timer Counter Register (TIM) and Timer Period Register (PRD)
	Setting the Timer Interrupt Rate
	The Timer at Hardware Reset

	Wait-State Generator
	Generating Wait States With the READY Signal
	Generating Wait States With the C20x Wait-State Generator

	General-Purpose I/O Pins
	Input Pin BIO
	Output Pin XF
	Input/Output Pins IO0, IO1, IO2, and IO3

	Synchronous Serial Port
	Overview of the Synchronous Serial Port
	Components and Basic Operation
	Signals
	FIFO Buffers and Registers
	Interrupts
	Basic Operation

	Controlling and Resetting the Port
	Selecting a Mode of Operation (Bit 1 of the SSPCR)
	Selecting Transmit Clock Source and Transmit Frame Sync Source (Bits 2 and 3 of the SSPCR)
	Resetting the Synchronous Serial Port (Bits 4 and 5 of the SSPCR)
	Using Transmit and Receive Interrupts (Bits 8ã11 of the SSPCR)

	Managing the Contents of the FIFO Buffers
	Transmitter Operation
	Burst Mode Transmission With Internal Frame Sync (FSM = 1, TXM = 1)
	Burst Mode Transmission With External Frame Sync (FSM = 1, TXM = 0)
	Continuous Mode Transmission With Internal Frame Sync (FSM = 0, TXM = 1)
	Continuous Mode Transmission with External Frame Sync (FSM=0, TXM=0)

	Receiver Operation
	Burst Mode Reception
	Continuous Mode Reception

	Troubleshooting
	Test Bits
	Burst Mode Error Conditions
	Continuous Mode Error Conditions

	Enhanced Synchronous Serial Port (ESSP)
	ESSP Features

	ESSP Pins
	Multichannel Mode

	ESSP Registers
	Synchronous Serial Port Status Register (SSPST)
	Synchronous Serial Port Multichannel Register (SSPMC)
	Synchronous Serial Port Count Register (SSPCT)
	Programmable Internal CLKX and FSX Rates
	Prescalers as General Purpose Counter

	ESSP Register Programming Considerations
	ESSP Register Initialization
	Prescaler Values in Multichannel Mode
	ESSP Serial Port Configurations

	Asynchronous Serial Port
	Overview of the Asynchronous Serial Port
	Components and Basic Operation
	Signals
	Baud-Rate Generator
	Registers
	Interrupts
	Basic Operation

	Controlling and Resetting the Port
	Asynchronous Serial Port Control Register (ASPCR)
	I/O Status Register (IOSR)
	Baud-Rate Divisor Register (BRD)
	Using Automatic Baud-Rate Detection
	Using I/O Pins IO3, IO2, IO1, and IO0
	When pins IO0–IO3 are configured as inputs
	When pins IO0–IO3 are configured as outputs

	Using Interrupts

	Transmitter Operation
	Receiver Operation

	TMS320C209
	'C209 Versus Other ’C20x Devices
	What Is the Same
	What Is Different
	Where to Find the Information You Need About the TMS320C209

	'C209 Memory and I/O Spaces
	'C209 Interrupts
	'C209 Interrupt Registers
	IACK Pin

	'C209 On-Chip Peripherals
	'C209 Clock Generator Options
	'C209 Timer Control Register (TCR)
	'C209 Wait-State Generator

	Register Summary
	Addresses and Reset Values
	Register Descriptions
	Status Register ST0
	Status Register ST1
	'C20x Interrupt Flag Register (IFR) — Except ’C209 — Data-Memory Address 0006h
	Interrupt Flag Register (IFR) — ’C209 — Data-Memory Address 0006h
	Interrupt Mask Register (IMR) — Except ’C209 — Data-Memory Address 0004h
	Interrupt Mask Register (IMR) — ’C209 — Data-Memory Address 0004h
	Interrupt Control Register (ICR) — I/O Address FFECh
	Timer Control Register (TCR) — Except ’C209 — I/O Address FFF8h
	Timer Control Register (TCR) — ’C209 — I/O Address FFFCh
	Wait-State Generator Control Register (WSGR) — Except ’C209— I/O Address FFFCh
	Wait-State Generator Control Register (WSGR) — ’C209 — I/O Address FFFFh
	CLK Register — I/O Address FFE8h
	Synchronous Serial Port Status Register (SSPST) — I/O Address FFF2h
	Synchronous Serial Port Multichannel Control Register (SSPMC) — I/O Address FFF3h
	Synchronous Serial Port Counter Register (SSPCT) — I/O Address FFFBh
	Program Memory Status Register (PMST) — I/O Address FFE4h
	Synchronous Serial Port Control Register (SSPCR) — I/O Address FFF1h
	Asynchronous Serial Port Control Register (ASPCR) — I/O Address FFF5h
	I/O Status Register (IOSR) — I/O Address FFF6h

	TMS320F206 Flash Serial Loader
	TMS320F206 Flash Serial Loader Features
	Revision 2.0 Software Features
	’F206 Memory Map for the Serial Loader

	Functional Description
	Software Modules
	Operation
	Host Utility Loading Status and Modes

	Serial Loader Code
	’F206 Serial Loader Code – Level 1
	’F206 Serial Loader Code – Level 1 Only

	TMS320C1x/C2x/C20x/C5x
	Using the Instruction Set Comparison Table
	An Example of a Table Entry
	Symbols and Acronyms Used in the Table

	Enhanced Instructions
	Instruction Set Comparison Table

	Program Examples
	About These Program Examples
	Shared Program Code
	Task-Specific Program Code
	Introduction to Generating Bootloader Code

	Submitting ROM Codes to TI
	Design Considerations for Using XDS510 Emulator
	Designing Your Target System s Emulator Connector (14-Pin Header)
	Bus Protocol
	Emulator Cable Pod
	Emulator Cable Pod Signal Timing
	Emulation Timing Calculations
	Connections Between the Emulator and the Target System
	Buffering Signals
	Using a Target-System Clock
	Configuring Multiple Processors

	Physical Dimensions for the 14-Pin Emulator Connector
	Emulation Design Considerations
	Using Scan Path Linkers
	Emulation Timing Calculations for a Scan Path Linker (SPL)
	Using Emulation Pins
	Performing Diagnostic Applications

	Glossary
	Index

