&

PRINTED WITH

SOYINK|_

TMS320C20x
User’s Guide

Literature Number: SPRU127C
April 1999

Q?‘ TEXAS
INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is currentand complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express orimplied, is granted under any patentright,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI's publication of information regarding any third party’s products or services does
not constitute TI's approval, warranty or endorsement thereof.

Copyright 0 1999, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This user’s guide describes the architecture, hardware, assembly language
instructions, and general operation of the TMS320C20x digital signal proces-
sors (DSPs). This manual can also be used as a reference guide for develop-
ing hardware and/or software applications. In this document, 'C20x" refers to
any of the TMS320C20x devices, except where device-specific information is
explicitly stated. When device-specific information is given, the device name
may be abbreviated; for example, TMS320C203 will be abbreviated as 'C203.
This manual covers 'C203, 'LC203, 'C206, 'LC206, and 'F206 devices. For
pinouts, electrical characteristics, and timing diagrams, refer to the data
sheets of the individual devices.

How to Use This Manual

Chapter 1, Introduction, summarizes the TMS320 family of products and then
introduces the key features of the TMS320C20x generation of that family.
Chapter 2, Architectural Overview, summarizes the 'C20x architecture, provid-
ing information about the CPU, bus structure, memory, on-chip peripherals,
and scanning logic.

If you are reading this manual to learn about the 'C209, Chapter 11 is important
for you. There are some notable differences between the 'C209 and other
'C20x devices, and Chapter 11 explains these differences. In addition, it shows
how to use this manual to get a complete picture of the 'C209.

The following table points you to major topics.

tThe generic name '2xx refers to all DSPs using the 2xLP DSP core. This user guide revision uses '20x, a subset of '2xx, to specifi-
cally reference the 'C/LC203, 'F206, and the C/LC206.

How to Use This Manual

For this information:

Look here:

Addressing modes (for addressing data
memory)

Assembly language instructions

Assembly language instructions of
TMS320C1x, 'C2x, 'C20x, and 'C5x
compared

Boot loader

Clock generator
CPU

Custom ROM from TI

Emulator
Features

Input/output ports

Interrupts

Memory configuration

Memory interfacing

On-chip peripherals

Pipeline

Program control

Program examples

Program-memory address generation
Registers summarized

Serial ports

Stack

Status registers

Timer

TMS320C209 differences and
similarities

Wait-state generator

Chapter 6, Addressing Modes

Chapter 7, Assembly Language
Instructions

Appendix C,
TMS320C1x/C2x/C2xx/C5x
Instruction Set Comparison

Chapter 4, Memory and I/O Spaces
Chapter 8, On-Chip Peripherals
Chapter 3, Central Processing Unit

Appendix E, Submitting ROM Codes
to Tl

Appendix F, Design Considerations for
Using XDS510 Emulator

Chapter 1, Introduction
Chapter 2, Architectural Overview

Chapter 4, Memory and I/O Spaces
Chapter 5, Program Control
Chapter 4, Memory and I/O Spaces
Chapter 4, Memory and I/O Spaces
Chapter 8, On-Chip Peripherals
Chapter 5, Program Control
Chapter 5, Program Control
Appendix D, Program Examples
Chapter 5, Program Control
Appendix A, Register Summary

Chapter 9, Synchronous Serial Port
Chapter 10, Asynchronous Serial Port

Chapter 5, Program Control
Chapter 5, Program Control
Chapter 8, On-Chip Peripherals
Chapter 11, TMS320C209

Chapter 8, On-Chip Peripherals

Notational Conventions / Information About Cautions

Notational Conventions
This document uses the following conventions:

[J Program listings and program examples are shown in a special type-
face .

Here is a segment of a program listing:

OUTPUT LDP #6 ;select data page 6
BLDD #300, 20h ;move data at address 300h to 320h
RET

(1 In syntax descriptions, bold portions of a syntax should be entered as
shown; italic portions of a syntax identify information that you specify. Here
is an example of an instruction syntax:

BLDD source, destination
BLDD is the instruction mnemonic, which must be typed as shown. You
specify the two parameters, source and destination.

[Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you do
not type the brackets themselves. You separate each optional operand
from required operands with a comma and a space. Here is a sample syn-
tax:

BLDD source, destination [, ARN]

BLDD is the instruction. The two required operands are source and des-
tination, and the optional operand is ARn. AR is bold and nis italic; if you
choose to use ARn, you must type the letters A and R and then supply a
chosen value for n (in this case, a value from 0 to 7). Here is an example:

BLDD *, #310h, AR3

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Read This First Y

Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

vi

This section describes related TIO documents that can be ordered by calling
the Texas Instruments Literature Response Center at (800) 477-8924. When
ordering, please identify the document by its title and literature number.

The following data sheets contain the electrical and timing specifications for
the TMS320C20x devices, as well as signal descriptions and pinouts for all of
the available packages:

[0 TMS320C20x data sheets (literature number SPRS025 and SPRS065)
[TMS320F20x data sheet (literature number SPRS050). This data sheet
covers the TMS320F20x devices that have on-chip flash memory.

The books listed below provide additional information about using the
TMS320C2xx devices and related support tools, as well as more general in-
formation about using the TMS320 family of DSPs.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started
Guide (literature number SPRU121) describes how to install the
TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly
language tools and the C compiler for the 'C1x, 'C2x, 'C2xx, and 'C5x de-
vices. The installation for MS-DOSO, OS/2[0, SunOS[, and Solaris
systems is covered.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C1x, 'C2x, 'C2xx, and 'C5x gen-
erations of devices.

TMS320C2x/C2xx/C5x Optimizing C Compiler User's Guide (literature
number SPRU024) describes the 'C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the 'C2x, 'C2xx, and 'C5x genera-
tions of devices.

TMS320C2xx PC Emulator Installation Guide (literature number SPRU152)
describes the installation of the XDS510 PC emulator and the C source
debugger for OS/2 and MS-Windows operating systems.

TMS320C2xx C Source Debugger User's Guide (literature number
SPRU151) tells you how to invoke the 'C2xx emulator and simulator ver-
sions of the C source debugger interface. This book discusses various
aspects of the debugger interface, including window management, com-
mand entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

Related Documentation From Texas Instruments

TMS320C2xx Simulator Getting Started (literature number SPRU137)
describes how to install the TMS320C2xx simulator and the C source
debugger for the 'C2xx. The installation for MS-DOS[], PC-DOS,
SunOSM, Solarisd, and HP-UX[O systems is covered.

TMS320C2xx Emulator Getting Started Guide (literature number
SPRU209) tells you how to install the Windows[1 3.1 and Windows[] 95
versions of the 'C2xx emulator and C source debugger interface.

XDS51x Emulator Installation Guide (literature number SPNUOQ70)
describes the installation of the XDS5100, XDS510PPO, and
XDS510WS emulator controllers. The installation of the XDS5110]
emulator is also described.

JTAG/MPSD Emulation Technical Reference (literature number SPDUQ079)
provides the design requirements of the XDS5100 emulator controller,
discusses JTAG designs (based on the IEEE 1149.1 standard), and
modular port scan device (MPSD) designs.

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Digital Signal Processing Applications with the TMS320 Family, Vol-
umes 1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017)
Volumes 1 and 2 cover applications using the 'C10 and 'C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors as well as the 'C30 floating-point processor.

TMS320 DSP Designer’'s Notebook: Volume 1 (literature number
SPRT125). Presents solutions to common design problems using 'C2x,
'C3x, 'C4x, 'C5x, and other Tl DSPs.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Read This First vii

Related Articles

Related Articles

viii

“A Greener World Through DSP Controllers”, Panos Papamichalis, DSP &
Multimedia Technology, September 1994.

“A Single-Chip Multiprocessor DSP for Image Processing—TMS320C80",
Dr. Ing. Dung Tu, Industrie Elektronik, Germany, March 1995.

“Application Guide with DSP Leading-Edge Technology”, Y. Nishikori, M. Hat-
tori, T. Fukuhara, R.Tanaka, M. Shimoda, I. Kudo, A.Yanagitani, H. Miyaguchi,
et al., Electronics Engineering, November 1995.

“Approaching the No-Power Barrier”, Jon Bradley and Gene Frantz, Electronic
Design, January 9, 1995.

“Beware of BAT: DSPs Add Brilliance to New Weapons Systems”, Panos Pa-
pamichalis, DSP & Multimedia Technology, October 1994.

“Choose DSPs for PC Signal Processing”, Panos Papamichalis, DSP & Multi-
media Technology, January/February 1995.

“Developing Nations Take Shine to Wireless”, Russell MacDonald, Kara
Schmidt and Kim Higden, EE Times, October 2, 1995.

“Digital Signal Processing Solutions Target Vertical Application Markets”, Ron
Wages, ECN, September 1995.

“Digital Signal Processors Boost Drive Performance”, Tim Adcock, Data Stor-
age, September/October 1995.

“DSP and Speech Recognition, An Origin of the Species”, Panos Papamichal-
is, DSP & Multimedia Technology, July 1994.

“DSP Design Takes Top-Down Approach”, Andy Fritsch and Kim Asal, DSP
Series Part Ill, EE Times, July 17, 1995.

“DSPs Advance Low-Cost ‘Green’ Control”, Gregg Bennett, DSP Series Part
I, EE Times, April 17, 1995.

“DSPs Do Best on Multimedia Applications”, Doug Rasor, Asian Computer
World, October 9-16, 1995.

“DSPs: Speech Recognition Technology Enablers”, Gene Frantz and Gregg
Bennett, I&CS, May 1995.

“Easing JTAG Testing of Parallel-Processor Projects”, Tony Coomes, Andy
Fritsch, and Reid Tatge, Asian Electronics Engineer, Manila, Philippines, No-
vember 1995.

Related Articles

“Fixed or Floating? A Pointed Question in DSPs”, Jim Larimer and Daniel
Chen, EDN, August 3, 1995.

“Function-Focused Chipsets: Up the DSP Integration Core”, Panos Papa-
michalis, DSP & Multimedia Technology, March/April 1995.

“GSM: Standard, Strategien und Systemchips”, Edgar Auslander, Elektronik
Praxis, Germany, October 6, 1995.

“High Tech Copiers to Improve Images and Reduce Paperwork”, Karl Guttag,
Document Management, July/August 1995.

“Host-Enabled Multimedia: Brought to You by DSP Solutions”, Panos Papa-
michalis, DSP & Multimedia Technology, September/October 1995.

“Integration Shrinks Digital Cellular Telephone Designs”, Fred Cohen and
Mike McMahan, Wireless System Design, November 1994.

“On-Chip Multiprocessing Melds DSPs”, Karl Guttag and Doug Deao, DSP Se-
ries Part Ill, EE Times, July 18, 1994.

“Real-Time Control”, Gregg Bennett, Appliance Manufacturer, May 1995.

“Speech Recognition”, P.K. Rajasekaran and Mike McMahan, Wireless De-
sign & Development, May 1995.

“Telecom Future Driven by Reduced Milliwatts per DSP Function”, Panos Pa-
pamichalis, DSP & Multimedia Technology, May/June 1995.

“The Digital Signal Processor Development Environment”, Greg Peake, Em-
bedded System Engineering, United Kingdom, February 1995.

“The Growing Spectrum of Custom DSPs”, Gene Frantz and Kun Lin, DSP Se-
ries Part Il, EE Times, April 18, 1994,

“The Wide World of DSPs, ” Jim Larimer, Design News, June 27, 1994,

“Third-Party Support Drives DSP Development for Uninitiated and Experts
Alike”, Panos Papamichalis, DSP & Multimedia Technology, December
1994/January 1995.

“Toward an Era of Economical DSPs”, John Cooper, DSP Series Part I, EE
Times, Jan. 23, 1995.

Read This First ix

Trademarks

Trademarks

Tl, 320 Hotline On-line, XDS510, XDS510PP, XDS510WS, and XDS511 are
trademarks of Texas Instruments Incorporated.

HP-UX is a trademark of Hewlett-Packard Company.

Intel is a trademark of Intel Corporation.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.
PALD is a registered trademark of Advanced Micro Devices, Inc.

0S/2, PC, and PC-DOS are trademarks of International Business Machines
Corporation.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

If You Need Assistance

If You Need Assistance. . .

O World-Wide Web Sites
Tl Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
1 Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +33 130701032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 130 70 11 68
English +33130701165
Francais +33130701164
Italiano +3313070 1167
EPIC Modem BBS +3313070 1199
European Factory Repair +334 9322 2540
Europe Customer Training Helpline Fax: +49 81 61 8040 10
] Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/T1/
O Japan
Product Information Center +0120-81-0026 (inJapan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”
g Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the

book.

Read This First Xi

1

2

Contents

INrodUCtiONo e EI
Summarizes the features of the TMS320 family of products and presents typical applications.
Describes the TMS320C20x DSP and lists its key features.

1.1 TMS320 Family ..ottt e e e e e 1-2
1.2 TMS320C20X GENETALION oo ettt e e e e e e e e e e e e e -4
1.3 Key Features of the TMS320C20Xournrireeie e e e 1-5
Architectural OVeIVIEW ... Z—E

Summarizes the TMS320C20x architecture. Provides information about the CPU, bus struc-
ture, memory, on-chip peripherals, and scanning logic.

2.1 C20X BUS SHUCIUIEottt e e e e e -3
2.2 Central Processing Unit e -5
2.3 Memory and /O SPACES oottt -7
2.4 Program CoNntrol o e P-10,
2.5 On-Chip Peripherals 2-11]
2.6 Scanning-Logic CirCUItIY o e e e e e e P-13
Central Processing Unit 3-D

Describes the TMS320C20x CPU. Includes information about the central arithmetic logic unit,
the accumulator, the shifters, the multiplier, and the auxiliary register arithmetic unit. Concludes
with a description of the status register bits.

3.1 Input Scaling SECHION . .. oot -3
3.2 MURIPlication SECHIONo -5
3.3 Central Arithmetic LOgIC SECHIONot -8
3.4 Auxiliary Register Arithmetic Unit (ARAU)o e 3-1

3.5 Status Registers STO and STl i e 3-15
Memory and [/O SPACESttt et 4

Describes the configuration and use of the TMS320C20x memory and I/O spaces. Includes
memory/address maps and descriptions of the HOLD (direct memory access) operation and
the on-chip bootloader.

4.1 Overview of the Memory and /O SPaces ...ttt -2
4.2 Program MemOrY ...t -5
4.3 Local Data MemoOrYttt e -7
4.4 Global Data MemMOrYt e A-11!
A5 1O SPACE . . it 1-14
4.6 Direct Memory Access Using the HOLD Operation, 4-18
4.7 Device-Specific Information e 4-22)
4.8 'C203 BOOtloader -30
4.9 'C206/LC206 Bootloadert 4-39

Contents

Xiv

Program Control oo @
Describes the TMS320C20x hardware and software features used in controlling program flow,
including program-address generation logic and interrupts. Also describes the reset operation
and power-down mode.

5.1 Program-Address Generationoouuiiin e -2
5.2 Pipeline Operationt -7
5.3 Branches, Calls, and RetUIrNS i e -8
5.4 Conditional Branches, Calls, and Returnst -10
5.5 Repeating a Single INStruction i e e e b-14
5.6 IMEITUPES . b-15
5.7 ReSet OPeration b-35
5.8 POWer-DowWn MOOe b-40
Addressing MOdes @
Describes the operation and use of the TMS320C20x data-memory addressing modes.

6.1 Immediate ADdressing MOde i

6.2 Direct Addressing Modeot

6.3 Indirect Addressing Mode
Assembly Language INSIrUCtIONS ... ot 7. -]D

Describes the TMS320C20x assembly language instructions in alphabetical order. Begins with
a summary of the TMS320C20x instructions.

7.1 INStruction SEt SUMMANYttt e e e e

7.2 How To Use the Instruction Descriptionsot -12
7.3 INStruction DESCHPLIONS oot -20
On-Chip Peripherals 8

Introduces the TMS320C20x on-chip peripherals. Describes the clock generator, the
CLKOUT1-pin control register, the timer, the wait-state generator, and the general-purpose I/0O
pins.

8.1 Control of On-Chip Peripherals e -2
8.2 ClOCK GENEIAION . . ottt e e e e e e e e e -4
8.3 CLKOUT1-Pin Control (CLK) RegiSterouiii it -7
S I 4= -8
8.5 Walt-State GENErator\ttt e e B-15
8.6 General-Purpose /0 PiNS i e B-18
Synchronous Serial Port ... 9-
Describes the operation and control of the TMS320C20x on-chip synchronous serial port.

9.1 Overview of the Synchronous Serial Port i,

9.2 Components and Basic Operationouiiiiiiieii i

9.3 Controlling and Resettingthe Port i i

9.4 Managing the Contents of the FIFO Buffers

9.5 Transmitter OPErationttt

10

11

Contents

9.6 ReCeIVEr Operationt e D-22,
9.7 Troubleshooting e D-25
9.8 Enhanced Synchronous Serial Port (ESSP) 0-29
0.9 ESSP PiNS ..ottt D-30
9.10 ESSP REQISIEIS . ..ttt ittt e e D-32,
9.11 ESSP Register Programming Considerationsoouiiiinanaen... 0-40
Asynchronous Serial POrt e 10-1 |
Describes the operation and control of the TMS320C20x on-chip asynchronous serial port.

10.1 Overview of the Asynchronous Serial Port 10-2,
10.2 Components and Basic Operationiiiiiiiiiiii i 10-3
10.3 Controlling and Resetting the Port ... i 10-7]
10.4 Transmitter OPerationttt e e 10-19
10.5 Receiver Operationttt 10-20
TMS320C209ttt

Describes how the TMS320C209 differs from other TMS320C20x devices and is a central re-
source for all the TMS320C209-specific control registers and configuration information.

11.1 'C209 Versus Other 'C20X DeVICESottt 11-2
11.2 ’C209 Memory and I/O SPACESttt 11-5
10.3 G200 INterTUPES .ottt e e 11-10
11.4 ’'C209 On-Chip Peripherals i e 11-15
RegiSter SUMMANY . ..o e e e e e e e e e e A-1

Is a concise, central resource for information about the TMS320C20x on-chip registers. In-
cludes addresses, reset values, and descriptive illustrations for the registers.

Al Addresses and Reset Valuest e

A.2 Register DeSCIiPONS ...\ttt e e
TMS320F206 Flash Serial Loader —............ouoee e B-1 |
Discusses the TMS320F206 Flash Serial Loader.

B.1 TMS320F206 Flash Serial Loader Featuresc. ..

B.2 Functional DesCriptiont e

B.3 Serial Loader Code e
TMS320C1x/C2x/C20x/C5x Instruction Set Comparison ..., C—D

Discusses the compatibility of program code among the following devices: TMS320C1Xx,
TMS320C2x, TMS320C20x, and TMS320C5x.

C.1 Using the Instruction Set Comparison Table i ..
C.2 Enhanced INSIrUCLIONSottt e e e e e e
C.3 Instruction Set Comparison Table i e
Program EXamplest D-1 |

Presents examples of assembly language programs for the TMS320C20x, primarily examples
for the on-chip peripherals.

D.1 About These Program Examples s
D.2 Shared Program Codecoiiiiiii e e e
D.3 Task-Specific Program Code ...t e e
D.4 Introduction to Generating Bootloader Code

XV

Contents

E

G

XVi

Submitting ROM Codes t0 Tl ... e E

Explains the process for submitting custom program code to Tl for designing masks for the on-
chip ROM on a TMS320 DSP.

Design Considerations for Using XDS510 Emulator ~— F-.1|:|

Describes the JTAG emulator cable and how to construct a 14-pin connector on your target sys-
tem and how to connect the target system to the emulator.

F.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
F.2 BUS ProtOCOl
F.3 Emulator Cable Pod
F.4 Emulator Cable Pod Signal TIming i
F.5 Emulation Timing Calculations

F.6 Connections Between the Emulator and the Target System F-10
F.7 Physical Dimensions for the 14-Pin Emulator Connector F-14
F.8 Emulation Design Considerations ..., E—16

GlOSSaIY ..t @

Explains terms, abbreviations, and acronyms used throughout this book.

3-10
3-11

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22

Figures

Overall Block Diagram of the 'C20X e
Bus Structure Block Diagram

Block Diagram of the Input Scaling, Central Arithmetic Logic, and
Multiplication Sections of the CPU e

Block Diagram of the Input Scaling Section i
Operation of the Input Shifter for SXM =0 e
Operation of the Input Shifter for SXM =1 i
Block Diagram of the Multiplication Section
Block Diagram of the Central Arithmetic Logic Section
Shifting and Storing the High Word of the Accumulator
Shifting and Storing the Low Word of the Accumulator
ARAU and Related LOQICot e e e
Status ReGIStEr STO . ..ottt e e e e
Status RegISter ST ..o

Interface With External Program Memoryot
Pages of Data Memory
Interface With External Local Data Memoryt ‘
GREG Register Set to Configure 8K for Global Data Memory

Global and Local Data Memory for GREG = 11100000oouiiiniannnnn..

Using 8000h—FFFFh for Local and Global External Memory
1/0 Address Map for the "C20X oot e e e e
I/O Port Interface CirCUIIYt e e e e
HOLD Deasserted Before Reset Deasserted
Reset Deasserted Before HOLD Deasserted
'C203 Address Map
TMS320C206, TMS320LC206 Memory Map Configurations
TMS320F206 Memory Map Configurationc.. i

PMST Register Selection for RDoouerinaii e
Simplified Block Diagram of Bootloader Operationccoviiieaan..

Connecting the EPROM to the Processor
Storing the Program inthe EPROM e
Program Code Transferred From 8-Bit EPROM to 16-Bit RAM
Interrupt Vectors Transferred First During BootLoad
Program Memory Status (PMST) Register — (/O space FFE4h)
Enhanced 'C206 Bootloader Options
Boot-load Flowchart

Figures

4-23
4-24
4-25
4-26
4-27
4-28

7

[S R A O P
A WDNEDN
o ©

N -

|
WNPRPOUORMWNRPRPRPRPEROONOO

|
N

[
A WDNPR

CDOOCDGJOOOO\I\I\1\1030307?70303010101010101010101010101

| |
o

@@?LOCD
WN PPN

|
N

Py

(e

XViii

Destination Address Space for Programs in Program Memory
16-Bit Word Transfer

Host-"C206 Interface for SSP Boot-load Option
Figure 9. 8-Bit Word Transfer ... e
16-Bit Source Address for Parallel EPROM BootMode ...,
Handshake Protocol i e e
16-Bit Entry Address for Warm-BootMode i
Program-Address Generation Block Diagram

A PUSh OPEration e

A POp Operation e
4-Level Pipeline Operation
INT2/INT3 Request FIOW Charteouiiee e
Maskable Interrupt Operation Flow Chart i
'C20x Interrupt Flag Register (IFR) — Data-Memory Address 0006h -21
'C20x Interrupt Mask Register (IMR) — Data-Memory Address 0004h 5-23
'C20x Interrupt Control Register (ICR) — I/O-Space Address FFECh 5-26
Nonmaskable Interrupt Operation Flow Chart i, -29
Direct Addressing CONteEXt SAVEottt e e e e e 5-33
Indirect Addressing CoNtext SAVEttt e b-34
Instruction Register Contents for Example 6—=1 i, 6-2
Two Words Loaded Consecutively to the Instruction Register in Example 6-2 6-3
Pages of Data MemOIY e 6-4
Instruction Register (IR) Contents in Direct AddressingMode 6-5
Generation of Data Addresses in Direct AddressingMode 6-5
Instruction Register Content in Indirect Addressing, 6-12
Bit Numbers and Their Corresponding Bit Codes for BIT Instruction 7-45
Bit Numbers and Their Corresponding Bit Codes for BITT Instruction 7-47
LST #0 OPEIatioNnottt e e e e 7-87]
LST #1 OPerationttt e e e e e e e e e 7-88
Using the Internal OsCillator i -4
Using an External Oscillator e -5
'C20x CLK Register — I/O-Space Address FFE8h it -7
Timer Functional Block Diagram 8-8
'C20x Timer Control Register (TCR) — 1/0O-Space Address FFF8h 8-11
'C20x Wait-State Generator Control Register (WSGR) —

I/O-Space Address FFFCh e B-16
BIO Timing Diagram EXampleouitiri e B-19
Synchronous Serial Port Block Diagramt -3
2-Way Serial Port Transfer With External Frame Sync and External Clock 9-5
Synchronous Serial Port Control Register (SSPCR) — 1/0O-Space FFF1h 9-8
Burst Mode Transmission With Internal Frame Sync and

Multiple Words inthe Buffer e W
Burst Mode Transmission With External Frame Sync 9-18
Continuous Mode Transmission With Internal Frame Sync 9-20

[
P2 © 0~
N P o

w

(€3]

«laoc.loco«:cocoo@co
el el
)] N~

[l ol
TTT
w N

oy
P RN

[0
A OWODN P

o

=

N

'I'I'I'I'I'I'I'I'I'I'I'I'II'I'I'I'I'I'I'I'I'I'I'I'I'I

|
PR R R O0~NO® O

w

Figures

Continuous Mode Transmission With External Frame Sync b-21
Burst Mode RECEPLION o D-23
Continuous Mode ReCEPLIONt e D-24;

Test Bits INthe SSPCR e D-25
Synchronous Serial Port Status (SSPST) Register — I/O address FFF2h 9-32
Synchronous Serial Port Multichannel (SSPMC) Register — FFF3h 9-34
Synchronous Serial Port Count (SSPCT) Register —FFFBh -38
Typical Four-Channel Codec Interfacec.cco i p-41
Four-Channel 8-Bit CODEC Interface Timing Exampleccoouueeon.... b-41]
0-42)
10-3
10-6
10-7

Four-Channel 16-Bit CODEC Interface Timing Example
Asynchronous Serial Port Block Diagram ...t
Typical Serial Link Between a 'C20x Device anda Host CPU

Asynchronous Serial Port Control Register (ASPCR) —
I/O-Space Address FEFSN

/0 Status Register (IOSR) — 1/O-Space Address FFF6hoovoeeeeeen.... [10-10
Example of the Logic for PinS 100—103 10-1

Data TrANSMIL © ..\ ettt et e e e e e e e e e e e e e e e flo-19
DAtA RECEIVEottt et e e e e e e e e flo-20
'C209 AAAIESS MAPSottt e e e e e e e f1-6
'C209 Interrupt Flag Register (IFR) — Data-Memory Address 0006h 11-12
'C209 Interrupt Mask Register (IMR) — Data-Memory Address 0004h 11-13
'C209 Timer Control Register (TCR) — I/O Address FFFCh 11-16
'C209 Wait-State Generator Control Register (WSGR) — I/O Address FFFFh 11-18

'F206 Memory Map and Serial Port Connections,
TMS320F206 Flash Serial Loader — 'F206 Level 1 Flow Chart
Procedure for Generating Executable Files i i
TMS320 ROM Code Submittal Flow Chart i
14-Pin Header Signals and Header DIMeNSIONSt
Emulator Cable Pod Interface
Emulator Cable Pod TimiNgs e e
Emulator Connections Without Signal Buffering it
Emulator Connections With Signal Buffering o i [F-11
Target-System-Generated Test CloCK i e :
MUltiprocessor CONNECHIONSttt e e e et e e F-13
Pod/Connector DIMENSIONSt e e e e
14-Pin Connector DIMENSIONSttt e e e
Connecting a Secondary JTAG Scan Path to a Scan Path Linker
EMUO/1 Configuration to Meet Timing Requirements of Less Than 25 ns
Suggested Timings for the EMUO and EMUL Signalso,
EMUOQ/1 Configuration With Additional AND Gate to Meet Timing

Requirements of Greater Than 25 NS i e E-23
EMUO/1 Configuration Without Global Stop oo F-24
TBC Emulation Connections for n JTAG ScanPathso.... F-25

XiX

Tables

O A A A A T A O N S I O O LN
A OWONRPONOORWNREPNRNRENEPR

o

| T P R P
N

\l\l\l\l\l\l\l\l@@@(.lﬂm(ﬂm(ﬂm(ﬂmmmm
(A)I\)I—‘OJI\)I—‘I:I—‘@CD\ICDCH

0 ~NOo O

Typical Applications for TMS320 DSPSt
'C20x Generation SUMIMAIYttt e e e e et e e
Program and Data Memory on the TMS320C20x Devices

Serial Ports on the 'C20X DEVICESttt e e
Product Shift Modes for the Product-Scaling Shifter

Bit Fields of Status Registers STOand STL ...

Pins for Interfacing With External Memory and I/O Spaces 4-3
Data Page O AddresSs Mapii ittt e -8
Global Data Memory Configurations B-11
On-Chip Registers Mapped to /O Spaceiiiii e 4-16
'C203 Program-Memory Configuration Options, 4-24
'C203 Data-Memory Configuration Optionst 4-25
PMST Register Bit DeSCHPLIONSot e e et 1-40
Bootloader-Pin Configuration 1-41
Program-Address Generation SUMMArYttt et 5-3
Address Loading to the Program Counter 5-4
Conditions for Conditional Branches, Calls, and Returns -10
Groupings of CoNditioNS ot -11
'C20x Interrupt Locations and Priorities i e -16
'C20x IFR — Data-Memory Address 0006h Bit Descriptions b-21
'C20x IMR — Data-Memory Address 0004h Bit Descriptions b-23
'C20x ICR — 1/O-Space Address FFECh Bit Descriptions , b-26
Reset Values of On-Chip Registers Mappedto DataSpace 5-37
Reset Values of On-Chip Registers Mappedto I/O Space 5-37
Reset Conditions for the '"C206/'LC206ttt b-38
Indirect Addressing Operandsiiuii it 5-10
Effects of the ARU Code on the Current Auxiliary Register 6-13
Field Bits and Notation for Indirect Addressingc .. 6-14
Accumulator, Arithmetic, and Logic Instructions -4
Auxiliary Register INStruCtionso e e -7
TREG, PREG, and Multiply Instructions i -8
Branch INStrUCtiONS oo -9
Control INStrUCHIONS . . . oo e e -9
/O and Memory INStrUCtIONS e e 7-11.
Product Shift MOOES 7-37
Product Shift MOOES e [-167

(&)

[
~N o

oo

©

o

=

B 2 © ©O© ©O© O O O O ©
o o o |

[el e =

WN RPN

Tables

Peripheral Register Locations and Reset Conditions @
'C20X INpUt ClIOCK MOAES B-6)
'C20x TCR — I/O Space Address FFF8h Bit Descriptions ..., 8-11!
'C20x WSGR — /O Space Address FFFCh Bit Descriptions 8-16]
Setting the Number of Wait States With the 'C20x WSGR Bits 8-17]
SSP INterface PiNs -4
SSPCR — I/O-Space Address FFF1h Bit Descriptionscoviiieenn... 9-9
Selecting Transmit Clock and Frame SynCc SOUrces ..., 0-13
Run and Emulation Modes 0-26)
TMS320C20x Enhanced Synchronous Serial Port Interface Signals 9-30
ES S P REQIS OIS oo D-32,
SSPST Register — 1/0 address FFF2h Bit Descriptions ..., D-33
SSPMC Register — FFF3h Bit Descriptionst D-35
Typical CLKX/FSX Rates and Their Prescaler Values 0-38
Options/Functions for Burst Mode and Continuous Mode 0-4

Serial Port Configuration —Burst Mode p-44
Serial Port Configuration — Continuous Modeooirireuinennennn.. b-45
Asynchronous Serial Port Interface Pins i 10-4
ASPCR — I/O Space Address FFF5h Bit Descriptions 10-7
IOSR — I/0 Space Address FFF6h Bit Descriptionsccoviiiinn... 10-10
Common Baud Rates and the Corresponding BRD Values 10-14
Configuring Pins 100103 with ASPCR Bits CIO0—CIO3t 0-16
Viewing the Status of Pins I00-103 With IOSR Bits I00-I03 and DIO0-DIO3 10-17
'C209 Program-Memory Configuration Options ..., 11-8
'C209 Data-Memory Configuration Options ...t 11-9
'C209 On-Chip Registers Mapped to 1/O Spacecoiiiiiiiiiiinnenn.. 11-9
'C209 Interrupt Locations and Priorities 11-10
'C209 IFR — Data Memory Address 0006h Bit Descriptions 11-12
'C209 IMR — Data Memory Address 0004h Bit Descriptions 11-13
'C209 INPUL CIOCK MOTBSottt et e [1-16
'C209 TCR — I/O Address FFFCh Bit Descriptionscoeueeunan... f1-16
'C209 WSGR — I/O Address FFFFh Bit DESCHPONS ovoeoee e [11-18
Reset Values of the Status Registers i e -2
Addresses and Reset Values of On-Chip Registers Mapped to Data Space -2
Addresses and Reset Values of On-Chip Registers Mapped to I/O Space -2
Symbols and Acronyms Used in the Instruction Set Comparison Table -3
Summary of Enhanced INStruCtionsSt -5
Shared Programs in This APPendiX e -3
Task-Specific Programs in This Appendix i -3
14-Pin Header Signal DesCriplioNnsttt e e e -3
Emulator Cable Pod Timing Parameters ..., -6

Examples

i T
P OoOoO~NOOTh, WNERE PR

o

TPTT

PTTPPPPTTY
T
w N B

[
A WN P

= o

'II'I'II'IIUIUIUIUIU UUUIDUDUUUUU
S e el vl ol el P PR O o0~ OJ
o U WN

rn
A ow

XXii

An Interrupt Service Routine Supporting INTLand HOLDc.ovvn.. [a-19]
RPT Instruction Using Short-Immediate Addressing ..., 6-2
ADD Instruction Using Long-Immediate Addressing, 6-3
Using Direct Addressing with ADD (Shiftof 0t015) ...t 6-7
Using Direct Addressing with ADD (Shiftof 16) 6-7,
Using Direct Addressing With ADDCttt 6-8
Selecting a New Current Auxiliary Register -12
No Increment or DECIEMENTo e e 5-15
InCrement DY L ... o 5-15
Decrement DY L 5-16
Increment by IndexX AmMOUNt e 5-16
Decrement by Index AMOUNT o e 5-16
Increment by Index Amount With Reverse Carry Propagation 6-16
Decrement by Index Amount With Reverse Carry Propagation 6-16
Generic Command File (c203.cmd) ot -5
Header File With 1/0O Register Declarations (init.h) D-6
Header File With Interrupt Vector Declarations (vector.h) D-7
Implementing Simple Delay Loops (delay.asm) D-8
Testing and Using the Timer (timer.asm) e D-9
Testing and Using Interrupt INTL (intrl.asm)ouirenrraninaaeenens, D-10
Implementing a HOLD Operation (hold.asm) ...t D-11
Testing and Using Interrupts INT2 and INT3 (intr23.aSm)cooveueenenn... D-12
Asynchronous Serial Port Transmission (uart.asm)c.oeuieineinnennnn. D-13
Loopback to Verify Transmissions of Asynchronous Serial Port (echo.asm) D-14
Testing and Using Automatic Baud-Rate Detection on

Asynchronous Serial Port (autobaud.asm) i -16
Testing and Using Asynchronous Serial Port Delta Interrupts (bitio.asm) D-18
Synchronous Serial Port Continuous Mode Transmission (ssp.asm) D-20
Using Synchronous Serial Port With Codec Device (ad55.asm) D-21
Linker Command File D-24
Hex Conversion Utility Command File e D-24
Key Timing for a Single-Processor System Without Buffers F-

Key Timing for a Single- or Multiple-Processor System With

Key Timing for a Single- or Multiprocessor-System With

Buffered INPUt @and OUIPULottt et e e e et et F-3
Key Timing for a Single-Processor System Without Buffering (SPL) F-19
Buffered Input and OULPUL (SPL)o v sttt e e e

Chapter 1

Introduction

The TMS320C20x ('C20x) is one of several fixed-point generations of DSPs
in the TMS320 family. The 'C20x is source-code compatible with the
TMS320C2x. Much of the code written for the 'C2x can be reassembled to run
ona’C20x device. In addition, the 'C20x generation is upward compatible with
the "C5x generation of DSPs.

Topic Page
1.1 TMS320 Family ...ttt e
1.2 TMS320C20X GENEration ..o oov ettt e e
1.3 Key Features of the TMS320C20Xooenrnrreenaeennn.. 1f5 |

1-1

TMS320 Family

1.1 TMS320 Family

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs have an architecture de-
signed specifically for real-time signal processing. The following characteris-
tics make this family the ideal choice for a wide range of processing applica-
tions:

Flexible instruction sets
High-speed performance
Innovative parallel architectures
Cost effectiveness

Uooo

1.1.1 History, Development, and Advantages of TMS320 DSPs

1-2

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the “Product of the Year” title. The next
generation devices continue meeting new performance levels for TI DSPs.

Devices within a generation of the TMS320 family have the same CPU struc-
ture but different on-chip memory and peripheral configurations. Spin-off de-
vices use new combinations of on-chip memory and peripherals to satisfy a
wide range of needs in the worldwide electronics market. By integrating
memory and peripherals onto a single chip, TMS320 devices reduce system
cost and save circuit board space.

TMS320 Family

1.1.2 Typical Applications for the TMS320 Family

Table 1-1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems such as filtering and vocoding. They also support complex
applications that often require multiple operations to be performed simulta-
neously.

Table 1-1. Typical Applications for TMS320 DSPs

Automotive

Consumer

Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation

Vibration analysis
Voice commands

Digital radios/TVs

Educational toys

Music synthesizers

Pagers

Power tools

Radar detectors

Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose

Graphics/Imaging

Industrial

Adaptive filtering
Convolution

Correlation

Digital filtering

Fast Fourier transforms
Hilbert transforms

3-D rotation

Animation/digital maps
Homomorphic processing

Image compression/transmission
Image enhancement

Pattern recognition

Numeric control
Power-line monitoring
Robotics

Security access

Waveform generation Robot vision
Windowing Workstations
Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids

Patient monitoring
Prosthetics
Ultrasound equipment

Image processing

Missile guidance
Navigation

Radar processing

Radio frequency modems
Secure communications
Sonar processing

Telecommunications

Voice/Speech

1200- to 28 800-bps modems
Adaptive equalizers

ADPCM transcoders

Cellular telephones

Channel multiplexing

Data encryption

Digital PBXs

Digital speech interpolation (DSI)
DTMF encoding/decoding

Echo cancellation

Faxing

Line repeaters

Personal communications
systems (PCS)

Personal digital assistants (PDA)

Speaker phones

Spread spectrum communications

Video conferencing

X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis

Speech vocoding
Text-to-speech applications
Voice mail

Introduction 1-3

TMS320C20x Generation

1.2 TMS320C20x Generation

Texas Instruments uses static CMOS integrated-circuit technology to fabricate
the TMS320C20x DSPs. The architectural design of the 'C20x is based on that
of the "C5x. The operational flexibility and speed of the 'C20x and 'C5x are a
result of an advanced, modified Harvard architecture (which has separate
buses for program and data memory), a multilevel pipeline, on-chip peripher-
als, on-chip memory, and a highly specialized instruction set. The 'C20x per-
forms up to 40 MIPS (million instructions per second).

The 'C20x generation offers the following benefits:

a

a

a

Enhanced TMS320 architectural design for increased performance and

versatility

Modular architectural design for fast development of additional spin-off

devices

Advanced IC processing technology for increased performance

Fast and easy performance upgrades for 'C1x and 'C2x source code,
which is upward compatible with 'C20x source code

Enhanced instruction set for faster algorithms and for optimized high-level

language operation

New static design techniques for minimizing power consumption

Table 1-2 provides an overview of the basic features of the 'C20x DSPs.

Table 1-2. 'C20x Generation Summary

) On-Chip Memory MEM Serial Ports 110

Cycle Operating

Time Voltage Off-
Device (ns) (Vvdd) RAM ROM Flash Chip Sync Async PAR DMA Timers Package
TMS320C203 25/35/50 5V 544 — - 192K 1 1 64K x 16 Ext. 1 100 TQFPT
TMS320LC203 50 3.3V 544 — - 192K 1 1 64K x 16 Ext. 1 100 TQFPT
TMS320F206 50 5V 45K - 32K 192K 1 1 64K x 16 Ext. 1 100 TQFPT
TMS320C209 35/50 5V 45K 4K - 192K - - 64K x 16 Ext. 1 80 TQFPT
TMS320C206 25 3.3V 45K 32K - 192K 1 1 64K x 16 Ext. 1 100 TQFPt
TMS320LC206 25 3.3V 45K 32K - 192K 1 1 64K x 16 Ext. 1 100 TQFPt

t TQFP = Thin quad flat pack

Key Features of the TMS320C20x

1.3 Key Features of the TMS320C20x

Key features on the various 'C20x devices are:

a

Speed:
B 50-, 35-, or 25-ns execution time of a single-cycle instruction

B 20, 28.5, or 40 MIPS

Code compatibility with other TMS320 fixed-point devices:
B Source-code compatible with all 'C1x and 'C2x devices

B Upward compatible with the 'C5x devices

Memory:

B 224K words of addressable memory space (64K words of program
space, 64K words of data space, 64K words of 1/0 space, and 32K
words of global space)

B 544 words of dual-access on-chip RAM (288 words for data and 256
words for program/data)

B 32K words on-chip ROM or 32K words on-chip flash memory (on
'C206 and 'F206)

B 4K words of single-access on-chip RAM (on 'C206 and 'F206)

CPU:

32-bit arithmetic logic unit (CALU)

32-bit accumulator

16-bit x 16-bit parallel multiplier with 32-bit product capability

Three scaling shifters

Eight 16-bit auxiliary registers with a dedicated arithmetic unit for
indirect addressing of data memory

Program control:
B 4-level pipeline operation
B 8-level hardware stack

B User-maskable interrupt lines

Introduction 1-5

Key Features of the TMS320C20x

[J Instruction set:
W Single-instruction repeat operation
W Single-cycle multiply/accumulate instructions

B Memory block move instructions for better program/data
management

B Indexed-addressing capability

B Bit-reversed indexed-addressing capability for radix-2 FFTs

[On-chip peripherals:
W Software-programmable timer

W Software-programmable wait-state generator for program, data, and
I/O memory spaces

B Oscillator and phase-locked loop (PLL) to implement clock options:
x1, x2, x4, and —2 (only x2 and =2 available on 'C209)

B CLKregister for turning the CLKOUT1 pin on and off (not available on
'C209)

B Synchronous serial port (not available on 'C209)

Bl Asynchronous serial port (not available on 'C209)

[On-chip scanning-logic circuitry (IEEE Standard 1149.1) for emulation
and testing purposes

[Power:
B 5- or 3.3-V static CMOS technology

B Power-down mode to reduce power consumption

(1 Packages:
B 100-pin TQFP (thin quad flat pack)
B 80-pin TQFP for the 'C209

1-6

Chapter 2

Architectural Overview

This chapter provides an overview of the architectural structure and
components of the 'C20x. The 'C20x DSPs use an advanced, modified
Harvard architecture that maximizes processing power by maintaining
separate bus structures for program memory and data memory. The three
main components of the 'C20x are the central processing unit (CPU), memaory,
and on-chip peripherals.

Figure 2—1 shows an overall block diagram of the 'C20x.

Note:

All’C20x devices use the same central processing unit (CPU), bus structure,
and instruction set, but the 'C209 has some notable differences. For
example, although certain peripheral control registers have the same names
on all 'C20x devices, these registers are located at different I/O addresses
on the 'C209. See Chapter 11 for a detailed description of the differences on
the 'C209.

Topic Page
2.1 'C20X BUS SHIUCIUIE ..o\ttt ettt e et e e e 2
2.2 Central Processing Unit — i Z-El
2.3 Memory and /O SPACESottt 27 |
2.4 Program CONtrol 2t10 |
2.5 On-Chip Peripherals 2
2.6 Scanning-Logic CirCuitryottt 2-

2-1

Architectural Overview

Figure 2—1. Overall Block Diagram of the 'C20x

PRDB |
v
MUX
NPAR |
v
| pc]| [PAR] | MSTACK |
L ¢ Stack 8 x 16
DWEB
v v
| PAB PAB
T ° Program
‘j control
; \ T v
< Multiplier
ROM/flash 16 x 16 MUX
‘j -ﬁ
y f
P _ Input shifter
- SARAM L —
<
®
? A 4 f
< DARAM [T ARO]
BO - Auxiliary
® registers
v f ’ 8 x16 MUX
DARAM » v v
B1,B2 [¢
_.
vt
- -==-l- g]
)
.| sT10 ' v +
: STl : - Output shifter \ MUX / \ MUX /
—q— IMR " v
] | N "
' IFR '
.| crec |! DWEB
s v
| DWAB DWAB |
v
| DRAB DRAB |
PRDB DRDB

Note: The I/O-mapped (peripheral) registers are not part of the core; they are accessed as shown in Figure 2-2 on page 2-4.

2-2

'C20x Bus Structure

2.1 ’'C20x Bus Structure

Figure 2—2 shows a block diagram of the 'C20x bus structure. The 'C20x inter-
nal architecture is built around six 16-bit buses:

(1 PAB. The program address bus provides addresses for both reads from
and writes to program memory.

[0 DRAB. The data-read address bus provides addresses for reads from
data memory.

1 DWAB. The data-write address bus provides addresses for writes to data
memory.

(1 PRDB. The program read bus carries instruction code and immediate
operands, as well as table information, from program memory to the CPU.

1 DRDB. The data read bus carries data from data memory to the central
arithmetic logic unit (CALU) and the auxiliary register arithmetic unit
(ARAU).

(1 DWEB. The data write bus carries data to both program memory and data
memory.

Having separate address buses for data reads (DRAB) and data writes
(DWAB) allows the CPU to read and write in the same machine cycle.

Separate program and data spaces allow simultaneous access to program
instructions and data. For example, while data is multiplied, a previous product
can be added to the accumulator, and, at the same time, a new address can
be generated. Such parallelism supports a set of arithmetic, logic, and bit-ma-
nipulation operations that can all be performed in a single machine cycle. In
addition, the 'C20x includes control mechanisms to manage interrupts, re-
peated operations, and function/subroutine calls.

All 'C20x devices share the same CPU and bus structure; however, each de-
vice has different on-chip memory configurations and on-chip peripherals.

Architectural Overview 2-3

'C20x Bus Structure

Figure 2-2. Bus Structure Block Diagram

Memory
ROM/ BO B1, B2
flash SARAM DARAM DARAM erSiF;?:rds
T A A T A A
External / PAB |
 address bus)
¢ DRAB |
N A
\ DWAB |
External PRDB >
data bus :
DRDB >
A A v Vv
DWEB >
< Control bus >
-y v R vy _ _|__ ___ _ a—_—
r - - i T T o ST T T r
| On-chip peripherals/ | r | | External
registers mapped to | Central processing unit (CPU) | ;
: I/0 space : | | : signals
I
I Timer | | | ARAU slrr:rf)tuetr Multiplier | |
| - | | | | Memory
| Walt-st?te | | | | contol [T
| generator | | ri CALU TREG | |
| | | uxiliary | |
S};re]z(r:igﬁ)no?'?s | | registers Accumulaor oREG | | MULTI_DSP 4—|—>
I L : | | cLock/pLL fedb——
< 'I UART l |
| I | : Status Output Prr?_?tuct | | Interrupts ~ fe———>
| Other |/O_mapped | | reg|ster5 shifter shiiter | | JTAG/TEST
| registers | | | |
L —_——" 4 -] L

2-4

Central Processing Unit

2.2 Central Processing Unit

The CPU is the same on all the 'C20x devices. The 'C20x CPU contains:

A 32-bit central arithmetic logic unit (CALU)

A 32-bit accumulator

Input and output data-scaling shifters for the CALU

A 16-bit x 16-bit multiplier

A product-scaling shifter

Data-address generation logic, which includes eight auxiliary registers
and an auxiliary register arithmetic unit (ARAU)

Program-address generation logic

U ododood

2.2.1 Central Arithmetic Logic Unit (CALU) and Accumulator

The 'C20x performs 2s-complement arithmetic using the 32-bit CALU. The
CALU uses 16-bit words taken from data memory or derived from an immedi-
ate instruction, or it uses the 32-bit result from the multiplier. In addition to arith-
metic operations, the CALU can perform Boolean operations.

The accumulator stores the output from the CALU; it can also provide a second
input to the CALU. The accumulator is 32 bits wide and is divided into a high-
order word (bits 31 through 16) and a low-order word (bits 15 through 0).
Assembly language instructions are provided for storing the high- and low-
order accumulator words to data memory.

2.2.2 Scaling Shifters

The 'C20x has three 32-bit shifters that allow for scaling, bit extraction, ex-
tended arithmetic, and overflow-prevention operations:

[Input data-scaling shifter (input shifter). This shifter left shifts 16-bit input
data by 0 to 16 bits to align the data to the 32-bit input of the CALU.

[Output data-scaling shifter (output shifter). This shifter can left shift output
from the accumulator by 0 to 7 bits before the output is stored to data
memory. The content of the accumulator remains unchanged.

[Product-scaling shifter (product shifter). The product register (PREG) re-
ceives the output of the multiplier. The product shifter shifts the output of
the PREG before that output is sent to the input of the CALU. The product
shifter has four product shift modes (no shift, left shift by one bit, left shift
by four bits, and right shift by 6 bits), which are useful for performing multi-
ply/accumulate operations, performing fractional arithmetic, or justifying
fractional products.

Architectural Overview 2-5

Central Processing Unit

2.2.3 Multiplier

The on-chip multiplier performs 16-bit x 16-bit 2s-complement multiplication
with a 32-bit result. In conjunction with the multiplier, the 'C20x uses the 16-bit
temporary register (TREG) and the 32-bit product register (PREG). The TREG
always supplies one of the values to be multiplied. The PREG receives the re-
sult of each multiplication.

Using the multiplier, TREG, and PREG, the 'C20x efficiently performs funda-
mental DSP operations such as convolution, correlation, and filtering. The ef-
fective execution time of each multiplication instruction can be as short as one
CPU cycle.

2.2.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

2-6

The ARAU generates data memory addresses when an instruction uses indi-
rect addressing (see Chapter 6, Addressing Modes) to access data memory.
The ARAU is supported by eight auxiliary registers (ARO through AR7), each
of which can be loaded with a 16-bit value from data memory or directly from
an instruction word. Each auxiliary register value can also be stored to data
memory. The auxiliary registers are referenced by a 3-bit auxiliary register
pointer (ARP) embedded in status register STO.

Memory and I/O Spaces

2.3 Memory and I/O Spaces

The 'C20x memory is organized into four individually selectable spaces: pro-
gram, local data, global data, and I/O. These spaces form an address range
of 224K words.

All 'C20x devices include 288 words of dual-access RAM (DARAM) for data
memory and 256 words of data/program DARAM. Depending on the device,
it may also have data/program single-access RAM (SARAM) and read-only
memory (ROM) or flash memory. Table 2-1 shows how much ROM, flash
memory, DARAM, and SARAM are available on the different 'C20x devices.

Table 2-1. Program and Data Memory on the TMS320C20x Devices

Memory Type 'C203 'c206T 'F206 'C209
ROM (words) - 32K - 4K
Flash memory (words) - - 32K -
DARAM (words) 544 544 544 544
Data (words) 288 288 288 288
Data/program (words) 256 256 256 256
SARAM (words) - 4K 4K 4K

1°C206 refers to the *C206/'LC206 unless specified otherwise.

The 'C20x also has CPU registers that are mapped in data memory space and
peripheral registers that are mapped in on-chip 1/0 space. The 'C20x memory
types and features are introduced in the sections following this paragraph. For
more details about the configuration and use of the 'C20x memory and 1/O
space, see Chapter 4, Memory and I/O Space.

2.3.1 Dual-Access On-Chip RAM

All ’C20x devices have 544 words x 16-bits of on-chip DARAM, which can be
accessed twice per machine cycle. This memory is primarily intended to hold
data but, when needed, can also hold programs. It can be configured in one
of two ways:

[All 544 words are configured as data memaory.

[0 288 words are configured as data memory, and 256 words are configured
as program memory.

Because DARAM can be accessed twice per cycle, it improves the speed of
the CPU. The CPU operates within a four-cycle pipeline. In this pipeline, the

Architectural Overview 2-7

Memory and I/O Spaces

CPU reads data on the third cycle and writes data on the fourth cycle. However,
DARAM allows the CPU to write and read in one cycle; the CPU writes to
DARAM on the master phase of the cycle and reads from DARAM on the slave
phase. For example, suppose two instructions, A and B, store the accumulator
value to DARAM and load the accumulator with a new value from DARAM.
Instruction A stores the accumulator value during the master phase of the CPU
cycle, and instruction B loads the new value to the accumulator during the
slave phase. Because part of the dual-access operation is a write, it only ap-
plies to RAM.

2.3.2 Single-Access On-Chip Program/Data RAM

Some of the 'C20x devices have 4K 16-bit words of single-access RAM
(SARAM). The addresses associated with the SARAM can be used for both
data memory and program memory and are software- or hardware-configur-
able (depending on the device) to either external memory or the internal
SARAM. When configured as external, these addresses can be used for off-
chip data and program memory. Code can be booted from off-chip ROM and
then executed at full speed once itis loaded into the on-chip SARAM. Because
the SARAM can be mapped to program and/or data memory, the SARAM al-
lows for more flexible address mapping than the DARAM block.

SARAM is accessed only once per CPU cycle. When the CPU requests multi-
ple accesses, the SARAM schedules the accesses by providing a not-ready
condition to the CPU and then executing the accesses one per cycle. For ex-
ample, if the instruction sequence involves storing the accumulator value and
then loading a value to the accumulator, it would take two cycles to complete
in SARAM, compared to one cycle in DARAM.

2.3.3 Factory-Masked On-Chip ROM

'C206/'LC206 devices feature an on-chip, 32K 16-bit words of programmable
ROM. The ROM can be selected during reset by driving the MP/MC pin low.
If the ROM is not selected, the device starts its execution from off-chip
memory.

If you want a custom ROM, you can provide the code or data to be pro-
grammed into the ROM in object file format, and Texas Instruments will gener-
ate the appropriate process mask to program the ROM. See Appendix E for
details on how to submit ROM code to Texas Instruments.

Memory and I/O Spaces

2.3.4 Flash Memory

Some of the 'C20x devices feature on-chip blocks of flash memory, which is
electronically erasable and programmable, and non-volatile. Each block of
flash memory will have a set of control registers that allow for erasing, pro-
gramming, and testing of that block. The flash memaory blocks can be selected
during reset by driving the MP/MC pin low. If the flash memory is not selected,
the device starts its execution from off-chip memory. For a further description
on the TMS320F2xx flash devices and how they are used, please refer to the
flash technical reference, TMS320F2xx Flash Memory Technical Reference
(literature number SPRU282).

Architectural Overview 2-9

Program Control

2.4 Program Control

2-10

Several features provide program control:

[The program controller of the CPU decodes instructions, manages the
pipeline, stores the status of operations, and decodes conditional opera-
tions. Elements involved in program control are the program counter, the
status registers, the stack, and the address-generation logic.

[J Software mechanisms used for program control include branches, calls,
conditional instructions, a repeat instruction, reset, and interrupts.

For descriptions of these program control features, see Chapter 5, Program
Control.

On-Chip Peripherals

2.5 On-Chip Peripherals

Allthe 'C20x devices have the same CPU, but different on-chip peripherals are
connected to their CPUs. The on-chip peripherals featured on the 'C20x de-
vices are:

Clock generator (an oscillator and a phase lock loop circuit)
CLK register for turning the CLKOUT1 pin on and off

Timer

Wait-state generator

General-purpose input/output (1/0) pins

Synchronous serial port

Asynchronous serial port

oooood

2.5.1 Clock Generator

The clock generator consists of an internal oscillator and an internal phase lock
loop (PLL) circuit. The clock generator can be driven internally by connecting
the DSP to a crystal resonator circuit, or it can be driven by an external clock
source. The PLL circuit generates an internal CPU clock by multiplying the
clock source by a specified factor. Thus, you can use a clock source with a low-
er frequency than that of the CPU. The clock generator is discussed in section
8.2, on page 8-4.

2.5.2 CLKOUT1-Pin Control (CLK) Register
The 'C20x CLK register controls whether the master clock output signal
(CLKOUTL1) is available at the CLKOUT1 pin.

2.5.3 Hardware Timer

The 'C20x features a 16-bit down-counting timer with a 4-bit prescaler. Timer
control bits can stop, start, reload, and determine the prescaler count for the
timer. For more information, see section 8.4, Timer, on page 8-8.

2.5.4 Software-Programmable Wait-State Generator

Software-programmable wait-state logic is incorporated (without any external
hardware) for interfacing with slower off-chip memory and 1/O devices. The
'C209 wait-state generator generates zero or one wait states; the wait-state
generator on other 'C20x devices generates zero to seven wait states. For
more information, see section 8.5, Wait-State Generator, on page 8-15.

Architectural Overview 2-11

On-Chip Peripherals

2.5.5 General-Purpose I/0 Pins

2.5.6 Serial Ports

The 'C20x has pins that provide general-purpose input or output signals. All
'C20x devices have a general-purpose input pin, BIO, and a general-purpose
output pin, XF. Except forthe 'C209, the 'C20x devices also have pins 100, 101,
102, and 103, which are connected to corresponding bits (I00-103) mapped
into the on-chip 1/0 space. These bits can be individually configured as inputs
or outputs. For more information on the general-purpose pins, see section 8.6,
on page 8-18.

The serial ports available on the 'C20x vary by device, but two types of serial
ports are represented: synchronous and asynchronous. See Table 2-2 for the
number of each kind on the various 'C20x devices. The sections following the
table provide an introduction to the two types of serial ports.

Table 2-2. Serial Ports on the 'C20x Devices

Serial Ports 'C203 'C206 'F206 'C209
Synchronous 1 1 1 -
Asynchronous 1 1 1 -

Synchronous serial port (SSP)

The 'C20x synchronous serial port (SSP) communicates with codecs, other
'C20x devices, and external peripherals. The SSP offers:

[0 Twofour-word-deepfirstin, first out (FIFO) buffers that have interrupt-gen-
erating capabilities.

[J Burst and continuous transfer modes.
(O A wide range of operation speeds when external clocking is used.

If internal clocking is used, the speed is fixed at 1/2 of the internal DSP clock
frequency. For more information on the SSP, see Chapter 9.

Asynchronous serial port (ASP)

2-12

The 'C20x asynchronous serial port (ASP) communicates with asynchronous
serial devices. The ASP has a maximum transfer rate of 250,000 characters
per second (assuming it uses10 bits to transmit each 8-bit character). The ASP
also has logic for automatic baud detection, which allows the ASP to lock to
the incoming data rate. All transfers through the asynchronous serial port use
double buffering. See Chapter 10, Asynchronous Serial Port, for more in-
formation.

Scanning-Logic Circuitry

2.6 Scanning-Logic Circuitry

The 'C20x has JTAG scanning-logic circuitry that is compatible with IEEE
Standard 1149.1. This circuitry is used for emulation and testing purposes
only. The serial scan path is used to perform operational tests on the on-chip
peripherals. The internal scanning logic provides access to all of the on-chip
resources. Thus, the serial-scan pins and the emulation pins on 'C20x devices
allow on-board emulation. However, on all’'C20x devices, the serial scan path
does not have boundary scan logic. Appendix F provides information to help
you meet the design requirements of the Texas Instruments XDS5100 emula-
tor with respect to IEEE-1149.1 designs and discusses the XDS510 cable.

Architectural Overview 2-13

Chapter 3

Central Processing Unit

This chapter describes the main components of the central processing unit
(CPU). First, this chapter describes three fundamental sections of the CPU
(see Figure 3-1):

[Input scaling section
[J Multiplication section
[Central arithmetic logic section

The chapter then describes the auxiliary register arithmetic unit (ARAU), which
performs arithmetic operations independently of the central arithmetic logic
section. The chapter concludes with a description of status registers STO and
ST1, which contain bits for determining processor modes, addressing pointer
values, and indicating various processor conditions and arithmetic logic re-
sults.

Topic Page
3.1 InputScaling Section 3
3.2 Multiplication Section 3-
3.3 Central Arithmetic Logic Section 3-

3.4 Auxiliary Register Arithmetic Unit (ARAU) 3-
3.5 Status Registers STOand ST1ovirieieiiiea 3

Central Processing Unit

Figure 3-1. Block Diagram of the Input Scaling, Central Arithmetic Logic, and
Multiplication Sections of the CPU

Data write bus (DWEB)

Data read bus (DRDB) \ \
[
Program read bus (PRDB)) \ N N
[
N\
16 T 16 16 16 16 T 16
4 4 Y 7 2
............. ceecf-s » Multiplication X 1
« Input scaling X ' section !
! section ' ! '
; \MUx / X TREG N\ MUx/
: | ST ! 16 |
X X ' Multiplier — f= '
31 16]15 0]. . 16 x 16 Z
! Input shifter (32 bits) : R X :
' ' a PREG !
32 ' 32 !
' w '
! [Product shifter (32 bits) |
‘32 16 .
---------------------------17---.V7- v
, Central arithmetic logic MUX X
' section \——/ '
' 32 X
[\ N]
' T '
N B : CALU -
' P ¢ 32 1 '
! L 1 ;
, m Accumulator '
I 1 1
!) 32 '
[h \ ' 16
! [Output shifter (32 bits) | '

Input Scaling Section

3.1 Input Scaling Section

A 32-bit input data-scaling shifter (input shifter) aligns a 16-bit value coming
from memory to the 32-bit CALU. This data alignment is necessary for data-
scaling arithmetic as well as aligning masks for logical operations. The input
shifter operates as part of the data path between program or data space and
the CALU and, thus, requires no cycle overhead. Described directly below are
the input, the output, and the shift count of the input shifter. Throughout the dis-
cussion, refer to Figure 3-2.

Figure 3—2. Block Diagram of the Input Scaling Section

From program memory (PRDB)
From data memory (DRDB)

16
+ Input scaling X
! section '
«[31 16]15 0]

Input shifter (32 hits)

To CALU

Input . Bits 15 through 0 of the input shifter accept a 16-bit input from either of
two sources (see Figure 3-2):

[Thedatareadbus (DRDB). Thisinputis a value from a data memory loca-
tion referenced in an instruction operand.

[The program read bus (PRDB). This input is a constant value given as an
instruction operand.

Output . After avalue has been accepted into bits 15 through 0, the input shifter
aligns the16-bit value to the 32-bit bus of the CALU as shown in Figure 3-2.
The shifter shifts the value left 0 to 16 bits and then sends the 32-bit result to
the CALU.

During the left shift, unused LSBs in the shifter are filled with zeros, and unused
MSBs in the shifter are either filled with zeros or sign extended, depending on
the value of the sign-extension mode bit (SXM) of status register ST1.

Central Processing Unit 3-3

Input Scaling Section

Shift count . The shifter can left-shift a 16-bit value by 0 to 16 bits. The size
of the shift (or the shift count) is obtained from one of two sources:

(1 A constantembedded in the instruction word. Putting the shift count in the
instruction word allows you to use specific data-scaling or alignment op-
erations customized for your program code.

[The four LSBs of the temporary register (TREG). The TREG-based shift
allows the data-scaling factor to be determined dynamically so that it can
be adapted to the system’s performance.

Sign-extension mode bit. For many but not all instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, the output of the input shifter is sign extended.
Figure 3—-3 shows an example of an input value shifted left by 8 bits for
SXM =0. The MSBs of the value passed to the CALU are zero filled.
Figure 3—4 shows the same shift but with SXM = 1. The value is sign extended
during the shift.

Figure 3-3. Operation of the Input Shifter for SXM = 0

AF1l1

ils

Figure 3—4. Operation of the Input Shifter for SXM = 1

Input shifter
accepting the XXXX | AF11
value 32
Y
Output value
after left shift of 8 00AF 1100
(SXM =0)
AF11

ils

Input shifter
accepting the XXXX | AF11
value 32
Output value v
after left shift of 8 FFAF 1100

(SXM = 1)

Multiplication Section

3.2 Multiplication Section

The 'C20x uses a 16-bit x 16-bit hardware multiplier that can produce a signed
or unsigned 32-bit product in a single machine cycle. As shown in Figure 3-5,
the multiplication section consists of:

1 The 16-bit temporary register (TREG), which holds one of the multipli-
cands

1 The multiplier, which multiplies the TREG value by a second value from
data memory or program memory

(1 The 32-bit product register (PREG), which receives the result of the multi-
plication

[The product shifter, which scales the PREG value before passing it to the
CALU.

Figure 3-5. Block Diagram of the Multiplication Section
From data memory
From data memory
From program memory

Product shifter (32 bits) |

» Multiplication T 16 16 | 16!

! section .)

: TREG N\ MUx/ .

From data . 6 !
memory ' Multiplier = !
. 16 x 16 Z

6 !
Py PREG)

To high word!)
of PREG 132 :

p—TO data memory
To CALU

3.2.1 Multiplier

The 16-bit x 16-bit hardware multiplier can produce a signed or unsigned
32-bit product in a single machine cycle. The two numbers being multiplied are
treated as 2s-complement numbers, except during unsigned multiplication
(MPYU instruction). Descriptions of the inputs and output of the multiplier fol-
low.

Central Processing Unit 3-5

Multiplication Section

Inputs . The multiplier accepts two 16-bit inputs:

[Oneinputis always from the 16-bittemporary register (TREG). The TREG
is loaded before the multiplication with a data-value from the data read bus
(DRDB).

(1 The other input is one of the following:

B A data-memory value from the data read bus (DRDB).
B A program memory value from the program read bus (PRDB).

Output . After the two 16-bit inputs are multiplied, the 32-bit result is stored in
the product register (PREG). The output of the PREG is connected to the 32-bit
product-scaling shifter. Through this shifter, the product may be transferred
from the PREG to the CALU or to data memory (by the SPH and SPL instruc-
tions).

3.2.2 Product-Scaling Shifter

3-6

The product-scaling shifter (product shifter) facilitates scaling of the product
register (PREG) value. The shifter has a 32-bit input connected to the output
of the PREG and a 32-bit output connected to the input of the CALU.

Input . The shifter has a 32-bit input connected to the output of the PREG.

Output . After the shifter completes the shift, all 32 bits of the result can be
passed to the CALU, or 16 bits of the result can be stored to data memory.

Shift Modes . This shifter uses one of four product shift modes, summarized
in Table 3—1. As shown in the table, these modes are determined by the prod-
uct shift mode (PM) bits of status register ST1. In the first shift mode (PM = 00),
the shifter does not shift the product at all before giving it to the CALU or to data
memory. The next two modes cause left shifts (of one or four), which are useful
for implementing fractional arithmetic or justifying products. The right-shift
mode shifts the product by six bits, enabling the execution of up to 128 consec-
utive multiply-and-accumulate operations without causing the accumulator to
overflow. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there.

Note:

The right shift in the product shifter is always sign extended, regardless of
the value of the sign-extension mode bit (SXM) of status register ST1.

Muiltiplication Section

Table 3—1. Product Shift Modes for the Product-Scaling Shifter

PM Shift Comments

00 No shift Product sent to CALU or data write bus (DWEB) with no shift

01 Leftby 1shift Removes the extra sign bit generated in a 2s-complement
multiply to produce a Q31 productt

10 Leftby 4 bits Removes the extrafour sign bits generated in a 16-bit x 13-bit
2s-complement multiply to produce a Q31 product? when
multiplying by a 13-bit constant

11 Right by 6 bits Scales the product to allow up to 128 product accumulations

without overflowing the accumulator. The right shift is always
sign extended, regardless of the value of the sign-extension
mode bit (SXM) of status register ST1.

tA Q31 number is a binary fraction in which there are 31 digits to the right of the binary point
(the base 2 equivalent of the base 10 decimal point).

Central Processing Unit 3-7

Central Arithmetic Logic Section

3.3 Central Arithmetic Logic Section

Figure 3—6 shows the main components of the central arithmetic logic section,
which are:

(4 The central arithmetic logic unit (CALU), which implements a wide range
of arithmetic and logic functions.

[The 32-bitaccumulator (ACC), which receives the output of the CALU and
is capable of performing bit shifts on its contents with the help of the carry
bit (C). Figure 3—-6 shows the accumulator’s high word (ACCH) and low
word (ACCL).

(1 The output shifter, which can shift a copy of either the high word or low
word of the accumulator before sending it to data memory for storage.

Figure 3-6. Block Diagram of the Central Arithmetic Logic Section

From input shifter
From product shifter

.............................

Central arithmetic logic
section

32

To data memory

Central Arithmetic Logic Section

3.3.1 Central Arithmetic Logic Unit (CALU)

3.3.2 Accumulator

The central arithmetic logic unit (CALU), implements a wide range of arithme-
tic and logic functions, most of which execute in a single clock cycle. These
functions can be grouped into four categories:

] 16-bit addition

] 16-bit subtraction

[Boolean logic operations

[Bittesting, shifting, and rotating.

Because the CALU can perform Boolean operations, you can perform bit ma-
nipulation. For bit shifting and rotating, the CALU uses the accumulator. The
CALU isreferredto as central because there is an independent arithmetic unit,
the auxiliary register arithmetic unit (ARAU), which is described in section 3.4.
A description of the inputs, the output, and an associated status bit of the CALU
follows.

Inputs . The CALU has two inputs (see Figure 3-6):
J One inputis always provided by the 32-bit accumulator.

[The other input is provided by one of the following:

B The product-scaling shifter (see section 3.2.2)
B The input data-scaling shifter (see section 3.1)

Output . Once the CALU performs an operation, it transfers the result to the
32-bitaccumulator, which is capable of performing bit shifts of its contents. The
output of the accumulator is connected to the 32-bit output data-scaling shifter.
Through the output shifter, the accumulator’s upper and lower 16-bit words
can be individually shifted and stored to data memory.

Sign-extension mode bit. For many but not all instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, sign extension is enabled.

Once the CALU performs an operation, it transfers the result to the 32-bit accu-
mulator, which can then perform single-bit shifts or rotations on its contents.
Each of the accumulator’s upper and lower 16-bit words can be passed to the
output data-scaling shifter, where it can be shifted, and then stored in data
memory. Status bits and branch instructions associated with the accumulator
are discussed directly below.

Central Processing Unit 3-9

Central Arithmetic Logic Section

3-10

Status bits . Four status bits are associated with the accumulator:

[Carry bit (C). C (bit 9 of status register ST1) is affected during:

B Additions to and subtractions from the accumulator:

C=0 When the result of a subtraction generates a borrow.

When the result of an addition does not generate a carry.
(Exception: When the ADD instruction is used with a shift of 16
and no carry is generated, the ADD instruction has no affect on
C)

C=1 When the result of an addition generates a carry.

When the result of a subtraction does not generate a borrow.
(Exception: When the SUB instruction is used with a shift of 16
and no borrow is generated, the SUB instruction has no effect
on C.)

W Single-bit shifts and rotations of the accumulator value. During a left
shift or rotation, the most significant bit of the accumulator is passed to
C; during a right shift or rotation, the least significant bitis passed to C.

(1 Overflow mode bit (OVM). OVM (bit 11 of status register STO) determines
how the accumulator will reflect arithmetic overflows. When the processor
is in overflow mode (OVM = 1) and an overflow occurs, the accumulator
is filled with one of two specific values:

B Ifthe overflow is in the positive direction, the accumulator is filled with
its most positive value (7FFF FFFFh).

B Ifthe overflowisin the negative direction, the accumulator is filled with
its most negative value (8000 0000h).

(4 Overflow flag bit (OV). OV is bit 12 of status register STO. When no accu-
mulator overflow is detected, OV is latched at 0. When overflow (positive
or negative) occurs, OV is set to 1 and latched.

[Test/control flag bit (TC). TC (bit 11 of status register ST1) issetto 0 or 1
depending on the value of atested bit. In the case of the NORM instruction,
if the exclusive-OR of the two MSBs of the accumulator is true, TC is set
to 1.

A number of branch instructions are implemented based on the status of bits
C, 0V, and TC, and on the value in the accumulator (as compared to zero). For
more information about these instructions, see section 5.4, Conditional
Branches, Calls, and Returns, on page 5-10.

Central Arithmetic Logic Section

3.3.3 Output Data-Scaling Shifter

The output data-scaling shifter (output shifter) has a 32-bit input connected to
the 32-bit output of the accumulator and a 16-bit output connected to the data
bus. The shifter copies all 32-bits of the accumulator and then performs a left
shift on its content; it can be shifted from zero to seven bits, as specified in the
corresponding store instruction. The upper word (SACH instruction) or lower
word (SACL instruction) of the shifter is then stored to data memory. The con-
tent of the accumulator remains unchanged.

When the output shifter performs the shift, the MSBs are lost and the LSBs are
zero filled. Figure 3—-7 shows an example in which the accumulator value is
shifted left by four bits and the shifted high word is stored to data memory.
Figure 3-8 shows the same accumulator value shifted left by 6 bits and then
the shifted low word stored.

Figure 3—7. Shifting and Storing the High Word of the Accumulator

Accumulator OOFO| FOA1L
32
Output shifter
(left shift by 4 bits) 0FOF oA10
16
Data-memory
location OFOF

Figure 3-8. Shifting and Storing the Low Word of the Accumulator

Accumulator 00FO0| FOAL
32
Output shifter
(left shift by 6 bits) 3C3C 2840
16
Data-memory
location 2840

Central Processing Unit 3-11

Auxiliary Register Arithmetic Unit (ARAU)

3.4 Auxiliary Register Arithmetic Unit (ARAU)

The CPU also contains the auxiliary register arithmetic unit (ARAU), an arith-
metic unit independent of the central arithmetic logic unit (CALU). The main
function of the ARAU is to perform arithmetic operations on eight auxiliary reg-
isters (AR7 through ARO) in parallel with operations occurring in the CALU.

Figure 3-9 shows the ARAU and related logic.

Figure 3-9. ARAU and Related Logic

3-12

Data read bus (DRDB)

/

FTH

AR7 Iy - _| ARP |
AR6 ¢)\
AR5 |« Jl 3
AR4 < — / MUX \
AR3 < —

< | V' 7 3 3
AR?2 —
AR1 $ —] 3LSBs
ARO _ [Instruction register |

8LSBs

) / \ 4 \ 4 \
MUX
16
A A 4
; ARAU
16, /N_16
N16
\

Data write bus (DWEB)

Data-read address bus (DRAB)
|

Data-write address bus (DWAB)
|

Auxiliary Register Arithmetic Unit (ARAU)

The eight auxiliary registers (AR7—ARO) provide flexible and powerful indirect
addressing. Any location in the 64K data memory space can be accessed us-
ing a 16-bit address contained in an auxiliary register. For the details of indirect
addressing, see section 6.3 on page 6-9.

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register STO with a value from 0 through 7. The ARP can be
loaded as a primary operation by the MAR instruction (which only performs
modifications to the auxiliary registers and the ARP) or by the LST instruction
(which can load a data-memory value to STO by way of the data read bus,
DRDB). The ARP can be loaded as a secondary operation by any instruction
that supports indirect addressing.

Theregister pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rent auxiliary register is used as the address at which the data-memory access
will take place. The ARAU passes this address to the data-read address bus
(DRAB) if the instruction requires a read from data memory, or it passes the
address to the data-write address bus (DWAB) if the instruction requires a
write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the
ARAU, which implements unsigned 16-bit arithmetic.

3.4.1 ARAU and Auxiliary Register Functions
The ARAU performs the following operations:

[Increments or decrements an auxiliary register value by 1 or by an index
amount (by way of any instruction that supports indirect addressing)

[Adds aconstant value to an auxiliary register value (ADRK instruction) or
subtracts a constant value from an auxiliary register value (SBRK instruc-
tion). The constant is an 8-bit value taken from the eight LSBs of the
instruction word.

[0 Compares the content of ARO with the content of the current AR and puts
the result in the test/control flag bit (TC) of status register ST1 (CMPR
instruction). The result is passed to TC by way of the data write bus
(DWEB).

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operations is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: During processing of the NORM
instruction, the auxiliary register and/or ARP maodification is done during the

Central Processing Unit 3-13

Auxiliary Register Arithmetic Unit (ARAU)

3-14

execute phase of the pipeline. For information on the operation of the pipeline,
see section 5.2 on page 5-7.

In addition to using the auxiliary registers to reference data-memory address-
es, you can use them for other purposes. For example, you can:

(1 Use the auxiliary registers to support conditional branches, calls, and re-
turns by using the CMPR instruction. This instruction compares the con-
tent of ARO with the content of the current AR and puts the result in the
test/control flag bit (TC) of status register ST1.

[0 Usethe auxiliary registers for temporary storage by using the LAR instruc-
tion to load values into the registers and the SAR instruction to store AR
values to data memory.

(1 Use the auxiliary registers as software counters, incrementing or decre-
menting them as necessary.

Status Registers STO and ST1

3.5 Status Registers STO and ST1

The 'C20x has two status registers, STO and ST1, which contain status and
control bits. These registers can be stored to and loaded from data memory,
thus allowing the status of the machine to be saved and restored for subrou-
tines.

The LST (load status register) instruction writes to STO and ST1, and the SST
(store status register) instruction reads from STO and ST1 (with the exception
of the INTM bit, which is not affected by the LST instruction). Many of the indi-
vidual bits of these registers can be set and cleared using the SETC and CLRC
instructions. For example, the sign-extension mode is set with SETC SXM and
cleared with CLRC SXM.

Figure 3—10 and Figure 3—11 show the organization of status registers STO
and ST1, respectively. Several bits in the status registers are reserved; they
are always read as logic 1s. The other bits are described in alphabetical order
in Table 3-2.

Figure 3—-10. Status Register STO

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
ARP oV OVM 1t INTM DP
R/W-x R/W-0 R/W-x R/W-1 R/W-x

Note: R =Read access; W =Write access; value following dash (-) is value after reset (x means value not affected by reset).

1 This reserved bit is always read as 1. Writes have no effect on it.

Figure 3—11. Status Register ST1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARB CNF TC SXM C R e I XF 1t pat PM
R/W—x R/W-0 R/W—x R/W-1 R/W-1 R/W-1 R/W-00

Note: R=Read access; W = Write access; value following dash (-) is value after reset (x means value not affected by reset).

t These reserved bits are always read as 1s. Writes have no effect on them.

Central Processing Unit 3-15

Status Registers ST0 and ST1

Table 3—2. Bit Fields of Status Registers STO and ST1

Name

Description

ARB

ARP

CNF

DP

INTM

ov

Auxiliary register pointer buffer. ~ Whenever the auxiliary register pointer (ARP) is loaded, the
previous ARP value is copied to the ARB, except during an LST (load status register) instruction.
When the ARB is loaded by an LST instruction, the same value is also copied to the ARP.

Auxiliary register pointer. This 3-bit field selects which auxiliary register (AR) to use in indirect
addressing. When the ARP is loaded, the previous ARP value is copied to the ARB register, except
during an LST (load status register) instruction. The ARP may be modified by memory-reference
instructions using indirect addressing, and by the MAR (modify auxiliary register) and LST
instructions. When the ARB is loaded by an LST instruction, the same value is also copied to the
ARP. For more details onthe use of ARP in indirect addressing, see section 6.3, Indirect Addressing
Mode, on page 6-9.

Carry bit . This bitis set to 1 if the result of an addition generates a carry, or cleared to O if the result
of a subtraction generates a borrow. Otherwise, it is cleared after an addition or set after a
subtraction, exceptif the instruction is ADD or SUB with a 16-bit shift. In these cases, ADD can only
set and SUB only clear the carry bit, but cannot affect it otherwise. The single-bit shift and rotate
instructions also affect this bit, as well as the SETC, CLRC, and LST instructions. The conditional
branch, call, and return instructions can execute based on the status of C. C is set to 1 on reset.

On-chip DARAM configuration bit . This bit determines whether reconfigurable dual-access
RAM blocks are mapped to data space or to program space. The CNF bit may be modified by the
SETC CNF, CLRC CNF, and LST instructions. Reset clears the CNF bit to 0. For more information
about CNF and the dual-access RAM blocks, see Chapter 4, Memory and I/0 Spaces.

CNF=0 Reconfigurable dual-access RAM blocks are mapped to data space.
CNF=1 Reconfigurable dual-access RAM blocks are mapped to program space.

Data page pointer. When an instruction uses direct addressing, the 9-bit DP field is concatenated
with the 7 LSBs of the instruction word to form a full 16-bit data-memory address. For more details,
see section 6.2, Direct Addressing Mode, on page 6-4. The LST and LDP (load DP) instructions
can modify the DP field.

Interrupt mode bit . This bit enables or disables all maskable interrupts. INTM is set and cleared
by the SETC INTM and CLRC_INTM instructions, respectively. INTM has no effect on the
nonmaskable interrupts RS and NMI or on interrupts initiated by software. INTM is unaffected by
the LST (load status register) instruction. INTM is set to 1 when an interrupt trap is taken (except
in the case of the TRAP instruction) and at reset.

INTM =0 All unmasked interrupts are enabled.
INTM =1 All maskable interrupts are disabled.
Overflow flag bit. This bit holds a latched value that indicates whether overflow has occurred in
the CALU. OV is set to 1 when an overflow occurs in the CALU. Once an overflow occurs, the OV

bit remains set until it is cleared by a reset, a conditional branch on overflow (OV) or no overflow
(NOV), or an LST instruction .

3-16

Status Registers STO and ST1

Table 3—2. Bit Fields of Status Registers STO and ST1 (Continued)

Name

Description

OVM

PM

SXM

TC

XF

Overflow mode bit. OVM determines how overflows in the CALU are handled. The SETC and
CLRC instructions set and clear this bit, respectively. An LST instruction can also be used to modify
OVM.

OVM =0 Results overflow normally in the accumulator.

OVM =1 The accumulator is set to either its most positive or negative value upon encountering
an overflow. (See section 3.3.2, Accumulator.)

Product shift mode. PM determines the amount that the PREG value is shifted on its way to the
CALU or to data memory. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there. PM is loaded by the SPM and LST instructions. The
PM bits are cleared by reset.

PM =00 The multiplier’s 32-bit product is passed to the CALU or to data memory with no shift.

PM =01 The output of the PREG is left shifted one place (with the LSBs zero filled) before
being passed to the CALU or to data memory.

PM =10 The output of the PREG is left shifted four bits (with the LSBs zero filled) before being
passed to the CALU or to data memory.

PM=11 This mode produces a right shift of six bits, sign extended.

Sign-extension mode bit. SXM does not affect the basic operation of certain instructions. For
example, the ADDS instruction suppresses sign extension regardless of SXM. This bitis set by the
SETC SXM instruction and cleared by the CLRC SXM instruction, and may be loaded by the LST
instruction. SXM is set to 1 by reset.

SXM =0 This mode suppresses sign extension.

SXM=1 In this mode, data values that are shifted in the input shifter are sign extended before
they are passed to the CALU.

Test/control flag bit. The TC bitis setto 1ifabittested by BIT orBITTisa 1, ifa compare condition
tested by CMPR exists between the current auxiliary register and ARO, or if the exclusive-OR
function of the two MSBs of the accumulator is true when tested by a NORM instruction. The
conditional branch, call, and return instructions can execute based on the condition of the TC bit.
The TC bit is affected by the BIT, BITT, CMPR, LST, and NORM instructions.

XF pin status bit . This bit determines the state of the XF pin, which is a general-purpose output
pin. XF is set by the SETC XF instruction and cleared by the CLRC XF instruction. XF can also be
modified with an LST instruction. XF is set to 1 by reset.

Central Processing Unit 3-17

Chapter 4

Memory and I/O Spaces

This chapter describes the 'C20x memory configuration options and the
address maps of the individual 'C20x devices. It also illustrates typical ways
of interfacing the 'C20x with external memory and external input/output (1/O)
devices.

Each 'C20x device has a 16-bit address line that accesses four individually
selectable spaces (224K words total):

[A 64K-word program space
[A 64K-word local data space
1 A 32K-word global data space
1 A 64K-word I/O space

Also available on select 'C20x devices are an on-chip bootloader and a HOLD
operation. The on-chip bootloader allows a 'C20x to boot software from an
external source to a 16-bit external RAM at reset. The HOLD operation allows
a 'C20x to give external devices direct memory access to external program,
data, and I/O spaces.

Topic Page
4.1 Overview of the Memory and I/0O Spaces 4-
4.2 Program MEMOYttt e 45 |
4.3 Local Data MEMOIY\ttt e i 4
4.4 Global Data MEMOIYoo it 4-11 |
A5 1/O SPaACE ..ot 1-14
4.6 Direct Memory Access Using the HOLD Operation 4-18 |
4.7 Device-Specific Information 4-p2 |
4.8 ’C203 Bootloader
4.9 'C206/LC206 Bootloaderl 4

4-1

Overview of the Memory and I/O Spaces

4.1 Overview of the Memory and I/O Spaces

The 'C20x address map is organized into four individually selectable spaces:

(O Program memory (64K words) contains the instructions to be executed,
as well as immediate data used during program execution.

[Local data memory (64K words) holds data used by the instructions.

[0 Global data memory (32K words) shares data with other processors or
serves as additional data space. Addresses in the upper 32K words
(8000h—FFFFh) of local data memory can be used for global data memory.

[Input/output (I/O) space (64K words) interfaces to external peripherals
and contains registers for the on-chip peripherals.

These spaces provide a total address range of 224K words. The 'C20x
includes a considerable amount of on-chip memory to aid in system
performance and integration and a considerable amount of addresses that can
be used for external memory and I/O devices.

The advantages of operating from on-chip memory are:

[Higher performance than external memory (because the wait states
required for slower external memories are avoided)

(1 Lower cost than external memory
(1 Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a
larger address space.

The 'C20x design is based on an enhanced Harvard architecture. The 'C20x
memory spaces are accessible on three parallel buses—the program address
bus (PAB), the data-read address bus (DRAB), and the data-write address bus
(DWAB). Because the operations of the three buses are independent, it is
possible to access both the program and data spaces simultaneously. Within
a given machine cycle, the central arithmetic logic unit (CALU) can execute as
many as three concurrent memory operations.

Overview of the Memory and I/O Spaces

4.1.1 Pins for Interfacing to External Memory and I/O Spaces

Fou

r pin types are used for interfacing to external memory and /O space.

Table 4-1 describes the main types as:

a

External buses. Sixteen signals (A15-A0) are available for passing an
address from the 'C20x to another device. Sixteen signals (D15-D0) are
available for transferring a data value between the 'C20x and another
device.

Select signals. These signals can be used by external devices to
determine when the 'C20x is requesting access to off-chip locations, and
whether that request is for data, program, global, or I/O space.

Read/write signals. These signals indicate to external devices the
direction of a data transfer (to the 'C20x or from the 'C20x).

Request/control signals. The input request signals (BOOT, MP/MC,
RAMEN, READY, and HOLD) effect a change in the operation of the
'C20x. The output HOLDA is the response to HOLD.

Table 4-1. Pins for Interfacing With External Memory and I/O Spaces

Pin(s) Description
External buses A15-A0 The 16 lines of the external address bus. This bus can address up to 64K
words of external memory or 1/0 space.
D15-D0 The 16 bidirectional lines of the external data bus. This bus carries data
to and from external memory or I/O space.
Select signals DS Data memory select pin. The 'C20x asserts DS to indicate an access to
external data memory (local or global).
BR Busrequest pin. The 'C20x asserts both BRand DS toindicate an access
to global data memory.
PS Program memory select pin. The 'C20x asserts PStoindicate an access
to external program memory.
IS I/O space select pin. The 'C20x asserts IS to indicate an access to
external /O space.
STRB External access active strobe. The 'C20x asserts STRB during accesses

to external program, data, or I/O space.

Memory and I/O Spaces 4-3

Overview of the Memory and I/O Spaces

Table 4-1. Pins for Interfacing With External Memory and I/O Spaces (Continued)

Pin(s)

Description

Read/write RIW
signals

RD

WE
Request/control BOOT

signals

MP/MC

RAMEN

READY

HOLD

HOLDA

Read/write pin. This pin indicates the direction of transfer between the
'C20x and external program, data, or I/O space.

Read select pin. The 'C20x asserts RD to request a read from external
program, data, or I/O space.

Write enable pin. The 'C20x asserts WE to request a write to external
program, data, or I/O space.

Boot-load pin. This pin is only on devices that have the on-chip
bootloader. If BOOT is low during a hardware reset, the 'C20x transfers
code from EPROM in global data memory to RAM in external program
memory.

Microprocessor/microcomputer pin. This pin is only on devices with
on-chip non-volatile program memory. The level on this pin is tested at
reset. If MP/MC is high, the device is in microprocessor mode (the reset
vector is fetched from external memory). If MP/MC is low, the device is
in microcomputer mode (the reset vector is fetched from on-chip
memory).

Single-access RAM enable pin. On 'C20x devices with on-chip
single-access RAM, when this pinis high, the RAM is enabled; when this
pin is low, the RAM is disabled.

External device ready pin (for generating wait states externally). When
this pin is driven low, the 'C20x waits one CPU cycle and then tests
READY again. After READY is driven low, the 'C20x does not continue
processing until READY is driven high. If READY is not used, it should
be kept high. For a’C20x device with a bootloader, READY must be high
at boot time.

HOLD operation request pin. An external device can request control of
the external buses by asserting HOLD. After the 'C20x (along with proper
software logic) asserts HOLDA, the external device controls the buses
until it deasserts HOLD.

HOLD acknowledge pin. The 'C20x (with assistance from proper
program code) asserts HOLDA to acknowledge that HOLD has been
asserted and places its external buses in high impedance.

4-4

Program Memory

4.2 Program Memory

Program-memory space holds the code for applications; it can also hold table
information and constant operands. The program-memory space addresses
up to 64K 16-bit words. Every 'C20x device contains a DARAM block BO that
can be configured as program memory or data memory. Other on-chip
program memory may be SARAM and ROM or flash memory. For information
on configuring on-chip program-memory blocks, see section 4.7.

4.2.1 Interfacing With External Program Memory

The 'C20x can address up to 64K words of external program memory. While
the 'C20x is accessing the on-chip program-memory blocks, the external
memory signals PS and STRB are in the high state. The external buses are
active only when the 'C20x is accessing locations within the address ranges
mapped to external memory. An active PS signal indicates that the external
buses are being used for program memory. Whenever the external buses are
active (when external memory or 1/0O space is being accessed), the 'C20x
drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast
access time. If fast memory is not available, or if speed is not a serious
consideration, you can use the the READY signal and/or the on-chip wait-state
generator to create wait states.

Figure 4-1 shows an example of interfacing to external program memory. In
the figure, 8K x 16-bit static memory is interfaced to the 'C20x using two
8K x 8-bit RAMs.

Obtain the Proper Timing Information

When interfacing memory with high-speed 'C20x devices, refer to
the data sheet for that 'C20x device for the required access, delay,
and hold times.

Memory and I/O Spaces 4-5

Program Memory

Figure 4-1. Interface With External Program Memory

4-6

'C20x DSP

8K x 8 RAM

R 00
Al D1 0>
A2 D2 D3
A3 D3 D4
A4 D4 oE
A5 D5 o
A6 D6 o
A7 D7

A8

A9

A0 WE

All RD

A12 CE|l—

A0 DO D8
Al D1 D9
A2 D2 D10
A3 D3 Dil
A4 D4 D12
A5 D5 D13
A6 D6 D14
A7 D7 D15
A8

A

A0 WE

All RD

Al2 CE|l—

Local Data Memory

4.3 Local Data Memory

The local data-memory space addresses up to 64K 16-bit words. Every 'C20x
device has three on-chip DARAM blocks: B0, B1, and B2. Block BO has 256
words that are configurable as either data locations or program locations.
Blocks B1 (256 words) and B2 (32 words) have a total of 288 words that are
available for data memory only. Some 'C20x devices, in addition to the three
DARAM blocks, have an on-chip SARAM block that can be used for program
and/or data memory. Section 4.7 tells how to configure these memory blocks.

Data memory can be addressed with either of two addressing modes: direct-
addressing mode or indirect-addressing mode. Addressing modes are
described in detail in Chapter 6.

When direct addressing is used, data memory is addressed in blocks of 128
words called data pages. Figure 4—2 shows how these blocks are addressed.
The entire 64K of data memory consists of 512 data pages labeled 0 through
511. The current data page is determined by the value in the 9-bit data page
pointer (DP) in status register STO. Each of the 128 words on the current page
is referenced by a 7-bit offset, which is taken from the instruction that is using
direct addressing. Therefore, when an instruction uses direct addressing, you
must specify both the data page (with a preceding instruction) and the offset
(in the instruction that accesses data memory).

Figure 4-2. Pages of Data Memory
DP value Offset 'C20x Data Memory
0000 0000 0 | 000 0000

: : Page 0: 0000h—007Fh
0000 0000 0| 111 1111
0000 0000 1 | 000 0000

: : Page 1: 0080h—00FFh
0000 0000 1| 111 1111

0000 0001 0| 000 0000

. : Page 2: 0100h—017Fh
0000 0001 0 111 1111

1111 11111 | 000 0000
X Page 511: FF80h—-FFFFh

1111 1111 1 | 111 1111

Memory and I/O Spaces 4-7

Local Data Memory

4.3.1 Data Page 0 Address Map

Table 4-2 shows the address map of data page 0 (addresses 0000h—007Fh).
Note the following:

[Three memory-mapped registers can be accessed with zero wait states:

B Interrupt mask register (IMR)
B Global memory allocation register (GREG)
B Interrupt flag register (IFR)

(1 The test/emulation reserved area is used by the test and emulation
systems for special information transfers.

Do Not Write to Test/Emulation Addresses

Writing to the test/emulation addresses can cause the device to
change its operational mode and, therefore, affect the operation of
an application.

(1 The scratch-pad RAM block (B2) includes 32 words of DARAM that
provide for variable storage without fragmenting the larger RAM blocks,
whether internal or external. This RAM block supports dual-access
operations and can be addressed with any data-memory addressing
mode.

Table 4-2. Data Page 0 Address Map

Address Name Description

0000h-0003h - Reserved

0004h IMR Interrupt mask register

0005h GREG Global memory allocation register
0006h IFR Interrupt flag register
0023h-0027h - Reserved

002Bh-002Fh - Reserved for test/emulation
0060h—007Fh B2 Scratch-pad RAM (DARAM B2)

Local Data Memory

4.3.2 Interfacing With External Local Data Memory

While the 'C20x is accessing the on-chip local data-memory blocks and
memory-mapped registers, the external memory signals DS and STRB are in
the high state. The external buses are active only when the 'C20x is accessing
locations within the address ranges mapped to external memory. An active DS
signal indicates that the external buses are being used for data memory.
Whenever the external buses are active (when external memory or 1/0 space
is being accessed) the 'C20x drives the STRB signal low.

For fast memory interfacing, it is important to select external memory with fast
access time. If fast memory is not available, or if speed is not a serious
consideration, you can use the the READY signal and/or the on-chip wait-state
generator to create wait states.

Figure 4-3 shows an example of interfacing to external data memory. In the
figure 8K x 16-bit static memory is interfaced to the 'C20x using two 8K x 8-bit
RAMs. The RAM devices must have fast access times if the internal instruction
speed is to be maintained.

Obtain the Proper Timing Information

When interfacing memory with high-speed 'C20x devices, refer to
the data sheet for that 'C20x device for the required access, delay,
and hold times.

Memory and I/O Spaces 4-9

Local Data Memory

Figure 4-3. Interface With External Local Data Memory

4-10

'C20x DSP

8K x 8 RAM

AO DO B(l)
Al D1 02
A2 D2 D3
A3 D3 i
A4 D4 oE
A5 D5 o
A D6 57
A7 D7

A8

A9

A0 WE

All RD

A12 CE}—

A0 DO D8
Al D1 D9
A2 D2 D10
A3 D3 D11
A4 D4 D12
A5 D5 D13
A6 D6 D14
A7 D7 D15
A8

A

A0 WE

All RD

Al2 CE|—q

8K x 8 RAM

Global Data Memory

4.4 Global Data Memory

Addresses in the upper 32K words (8000h—FFFFh) of local data memory can
be used for global data memory. The global memory allocation register
(GREG) determines the size of the global data-memory space, which is
between 0 and 32K words. The GREG is connected to the eight LSBs of the
internal data bus and is memory-mapped to data-memory location 0005h.
Table 4-3 shows the allowable GREG values and shows the corresponding
address range set aside for global data memory. Any remaining addresses
within 8000h—FFFFh are available for local data memory.

Note:

Choose only the GREG values listed in Table 4-3. Other values lead to
fragmented memory maps.

Table 4-3. Global Data Memory Configurations

GREG Value Local Memory Global Memory

High Byte Low Byte Range Words Range Words
XXXX XXXX 0000 0000 0000h—-FFFFh 65536 - 0
XXXX XXXX 1000 0000 0000h—7FFFh 32768 8000h—FFFFh 32768
XXXX XXXX 1100 0000 0000h—-BFFFh 49152 CO00h—FFFFh 16 384
XXXX XXXX 1110 0000 0000h-DFFFh 57 344 EO0Oh—-FFFFh 8192
XXXX XXXX 1111 0000 0000h—-EFFFh 61 440 FOOOh—FFFFh 4096
XXXX XXXX 1111 1000 0000h—F7FFh 63488 F800h—FFFFh 2048
XXXX XXXX 1111 1100 0000h—-FBFFh 64512 FCOOh—FFFFh 1024
XXXX XXXX 1111 1110 0000h—FDFFh 65024 FEOOh—-FFFFh 512
XXXX XXXX 1111 1111 0000h—-FEFFh 65280 FFOOh—FFFFh 256

Note:

X =Don't care

Memory and I/O Spaces

4-11

Global Data Memory

As an example of configuring global memory, suppose you want to designate
8K addresses as global addresses. You would write the 8-bit value 11100000,
to the eight LSBs of the GREG (see Figure 4—4). This would designate ad-
dresses EO00h-FFFFh of data memory as global data addresses (see
Figure 4-5).

Figure 4-4. GREG Register Set to Configure 8K for Global Data Memory

8 MSBs 8 LSBs

X X X X X X X XjJ]J1 1 1 0 0 0 0 O

(Don't cares) Set for 8K of global data memory

Figure 4-5. Global and Local Data Memory for GREG = 11100000

Data Memory Map

0000h
Lower 32K x 16
(always local)
=== I E GREG = 11100000
8000h 8000h
Upper 32K x 16 Local (24K x 16)
(local and/or global)
DFFFh
EO0Oh
Global (8K x 16)
FPPPRAL |] FFFFh

4-12

Global Data Memory

4.4.1 Interfacing With External Global Data Memory

When a program accesses any data-memory address, the 'C20x drives the
DS signal low. If that address is within a range defined by the GREG as global,
BR and DS are asserted. Because BR differentiates local and global
accesses, you can use the GREG to extend data memory by up to 32K.
Figure 4-6 shows two external RAMs that are sharing data-memory
addresses 8000h—FFFFh. Overlapping addresses must be reconfigured
with the GREG in order to be toggled between local memory and
global memory. For example, in the system of Figure 4-6, when
GREG = XXXXXXXX00000000, (no global memory), the local data RAM is
fully accessible; when GREG = XXXXXXXX10000000, (all global memory),
the local data RAM is not accessible.

Figure 4-6. Using 8000h—FFFFh for Local and Global External Memory

Local data RAM

'C20x 8000h—FFFFh
16
A15-A0 }—e 9 > A15-A0
16
D15-D0 ® » D15-DO0
RD ™ | o2
WE |—e] >— WE
DS »— CE
16
Global data RAM
16 8000h—FFFFh
P> A15-A0
P> D15-DO0
» | OF
» | WE
BR ° »| CE

Memory and I/O Spaces 4-13

I/O Space

4.5 1/0 Space

The 'C20x supports an I/O address range of 64K 16-bit words. Figure 4—7
shows the 'C20x I/O address map.

Figure 4—7. I/O Address Map for the 'C20x

'C20x 110
0000h
External
FEFFh
FFOOh
Reserved for
test/emulation
FFOFh
FF10h
1/0-mapped
registers and
reserved addresses
FFFFh
On-chip space

4-14

I/O Space

The map has three main sections of addresses:

1 Addresses 0000h—FEFFh allow access to off-chip peripherals typically
used in DSP applications, such as digital-to-analog and analog-to-digital
converters.

(] Addresses FFOOh—-FFOFh are mapped to on-chip I/O space. These
addresses are reserved for test purposes and should not be used.

[0 Addresses FF10h—FFFFh are also mapped to on-chip I/O space. These
addresses are used for other reserved space and for the on-chip
I/0O-mapped registers. For 'C20x devices other than the 'C209, Table 4—4
lists the registers mapped to on-chip I/O space. For the 1/0O-mapped
registers on the 'C209, see section 11.2, on page 11-5.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
I/O addresses FFOOh—FFOFh or any reserved I/0O address in the
range FF10-FFFFh (that is, any address not designated for an
on-chip peripheral.)

Memory and I/O Spaces 4-15

I/O Space

Table 4-4. On-Chip Registers Mapped to I/0O Space

I/O Address Name Description

FFE4h PMST Program memory status register

FFE8h CLK CLK register

FFECh ICR Interrupt control register

FFFOh SDTR Synchronous serial port transmit and receive register
FFF1h SSPCR Synchronous serial port control register

FFF2h SSPST Synchronous serial port status register

FFF3h SSPMC Synchronous serial port multichannel register

FFF4h ADTR Asynchronous serial port transmit and receive register
FFF5h ASPCR Asynchronous serial port control register

FFF6h IOSR Input/output status register

FFF7h BRD Baud rate divisor register

FFF8h TCR Timer control register

FFF9h PRD Timer period register

FFFAh TIM Timer counter register

FFFBh SSPCT Synchronous serial port counter register

FFFCh WSGR Wait-state generator control register

Note: This table does not apply to the 'C209. For the I/O-mapped registers on the 'C209,
see section 11.2 on page 11-5.

4.5.1 Accessing I/O Space

All'l//O words (external 1/0 ports and on-chip 1/O registers) are accessed with
the IN and OUT instructions. Accesses to external parallel I/O ports are
multiplexed over the same address and data buses for program and
data-memory accesses. These accesses are distinguished from external
program and data-memory accesses by IS going low. The data bus is 16 bits
wide; however, if you use 8-bit peripherals, you can use either the higher or
lower eight lines of the data bus to suit a particular application.

You can use RD with chip-select logic to generate an output-enable signal for
an external peripheral. You can also use the WE signal with chip-select logic
to generate a write-enable signal for an external peripheral. As an example of
interfacing to external I/O space, Figure 4-8 shows interface circuitry for eight
input bits and eight output bits. Note that the decode section is simplified if
fewer I/O ports are used.

4-16

Figure 4-8. 1I/O Port Interface Circuitry

8-bit output latch
at 1/0 address 0001h

Memory and I/0 Spaces

A0 1 YopLi2 e Porto
Al 21y v1pis Port 1
A2 31c vo p13 Port 2
v3pi2 Port 3
vapL Port 4
sv% G1 Y5 30 Port 5
A3 s G2A ve = Port 6
G2B Y7 Port 7
74AC138
'C20x DSP 1/0 port address decoder
DO 12 1v1 1Al i Input bit 0
D1 e ENCE A s Input bit 1
D2 1o |18 1A3 8 Inputb!tz
D3 g[iv4 1A4 1 Input b!t3
D4 g 2A1 13 Input bit 4
D5 5 2Y2 2A2 15 Input bit 5
D6 3 2Y3 2A3 17 Input bit 6
D7 2Y4 2A4 Input bit 7
1G 31—»
i e 26 19—
WE |— 7T4AC244
8-bit input port at I/O
address 0000h
V i - o1 E output bit 0
7 D2 Q2 6 Output bit 1
8 D3 Q3) Output bit 2
V 13 D4 Q4 12 Outputb@ts
14 D5 Q5 15 Outputb!t4
17 D6 Q6 16 Output bit 5
18 D7 Q7 19 Output bit 6
n D8 Q8 Output bit 7
1 CLK
5V——CLR
7T4AC273

I/O Space

4-17

Direct Memory Access Using the HOLD Operation

4.6 Direct Memory Access Using the HOLD Operation

4-18

The’C20x HOLD operation allows direct-memory access to external program,
data, and I/O spaces. The process is controlled by two signals:

(1 HOLD. An external device can drive the HOLD/INT1 pin low to request
control over the external buses. If the HOLD/INT 1 interrupt line is enabled,
this triggers an interrupt.

[HOLDA. In response to a HOLD interrupt, software logic can cause the
processor to issue a HOLD acknowledge (HOLDA pin low), to indicate that
it is relinquishing control of its external lines. Upon HOLDA, the external
address signals (A15-A0), data signals (D15-D0), and memory-control

impedance.

Following a negative edge on the HOLD/INT1 pin, if interrupt line HOLD/INT1
is enabled, the CPU branches to address 0002h (this branch could also be
accomplished with an INTR 1 instruction). Here the CPU fetches the interrupt
vector and follows it to the interrupt service routine. If you wish to use this
routine for HOLD operations and also for the interrupt INT1, the tasks carried
out by this routine will depend on the value of the MODE bit:

1 MODE = 1. When the CPU detects a negative edge on HOLD/INT1, it
finishes executing the current instruction (or repeat operation) and then
forces program control to the interrupt service routine. The interrupt
service routine, after successfully testing for MODE = 1, performs the
tasks for INT1.

(1 MODE = 0. Interrupt line INT1 is both negative- and positive-edge
sensitive. When the CPU detects the negative edge, it finishes executing
the current instruction (or repeat operation) and then forces program
control to the interrupt service routine. This routine, after successfully
testing for MODE = 0, executes an IDLE instruction. Upon IDLE, HOLDA
is asserted and the external lines are placed in high impedance. Only after
detecting a rising edge on the HOLD/INT1 pin, the CPU exits the IDLE
state, deasserts HOLDA, and returns the external lines to their normal
states.

Example 4-1 shows an interrupt service routine that tests the MODE bit and
acts accordingly. Note that the IDLE instruction should be placed inside the
interrupt service routine to issue HOLDA. Also note that the interrupt program
code disables all maskable interrupts except HOLD/INT1 to allow safe
recovery of HOLDA and the buses. Any other sequence of CPU code will
cause undesirable bus control and is not recommended. (Interrupt operation
is explained in detail in section 5.6 on page 5-15.)

Direct Memory Access Using the HOLD Operation

Example 4-1. An Interrupt Service Routine Supporting INT1 and HOLD

ICR

reset
Intlh

main:

wait:

intl_hold:

intl:

ICRSHDW

* Interrupt vectors *

*reeereeeknterrupt service routine for HOLD logic****rtttkiikiikkkttokokokokk

.mmregs ;Include c2xx memory-mapped registers.
.set OFFECh ;Define interrupt control register in 1/0 space.
.set 060h ;Define ICRSHDW in scratch pad location.

B main ;0 —reset , Branch to main program on reset.
B intl_hold ;1 — external interrupt 1 or HOLD.

.space 40*16 ;Fill 0000 between vectors and main program.
SPLK #0001h,imr ;Enable HOLD/INTL1 interrupt line.

CLRC INTM
B wait

; Perform any desired context save.

LDP #0 ;Set data-memory page to 0.

IN ICRSHDW, ICR ;Save the contents of ICR register.

LACL #010h ;Load accumulator (ACC) with mask for MODE bit.
AND ICRSHDW ;Filter out all bits except MODE bit.

BCND intl, neq ;Branch if MODE bit is 1, else in HOLD mode.

LACC imr, 0 ;Load ACC with interrupt mask register.

SPLK #1,imr ;Mask all interrupts except interruptl/HOLD.

IDLE ;Enter HOLD mode. Issues HOLDA, and puts

;buses in high impedance. Wait until
;rising edge is seen on HOLD/INT1 pin.

SPLK #1,ifr ;Clear HOLD/INT1 flag in interrupt flag register
;to prevent re-entering HOLD mode.
SACL imr ;Restore interrupt mask register.

; Perform necessary context restore.

CLRC INTM ;Enable all interrupts.
RET ;Return from HOLD interrupt.
NOP ;Replace these NOPs with desired intl interrupt
NOP ;service routine.
; Perform necessary context restore.
CLRC INTM ;Enable all interrupts.
RET ;Return from interrupts.

Memory and I/O Spaces 4-19

Direct Memory Access Using the HOLD Operation

Here are three valid methods for exiting the IDLE state, thus deasserting
HOLDA and restoring the buses to normal operation:

(1 Cause arising edge on the HOLD/INT1 pin when MODE = 0.
(O Assert system reset at the reset pin.
[0 Assert the nonmaskable interrupt NMI at the NMI pin.

If reset or NMI occurs while HOLDA is asserted, the CPU will deassert HOLDA
regardless of the level on the HOLD/INT1 pin. Therefore, to avoid further
conflicts in bus control, the system hardware logic should restore HOLD to a
high state.

4.6.1 HOLD During Reset

The HOLD logic can be used to put the buses in a high-impedance state at
power-on or reset. This feature is useful in extending the DSP memory control
to external processors. If HOLD is driven low during reset, normal reset
operation occurs internally, but HOLDA will be asserted, placing all buses and
control lines in a high-impedance state. Upon release of both HOLD and RS,
execution starts from program location 0000h.

Either of the following conditions will cause the processor to deassert HOLDA
and return the buses to a normal state:

[HOLD is deasserted before reset is deasserted. See Figure 4-9. This is
the normal recovery condition after a HOLD operation. After the HOLD
signal goes high, the HOLDA signal will be deasserted, and the buses will
assume normal states.

Figure 4-9. HOLD Deasserted Before Reset Deasserted

4-20

RS — \ /[

HOLD _\ /

HOLDA \ /_

Direct Memory Access Using the HOLD Operation

[0 Resetis deasserted before HOLD is deasserted. See Figure 4-10. The
CPUwilldeassert HOLDA regardless of the HOLD signal after the 16 clock
cycles required for normal reset operation. Along with the HOLDA signal,
the buses will assume normal states. The external system hardware logic
should restore the HOLD signal to a high state to avoid conflicts in HOLD
logic.

Figure 4-10. Reset Deasserted Before HOLD Deasserted

RS T\ /

HOLDA
—/

Memory and I/O Spaces 4-21

Device-Specific Information

4.7 Device-Specific Information

For 'C20x devices other than the 'C209, this section mentions the presence
or absence of the bootloader and HOLD features, shows address maps, and
explains the contents and configuration of the program-memory and data-
memory maps. For details about the memory and I/O spaces of the 'C209, see
section 11.2 on page 11-5.

4.7.1 TMS320C203 Address Maps and Memory Configuration

4-22

The 'C203 has a 'C20x on-chip bootloader and supports the 'C20x HOLD
operation. Figure 4-11 shows the 'C203 address map.

The on-chip program and data memory available on the 'C203 consists of:

(1 DARAM BO (256 words, for program or data memory)
(10 DARAM B1 (256 words, for data memory)
(O DARAM B2 (32 words, for data memory)

Device-Specific Information

Figure 4-11."C203 Address Map

'C203 Program 'C203 Data 'C203 1/0
0000h 0000h 0000h
Interrupts (external) Memory-mapped
003Fh registers and
reserved addresses
005Fh
0060h On-chip
DARAM B2
007Fh
0080h
Reserved
O1FFh External
External 02000 | on-chip DARAM
BO (CNF = 0):
02EEh Reserved (CNF = 1)
0300h On-chip
03FFh DARAM B18
0400h
Reserved
07FFh
0800h
External
EDEEh 7FFFh FEFFh
FEOOh 8000h FFOOh
Reserved (CNF = 1); Reserved for
External (CNF = 0) test/emulation
FEFFh External FFOFh
FFOOh On-chip DARAM (local and/or global) FF10h //O-mapped
BOt (CNF = 1); registers and
External (CNF = 0) reserved addresses
FFFFh FFFFh FFFFh

T When CNF = 1, addresses FEOOh—FEFFh and FFOOh—FFFFh are mapped to the same physical block (BO) in program-memory
space. For example, a write to FEOOh will have the same effect as a write to FFOOh. For simplicity, addresses FEOOh—FEFFh
are referred to here as reserved when CNF = 1.

¥ When CNF = 0, addresses 0100h—01FFh and 0200h—-02FFh are mapped to the same physical block (BO) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h—01FFh are
referred to here as reserved.

8 Addresses 0300h—03FFh and 0400h—04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h—04FFh are referred to here as
reserved.

Memory and I/O Spaces 4-23

Device-Specific Information

DARAM blocks B1 and B2 are fixed, but DARAM block BO may be mapped to
program space or data space, depending on the value of the CNF bit (bit 12
of status register ST1):

a

a

CNF =0. BOis mapped to data space and is accessible at data addresses
0200h—02FFh. Note that the addressable external program memory
increases by 512 words.

CNF = 1. BO is mapped to program space and is accessible at program
addresses FFOOh—FFFFh.

At reset, CNF = 0.

Table 4-5 shows the program-memory options for the 'C203; Table 4-6 lists
the data-memory options. Note these facts:

a

a

4

Program-memory addresses 0000h—003Fh are used for the interrupt
vectors.

Data-memory addresses 0000h—005Fh contain on-chip memory-mapped
registers and reserved memory.

Two other on-chip data-memory ranges are always reserved:
0080h—01FFh and 0400h—-07FFh.

Do Not Write to Reserved Addresses

To avoid unpredictable operation of the processor, do not write to
any addresses labeled Reserved. This includes any data-memory
address in the range 0000h—005Fh that is not designated for an
on-chip register and any I/O address in the range FFOOh—FFFFh
that is not designated for an on-chip register.

Table 4-5. 'C203 Program-Memory Configuration Options

CNF DARAM BO External Reserved
0 - 0000h—-FFFFh -
1 FFOOh—-FFFFh 0000h—FDFFh FEOOh-FEFFh

4-24

Device-Specific Information

Table 4-6. 'C203 Data-Memory Configuration Options

DARAMBO DARAMB1 DARAMB2 External Reserved
CNF (hex) (hex) (hex) (hex) (hex)
0 0200-02FF 0300-03FF 0060-007F 0800-FFFF 0000-005F
0080—01FF
0400-07FF
1 - 0300-03FF 0060-007F 0800-FFFF 0000-005F
0080—02FF
0400-07FF

4.7.2 TMS320C206/LC206 Address Maps and Memory Configuration

The 'C206/'LC206 have an on-chip bootloader in ROM. Figure 4—12 shows
addresses for the 'C206/'LC206 memory map. The on-chip program and data
memory available on the ‘C206/'LC206 consists of:

J ROM (32K words, for program memory)

1 DARAM BO (256 words, for program or data memory)
0 DARAM B1 (256 words, for data memory)

0 DARAM B2 (32 words, for data memory)

The’'C206/'LC206 includes 544 x 16 words of dual-access RAM (DARAM), 4K
x 16 single-access RAM (SARAM), and 32K x 16 program ROM memory. The
PON and DON bits select the SARAM (4K) mapping in program, data or both.
At reset, these bits are 11, mapping the SARAM in both program and data
memory.

At reset, if the MP/MC is held high, the device is in microprocessor mode and
the program address branches to 0000h (external program space). The
MP/MC pin status is latched in the PMST register (bit 0). As long as this bit
remains high, the device is in microprocessor mode. PMST register bits can
be read and modified in software. If bit 0 is written 0, the device enters
microcomputer mode and transfers control to the on-chip ROM at 0000h.

Memory and I/O Spaces 4-25

Device-Specific Information

Figure 4-12. TMS320C206, TMS320LC206 Memory Map Configurations

Hex
0000

003F
0040

7FFF
8000

8FFF
9000

FDFF
FEOO

FEFF
FF00

FFFF

Program

Interrupt vectors

External

On-chip
SARAM 4K
Internal (PON = 1)
External (PON = 0)

External

Reserved
(CNF=1)t
External (CNF = 0)

On-chip DARAM
BO (CNF = 1)t
External (CNF = 0)

External if MP/MC = 1

Hex
0000

003F
0040

TEFF
7F00

7FFF
8000

8FFF
9000

FDFF
FE0O

FEFF
FF0O

FFFF

Program

Interrupt vectors

Reserved for
ROM test code

On-chip
SARAM 4K
Internal (PON = 1)
External (PON = 0)

External

Reserved
(CNF = 1)
External (CNF = 0)

On-chip DARAM
BO (CNF = 1)
External (CNF = 0)

Internal if MP/MC = 0

are referred to here as reserved when CNF = 1.

¥ When CNF = 0, addresses 0100h-01FFh and 0200h—02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h—01FFh are
referred to here as reserved.

§ Addresses 0300h—03FFh and 0400h—04FFh are mapped to the same physical block (B1) in data-memory space. For example,

Hex
0000

005F
0060

007F
0080

01FF
0200

02FF
0300

03FF
0400

07FF
0800

17FF
1800

FFFF

Data

Memory-mapped
registers and
reserved
addresses

On-chip
DARAM B2

Reserved

On-chip DARAM
BO (CNF = 0)t
Reserved
(CNF =1)

On-chip
DARAM B1§

Reserved

On-chip
SARAM 4K
Internal (DON = 1)
External (DON = 0)

External

Hex
0000

FEFF
FF00

FFOF
FF10

FFFF

|:| On-chip ROMT (32K)

T When CNF = 1, addresses FEOOh—FEFFh and FFOOh—FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FEOOh will have the same effect as a write to FFOOh. For simplicity, addresses FEOOh—FEFFh

1/0 Space

External
1/0 space

Reserved
for test

On-chip I/O
peripheral
registers

a write to 0400h has the same effect as a write to 0300h. Addresses 0400h—04FFh are referred to here as reserved.
1l standard ROM devices will come with boot code and the A-law, p-law table.

4-26

Device-Specific Information

4.7.3 TMS320F206 Address Maps and Memory Configuration

The 'F206 has an on-chip serial loader in flash EEPROM. Figure 4-13 shows
addresses for the ‘F206 memory map. The on-chip program and data memory
available on the ‘F206 consists of:

(1 Flash EEPROM (32K words, for program memory)

1 DARAM BO (256 words, for program or data memory)
1 DARAM B1 (256 words, for data memory)

1 DARAM B2 (32 words, for data memory)

The 'F206 includes 544 x 16 words of dual-access RAM (DARAM), 4K x 16
single-access RAM (SARAM), and 32K x 16 program flash EEPROM memory.
The PON and DON bits select the SARAM (4K) mapping in program, data or
both. Atreset, these bits are 11, mapping the SARAM in both program and data
memory.

At reset, if the MP/MC is held high, the device is in microprocessor mode and
the program address branches to 0000h (external program space). The
MP/MC pin status is latched in the PMST register (bit 0). As long as this bit
remains high, the device is in microprocessor mode. PMST register bits can
be read and modified in software. If bit 0 is written O, the device enters
microcomputer mode and transfers control to the on-chip flash memory
(0000h—7FFFh).

4.7.4 Flash Memory (EEPROM)

Flash EEPROM provides an attractive alternative to masked ROM. Like ROM,
flash memory is non-volatile but has the added benefit of being electrically
erasable and programmable without having to be removed from the target
system. This “in-target” reprogrammability makes flash devices an attractive
choice in the areas of prototyping, early field-testing and single-chip
applications. Other key features of the flash include zero wait-state access and
single 5-V power supply. The 'F206 incorporates two 16K x 16-bit flash
EEPROM modules which provide a contiguous 32K x 16-bit array in program
space. For further details on flash memory and programming, refer to the flash
technical reference, TMS320F20x/F24x DSP Embedded Flash Memory Tech-
nical Reference (literature number SPRU282).

Memory and I/O Spaces 4-27

Device-Specific Information

Figure 4-13. TMS320F206 Memory Map Configuration

Hex
0000

003F
0040

3FFF
4000

7FFF
8000

8FFF
9000

FDFF
FEOO

FEFF
FF00

FFFF

T When CNF = 1, addresses FEOOh—FEFFh and FFOOh—FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FEOOh will have the same effect as a write to FFOOh. For simplicity, addresses FEOOh—FEFFh

Program

Interrupt
vectors

On-chip 16K
Flash (0)
(MP/MC = 0)

External
(MP/MC = 1)

On-chip 16K Flash (1)
(MP/MC = 0)

Ex@al
(MP/MC =1)

On-chip SARAM
4K Internal
(PON =1)

External
(PON =0)

External

On-chip DARAM BO
(cNF=1)f
also mapped at
(OFFO0-OFFFFh)
External
(CNF =0)

On-chip DARAM BO
(CNF =1)T
also mapped at
(OFEOO0-OFEFFh)
External
(CNF =0)

Data

Hex
0000 Memory-mapped
registers and
Reserved
005F
0060 on-chip
DARAM B2
007F
0080 Reserved
00FF
0100f On-chip DARAM BO
(CNF = 0)f
also mapped at
(0200-02FFh)
Reserved
(CNF =1)
O1FF
0200 on-chip DARAM BO
(CNF = 0)%
also mapped at
(0100-01FFh)
Reserved
(CNF = 1)
02FF
0300
On-chip DARAM B18
also mapped at
(0400-04FFh)
03FF
0400 On-chip
DARAM B18
also mapped at
(0300-03FFh)
04FF
0500
Reserved
07FF
0800] on-chip SARAM 4K
(DON = 1)
External
(DON =0)
17FF
1800 External
FFFF

are referred to here as reserved when CNF = 1.

¥ When CNF = 0, addresses 0100h-01FFh and 0200h—02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h—01FFh are

referred to here as reserved.

8 Addresses 0300h—03FFh and 0400h—04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h—04FFh are referred to here as
reserved.

4-28

Hex
0000

FEFF
FF0O

FFOF
FF10

FFFF

1/0 Space

External
1/0O space

Reserved
for
test

On-chip 110
peripheral
registers

Device-Specific Information

4.7.5 PMST Register in the '206 Family

The PMST register provides improved memory interface options. This feature
is in 'F206/LC206/C206 devices only. All the 'C20x DSP devices have critical
external memory interface timings. At higher clock speeds, the existing RD
signal is too delayed to be used as output enable for memory devices. In order
to achieve a glueless zero wait state memory interface, RD signal has been
provided with a software control bit. This bit (bit 15, FRDN) in PMST register
(FFE4h) can select R/W as the new read signal (pin 45) instead of RD signal.
Choosing R/W is necessary only if RD is incapable of supporting a zero wait
state memory interface.

Figure 4—-14. PMST Register Selection for RD

R/W RD pin
RD >
PMST (FFE4h)
FRDN
Bit 15

Notes: 1) RD is enabled at reset.
2) R/W is the RD pin signal for fast memory interface if FRDN is enabled .

Memory and I/O Spaces 4-29

'C203 Bootloader

4.8 ’'C203 Bootloader

This section applies to the 'C203’s on-chip bootloader, which boots software
from an 8-bit external ROM to a 16-bit external RAM at reset (see
Figure 4-15). The source for your program is an external ROM located in
external global data memory. The destination for the boot-loaded program is
RAM in the program space. The main purpose of the bootloader is to provide
you with the ability to use low-cost, simple-to-use 8-bit EPROMSs with the 16-bit
'C20x.

Figure 4-15. Simplified Block Diagram of Bootloader Operation

8
B EPROM
- (program source)
'C203 .
Mapped in global data
memory space
16

RAM
(program destination)

A 4

Written starting at
address 0000h

The code for the bootloader is stored on chip. Using the bootloader requires
several steps: choosing an EPROM, connecting and programming the
EPROM, enabling the bootloader program, and finally, booting.

4.8.1 Choosing an EPROM

4-30

The code that you want boot-loaded must be stored in non-volatile external
memory; usually, this code is stored in an EPROM. Most standard EPROMs
can be used. At reset, the processor defaults to the maximum number of
software wait states to accommodate slow EPROMs.

The maximum size for the EPROM is 32K words x 8 bits, which
accommodates a program of up to 16K words x 16 bits. However, you could
use the bootloader to load your own boot software to get around this limit or
to perform a different type of boot.

Recommended EPROMSs include the 27C32, 27C64, 27C128, and 27C256.

'C203 Bootloader

4.8.2 Connecting the EPROM to the Processor

To map the EPROM into the global data space at address 8000h, make the
following connections between the processor and the EPROM (refer to
Figure 4-16):

1 Connect the address lines of the processor and the EPROM (see lines
A14-A0 in the figure).

(1 Connectthe data lines of the processor and the EPROM (see lines D7-D0
in the figure).

[Connect the processor’s RD pin to the EPROM output enable pin (OE in
the figure).

[0 Connectthe processor’s BR pin to the EPROM chip enable pin (CE in the
figure).

Notes:

1) If the EPROM is smaller than 32K words x 8 hits, connect only the
address pins that are available on the EPROM.

2) When the bootloader accesses global memory, along with BR, DS is
driven low. Design your system so that the DS signal does not initiate un-
desired accesses to data memory during the boot loads.

Figure 4-16. Connecting the EPROM to the Processor

'C203 EPROM
(27C256)
15
A14-A0 M Al4-A0
8
D7-DO |e » D7-DO
RD »| OF
BR »| CE

Memory and I/O Spaces 4-31

'C203 Bootloader

4.8.3 Programming the EPROM

4-32

Texas Instruments fixed-point development tools provide the utilities to
generate the boot ROM code. The on-chip boot ROM is located at address
FFOOh and itis only accessible by the CPU during the boot-load process. After
boot loading is complete, the boot ROM is removed from the memory map.
(For an introduction to the procedure for generating bootloader code, see
Appendix D, Program Examples.) However, should you need to do the
programming, use the following procedure.

Store the following to the EPROM:

[Destination address. Store the destination address in the first two bytes

of the EPROM—store the high-order byte of the destination address at
EPROM address 8000h and store the low-order byte at EPROM address
8001h.

Program length. Store N (the length of your program in words) in the next
two bytes in EPROM. Use this calculation to determine N:

N = ((number of bytes to be transferred)/2) — 1

Store the high-order N byte at EPROM address 8002h and the low-order N
byte at EPROM address 8003h.

Program. Store the program, one byte at a time, beginning at EPROM
address 8004h.

Each word in the program must be divided into two bytes in the EPROM,;
store the high-order byte first and store the low-order byte second. For
example, ifthe firstword is 813Fh, you would store 81h into the first byte (at
8004h) and 3Fhinto the second byte (at 8005h). Then, you would store the
high byte of the next word at address 8006h.

Notes:

1

2)

Do not include the first four bytes of the EPROM in your calculation of
the length (N). The bootloader uses N beginning at the fifth byte of the
EPROM.

Make sure the first part of the program on the EPROM contains code for
the reset and interrupt vectors. These vectors must be stored in the
destination RAM first, so that they can be fetched from program-memory
addresses 0000h—003Fh. The reset vector will be fetched from 0000h.
For a list of all the assigned vector locations, see section 5.6.2, Interrupt
Table, on page 5-16.

'C203 Bootloader

Figure 4-17 shows how to store a 16-bit program into the 8-bit EPROM. A
subscript h (for example, on Word1y) indicates the high-byte and a subscript
| (for example, on Word1l,) indicates the low byte.

Figure 4-17. Storing the Program in the EPROM

16-Bit Program 8-Bit EPROM
15 8 7 0 Address 7 0
Word1y, Word1, 8000h Destinationy,
Word2y, Word2, 8001h Destination,
.. . 8002h Length Np,
. . 8003h Length N
. . 8004h Word1y,
Wordnp, Wordn, 8005h Word1,
8006h Word2),
8007h Word2,
nnnEh Wordny,
nnnFh Wordn,

4.8.4 Enabling the Bootloader

To enable the bootloader, tie the BOOT pin low and reset the device. The
BOOT pin is sampled only at reset. If you do not want to use the bootloader,
tie BOOT high before initiating a reset.

Three main conditions occur at reset that ensure proper operation of the
bootloader:

1 All maskable interrupts are globally disabled (INTM bit = 1).
(1 On-chip DARAM block BO is mapped to data space (CNF bit = 0).
[Seven wait states are selected for program and data spaces.

After a hardware reset, the processor either executes the bootloader software
or skips execution of the bootloader, depending on the level on the BOOT pin:

[If BOOT is low, the processor branches to the location of the on-chip
bootloader program (FFOOh).

[IfBOOQT is high, the processor begins program execution at the address
pointed to by the reset vector at address 0000h in program memory.

Memory and I/O Spaces 4-33

'C203 Bootloader

4.8.5 Bootloader Execution

4-34

Once the EPROM has been programmed and installed, and the bootloader
has been enabled, the processor automatically boots the program from
EPROM at startup. If you need to reboot the processor during operation, bring
the RS pin low to cause a hardware reset.

When the processor executes the bootloader, the program first enables the full
32K words of global data memory by setting the eight LSBs of the GREG
register to 80h. Next, the bootloader copies your program from the EPROM
in global data space to the RAM in program space through a five step process
(refer to Figure 4-18):

1) The bootloader loads the first two bytes from the EPROM and uses this
word as the destination address for the code. (In Figure 4-18, the
destination is 0000h.)

2) The bootloader loads the next two bytes to determine the length of the
code.

3) The bootloader transfers the next two bytes. It loads the high byte first and
the low byte second, combines the two bytes into one word, stores the new
word in the destination memory location, and then causes an increment
in the source and destination addresses.

4) The bootloader checks to see if the end of the program has been reached:

B If the end is reached, the bootloader goes on to step 5.
W If the end is not reached, the bootloader repeats steps 3 and 4.

5) The bootloader disables the entire global memory and then forces a
branch to the reset vector at address 0000h in program memory. Once the
bootloader finishes operation, the processor switches the on-chip
bootloader out of the memory map.

Note:

During the boot load, data is read using the low-order eight data lines
(D7-D0). The upper eight data lines are not used by the bootloader code.

'C203 Bootloader

Figure 4-18. Program Code Transferred From 8-Bit EPROM to 16-Bit RAM

8-Bit EPROM 16-Bit RAM
Address 7 0 Address 15 8 7 0

8000h Destinationy, = 00h 0000h Word1y, Word1,
8001h Destination; = 00h . Word2y, Word2,
8002h Length Np,
8003h Length N . . .
8004h Word1p, nnnEh . .
8005h Word1, nnnFh Wordnp, Wordn,
8006h Word2),

8007h Word2,

nnnEh Wordnp,

nnnFh Wordn,

The 'C203 fetches its interrupt vectors from program-memory locations
0000h—003Fh (the reset vector is fetched from 0000h). Make sure that the
interrupt vectors are stored at the top of the EPROM, so that they will be
transferred to addresses 0000h—003Fh in the RAM (see Figure 4-19). Each
interrupt vector is a branch instruction, which requires four 8-bit words, and
there is space for 32 interrupt vectors. Therefore, the first 128 words to be
transferred from the EPROM should be the interrupt vectors.

Note:

In the 'C203, the on-chip boot ROM is located at program address FFOOh.
Itis accessed by the CPU only during the bootload process. After bootload-
ing is complete, the boot ROM is removed from the memory map.

Memory and I/O Spaces 4-35

'C203 Bootloader

Figure 4-19. Interrupt Vectors Transferred First During Boot Load

8000h
8001h

8002h
8003h
8004h

8083h
8084h

nnnFh

4-36

8-bit EPROM

in global data memory

Destination, (00)

Destination; (00)

0000h

16-bit RAM
in program memory

Length Np,

Length N

003Fh
0040h

Interrupt vectors

Interrupt vectors

Program code

v

nnnFh

Program code

'C203 Bootloader

4.8.6 Bootloader Program

*kkkkk * *kkkkkkkk * *kkkkkkkk

* TMS320C20x Bootloader Program *
* *
* This code sets up and executes bootloader code that loads program *
* code from location 8000h in external global data space and transfersit *
* to the destination address specified by the first word read from locations *
* 8000h and 8001h. *
Jength 60
GREG .set 5h ; The GREG Register
SRC .set 8000h ; Source address
DEST .set 60h ; Destination address
LENGTH .set 61h ; Code length
TEMP .set 62h ; Temporary storage
HBYTE .set 63h ; Temporary storage for upper half of 16—bit word
CODEWORD .set 64h ; Hold program code word
.sect "bootload”

*

* |nitialization
*

BOOT LDP #0 ; Set the data page to 0 (load DP with 0)
SPLK #2EOOh,TEMP ;SetARP=1,0VM=1,INTM=1,DP =0
LST #0,TEMP
SPLK #21FCh,TEMP ;SetARB=1,CNF=0,SXM=0,XF=1,PM=0
LST #1, TEMP
SPLK #80h,GREG ; Designate locations 8000—FFFFH as global data
; space

R S A A S S S R I S I

* BOOT LOAD FROM 8-BIT MEMORY. MOST SIGNIFICANT BYTE IS FIRST *
R S

*

* Determine destination address

*

ADDR LAR AR1#SRC ; AR1 points to global address 8000h
LACC *+,8 ; Load ACC with high byte shifted left by 8 bits
SACL HBYTE ; Store high byte
LACL *+ ; Load ACC with low byte of destination
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16-bit
; destination address
SACL DEST ; Store destination address

*

* Determine length of code to be transferred
*

LEN LACC *+.8 ; Load ACC with high byte shifted left by 8 bits
SACL HBYTE ; Store high byte
LACL *+ ; Load ACC with low byte of length
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16-bit length
SACL LENGTH ; Store length
LAR ARO,LENGTH ; Load ARO with length to be used for BANZ

Memory and I/O Spaces 4-37

'C203 Bootloader

*

* Transfer code

*

LOOP LACC *+.8 ; Load ACC with high byte of code shifted by 8 bits
SACL HBYTE ; Store high byte
LACL *+ AR0 ; Load ACC with low byte of code
AND #O0FFH ; Mask off upper 24 bits
OR HBYTE ; OR ACC with high byte to form 16-bit code word
SACL CODEWORD ; Store code word
LACL DEST ; Load destination address
TBLW CODEWORD ; Transfer code to destination address
ADD #1 ; Add 1 to destination address
SACL DEST : Save new address
BANZ LOOP,AR1 ; Determine if end of code is reached
SPLK #0,GREG ; Disable entire global memory
INTR 0 ; Branch to reset vector and execute code.
.END
I
Note:

The INTR instruction in the bootloader program causes the processor to
push a return address onto the stack, but the device does not use a RET to
return to this address. Therefore, your program must execute a POP
instruction to get the address off the stack.

4-38

'C206/L.C206 Bootloader

4.9 ’'C206/LC206 Bootloader

This section describes the bootloader options available on the TMS320C206
and TMS320LC206. Several boot-load options are available on these devices.
You can choose the option required by external pin configurations and an 8-bit
word input from I/O address 0000h. The bootloader provides the flexibility of
loading any executable code into the program memory of the DSP. Your code
can be transferred to the DSP program memory from any one of the following
external sources:

[8/16-bit transfer through the synchronous serial port (SSP)

[8-bit transfer through the asynchronous synchronous serial port (ASP)
(1 8/16-bit EPROM

[8/16-bit parallel port mapped to 1/0 space address 0001h of the DSP

Additionally, a warm boot is also supported.

4.9.1 Boot-load Options

The main function of the bootloader is to transfer user code from an external
source to the program memory at power-up. The TMX320C206/LC206
provides several ways to download code to accommodate varying system
requirements. To ensure compatibility, the 'C206 bootloader supports the
original ‘C203 boot-load mode. The EXT8 pin (pin 1) of the 'C206/'LC206 is
sampled during startup to determine whether to perform the ‘C203 boot-load
or the enhanced 206 boot-load options. are to be performed. Unlike the ‘C203
bootloader, the 'C206 bootloader can load multiple sections of user code in
different segments of memory. In all boot-load modes, the processor
automatically branches to the beginning your code, once boot loading is
complete.

There are two possible scenarios for the TMS320C206/LC206 during startup
based on the condition of the EXTS8 pin:

[EXT8 =low: This invokes the original ‘C203 style bootloader, which boot
loads from an external 8-bit EPROM.

(1 EXT8 = high: This invokes the enhanced 'C206 bootloader, which
supports the following boot-load options:

Synchronous serial port, 8/16 bit

UART/asynchronous serial port, 8 bit

External parallel EPROM, 8/16 bit

Parallel I/O boot, 8/16 bit using BIO and XF for handshaking

Warm boot

The option to be executed is determined by reading the word at I/O address
0000h. The lower 8-bits of the word specify which bootloader option to use.

Memory and I/O Spaces 4-39

'C206/L.C206 Bootloader

4.9.2 Bootloader Operation

If the MP/MC pin is sampled low during a hardware reset, execution begins at
location 0000h of the on-chip ROM. This location contains a branch instruction
to the start of the bootloader program. The level of the EXT8 pin is read via bit
3 (LEVEXTS) in the PMST register (FFE4h in I/O space). If EXT8 pin is read
high, the bootloader checks the boot selection word at location 0000h in I/O
space and determines which booting method to execute. If EXT8 pin is read
low, control passes by default to 8-bit EPROM boot (‘C203 style bootloader).
This allows upward compatibility from TMS320C203. Figure 4—-20 shows the
PMST register. Table 4-7 describes the function of the PMST register bits.
Table 4-8 shows bootloader pin configuration.

Figure 4-20. Program Memory Status (PMST) Register — (I/O space FFE4h)

15 14 4 3 2 1 0
FRDN Reserved LEVEXTS DON PON MP/MC
RIW 0 R RIW RIW RIW

Table 4-7. PMST Register Bit Descriptions

Value at
Bit Name Reset Function
15 FRDN 0 At reset, this bit is 0, which enables enhanced RD signal. If high, the
inverted R/W is active.
14-4 Reserved 0 These bits are not used.
3 LEVEXTS8 X Bit 3 (a read-only bit) latches in the state of EXT8 pin at reset. If low, the
on-chip bootloader uses ‘C203 style boot load. If high, the enhanced
'C206 bootloader is used.
2 DON 1 See below.
1 PON 1 Bit 1 and bit 2 configure the SARAM mapping either in program memory,
data memory or both. At reset these bits are 11.
DON (bit 2') PON (bit 1)
00 SARAM not mapped, address in external memory
01 SARAM in program memory at 0x8000h
10 SARAM in data memory at 0x800h
11 SARAM in program and data memory (reset value)
0 MP/MC X Bit O latches in the state of MP/MC at reset. This bit can also be written

to switch between Microprocessor (1) or Microcomputer (0) modes.

4-40

'C206/L.C206 Bootloader

Table 4-8. Bootloader-Pin Configuration

MP/W EXT8 Option Mode(s)
0 0 Use ‘C203 style bootloader 1
0 1 Use 'C206 enhanced bootloader 2t09
1 0 EXT8 has no effect -
1 1 EXT8 has no effect -

The bootloader sets up the CPU status registers as follows:
[On-chip DARAM block BO is mapped into program space (CNF = 1).

[On-chip SARAM block is mapped into program and data space
(PON =1, DON=1).

Note that both DARAM and SARAM memory blocks are enabled in program
memory space; this allows you to transfer code to on-chip program memory.

At reset, interrupts are globally disabled (INTM = 1). Entire program and data
memory spaces are enabled with seven wait states.

4.9.3 ’'C206 Enhanced Bootloader (EXT8 High - Modes 2 to 9)

The bootloader reads the I/0 port address 0000h by driving the I/O strobe (IS)
signal low. The lower eight bits of the word read from I/O port address 0000h
specify the mode of transfer; the higher eight bits are ignored. This
boot-routine-selection (BRS) word determines the boot mode. The BRS word
uses a 6-bit source address field (SRCE_AD) in parallel EPROM mode and
a 6-bit entry address field (ADDR_bb) in warm-boot mode to arrive at the
starting address of the code.

Figure 4-21 lists the available boot-load options and the corresponding values
for the boot-routine-selection word at /0O address 0000h. This word could be
set by a DIP switch.

Figure 4—22 shows the available boot-load options in flow chart form.

Memory and I/O Spaces 4-41

'C206/L.C206 Bootloader

Figure 4-21. Enhanced 'C206 Bootloader Options

BRS word @ /0O 0000h Boot Load Option Mode
XXXXXXXX Xxx0 0000 8-hit serial SSP, external FSX, CLKX 2
XXXXXXXX xxx0 0100 16-bit serial SSP, external FSX,CLKX 3
XXXXXXXX xxx0 1000 8-bit parallel I/O 4
XXXXXXXX xxx0 1100 16-bit parallel I/O 5
XXXXXXXX Xxx1 0000 8-bit ASP /UART 6
XXXXXXXX SRCE ADO1 8-bit EPROM 7
XXXXXXXX SRCE AD10 16-bit EPROM 8
XXxxxxxx ADDR bb1l Warm-boot 9

4-42

Figure 4-22. Boot-load Flowchart

C203
style
loader?

(LEVEXTS = 0?)

Serial/
parallel

load?
(2 LSBs of
BRS =00?)

UART/

Perform UART/
asynchronous
serial load

asynchronous
serial load?
(Bit 4 of

BRS = 1?)

Parallel
1/0 load?
(Bit 3 of

BRS = 1?)

Perform 8-bit
synchronous

serial load
(Bit 2 of BRS = 0)

8-bit

synchronous
serial load
(Bit 2 of

BRS =0?)

'C206/L.C206 Bootloader

Perform
C203 style
boot loading

Warm boot
(2 LSBs = 11)

(2 LSBs = 01?)

8-bit
EPROM?

16-bit
EPROM?
(2 LSBs = 10?)

Perform
8-bit
EPROM

Perform
16-bit
EPROM

8-bit

parallel 1/0?
(Bit 2 of

BRS =0?)

Perform 16-bit
parallel /O
(Bit 2 of BRS = 1)

Perform
8-bit
parallel 1/0

Perform 16-bit
synchronous
serial load

(Bit 2 of BRS = 1)

Memory and I/0 Spaces

4-43

'C206/L.C206 Bootloader

Figure 4-23 provides the memory map of program address spaces that are
accessible through the bootloader. For modes other than 1, memory locations
from 0000h to 7FFFh are not available for loading code, since that space is
occupied by ROM. However, this limitation can be overcome by modifying the

memory map in your own boot code.

Figure 4-23. Destination Address Space for Programs in Program Memory

D Memory locations available for boot loading user code.

Caution: Locations 8000h - 807Fh in SARAM are reserved for the second interrupt vector table as mentioned in section 5.
Exercise caution while moving code into this area.

4-44

0000h

7FFFh
8000h

8FFFh
9000h

FDFFh
FEOOh

FEFFh
FFOOh

FFFFh

’C206 Bootloaders

(Other than Mode 1)

Boot ROM

SARAM

External RAM

Reserved

BO in PM

0000h

7FFFh
8000h

8FFFh
9000h

FDFFh
FEOOh

FEFFh
FFOOh

FFFFh

'C203 style Bootloader
(Mode 1)

External

SARAM

External RAM

Reserved

BO in PM
'C203 Bootloader

4.9.4 Interrupt Vectoring

intl_holdv
int2_3v
tintv
rintv
xintv
txrxintv
trapv
nmiv
sSwi8v
Swi9v
swilOv
swillv
swil2v
sSwil3v
Sildv
swilbv
sSwilév
swi20v
swi2lv
sSwi22v
swi23v
swi24v
swi25v
Swi26v
SWi27v
sSwi28v
Swi29v
sSwi30v
swi3lv
reserved

.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set
.set

'C206/L.C206 Bootloader

Interrupt vectors stored in the on-chip ROM have hard coded addresses to the
on-chip SARAM starting at address 8000h in program space. When an
interrupt occurs, a branch is made to the corresponding interrupt vector
located in the on-chip ROM at addresses (0000h—0040h). A branch instruction
then transfers program control to the second interrupt vector table in the
on-chip SARAM. You must initialize the second interrupt vector table. This
table is used to allow remappable interrupt vectors. See the following code for

initializing interrupt vectors in the SARAM.

Remapped interrupt vectors for TMS320C206, TMS320LC206

.set 8000h ; User maskable interrupt #1

.set 8002h ; User maskable interrupts #2 & #3
.set 8004h ; Timer interrupt vector

.set 801Ah ; SSP receive interrupt vector

.set 8032h ; SSP transmit interrupt vector

.set 804Eh ; UART port Tx/Rx interrupt vector

.set 8050h ; Software trap vector

.set 8052h ; Non-maskable interrupt vector
.set 8054h ; Software interrupt vectors begin...
.set 8056h

.set 8058h ; (Note:lf these interrupts are unused
805Ah ; these memory locations may be
805Ch ; used for other purposes.)

805Eh

8060h

8062h

8064h

8066h

8068h

806Ah

806Ch

806Eh

8070h

8072h

8074h

8076h

8078h

807Ah

807Ch

.set 807Eh

Memory and I/O Spaces 4-45

'C206/L.C206 Bootloader

4.9.5 Synchronous Serial Port (SSP) Boot Mode

4-46

In this mode, the synchronous serial port control register (SSPCR) is
configured for 16-bit or 8-bit word transfer. The data shift clock and frame sync
must be supplied by the external device to the 'C206/'LC206.

(1 16-Bit Word Serial Transfer (Mode 3)

If the 16-bit word transfer is selected , the first 16-bit word received by the
'C206 from the serial port specifies the destination address
(Destination4g) of code in program memory. The next 16-bit word specifies
the length (Length4g) of the actual code that follows. These two 16-bit
words are followed by N number of code words to be transferred to
program memory. Note that the number of 16-bit words specified by the
parameter N does not include the first two 16-bit words received
(Destination1g and Lengthqg). After the specified number of code words
are transferred to program memory, the 'C206 checks to see if there are
any more sections to be transferred. If there are additional sections to be
transferred, the bootloader proceeds to transfer them in exactly the same
way as the first section. After transferring all the sections, the 'C206
branches to the first destination address. The length N is defined as:

N = (Number of 16-bit words) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000,
it signals the end of user code. If any word other than 0000 is read, it
indicates that one or more sections is following and the word read is
treated as the destination address of the next section. Refer to
Figure 4—24 for the format of data transfer in 16-bit mode.

'C206/L.C206 Bootloader

Figure 4-24. 16-Bit Word Transfer

DESTINATION

LENGTH of first section (N1)

CODE(1) of length N1

DESTINATION»

LENGTH of second section (N5)

CODE(2) of length N»

DESTINATIONy

LENGTH of Nth section (Ny)

CODE(N) of length Ny

0000 to end program

Legend:
Destination1g 16-bit destination address
Lengthyg 16-bit word that specifies the length of the code (N) that follows

Code(N)16 N number of 16-bit words to be transferred (actual code)

[8-Bit Word Serial Transfer (Mode 2)

If the 8-bit word transfer is selected , a higher-order byte and a lower-order
byte form a 16-bit word. The first 16-bits received by the 'C206 from the
serial port specify the destination address (Destination, and Destinationy)
of code in program memory. The next 16-bits specify the length (Lengthy,
and Length)) of the actual code that follows. These two 16-bit words are
followed by N number of code words to be transferred to program memory.
Note that the number of 16-bit words specified by the parameter N does
notinclude the first four bytes (first two 16-bit words) received (Destination
and Length). After the specified number of code words are transferred to
program memory, the 'C206 checks to see if there are any more sections
to be transferred. If there are additional sections to be transferred, the
bootloader proceeds to transfer them in exactly the same way as the first
section. After transferring all the sections, the 'C206 branches to the first
destination address. The length N is defined as:

N = (Number of 16-bit words) - 1

or

Memory and I/O Spaces 4-47

'C206/L.C206 Bootloader

N = (Number of bytes to be transferred/2) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000, it
signals the end of user code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4-26 for the format of
data transfer in 8-bit mode. Figure 4—25 shows the connection details for SSP
boot-load option.

Figure 4-25. Host-"C206 Interface for SSP Boot-load Option

Host 'C206
CLKX E: CLKX
CLKR 4J CLKR

FSX »{ FSR
FSR |« FSX
DX » DR
DR |« DX

4-48

Figure 4-26. Figure 9.

'C206/L.C206 Bootloader

8-Bit Word Transfer

DESTINATION;,

DESTINATION;,

LENGTHj, of first section (N1p,)

LENGTH, of first section (N1)

CODE(1)p,

CODE(1),

DESTINATION,

DESTINATION,,

LENGTHj, of second section (Nyp)

LENGTH, of second section (N

CODE(2);,

CODE(2),

DESTINATIONyp,

DESTINATION

LENGTH}, of Nth section

LENGTH; of Nth section

CODE(N);,

CODE(N),

0000 to end program

Legend:

Destinationy, High byte of destination address

Destination, Low byte of destination address

Lengthy, High byte that specifies the length of the code (N) that follows
Length, Low byte that specifies the length of the code (N) that follows
Code (N)n High byte of N number of 16-bit words to be transferred
Code (N), Low byte of N number of 16-bit words to be transferred

Memory and I/O Spaces 4-49

'C206/L.C206 Bootloader

4.9.6 UART/Asynchronous Serial Port (ASP) Boot Mode (Mode 6)

This mode is extremely useful to transfer user code to the '206 through an
asynchronous serial port such as the RS-232 port available in personal
computers. The data packet format in this mode is similar to that of
synchronous serial port (SSP) boot mode, with the exception that only 8-bit
transfers are supported. The DSPHEX utility is used to convert the COFF file
(*.out) of the user to a hex file suitable for UART bootloading. For more
information about the DSPHEX utility, refer to TMS320C1x/C2x/C20x/C5x
Assembly Language Tools User’s Guide (literature number SPRU018D).

The '206 senses the baud rate of the incoming data and automatically updates
its baud-rate register. To make this happen, the host must transmit the ASCII
character “a” (or “A”) in the very beginning of the data transfer. 'C206 boot code
echoes “a” on baud lock and then prepares itself to receive user code. The
DSPHEX utility does not automatically add the ASCII value of the character
“a” in the hex file it creates. You can do this with the help of any ASCII editor.
While editing the hex file, you must also make sure that the last word of the file
is 0000h in order to transfer control to the user code after boot loading. The
options for the DSPHEX utility can be either specified on the command line or
with the help of a command file. A sample command file for the DSPHEX utility
is given below:

/* DSPHEX command file to generate hex file from .out file */

/* suitable for UART bootloader */

usercode.out /* Replace with the actual name of user code */
-a [* ASCII- hex format */

—0 usercode.hex /* Replace with the reqd. name of user code */
-byte [* default */

—order MS [* default */

—memwidth 8

—romwidth 8

SECTIONS

{.text :boot}

49.7 Parallel EPROM Boot Mode

The parallel EPROM boot mode is used when code is stored in EPROM s (8-bit
or 16-hit wide). The code is transferred from external global data memory
(starting at the source address) to program memory (starting at the destination
address). The six MSBs of the source address are specified by the SRCE_AD
field of the boot routine selection word. A 16-bit source address is formed with
the help of this SRCE_AD field as shown in Figure 4-27. The boot-load code
initializes the GREG register to external global data memory space
8000h—0FFFFh. The 'C206/’'LC206 transfers control to the source address
after disabling global data memory.

4-50

'C206/L.C206 Bootloader

Figure 4-27. 16-Bit Source Address for Parallel EPROM Boot Mode

15

10 9 0

SRCE_AD

0 0 0 0 0 0 0 0 0 0

Note:

Source address

SRCE_AD = 6-bit page address

a

16-Bit EPROM Transfer (Mode 8)

If the 16-bit mode is selected, boot code is read in 16-bit words starting at
the source address. After every read operation, the source address
changes by an increment of 1 . The first 16-bit word read from the source
address specifies the destination address (Destination;g) of code in
program memory. The next 16-bit word specifies the length (Lengthg) of
the actual code that follows. These two 16-bit words are followed by N
number of code words to be transferred to program memory. Note that the
number of 16-bit words specified by the parameter N does not include the
first two 16-bit words received (Destinationg and Lengthyg). After the
specified number of code words are transferred to program memory, the
'C206 checks to see if there are any more sections to be transferred. If
there are additional sections to be transferred, the bootloader proceeds
to transfer them in exactly the same way as the first section. After
transferring all the sections, the 'C206 branches to the first destination
address. The length N is defined as:

N = (Number of 16-bit words) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000,
it signals the end of code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4—24 for the format
of data transfer in 16-bit mode.

Note: There is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that
if the destination is in external memory (for example, fast SRAM), there is
enough time to turn off the source memory (for example, EPROM) before
the write operation is performed.

8-Bit EPROM Transfer (Mode 7)

If the 8-bit mode is selected, two consecutive memory locations (starting
at the source address) are read to form a 16-bit word. The high-order byte
of the 16-bit word is followed by the low-order byte. Data is read from the

Memory and I/O Spaces 4-51

'C206/L.C206 Bootloader

lower eight data lines, ignoring the higher byte on the data bus. The first
16-bit word specifies the destination address (Destination, and
Destination)) of code in program memory. The next 16-bit word specifies
the length Lengthy, and Length)) of the actual code that follows. These two
16-bit words are followed by N number of code words to be transferred to
program memory. Note that the number of 16-bit words specified by the
parameter N does not include the first four bytes (first two 16-bit words)
received (Destination and Length). After the specified number of code
words are transferred to program memory, the 'C206 checks to see if there
are any more sections to be transferred. If there are additional sections to
be transferred, the bootloader proceeds to transfer them in exactly the
same way as the first section. After transferring all the sections, the 'C206
branches to the first destination address. The length N is defined as:

N = (Number of 16-bit words) - 1
or
N = (Number of bytes to be transferred/2) - 1

If, after transferring all the N words of a section, the 'C206 receives a 0000, it
signals the end of user code. If any word other than 0000 is read, it indicates
that one or more sections is following and the word read is treated as the
destination address of the next section. Refer to Figure 4—-26 for the format of
data transfer in 8-bit mode.

Note: There is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), there is enough
time to turn off the source memory (for example, EPROM) before the write
operation is performed.

4.9.8 Parallel I/0 Boot Mode (Mode 4 - 8 Bit, Mode 5 - 16 Bit)

4-52

The parallel I/0O boot mode asynchronously transfers code from 1/O port at
address 0001h to internal or external program memory. Each word can be 16
bits or 8 bits long and follows the same sequence outlined in parallel EPROM
mode. The 'C206/'LC206 communicates with the external device using the
BIO and XF lines for handshaking. This allows a slower host processor to
communicate with the 'C206/'LC206 by polling/driving the XF and BIO lines.
The handshake protocol shown in Figure 4-28 must be used to successfully
transfer each word via I/O port 0001h.

If the 8-bit boot mode is selected, two consecutive 8-bit words are read to form
a 16-bit word. The high-order byte of the 16-bit word is followed by the
low-order byte. Data is read from the lower eight data lines of 1/0 port 0001h,
ignoring the higher byte on the data bus.

'C206/L.C206 Bootloader

A data transfer is initiated by the host, driving the BIO pin low. When the BIO
pin goes low, the 'C206 inputs the data from I/O address 0001h, drives the XF
pin high to indicate to the host that the data has been received and then writes
the input data to the destination address. The 'C206 then waits for the BIO pin
to go low before driving the XF pin low. The low status of the XF line can then
be polled by the host for the next data transfer.

There is at least a 4-instruction-cycle delay between the XF rising edge and
a write operation to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), the host
processor has enough time to turn off the data buffers before the write
operation is performed. The 'C206 accesses the external bus only when XF
is high.

Figure 4-28. Handshake Protocol

Notes:

4.9.9

1) Host requests data transfer to 'C206 by making BIO low.

2) 'C206 reads in the data through I/0 port 1 and makes XF high. Bootloader program loops until BIO becomes high.
3) After BIO is made high, bootloader acknowledges by making XF low indicating that it is ready for new data.

4) Bootloader program loops until BIO becomes low. XF continues to be low.

5) When BIO becomes low, it signals the host request for the transmission of the next word and the whole sequence
repeats until all words are transferred.

Warm-Boot Mode (Mode 9)

The warm-boot operation does not move any code. Itis useful to branch to your
code if the code has already been transferred to internal or external program
memory by other boot-load methods. This mode is used only if a “warm” device
resetisrequired. Since warm-boot mode can be invoked only in the microcom-
puter mode, the first section of your code can reside only from 8000h onwards
in program memory, as 0000h to 7FFFh is occupied by ROM. The six MSBs
of the entry address are specified by the ADDR_bb field of the boot routine
selection word (Figure 4-21). A 16-bit entry address is defined by this
ADDR_bb field as shown in Figure 4—29. Since bits 0 — 9 are zero, the starting

Memory and I/O Spaces 4-53

'C206/L.C206 Bootloader

address must lie on 400 word boundaries (x000h, x400h, x800h and xCOO0h).
During initial boot load, the destination address of your code is stored in a
memory variable in B2 RAM. The warm-boot routine uses this address to
transfer control to the user code. If your application overwrites this memory
location, then the address your code must be specified in the BRS word for
warm-boot to function. The 'C206/'LC206 transfers control to the entry
address after disabling global data memory.

Figure 4-29. 16-Bit Entry Address for Warm-Boot Mode

15 10 9 0
ADDR_bb 0 0 0 0 0 0 0 0 0 0

Entry address

Note: ADDR_bb = 6-bit page address in 400h word boundaries

4.9.10 'C203 Style Bootloader (EXT8 Low — Mode 1)

The 'C206 bootloader supports the 'C203 style bootloader when the EXT8 pin
is tied low. However, there are some differences between the original 'C203
device bootloader and the 'C203 style bootloader option supported in the
'C206. This paragraph applies to the 'C203 device bootloader only. The
bootloader option in the TMS320C203 device has a fixed destination address
for the user code. This address must be 0000h, as the interrupt vector table
must be modified first. The reset vector (0000h in program memory) must be
initialized to point to the beginning of the user code. Other interrupt vectors
may need to be setup depending on the user application. After the user code
is boot loaded (for example, application code transferred to external program
memory), INTR O instruction is invoked by the bootloader. This transfers
program control to your code. The boot source address (the address at which
your code is stored in external non-volatile memory) is fixed at 8000h in global
memory space.

The bootloader in TMX320C206/LC206 devices features an 8-bit boot option
from external non-volatile memory (EPROM) to external SRAM or internal
memory at reset if MP/MC pin is sampled low and EXT8 pin is tied low during
a hardware reset. This mode is similar in operation to the original 'C203 device
bootloader except during the final branch. There is no INTR 0 instruction,
rather program control branches to the address specified by the accumulator.

The maximum size of the EPROM can be 32K x 8 to yield 16K x 16 of program
memory. However, you could boot your own bootloader, which would perform
a function as desired. The bootloader begins loading from a fixed source
address 8000h in external global data space and begins transferring to the

4-54

'C206/L.C206 Bootloader

destination address in program space defined by you. This destination
address is defined by the first two bytes of the EPROM. The destination
address is not constrained to be 0000h as in the case of 'C203 device and can
be any valid program address. However, you may need to modify the interrupt
vector table.

At reset, interrupts are globally disabled, INTM = 1, BO is mapped to program
space, CNF = 1, and seven wait states are selected for program and data
spaces. The boot-load code initializes the GREG register to external global
data memory space 8000h—FFFFh. The operation of this mode is similar to
8-bit EPROM transfer ('C206 boot mode 7).

Note: The assembly source code for the 'C206 bootloader is available on the
web at www.ti.com under '‘C20x DSPs.

Memory and I/O Spaces 4-55

'C206/L.C206 Bootloader

4.9.11 Bootloader Program

* TMS320C206/TMS320LC206 Bootloader Program

*

L B R B S I B T R S T R B

EE I I S R I S T S R S I R S T R R

Revision 1.0, 12/18/97
Revision 1.2, 6/29/98

1.1 changes

1. Fix 16 bit EPROM load, need pointer for counter

2. Fix branching in serial 1/0 from EQ to TC

3. Change original 8 bit boot from using INTR 0 to a BACC instruction
and copy boot routine to BO. This allows code to be copied to
address 0x0h after switching to microprocessor mode.

4. Set CNF = program space.

5. Add lacl in parallel 16 bit routine to load TEMP

6. Change TEMP to TEMP1 for 8 bit parallel 1/0.

1.2 Changes
1. Change the branch address to OxFF18 due to incorrect copy.
2. Changed address for DMOV on warm boot

Obijective: This bootloader has a total of 9 options and is backward
compatible to the original '203 bootloader.

Operation: Given the MP/MC - pin is low at reset, the bootloader program
stored in the on—chip ROM determines which method of booting
is to be used.

First, the program decides if the old method of 8 bit EPROM
boot is to be used. If not it continues by reading 1/0O port

zero via the LEVEXTS bit in the PMST register which is a direct
representation of pin 1 (EXT8).

Below are the options for reading 1/O port O:

16 BIT DATA BUS

8 bit SSP XXXX XXXX XXX0 0000
16 bit SSP XXXX XXXX XXX0 0100

8 bit parallel I/O XXXX XXXX XXX0 1000
16 bit parallel 1/0 XXXX XXXX XXX0 1100
ASP XXXX XXXX XXX1 0000
8 bit EPROM XXXX XXXX SRC. ..01
16 bit EPROM XXXX XXXX SRC. ..10
Warm boot XXXX XXXX ADR. .11

Interrupt Vectoring: Interrupt vectors stored in the on—chip ROM have hard

coded addresses to the on—chip SARAM starting at
address 0x8000 in program space.

Multiple sections booting: The bootloader allows multiple sections of

program code to be copied via any of the options

except the old style '203 bootloader.

4-56

'C206/L.C206 Bootloader

The first section copied is assumed to be the
entry point to the program once all section(s)
have been copied.

E

*

* Note: B2PA_3 stores the address where execution begins from, after all
* sections have been loaded
*++% Jse C206BOOT.CMD file for linking *****

.copy "sldrv201.h” ; Variable and register declaration
SRC .set 8000h : source address
DEST .set 60h ; destination address
DEST1 .set 331lh
LENGTH .set 61h ; code length
TEMP .set 62h ; temporary register
HBYTE .set 63h ; temporary storage for upper half of

; 16—bit word

TEMP1 .set 68h
CODEWORD .set 64h ; hold program code word
CODEWORD1 .set 330h ; hold address for copy for oldboot routine
brs .set 65h : Boot Selection Word

SOURCE .set 66h
DEST2 .set 67h

b0 .set OFh
bl .set OEh
b2 .set 0Dh
b3 .set 0Ch
b4 .set 0Bh

* Interrupt vectors for TMS320C206, TMS320LC206
*

intl_holdv .set 8000h ; external interrupt vectors

int2_3v .set 8002h ;

tintv .set 8004h ; timer interrupt vector

rintv .set 801Ah ; receive interrupt vector

xintv .set 8032h ; transmit interrupt vector

txrxintv .set 804Eh ; UART port interrupt vector

trapv .set 8050h ; software trap vector

nmiv .set 8052h ; non—maskable interrupt vector
swi8v .set 8054h ; software interrupt vectors
Swi9v .set 8056h ;

swilOv .set 8058h ; (Note: If these interrupts are unused
swillv .set 805Ah ; these data memory locations can be
swil2v .set 805Ch ; assigned to other purposes.)
swil3v .set 805Eh ; Software interrupt vectors
swildv .set 8060h i |
Swil5v .set 8062h i |
swilév .set 8064h Vv Vv
swi20v .set 8066h ;

swi2lv .set 8068h ;

Swi22v .set 806Ah ;

swi23v .set 806Ch ;

swi24v .set 806Eh ;

swi25v .set 8070h ;

Memory and I/0 Spaces

4-57

'C206/L.C206 Bootloader

SWi26v .set 8072h ;
sSwWi27v .set 8074h ;
swi28v .set 8076h ;
SWi29v .set 8078h ;
sSwi30v .set 807Ah ;
swi3lv .set 807Ch ;
reserved .set 807Eh

* *kkkkkkkk * *kkkhkkkk

.sect "vectors”

* *kkkkkkkk * *kkkkkkkk

reset B boot ; 0 — power on reset

intth B intl_holdv ; 1 — external interrupt 1 or HOLD

int23 B int2_3v ; 2 —external interrupts 2 or 3

tint B tintv ; 3 —timer interrupt

rint B rintv ; 4 — synchronous serial port receive interrupt

xint B xintv ; 5 —synchronous serial port transmit interrupt

txrx B txrxintv ; 6 —asynchronous serial port transmit and
; receive interrupt

res B reserved ;7 —reserved for emulation

swi8 B Swi8v ; 8 — software interrupt

swi9 B Swi9v ; 9 — software interrupt

swil0 B swilOv ; 10 — software interrupt

swill B swillv ; 11 — software interrupt

swil2 B swil2v ; 12 — software interrupt

swil3 B swil3v ; 13 — software interrupt

swild B swildv ; 14 — software interrupt

swil5 B swilbv ; 15 — software interrupt

swil6 B SWil6v ; 16 — software interrupt

trap B trapv ; 17 — software trap

nmi B nmiv ; 18 — non—maskable interrupt

resl B reserved ; 19 — Reserved

swi20 B swi20v ; 20 — software interrupt

swi2l B swi2lv ; 21 — software interrupt

swi22 B sSwi22v ; 22 — software interrupt

swi23 B swi23v ; 23 — software interrupt

swi24 B swi24v ; 24 — software interrupt

swi25 B swi25v ; 25 — software interrupt

swi26 B SWi26v ; 26 — software interrupt

swi27 B SWi27v ; 27 — software interrupt

swi28 B Swi28v ; 28 — software interrupt

swi29 B SWi29v ; 29 — software interrupt

swi30 B swi30v ; 30 — software interrupt

swi3l B swi3lv ; 31 — software interrupt

.sect "bootload”

* |nitialization
boot LDP #0
SPLK #2EOOH,TEMP ;ARP=1,0VM=1,INTM=1,DP=0

LST #0, TEMP ;BOisin PM
SPLK #31FCH,TEMP ;ARB=1,CNF=1,SXM=0
LST #1, TEMP ; XF=1,PM =0, BO—>Prog.memory

* * * *

4-58

'C206/L.C206 Bootloader

* Determine if old or new boot method *
IN TEMP,PMST ; Read level of EXT8 pin.
BIT TEMP,b3 ; Test LEVEXTS bit.

BCND OLDBOOT,NTC ; Branch to 8—bit EPROM boot.
;nextsect=0 FDEST=1
splk #0,nextsect ; flag for determining if new section exists

splk #1,FDEST ; FLAG to determine address of code entry
EE IR SR I S I S S A O A I I I A I A O A Sk A O A I A
* Read Configuration Byte *
EE IR IR A S I S S A O A I I I A A I A O A Sk A O A I A A
IN brs,0h ; read 1/0 port O (/0 0 —>65h)
LACC brs,8 ; Shifted BRS word —> ACC
AND #0FCO0O0Oh ; throw away 2 LSBs
SACL SOURCE ; save as source address
; b15.....b10 b9 b8 0000 0000 —>SOURCE
LACL brs ; BRS —>ACC
AND #3 ;if 2 LSBs == 00
BCND ser_io,eq ; use serial or parallel I/O or ASP
; At this stage, b1 b0 can be 01,10 or 11
sub #2 ;if 2 LSBs == 01
bcnd PAROS,It ; load from 8-bit memory (EPROM)
;if2LSBs ==10
bcnd PAR16,eq ; load from 16—hit memory (EPROM)

celse 2 LSBs == 11

R S I R R A R S

* Warm-boot, simply branch to source address *

EE R I I I R

warmboot
dmov SOURCE ; dest <— src
splk #0, GREG
laci DEST2
BACC
looper splk #0,GREG
LACL B2PA 3 ; load code entry into accumulator
BACC ; branch to address and execute program
OLDBOOT
* COPY TO BO MEMORY, SWITCH TO MP MODE, THEN CONTINUE TO BOOT
*
LAR AR7 #300h ;AR7 => B1 (300h)
MAR * AR7 ;ARP => AR7
*
* MOVE THE CODE BLOCK
RPT #(CODE_END-CODE-1) ; €203 bootloader is copied in B1
BLPD #CODE,*+ : BLOCK move from PM to DM
* ; Code is copied in DM from 300h
LDP #6 ; DP —> 300h
LAR ARO, #(CODE_END-CODE-1) ; ARO is the counter
LAR AR1, #300h ; Source address—>AR1
MAR * AR1
LACL —#0FFO0Oh ; Destination is FFOOh in Prog.memory
SACL DEST1
COPY LACL *+,ARO ; €203 bootloader is copied in FFOOh

Memory and I/O Spaces 4-59

'C206/L.C206 Bootloader

SACL CODEWORD1
LACL DEST1

TBLW CODEWORD1
ADD #1

SACL DEST1

BANZ COPY,AR1

SPLK #0FF18h, Oh ; fix to modify loop return address
LACL #0FF24h ; Write FF18h in FF24h of Prog.memory
TBLW 300h ; This is required to patch the "loop”
MAR * AR1 ; address in the original c203 bootloader
LDP #0 ; after relocation to FFOOh
B OFFO00h

EE R R I B S I O I I I O I A I I A

* BOOT LOAD FROM 8-BIT MEMORY, MS BYTE IS FIRST *

LR R S O I I

*

* change to MP mode from MC mode
CODE
SPLK 0007h, TEMP ; setto microprocessor mode
OUT TEMP,PMST ; write to PMST register, SARAM mapped in
; program and data (SARAM is internal)

*

* Determine destination address

*
SPLK #80h,GREG ; LOCATIONS 8000—FFFFH are in global data space
LAR AR1#SRC ; AR1 points to Global address 8000h

LACC *+38 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte
LACL *+ ; load ACC with low byte of destination
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16 bit
; destination address
SACL DEST ; store destination address in PM
SACL B2PA_3 ; (71h — Program start address)

* Determine length of code to be transferred
*

LACC *+,8 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte

LACL *+ ; load ACC with low byte of length

AND #OFFH ; Mask off upper 24 bits.

OR HBYTE ; or ACC with hbyte to form 16 bit length
SACL LENGTH ; store length

LAR ARO,LENGTH ;load aro with length to be used for banz

*

* Transfer code

*

LOOP LACC *+,8 ; Load ACC with high byte of code & shift 8 bits
SACL HBYTE ; store high byte
LACL *+,ARO
AND #0FFH :
OR HBYTE ; OR ACC with hbyte to form 16 bit code word
SACL CODEWORD
LACL DEST

4-60

'C206/L.C206 Bootloader

TBLW CODEWORD

ADD #1

SACL DEST

BANZ LOOP,AR1 ; determine if end of code is reached

splk #0,GREG ; Remove global memory

LACL B2PA 3 ; load code entry into ACCumulator

BACC ; branch to address and execute program
CODE_END

PARQS: j**xwrinsinneris 8_B|IT EPROM BOOTLOADER CODE BEGINS etk
* Determine destination address
*
SPLK #80h,GREG ; LOCATIONS 8000—FFFFH are in global data space
LAR AR1,SOURCE ; AR1 points to starting address of EPROM in
; global memory space

TOP LACC *+8 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte
LACL *+ ; load ACC with low byte of destination
AND #OFFH ; Mask off upper 24 bits.
OR HBYTE ; OR ACC with high byte to form 16 bit
; destination address —> ACC
bit FDEST,15 ; FDEST = 1 in first pass

bcnd skip5,ntc
splk #0, FDEST ; FDEST = 0 from second pass

SACL B2PA_3 ; Save final destination address to jump to.
skip5 SACL DEST ; Store destination address

bit nextsect,15 ; check to see if through at least one section

bcnd contl,ntc ; nextsect = 0 in first pass

lacl DEST

and #OFFFFh
bcnd looper,eq ; if word is 0000h, booting is done
splk #0,nextsect

contl

*

* Determine length of code to be transferred
*

LACC *+,8 ; Load ACC with high byte and shift 8 bits
SACL HBYTE ; store high byte

LACL *+ ; load ACC with low byte of length

AND #OFFH ; Mask off upper 24 bits.

OR HBYTE ; OR ACC with high byte to form 16 bit length
SACL LENGTH ; store length

LAR ARO,LENGTH ;load ARO with length to be used for banz

*

* Transfer code
*
LOOP1 LACC *+,8 ; Load ACC with high byte of code & shift 8 bits
SACL HBYTE ; store high byte
LACL *+,ARO
AND #0FFH
OR HBYTE ; OR ACC with hbyte to form 16 bit code word
SACL CODEWORD
LACL DEST
TBLW CODEWORD

Memory and I/O Spaces 4-61

'C206/L.C206 Bootloader

ADD #1

SACL DEST

BANZ LOOP1,AR1 ; determine if end of code is reached
call B2_init ; reinitialize for next section

splk #1, nextsect ; flag to check for another section

B TOP

*** 8—bit EPROM bootloader code ends ***
PAR1G: ; **x&sisrxsidirx 1 6_bit EPROM BOOTLOADER CODE BEGINS **#xkidxkidix
* Determine destination address
*
SPLK #80h,GREG ; LOCATIONS 8000-FFFFH are in global data space
LAR AR1,SOURCE ;AR points to starting address of EPROM in
; global memory space
TOP1 LACC *+ ; Load ACC with destination address
bit FDEST,15 ; FDEST = 1 in first pass
bend skip2,ntc
splk #0, FDEST ; FDEST = 0 from second pass
SACL B2PA_3 ; save final destination address to jump to
skip2 SACL DEST ; store destination address
bit nextsect,15 ; nextsect =0 in first pass
bcnd cont2,ntc
lacl DEST
and #0FFFFh
bcnd looper,eq
splk #0,nextsect
cont2

*

* Determine length of code to be transferred

*

LACC *+ ; Load ACC with length of section
SACL LENGTH ; store length
LAR ARO,LENGTH ; load aro with length to be used for banz

*

* Transfer code
*
LOOP2 LACC *+, ARO ; Load ACC with high byte of code
SACL CODEWORD
LACL DEST
TBLW CODEWORD
ADD #1
SACL DEST
BANZ LOOP2,AR1 ; determine if end of code is reached
call B2_init ; reinitialize for next section
splk #1, nextsect ; flag to check for another section
B TOP1
*** 16—bit EPROM bootloader code ends ***
ASP: ; *rkkkkriiik AGYNCH. SERIAL PORT (UART) BOOTLOADER CODE BEGINS ***ik
* Function: 2xx Serial loader module by polling DR bit ~ *

* *

* Receive data format : *

* Header : *

* start address 1st word *

* Program code/length 2nd word *
*

Program code/data from 3rd word *

4-62

'C206/L.C206 Bootloader

* After data load the PC jumps to the *
* Destination/Load/Run address. *
* UART initialization with autobaud enable

Idp #0
splk #0c0a0h,B2S_0 ; reset the UART by writing O
out B2S_0, aspcr ; Enable Auto baud detect & Rcv interrupt

splk #0e0a0h,B2S_0 ; CAD=1, 1 stop bit
out B2S_0,aspcr
splk #4fffh,B2S_0 : Clear ADC & Bl bits

out B2S 0,iosr : enable auto baud
uart: in B2S_0,iosr
bit B2S_0,7 ; check DR bit to see if any new character
bcnd uart,ntc ; is available in the ADTR
in B2S_0,aspcr
bit B2S_0,10 ; Check CAD =1
bcnd nrev,ntc ; If 0, start receive, autobaud done
in B2S_1,iosr ; load input status from iosr
bit B2S_1,1 ; check if auto baud bit is set,else return
bcnd nauto,ntc ; and wait for Auto baud detect receive
splk #4000h,B2S_1 ; Auto baud detect done
out B2S 1,iosr : clear ADC
splk #0e080h,B2S_1
out B2S 1, aspcr : Disable CAD bit/ auto baud
in B2S_1,adtr ; Dummy read to discard "a”
out B2S 1,adtr ; Echo back "a”
nauto: in B2S_1,adtr ; Dummy read to clear UART rx buffer
b skipl ; Exit and wait for "a”
skipl: splk #6600h,B2S_0
out B2S_0,iosr ; Clear all Interrupt sources
B uart
nrev:
* Begin receiving user code
setc CNF ; map BO to program space
call B2_init ;
pwait:
in B2S_0,iosr ; Load input status from iosr
bit B2S_0,7 ; bit 8 in the data
bcnd pwait,ntc ; IF DR=0 no echo, return
call pnrcv ;
bit B2FM_8,15 ; Wait until Data_move ready flag
bcnd pwait,ntc
lacl B2PA_2 ; Load destination address
tblw B2PD_5 ; Move data to the current destination address
add #1 ; Increment destination address+1
sacl B2PA 2 ; save next destination address
banz pwait,*—

* check if next section, need to read next 16 bit word, if "0000” then a
* section follows else program branches to address saved in B2PA_3.

call B2_init : reinitialize for next section
splk #1, nextsect ; flag to check for another section
B pwait
pnrecv:
mar *,arl ; Valid UART data, Point to Word index reg.

Memory and I/0 Spaces

4-63

'C206/L.C206 Bootloader

bit B2D_6,15 ; Check if bitO of word index =1,low byte
bend plbyte,tc ; received!
in B2S_1,adtr ; No, Hi byte received!
out B2S_1,adtr ; Echo receive data
lacc B2S_1,8 ; Align to upper byte
sacl B2D 7 ; Save aligned word
mar *+ ; Increment Word Index
sar arl,B2D_6 ; Store high_byte flag
splk #0,B2FM_8 ; Reset Data/word move flag as only hi—byte recd!
b pskip ; wait for next byte
plbyte:
in B2S_0,adtr ; Receive second byte/low byte
* out B2S_0,adtr ; Echo received data
lacc B2S 0,0
and #0ffh ; Clear high byte
or B2D_7 ; Add high byte to the word
sacl B2PD_5 ; store 16-bit word at arl
mar *+ ;1+
sar arl,B2D_6 ; Save the count
bit nextsect,15 : check for next section
bend cont,ntc ; if not zero, continue, else check for 0
lacl B2PD_5 : load first word
and #OFFFFh
bcnd looper,eq ;if 0 done, else
splk #0,nextsect ; reset next sect flag for next pass
cont bitB2FH_9,15 ; Check Header_done flag
bcnd psmove,tc ; No, if 2 words received update Data_move flag
lar ar0,#2
cmpr O
bend pword2,ntc
bit FDEST,15 ; test to determine if this is first pass
bend skip,ntc ; skip if this is 2nd section onward
splk #0, FDEST ; if yes reset flag
sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skip sacl B2PA_2 ; Save data buffer address
b pskip ;
pword2:
lar ar0,#4 ; Check if 4 words recvd, update program length
cmpr 0 ; Program length register
bcnd pskip,ntc ; Else exit
lar ar2,B2PD_5 ; Yes received!,Load PM length in AR2
sar ar2, B2PL_4 ; Save program length
splk #1,B2FH_9 ; Set Header_done flag
b pskip
psmove:
mar *,ar2
splk #1h,B2FM_8 ; Set UART Data_move ready flag
pskip:
splk #0020h, ifr ; Clear interrupt in ifr!
ret
B2_init:
lacc #0
lar arl,#B2 ; Point B2_RAM start address
mar *,arl

4-64

'C206/L.C206 Bootloader

rpt #16

sacl *+ ; Clear B2 memory

lar arl,#00h ; Clear pointers

lar ar2,#00h ;

lar ar3,#00h

ret
*** Asynch. serial port (UART) bootloader code ends ***
R e s e e e e e e e e

* SERIAL BOOTLOAD (SSP 8/16 bit,UART), PARALLEL /IO *

*kkkkk *kkkokk

ser_io
bit brs,b4 ; test hit 4 of configuration word
bcnd ASP,TC ; If set, branch to UART bootloader
bit brs,b3 ; test bit 3 of configuration word
bcnd io,tc ; If set, branch to Parallel I/O bootloader

EE R I

* Bootload from Synchronous serial port (SSP) *

EE R S A R

ser
bit brs,b2 ; test bit 2 of configuration word
bcnd bit8,ntc ; if 0, then 8—bit mode, else 16—bit mode
ik 16—BIT SYNCH. SERIAL PORT (SSP) BOOTLOADER CODE BEGINS i
* After data load the PC jumps to the Destination *
* /Load/Run address. *
setc CNF ; Block BO in PM
Idp #0h ; set DP=0
setc INTM ; Disable all interrupts
call B2_init
splk #0,nextsect
splk #1,FDEST ; FLAG to determine address of code entry

*SSP initialization
sspld: splk #0c00ah,B2S_0 ; Initialize SSP in Burst mode, in reset

out B2S_0,sspcr ; External Clocks, 16 bit word
splk #0c03ah, B2S_0 ; Interrupt on 1 word in FIFO, Internal FSX
out B2S_0, sspcr ; take port out of reset
wait: in B2S_0,sspcr
bit B2S 0,3 ; poll RFENE bit to see if data received
bcnd wait,ntc
call codrx
bit B2FM_8,15 ; Wait until Data_move ready flag

bcnd wait,ntc
splk #0,B2FM_8

lacl B2PA_2 ; Load destination address

tblw B2PD_5 ; Move data to the current destination address
add #1 ; Increment destination address+1

sacl B2PA 2 ; save next destination address

banz wait,*— ; decrement length counter

* check if next section, need to read next 16 bit word, if not "0000” then a
* section follows else program branches to address saved in B2PA_3.

call B2_init ; reinitialize for next section
splk #1, nextsect ; flag to check for another section
B wait

* SSP loader code!

Memory and I/O Spaces 4-65

'C206/L.C206 Bootloader

codrx:
in B2S_0,sdtr ; Read received data/Load Scratch RAM
out B2S_0,sdtr ; Echo received data
bit nextsect,15 ; check for next section/BIT 0 of nextsect
bcnd contx,ntc ; if not zero, continue, else check for 0
lacl B2S 0
* lacl B2PD_5 ; load first word
and #OFFFFh
lar ar7, #9999h
bcnd looper,eq ;if 0 done, else
splk #0,nextsect ; reset next sect flag for next pass
contx mar *,ar3 ; Set Word index register as AR3
mar *+ ; Increment word index
lar ar0,#1 ; If word index =1 save Program start address
cmpr O
bend pmad,tc
lar ar0,#2 ; If index =2 save Program length
cmpr 0 ; Compare if (AR3)=(AR0). TC=1, if true
bend plen,tc ; True in second pass
lacc B2S 0,0
sacl B2PD_5,0 : Store received word
splk #1h,B2FM_8 ; Set SSP Data_move ready flag
b skip7,ar2
pmad: lacc B2S_0,0 : Store destination start address in ACC
bit FDEST,15 ; test to determine if this is first pass
bcnd skip6,ntc ; skip if this is 2nd section onward
splk #0, FDEST ; if yes reset flag
sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skip6 sacl B2PA_2 ; Save data buffer address
b skip7,ar2 ;
plen: larar2,B2S_0 ; Store Program length at B2PL_4
sar ar2,B2PL_4
skip7:
ret

*** 16-bit Synch. serial port (SSP) bootloader code ends ***
Fxkkkkikik 8_B|T SYNCH. SERIAL PORT (SSP) BOOTLOADER CODE BEGINS ****#xxxx
bit8
* Function: F2xx Serial loader module *
* *
Receive data format : *
Header : *
start address 1st word *
Program code/length 2nd word *
Program code/data from 3rd word *
After data load the PC jumps to the *
Destination/Load/Run address. *
title ” Serial loader” ; Title
setc CNF : Block BO in PM
Idp #0h : set DP=0
setc INTM ; Disable all interrupts
call B2_init
splk #0,nextsect
splk #1,FDEST ; FLAG to determine address of code entry

L A

4-66

'C206/L.C206 Bootloader

*SSP initialization
sspldl splk #0c00ah,B2S_0 ; Initialize SSP in Burst mode, in reset

out B2S_0,sspcr ; External Clocks, 16 bit word
splk #0c03ah, B2S_0 ; Interrupt on 1 word in FIFO, external FSX
out B2S_0, sspcr ; take port out of reset
splk #0001h, B2S 0
out B2S_0,sspst : 8 bit mode
* splk #8h,imr ; Enable SSP RX interrupt only
pwaitl:
in B2S_0,sspcr ; Load input status from sspcr
bit B2S_0,3 ; Poll RFNE bit
bcnd pwaitl,ntc : IF DR=0 no echo, return
call pnrcvl ;
bit B2FM_8,15 ; Wait until Data_move ready flag
bcnd pwaitl,ntc
lacl B2PA_2 ; Load destination address
tblw B2PD_5 ; Move data to the current destination address
add #1 ; Increment destination address+1
sacl B2PA 2 ; save next destination address

banz pwaitl,*—

* check if next section, need to read next 16 bit word, if not "0000” then a
* section follows else program branches to address saved in B2PA_3.

call B2_init : reinitialize for next section
splk #1, nextsect ; flag to check for another section
B pwaitl
pnrcvl:
mar *,arl ; Valid data, Point to Word index reg.
bit B2D_6,15 ; Check if bit0 of word index =1,low byte
bend Ibyte,tc ; received!
in B2S_1,sdtr ; No, Hi byte received!
out B2S_1,sdtr ; Echo receive data
lacc B2S_1,8 ; Align to upper byte
sacl B2D_7 ; Save aligned word
mar *+ : Increment Word Index
sar arl,B2D_6 ; Store high_byte flag
splk #0,B2FM_8 ; Reset Data/word move flag as only hi-byte recd!
b pskip8 ; wait for next byte
Ibyte:
in B2S_0,sdtr ; Receive second byte/low byte
* out B2S_0,sdtr ; Echo received data
lacc B2S 0,0
and #0ffh ; Clear high byte
orB2D_7 ; Add high byte to the word
sacl B2PD_5 ; store 16—bit word at arl
mar *+ D1+
sar arl,B2D_6 ; Save the count
bit nextsect,15 ; check for next section
bcnd cont9,ntc ; if not zero, continue, else check for O
lacl B2PD_5 : load first word
and #0FFFFh
bcnd looper,eq ;if 0 done, else
splk #0,nextsect ; reset next sect flag for next pass
cont9 bit B2FH_9,15 ; Check Header_done flag
bcnd psmove0,tc ; No, if 2 words received update Data_move flag

Memory and I/0 Spaces

4-67

'C206/L.C206 Bootloader

lar ar0,#2

cmpr O

bend word2,ntc

bit FDEST,15 ; test to determine if this is first pass

bend skipe,ntc ; skip if this is 2nd section onward

splk #0, FDEST ; if yes reset flag

sacl B2PA_3 ; Store DESTINATION address to JUMP TO
skipe sacl B2PA_2 : Save data buffer address

b pskip8 ;
word2:

lar ar0,#4 ; Check if 4 words recvd, update program length

cmpr 0 ; Program length register

bend pskip8,ntc ; Else exit

lar ar2,B2PD_5 ; Yes received!,Load PM length in AR2

sar ar2, B2PL_4 ; Save program length

splk #1,B2FH_9 ; Set Header_done flag

b pskip8
psmoveO:

mar *,ar2

splk #1h,B2FM_8 ; Set UART Data_move ready flag
pskip8:

ret

*** 8—bit Synch. serial port (SSP) bootloader code ends ***

R I A kR Sk I R

* Bootload from parallel I/O port (port 1) —8/16 bit parallel /0 *
R IR I A A A S I A A S R I
io
splk #0,GREG ; disable global space
bit brs,b2 ; test bit #2 of configuration word
bcnd pasyncO8,ntc ; if reset, use 8-bit mode
Fhkkkxrakik 16—BIT PARALLEL 1/O BOOTLOADER CODE BEGINS *xtkakaikix

pasyncl6
mar *arl

TOP3 call handshake
IN DEST,1 ; read word from port 1 to destination
LACL DEST

bit FDEST,15

bend skip3,ntc

splk #0, FDEST

SACL B2PA_3 ; save final destination address to jump to
skip3 SACL DEST ; store destination address

bit nextsect,15

bcnd cont3,ntc

lacl DEST

and #OFFFFh

bcnd looper,eq

splk #0,nextsect

cont3
call handshake
IN LENGTH,1 ; read word from port 1 to length
lar arl,LENGTH ; arl <— code length
lacl DEST ; ACC <— destination address
loopl6 call handshake
IN TEMP,1 ; read word from port 1 to temp

4-68

setc
nop
nop
tblw
add
banz
call
splk
B

xf

TEMP
#1
loopl6,*—

B2_init

#1, nextsect
TOP3

'C206/L.C206 Bootloader

; acknowledge word as soon as it's read

; delay between xf and write

; write word to destination
; increment destination address

; loop if arl is not zero
; reinitialize for next section
; flag to check for another section

*** 16—bit Parallel I/O bootloader code ends ***
wrxxxxxx 8—BIT PARALLEL 1/0 BOOTLOADER CODE BEGINS — MS byte first *******

pasync08
mar *arl
TOP4 call handshake
IN TEMP,1
lacc TEMP,8
sacl DEST
call handshake
IN TEMP,1
lacl TEMP
and #0ffh
or DEST
bit FDEST,15
bcnd skip4,ntc
splk #0, FDEST
SACL B2PA 3
skip4 SACL DEST
bit nextsect,15
bcnd cont4,ntc
lacl DEST
and #0FFFFh
bcnd looper,eq
splk #0,nextsect
cont4
call handshake
IN TEMP,1
lacc TEMP,8
sacl LENGTH
call handshake
IN TEMP,1
lacl TEMP
and #0ffh
or LENGTH
sacl LENGTH
LAR arl,LENGTH
lacl DEST
sacl DEST2
loop08 call handshake
IN TEMP,1
lacc TEMP,8
sacl TEMP1
call handshake
IN TEMP,1

; read 1/0 port 1
; read high byte from port

; read low byte from port
; clear upper byte
; combine high and low byte

; save final destination address to jump to
; store destination address

; read high byte from port
; save high byte

; read low byte from port
; clear upper byte
; combine high and low byte
; save code length
; arl <— code length

: DEST2 <— destination address
; read high byte from port

; save high byte

Memory and I/O Spaces 4-69

'C206/L.C206 Bootloader

lacil TEMP ; read low byte from port

setc xf ; acknowledge byte as soon as it's read
and #0ffh ; clear upper byte

or TEMP1 ; combine high and low byte

sacl TEMP1 ; save code word

lacl DEST2 ; DEST2 <— destination address

tblw TEMP1 ; write code word to program memory
add #1 ; increment destination address

sacl DEST2 ; save new destination address

banz loop08,*— ; loop if arl not zero

call B2_init : reinitialize for next section

splk #1, nextsect ; flag to check for another section

B TOP4

*** 8_bit Parallel I/O bootloader code ends ***

*

Handshake with BIO signal using XF

handshake

setc xf ; acknowledge previous data word
biohigh

bend biohigh,bio ; wait till host sends request

clrc xf ; indicate ready to receive new data
biolow

retc bio ; wait till new data ready

b biolow

.sect "alaw”

CCITT expansion table
The table is A—law expansion table for ADI-coded samples. Please read

columnar values top to bottom and from left column to next right column.

4-70

.DEF AEXPTAB

'C206/L.C206 Bootloader

AEXPTABWORD -688 .WORD -1248 .WORD -204
.WORD -656 .WORD -1184 .WORD -196
WORD 752 .WORD -1888 .WORD -220
WORD -720 .WORD -1824 .WORD -212
.WORD -560 .WORD -2016 .WORD -86
.WORD -528 .WORD -1952 .WORD -82
WORD -624 WORD -1632 WORD -94
WORD 592 .WORD -1568 .WORD -90
.WORD -944 .WORD -1760 .WORD -70
WORD -912 .WORD -1696 .WORD -66
.WORD -1008 \WORD -43 .WORD -78
.WORD -976 .WORD 41 .WORD -74
.WORD -816 .WORD -47 .WORD -118
.WORD -784 .WORD -45 .WORD -114
.WORD -880 .WORD -35 .WORD -126
WORD -848 .WORD -33 .WORD -122
.WORD -344 .WORD -39 .WORD -102
.WORD -328 .WORD -37 .WORD -98
.WORD -376 .WORD -59 .WORD -110
.WORD -360 .WORD -57 .WORD -106
.WORD -280 .WORD -63 .WORD 688
.WORD -264 .WORD -61 .WORD 656
WORD -312 .WORD -51 .WORD 752
.WORD -296 .WORD -49 .WORD 720
WORD -472 .WORD -55 .WORD 560
.WORD -456 .WORD -53 .WORD 528
.WORD -504 .WORD -11 .WORD 624
.WORD 488 .WORD -9 .WORD 592
.WORD -408 .WORD -15 .WORD 944
.WORD -392 .WORD -13 .WORD 912
.WORD -440 .WORD -3 .WORD 1008
WORD 424 \WORD -1 .WORD 976
WORD -2752 .WORD -7 .WORD 816
.WORD -2624 .WORD -5 .WORD 784
.WORD -3008 .WORD -27 .WORD 880
.WORD -2880 .WORD -25 .WORD 848
WORD -2240 .WORD -31 .WORD 344
WORD -2112 .WORD -29 .WORD 328
WORD —-2496 .WORD -19 .WORD 376
.WORD -2368 .WORD -17 .WORD 360
WORD -3776 .WORD -23 .WORD 280
WORD -3648 .WORD -21 .WORD 264
.WORD -4032 .WORD -172 .WORD 312
.WORD -3904 .WORD -164 .WORD 296
WORD -3264 .WORD -188 .WORD 472
WORD -3136 .WORD -180 .WORD 456
.WORD -3520 .WORD -140 .WORD 504
WORD -3392 .WORD -132 .WORD 488
WORD -1376 .WORD -156 .WORD 408
WORD -1312 .WORD -148 .WORD 392
.WORD -1504 .WORD -236 .WORD 440
WORD -1440 .WORD -228 .WORD 424
WORD -1120 WORD -252 .WORD 2752
.WORD -1056 .WORD -244 .WORD 2624

Memory and I/O Spaces 4-71

'C206/L.C206 Bootloader

4-72

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

27
25
31
29
19
17
23
21
172
164
188
180
140
132
156
148
236
228
252
244
204
196
220
212
86
82
94
90
70
66
78
74
118
114
126
122
102
98
110
106

.sect "ulaw”

; CCITT mu-law
Table

*

Expansion

.DEF
UEXPTABWORD
.WORD
.WORD
.WORD
.WORD
.WORD

UEXPTAB
OeOalh
Oelalh
Oe2alh
Oe3alh
Oedalh
Oebalh

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

Oe6alh
Oe7alh
Oe8alh
0Oe9alh
Oeaalh
Oebalh
Oecalh
Oedalh
Oeealh
Oefalh
0f061h
0f0elh
0f161h
Oflelh
0f261h
0f2elh
0f361h
0f3elh
0f461h
0Ofdelh
0f561h
0f5elh
0f661h
oféelh
0f761h
0f7elh
0f841h
0f881h
0f8clh
0f901h
0f941h
0f981h
0f9clh
Ofa0lh
Ofad1lh
Ofa81h
Ofaclh
0fb01h
0fb41h
0fb81h
Ofbclh
0fcO01h
0fc31h
0fc51h
0fc71h
0fc91h
Ofcblh
Ofcdlh
Ofcflh
ofd11h
0fd31h
0fd51h
0fd71h
0fd91h

'C206/L.C206 Bootloader

.WORD 0fdblh .WORD 0ffe6h .WORD 005bfh
.WORD 0fdd1h .WORD 0ffe8h .WORD 0057fh
.WORD 0fdflh .WORD 0ffeah .WORD 0053fh
.WORD 0fellh .WORD Offech .WORD 004ffh
.WORD 0fe29h .WORD 0ffeeh .WORD 004bfh
.WORD 0fe39h .WORD 0fffOh .WORD 0047fh
.WORD 0fe49h .WORD 0fff2h .WORD 0043fh
.WORD 0fe59h .WORD 0fff4h .WORD 003ffh
.WORD 0fe69h .WORD 0ffféh .WORD 003cfh
.WORD 0fe79h .WORD 0fff8h .WORD 003afh
.WORD 0fe89h .WORD 0fffah .WORD 0038fh
.WORD 0fe99h .WORD 0fffch .WORD 0036fh
.WORD 0feaSh .WORD 0fffeh .WORD 0034fh
.WORD 0feb9h .WORD 00000h .WORD 0032fh
.WORD 0fec9h .WORD 01f5fh .WORD 0030fh
.WORD 0fed9h .WORD 01e5fh .WORD 002efh
.WORD 0feeSh .WORD 01d5fh .WORD 002cfh
.WORD 0fef9h .WORD 01c5fh .WORD 002afh
.WORD 0ff09h .WORD 01b5fh .WORD 0028fh
.WORD 0ff19h .WORD 01a5fh .WORD 0026fh
.WORD 0ff25h .WORD 0195fh .WORD 0024fh
.WORD 0ff2dh .WORD 0185fh .WORD 0022fh
.WORD 0ff35h .WORD 0175fh .WORD 0020fh
.WORD 0ff3dh .WORD 0165fh .WORD 001efh
.WORD 0ff45h .WORD 0155fh .WORD 001d7h
.WORD 0ff4dh .WORD 0145fh .WORD 001c7h
.WORD 0ff55h .WORD 0135fh .WORD 001b7h
.WORD 0ff5dh .WORD 0125fh .WORD 001a7h
.WORD 0ff65h .WORD 0115fh .WORD 00197h
.WORD 0ff6édh .WORD 0105fh .WORD 00187h
.WORD 0ff75h .WORD 00f9fh .WORD 00177h
.WORD 0ff7dh .WORD 00f1fth .WORD 00167h
.WORD 0ff85h .WORD 00e9fh .WORD 00157h
.WORD 0ff8dh .WORD 00elfh .WORD 00147h
.WORD 0ff95h .WORD 00d9fh .WORD 00137h
.WORD 0ff9dh .WORD 00d1fh .WORD 00127h
.WORD 0ffa3h .WORD 00c9fh .WORD 00117h
.WORD 0Offa7h .WORD 00c1fh .WORD 00107h
.WORD Offabh .WORD 00b9fh .WORD 000f7h
.WORD Offafh .WORD 00b1fh .WORD 000e7h
.WORD 0ffb3h .WORD 00a9%fh .WORD 000dbh
WORD 0ffb7h .WORD 00alfh .WORD 000d3h
.WORD 0ffbbh .WORD 0099fh .WORD 000cbh
.WORD 0ffbth .WORD 0091fh .WORD 000c3h
.WORD 0ffc3h .WORD 0089fh .WORD 000bbh
.WORD 0ffc7h .WORD 0081fh .WORD 000b3h
.WORD 0ffcbh .WORD 007bfh .WORD 000abh
.WORD 0ffcth .WORD 0077fh .WORD 000a3h
.WORD 0ffd3h .WORD 0073fh .WORD 0009bh
.WORD 0ffd7h .WORD 006ffh .WORD 00093h
.WORD 0ffdbh .WORD 006bfh .WORD 0008bh
.WORD 0ffdfh .WORD 0067fh .WORD 00083h
.WORD 0ffe2h .WORD 0063fh .WORD 0007bh
.WORD 0ffe4h .WORD 005ffh .WORD 00073h

Memory and I/O Spaces 4-73

'C206/L.C206 Bootloader

4-74

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

0006bh
00063h
0005dh
00059h
00055h
00051h
0004dh
00049h
00045h
00041h
0003dh
00039h
00035h
00031h
0002dh
00029h
00025h
00021h
0001eh
0001ch
0001ah
00018h
00016h
00014h
00012h
00010h
0000eh
0000ch
0000ah
00008h
00006h
00004h
00002h
00000h

'C206/L.C206 Bootloader

Common header file:
Filename: sldrv201.h
.mmregs
; Memory variables specific to flash algorithms

* *

BASE .set 068h ; Base address for variables
B2_0 .set BASE+0 ; can be changed to relocate
B2 1 .set BASE+1 ; variable space in RAM

B2 2 .set BASE+2

B2_3 .set BASE+3

B2_4 .set BASE+4

B2 5 .set BASE+5

B2_6 .set BASE+6

nextsect .set BASE+7

FDEST .set BASE+8

B2PA 3 .set BASE+9 ; Program start address

* Variables for Uart_loader

B2 .set 72h

B2S 0 .set B2+0h ; Scratch registers

B2S 1 .set B2+1h

B2PA_2 .setB2+2h ; Program start address

*

B2PL_4 .setB2+4h ; Program Length

B2PD_5 .set B2+5h ; Program Code/Data

B2D_6 .set B2+6h ; Variables

B2D 7 .setB2+7h

B2FM_8 .set B2+8h ; Flag for start Data move — Data_move
B2FH_9 .set B2+9h ; Flag for Header receive — Header_done
B2FD_a .set B2+0ah ; Flag for data move complete — Data_ready
B2FSH .set B2+0bh ; High word check sum

B2FSL .set B2+0ch : Low word check sum

* On-chip I/O registers

PMST .set OFFE4h :Defines SARAM in PM/DM and MP/MC bit
* SYNC PORT

sdtr set OfffOh

sspcr .set Offfih

sspst .set Offf2h

* UART

adtr .set Offf4h

aspcr .set Offf5h

iosr .set Offféh

brd .set Offf7h

Memory and I/O Spaces 4-75

Chapter 5

Program Control

This chapter discusses the processes and features involved in controlling the
flow of a program on the 'C20x.

Program control involves controlling the order in which one or more blocks of
instructions are executed. Normally, the flow of a program is sequential: the
'C20x executes instructions at consecutive program-memory addresses. At
times, a program must branch to a nonsequential address and then execute
instructions sequentially at that new location. For this purpose, the 'C20x
supports branches, calls, returns, repeats, and interrupts.

The 'C20x also provides a power-down mode, which halts internal program
flow and temporarily lowers the power requirements of the 'C20x.

Topic Page
5.1 Program-Address Generation —............. .. 5-
5.2 Pipeline Operation i 5
5.3 Branches, Calls, and Returns 5-
5.4 Conditional Branches, Calls, and Returns ~ 5.0 |
5.5 Repeating a Single Instruction 5-
5.6 INEEITUPLS .o 5-15
5.7 Reset Operation i 5-35
5.8 Power-Down Mode 5-40

Program-Address Generation

5.1 Program-Address Generation

Program flow requires the processor to generate the next program address
(sequential or nonsequential) while executing the current instruction.

Program-address generation is illustrated in Figure 5—-1 and summarized in
Table 5-1.

Figure 5-1. Program-Address Generation Block Diagram

Program read bus (PRDB)

Data read bus (DRDB)

BACC or CALA
instruction
Interrupt, A 4
branch, or call
Program
Return control
from
subroutine
YYVYVYYY
MUX
Next program address PSHD |
register (NPAR) Instruction
v
v
- MUX
Program counter Program address Micro stack
(PC/INPAR+1) register (PAR) (MSTACK) POPD
Sequential operation Dummy cycle Table/block move instruction
— | Top of stack (TOS)

Program-address
stack
8 x 16

Program address bus (PAB)

Data write bus (DWEB)

5-2

Table 5-1. Program-Address Generation Summary

Program-Address Generation

Operation

Program-Address Source

Sequential operation

Dummy cycle

Return from subroutine

Return from table move or block move

Branch or call to address specified in
instruction

Branch or call to address specified in
lower half of the accumulator

Branch to interrupt service routine

PC (contains program address +1)
PAR (contains program address)
Top of the stack (TOS)

Micro stack (MSTACK)

Branch or call instruction by way of the
program read bus (PRDB)

Low accumulator by way of the data
read bus (DRDB)

Interrupt vector location by way of the

program read bus (PRDB)

The 'C20x program-address generation logic uses the following hardware:

[Program counter (PC). The 'C20x has a 16-bit program counter (PC) that
addresses internal and external program memory when fetching
instructions.

(1 Program address register (PAR). The PAR drives the program address
bus (PAB). The PAB is a 16-bit bus that provides program addresses for
both reads and writes.

[J Stack. The program-address generation logic includes a 16-bit-wide,
8-level hardware stack for storing up to eight return addresses. In addition,
you can use the stack for temporary storage.

(1 Micro stack (MSTACK). Occasionally, the program-address generation
logic uses the 16-bit-wide, 1-level MSTACK to store one return address.

(1 Repeat counter (RPTC). The 16-bit RPTC is used with the repeat (RPT)
instruction to determine how many times the instruction following RPT is
repeated.

5.1.1 Program Counter (PC)

The program-address generation logic uses the 16-bit program counter (PC)
to address internal and external program memory. The PC holds the address
of the next instruction to be executed. Through the program address bus
(PAB), an instruction is fetched from that address in program memory and
loaded into the instruction register. When the instruction register is loaded, the
PC holds the next address.

Program Control 5-3

Program-Address Generation

The 'C20x can load the PC in a number of ways, to accommodate sequential
and nonsequential program flow. Table 5-2 shows what is loaded to the PC
according to the code operation performed.

Table 5-2. Address Loading to the Program Counter

5.1.2 Stack

Code Operation Address Loaded to the PC

Sequential execution The PC is loaded with PC + 1 if the current instruction has
one word or PC + 2 if the current instruction has two words.

Branch The PC is loaded with the long immediate value directly
following the branch instruction.

Subroutine call and For a call, the address of the next instruction is pushed from

return the PC onto the stack, and then the PC is loaded with the
long immediate value directly following the call instruction.
Areturninstruction pops the return address back into the PC
to return to the calling sequence of code.

Software or hardware The PC is loaded with the address of the appropriate

interrupt interrupt vector location. At this location is a branch
instruction that loads the PC with the address of the
corresponding interrupt service routine.

Computed GOTO The content of the lower 16 bits of the accumulator is loaded
into the PC. Computed GOTO operations can be performed
using the BACC (branch to address in accumulator) or
CALA (call subroutine at location specified by the
accumulator) instructions.

The 'C20x has a 16-bit-wide, 8-level-deep hardware stack. The
program-address generation logic uses the stack for storing return addresses
when a subroutine call or interrupt occurs. When an instruction forces the CPU
into a subroutine or an interrupt forces the CPU into an interrupt service
routine, the return address is loaded to the top of the stack automatically; this
event does not require additional cycles. When the subroutine or interrupt
service routine is complete, a return instruction transfers the return address
from the top of the stack to the program counter.

When the eightlevels are not used for return addresses, the stack may be used
for saving context data during a subroutine or interrupt service routine, or for
other storage purposes.

You can access the stack with two sets of instructions:

[PUSH and POP. The PUSH instruction copies the lower half of the
accumulator to the top of the stack. The POP instruction copies the value
on the top of the stack to the lower half of the accumulator.

Program-Address Generation

[J PSHD and POPD. These instructions allow you to build a stack in data
memory for the nesting of subroutines or interrupts beyond eight levels.
The PSHD instruction pushes a data-memory value onto the top of the
stack. The POPD instruction pops a value from the top of the stack to data
memory.

Whenever a value is pushed onto the top of the stack (by an instruction or by
the address-generation logic), the content of each level is pushed down one
level, and the bottom (eighth) location of the stack is lost. Therefore, data is
lost (stack overflow occurs) if more than eight successive pushes occur before
a pop. Figure 5-2 shows a push operation.

Figure 5-2. A Push Operation

Before Instruction After Instruction
Accumulator Accumulator
or memory | 7h| or memory
location location

| 2h|

| 50

Stack | 3h] Stack

| on]

| 12h|

| Ben]

| san]

| 3Fh| 54h

Pop operations are the reverse of push operations. A pop operation copies the
value at each level to the next higher level. Any pop after seven sequential
pops yields the value that was originally at the bottom of the stack because,
by then, the bottom value has been copied upward to all of the stack levels.
Figure 5-3 shows a pop operation.

Program Control 5-5

Program-Address Generation

Figure 5-3. A Pop Operation

Before Instruction After Instruction
Accumulator Accumulator
or memory | 82h| or memory
location location
| 50
| T6n]
Stack | 7h] Stack
| 30|
| 42h| 56h
| 56h]
| 57
| 61h| 61h

5.1.3 Micro Stack (MSTACK)

The program-address generation logic uses the 16-bit-wide, 1-level-deep
MSTACK to store a return address before executing certain instructions.
These instructions use the program-address generation logic to provide a
second address in a two-operand instruction. These instructions are: BLDD,
BLPD, MAC, MACD, TBLR, and TBLW. When repeated, these instructions
use the PC to increment the first operand address and can use the auxiliary
register arithmetic unit (ARAU) to generate the second operand address.
When these instructions are used, the return address (the address of the next
instruction to be fetched) is pushed onto the MSTACK. Upon completion of the
repeated instruction, the MSTACK value is popped back into the
program-address generation logic. The MSTACK operations are not visible to
you. Unlike the stack, the MSTACK can be used only by the program-address
generation logic; there are no instructions that allow you to use the MSTACK
for storage.

Pipeline Operation

5.2 Pipeline Operation

Instruction pipelining consists of a sequence of bus operations that occur
during the execution of an instruction. The 'C20x pipeline has four
independent stages: instruction-fetch, instruction-decode, operand-fetch, and
instruction-execute. Because the four stages are independent, these
operations can overlap. During any given cycle, one to four different
instructions can be active, each at a different stage of completion. Figure 5-4
shows the operation of the 4-level-deep pipeline for single-word, single-cycle
instructions executing with no wait states.

The pipeline is essentially invisible to you except in the following cases:

1 A single-word, single-cycle instruction immediately following a
modification of the global-memory allocation register (GREG) uses the
previous global map. You can prevent this by adding a NOP instruction
after the instruction that writes to the GREG.

1 The NORM instruction modifies the auxiliary register pointer (ARP) and
uses the current auxiliary register (the one pointed to by the ARP) during
the execute phase of the pipeline. If the next two instruction words change
the values in the current auxiliary register or the ARP, they will do so during
the instruction decode phase of the pipeline (before the execution of
NORM). This would cause NORM to use the wrong auxiliary register value
and the following instructions to use the wrong ARP value.

Figure 5—-4. 4-Level Pipeline Operation

CLKOUT14 | , | , | | | [

Fetch :‘—N—’f‘ N+1 : N+2 : N+3 i
Decode I N-1 } N I N+1 I N+2 I
Operand | N-2 \ N-1 | N | N+1 |
Execute I N-3 } N-2 I N-1 I N I

The CPU is implemented using 2-phase static logic. The 2-phase operation
of the 'C20x CPU consists of a master phase in which all commutation logic
is executed, and a slave phase in which results are latched. Therefore,
sequential operations require sequential master cycles. Although sequential
operations require a deeper pipeline, 2-phase operation provides more time
for the computational logic to execute. This allows the 'C20x to run at faster
clock rates despite having a deeper pipeline that imposes a penalty on
branches and subroutine calls.

Program Control 5-7

Branches, Calls, and Returns

5.3 Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by
transferring control to another location in program memory. A branch only
transfers control to the new location. A call also saves the return address (the
address of the instruction following the call) to the top of the hardware stack.
Every called subroutine or interrupt service routine is concluded with a return
instruction, which pops the return address off the stack and back into the
program counter (PC).

The 'C20x has two types of branches, calls, and returns:

[Unconditional. An unconditional branch, call, or return is always executed.
The unconditional branch, call, and return instructions are described in
sections 5.3.1, 5.3.2, and 5.3.3, respectively.

(1 Conditional. A conditional branch, call, or return is executed only if certain
specified conditions are met. The conditional branch, call, and return
instructions are described in detail in section 5.4, Conditional Branches,
Calls, and Returns, on page 5-10.

5.3.1 Unconditional Branches

When an unconditional branch is encountered, it is always executed. During
the execution, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the branch instruction or the
lower 16 bits of the accumulator.

By the time the branch instruction reaches the execute phase of the pipeline,
the next two instruction words have already been fetched. These two
instruction words are flushed from the pipeline so that they are not executed,
and then execution continues at the branched-to address. The unconditional
branch instructions are B (branch) and BACC (branch to location specified by
accumulator).

5.3.2 Unconditional Calls

When an unconditional call is encountered, it is always executed. When the
call is executed, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the call instruction or the lower
16 bits of the accumulator. Before the PC is loaded, the return address is saved
in the stack. After the subroutine or function is executed, a return instruction
loads the PC with the return address from the stack, and execution resumes
at the instruction following the call.

Branches, Calls, and Returns

By the time the unconditional call instruction reaches the execute phase of the
pipeline, the next two instruction words have already been fetched. These two
instruction words are flushed from the pipeline so that they are not executed,
the return address is stored to the stack, and then execution continues at the
beginning of the called function. The unconditional call instructions are CALL
and CALA (call subroutine at location specified by accumulator).

5.3.3 Unconditional Returns

When an unconditional return (RET) instruction is encountered, it is always
executed. When the return is executed, the PC is loaded with the value at the
top of the stack, and execution resumes at that address.

By the time the unconditional return instruction reaches the execute phase of
the pipeline, the next two instruction words have already been fetched. The
two instruction words are flushed from the pipeline so that they are not
executed, the return address is taken from the stack, and then execution con-
tinues in the calling function.

Program Control 5-9

Conditional Branches, Calls, and Returns

5.4 Conditional Branches, Calls, and Returns

The 'C20x provides branch, call, and return instructions that will execute only
if one or more conditions are met. You specify the conditions as operands of
the conditional instruction. Table 5-3 lists the conditions that you can use with
these instructions and their corresponding operand symbols.

Table 5-3. Conditions for Conditional Branches, Calls, and Returns

Operand

Symbol Condition Description

EQ ACC=0 Accumulator equal to zero

NEQ ACC %0 Accumulator not equal to zero

LT ACC<0 Accumulator less than zero

LEQ ACC =0 Accumulator less than or equal to zero
GT ACC>0 Accumulator greater than zero

GEQ ACC =0 Accumulator greater than or equal to zero
C c=1 Carry bit setto 1

NC C=0 Carry bit cleared to O

oV ov=1 Accumulator overflow detected

NOV ov=0 No accumulator overflow detected

BIO BIO low BIO pin is low

TC TC=1 Test/control flag setto 1

NTC TC=0 Test/control flag cleared to 0

5.4.1 Using Multiple Conditions

Multiple conditions can be listed as operands of the conditional instructions.
If multiple conditions are listed, all conditions must be met for the instruction
to execute. Note that only certain combinations of conditions are meaningful.
See Table 5-4. For each combination, the conditions must be selected from
Group 1 and Group 2 as follows:

[0 Group 1. You can select up to two conditions. Each of these conditions
must be from a different category (A or B); you cannot have two conditions
from the same category. For example, you cantest EQ and OV atthe same
time, but you cannot test GT and NEQ at the same time.

5-10

Conditional Branches, Calls, and Returns

[Group 2. You can select up to three conditions. Each of these conditions
must be from a different category (A or B); you cannot have two conditions
from the same category. For example, you can test TC and C at the same
time, but you cannot test C and NC at the same time.

Table 5-4. Groupings of Conditions

Group 1 Group 2
Category A Category B Category A Category B Category C
EQ ov TC C BIO
NEQ NOV NTC NC
LT
LEQ
GT
GEQ

5.4.2 Stabilization of Conditions

A conditional instruction must be able to test the most recent values of the
status bits. Therefore, the conditions cannot be considered stable until the
fourth, or execution stage of the pipeline, one cycle after the previous
instruction has been executed. The pipeline controller stops the decoding of
any instructions following the conditional instruction until the conditions are
stable.

5.4.3 Conditional Branches

A branch instruction transfers program control to any location in program
memory. Conditional branch instructions are executed only when one or more
user-specified conditions are met (see Table 5-3 on page 5-10). If all the
conditions are met, the PC is loaded with the second word of the branch
instruction, which contains the address to branch to, and execution continues
at this address.

By the time the conditions have been tested, the two instruction words
following the conditional branch instruction have already been fetched in the
pipeline. If all the conditions are met, these two instruction words are flushed
from the pipeline so that they are not executed, and then execution continues
at the branched-to address. If the conditions are not met, the two instruction
words are executed instead of the branch. Because conditional branches use

Program Control 5-11

Conditional Branches, Calls, and Returns

conditions determined by the execution of the previous instructions, a condi-
tional branch takes one more cycle than an unconditional one.

The conditional branch instructions are BCND (branch conditionally) and
BANZ (branch if currently selected auxiliary register is not equal to 0). The
BANZ instruction is useful for implementing loops.

5.4.4 Conditional Calls

The conditional call (CC) instruction is executed only when the specified
condition or conditions are met (see Table 5-3 on page 5-10). This allows your
program to choose among multiple subroutines based on the data being
processed. If all the conditions are met, the PC is loaded with the second word
of the call instruction, which contains the starting address of the subroutine.
Before branching to the subroutine, the processor stores the address of the
instruction following the call instruction—the return address—to the stack. The
function must end with a return instruction, which will take the return address
off the stack and force the processor to resume execution of the calling
program.

By the time the conditions of the conditional call instruction have been tested,
the two instruction words following the call instruction have already been
fetched in the pipeline. If all the conditions are met, these two instruction words
are flushed from the pipeline so that they are not executed, and then execution
continues at the beginning of the called function. If the conditions are not met,
the two instructions are executed instead of the call. Because there is a wait
cycle for conditions to become stable, the conditional call takes one more cycle
than the unconditional one.

5.4.5 Conditional Returns

5-12

Returns are used in conjunction with calls and interrupts. A call or interrupt
stores a return address to the stack and then transfers program control to a
new location in program memory. The called subroutine or the interrupt service
routine concludes with a return instruction, which pops the return address off
the top of the stack and into the program counter (PC).

The conditional return instruction (RETC) is executed only when one or more
conditions are met (see Table 5-3 on page 5-10). By using the RETC
instruction, you can give a subroutine or interrupt service routine more than
one possible return path. The path chosen then depends on the data being
processed. In addition, you can use a conditional return to avoid conditionally
branching to/around the return instruction at the end of the subroutine or
interrupt service routine.

Conditional Branches, Calls, and Returns

If all the conditions are met for execution of the RETC instruction, the
processor loads the return address from the stack to the PC and resumes
execution of the calling or interrupted program.

RETC, like RET, is a single-word instruction. However, because of the
potential PC discontinuity, it operates with the same effective execution time
as the conditional branch (BCND) and the conditional call (CC). By the time
the conditions of the conditional return instruction have been tested, the two
instruction words following the return instruction have already been fetched in
the pipeline. If all the conditions are met, these two instruction words are
flushed from the pipeline so that they are not executed, and then execution of
the calling program continues. If the conditions are not met, the two
instructions are executed instead of the return. Because there is a wait cycle
for conditions to become stable, the conditional return takes one more cycle
than the unconditional one.

Program Control 5-13

Repeating a Single Instruction

5.5 Repeating a Single Instruction

5-14

The 'C20x repeat (RPT) instruction allows the execution of a single instruction
N + 1 times, where N is specified as an operand of the RPT instruction. When
RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then
decremented every time the repeated instruction is executed, until RPTC
equals zero. RPTC can be used as a 16-bit counter when the count value is
read from a data-memory location; if the count value is specified as a constant
operand, it is in an 8-bit counter.

The repeat feature is useful with instructions such as NORM (normalize
contents of accumulator), MACD (multiply and accumulate with data move),
and SUBC (conditional subtract). When instructions are repeated, the address
and data buses for program memory are free to fetch a second operand in
parallel with the address and data buses for data memory. This allows
instructions such as MACD and BLPD to effectively execute in a single cycle
when repeated.

5.6

5.6.1

Interrupts

Interrupts

Interrupts are hardware- or software-driven signals that cause the 'C20x to
suspend its current program sequence and execute a subroutine. Typically,
interrupts are generated by hardware devices that need to give data to or take
data from the 'C20x (for example, A/D and D/A converters and other
processors). Interrupts can also signal that a particular event has taken place
(for example, a timer has finished counting).

The 'C20x supports both software and hardware interrupts:
[A software interruptis requested by an instruction (INTR, NMI, or TRAP).

(1 A hardware interruptis requested by a signal from a physical device. Two
types exist:

B External hardware interrupts are triggered by signals at external
interrupt pins. All these interrupts are negative-edge triggered and
should be active low for at least one CLKOUT1 period to be
recognized.

B /nternalhardware interrupts are triggered by signals from the on-chip
peripherals.

If hardware interrupts are triggered at the same time, the 'C20x services them
according to a set priority ranking. Each of the 'C20x interrupts, whether
hardware or software, can be placed in one of the following two categories:

[Maskable interrupts. These are hardware interrupts that can be blocked
(masked) or enabled (unmasked) through software.

J Nonmaskable interrupts. These interrupts cannot be blocked. The
'C20x will always acknowledge this type of interrupt and branch from the
main program to a subroutine. The 'C20x nonmaskable interrupts include
all software interrupts and two external hardware interrupts: reset (RS)
and NMI.

Interrupt Operation: Three Phases

The 'C20x handles interrupts in three main phases:

1) Receivetheinterruptrequest. Suspension of the main program mustbe
requested by a software interrupt (from program code) or a hardware
interrupt (from a pin or an on-chip device).

2) Acknowledge the interrupt. The 'C20x must acknowledge the interrupt
request. If the interrupt is maskable, certain conditions must be met in
order for the 'C20x to acknowledge it. For nonmaskable hardware
interrupts and for software interrupts, acknowledgement is immediate.

Program Control 5-15

Interrupts

3) Execute the

interrupt service

routine.

Once the interrupt is

acknowledged, the 'C20x branches to its corresponding subroutine called
an interrupt service routine (ISR). The 'C20x follows the branch instruction
you place at a predetermined address (the vector location) and executes
the ISR you have written.

5.6.2 Interrupt Table

For’'C20x devices other than the 'C209, Table 5-5 lists the interrupts available
and shows their vector locations. In addition, it shows the priority of each of the
hardware interrupts. For the corresponding 'C209 table, see section 11.3,
'C209 Interrupts, on page 11-10.

Table 5-5. 'C20x Interrupt Locations and Priorities

Vector

Kt Location Name Priority Function

0 Oh RS 1 (highest) Hardware reset (nonmaskable)

1 2h HOLD/INT1 4 User-maskable interrupt #1

2 4h INT2, INT3+ 5 User-maskable interrupts #2
and #3

3 6h TINT 6 User-maskable timer interrupt

4 8h RINT 7 User-maskable synchronous
serial port receive interrupt

5 Ah XINT 8 User-maskable synchronous
serial port transmit interrupt

6 Ch TXRXINT 9 User-maskable asynchronous
serial port transmit/receive in-
terrupt

7 Eh 10 Reserved

8 10h INT8 - User-defined software interrupt

9 12h INT9 - User-defined software interrupt

Note: Thistable does notapply tothe 'C209. Forthe 'C209 interrupttable, see section 11.3on

page 11-10.

T The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.
+INT2 and INT3 have separate pins but are tied to the same vector location.

5-16

Table 5-5. 'C20x Interrupt Locations and Priorities (Continued)

Interrupts

Vector
Kt Location Name Priority Function
10 14h INT10 - User-defined software interrupt
11 16h INT11 - User-defined software interrupt
12 18h INT12 - User-defined software interrupt
13 1Ah INT13 - User-defined software interrupt
14 1Ch INT14 - User-defined software interrupt
15 1Eh INT15 - User-defined software interrupt
16 20h INT16 - User-defined software interrupt
17 22h TRAP - TRAP instruction vector
18 24h NMI 3 Nonmaskable interrupt
19 26h 2 Reserved
20 28h INT20 - User-defined software interrupt
21 2Ah INT21 - User-defined software interrupt
22 2Ch INT22 - User-defined software interrupt
23 2Eh INT23 - User-defined software interrupt
24 30h INT24 - User-defined software interrupt
25 32h INT25 - User-defined software interrupt
26 34h INT26 - User-defined software interrupt
27 36h INT27 - User-defined software interrupt
28 38h INT28 - User-defined software interrupt
29 3Ah INT29 - User-defined software interrupt
30 3Ch INT30 - User-defined software interrupt
31 3Eh INT31 - User-defined software interrupt
Note: Thistable does notapply to the 'C209. For the 'C209 interrupttable, see section 11.3 on

page 11-10.

T The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.
$INT2 and INT3 have separate pins but are tied to the same vector location.

Program Control 5-17

Interrupts

5.6.3 Maskable Interrupts

When a maskable interrupt is successfully requested by a hardware device or
by an external pin, the corresponding flag or flags are activated. These flags
are activated whether or not the interrupt is later acknowledged by the
processor.

Two registers on the 'C20x contain flag bits:

[Interrupt flag register (IFR), a 16-bit, memory-mapped register located at
address 0006h in data-memory space.The IFR is explained in detail in
section 5.6.4

(1 Interrupt control register (ICR), a 16-bit register located at address FFECh
in 1/0 space.The ICR is explained in section 5.6.6.

The IFR contains flag bits for all the maskable interrupts. The ICR contains
additional flag bits for the interrupts INT2 and INT3. For all maskable interrupts
except INT2 and INT3, an interrupt request is sent to the CPU as soon as the
interrupt signal is sent by the pin or on-chip peripheral. For INT2 or INT3, the
interrupt request is only sent to the CPU if the interrupt signal is not masked
by its mask bit in the ICR. Figure 5-5 shows the process for successfully
requesting INT2 or INT3.

Figure 5-5. INTZ/INT3 Request Flow Chart

5-18

(INTZ or INT3 asserted at pin)

Interrupt unmasked

NoO in ICR?

|C0rresponding ICR flag bit set |

Gnterrupt request sent to CPLD

Interrupts

After an interrupt request is received by the CPU, the CPU must decide
whether to acknowledge the request. Maskable hardware interrupts are
acknowledged only after certain conditions are met:

[Priorityis highest. When more than one hardware interrupt is requested
at the same time, the 'C20x services them according to a set priority
ranking in which 1 indicates the highest priority. For the priorities of the
hardware interrupts, see section 5.6.2 (on page 5-16).

1 IMR mask bit is 1. The interrupt must be unmasked (enabled) in the
interrupt mask register (IMR), a 16-bit, memory-mapped register located
at address 0004h in data-memory space. The IMR contains mask bits for
all the maskable interrupts. INT2 and INT3 share one of the bits in the IMR.
The IMR is explained in section 5.6.5 on page 5-23.

[INTM bitis 0. The interrupt mode (INTM) bit, bit 9 of status register STO,
enables or disables all maskable interrupts:

B When INTM = 0, all unmasked interrupts are enabled.
B When INTM = 1, all unmasked interrupts are disabled.

INTM is set to 1 automatically when the CPU acknowledges an interrupt
(except when initiated by the TRAP instruction). INTM can also be set to
1 by a hardware reset or by execution of a disable-interrupts instruction
(SETC INTM). You can clear INTM by executing the enable-interrupts
instruction (CLRC INTM). INTM has no effect on reset, NMI, or
software-interrupts (initiated with the TRAP, NMI, and INTR instructions).
Also, INTM is unaffected by the LST (load status register) instruction.

INTM does not modify the interrupt flag register (IFR), the interrupt mask
register (IMR), or the interrupt control register (ICR).

When the CPU acknowledges a maskable hardware interrupt, it loads the
instruction bus with the INTR instruction. This instruction forces the CPU to
branch to the corresponding interrupt vector location. From this location in
program memory, the CPU fetches a branch that leads to the appropriate
interrupt service routine. As the CPU branches to the interrupt service routine,
it also sets the INTM bit to 1, preventing all hardware-initiated maskable
interrupts from interrupting the execution of the ISR. Note that the INTR
instruction can also be initiated directly by software; thus, the interrupt service
routines for the maskable interrupts can also be initiated directly with the INTR
instruction (see section 5.6.7, Nonmaskable Interrupts on page 5-27).

To determine which vector address has been assigned to each of the
interrupts, see section 5.6.2 (on page 5-16). Interrupt vector locations are
spaced apart by two addresses so a 2-word branch instruction can be
accommodated in each of the locations.

Program Control 5-19

Interrupts

Figure 5-6 summarizes how maskable interrupts are handled by the CPU.

Figure 5—6. Maskable Interrupt Operation Flow Chart

5.6.4

5-20

Cnterrupt request sent to CPU)

Corresponding IFR flag bit set

Interrupts enabled
(INTM bit = 0)
?

Interrupt
unmasked?

I Interrupt acknowledged I

v
I INTM bit setto 1 I
I PC saved on stack I

I Interrupt service routine run I

I Return instruction restores PC I

v
(Program continues)

Interrupt Flag Register (IFR)

The 16-bit interrupt flag register (IFR), located at address 0006h in data
memory space, contains flag bits for all the maskable interrupts. When a
maskable interrupt request reaches the CPU, the corresponding flag is set to
1 in the IFR. This indicates that the interrupt is pending, or waiting for
acknowledgement.

Read the IFR to identify pending interrupts, and write to the IFR to clear
pending interrupts. To clear an interrupt request (and set its IFR flag to 0), write

Interrupts

a 1 to the corresponding IFR bit. All pending interrupts can be cleared by
writing the current contents of the IFR back into the IFR. Acknowledgement
of a hardware request also clears the corresponding IFR bit. A device reset
clears all IFR bits.

Notes:

1) When an interrupt is requested by an INTR instruction, if the
corresponding IFR bit is set, the CPU will not clear it automatically. If an
application requires that the IFR bit be cleared, the bit must be cleared
in the interrupt service routine.

2) To avoid double interrupts from the synchronous serial port and the
asynchronous serial port (including delta interrupts), clear the IFR bit(s)
in the corresponding interrupt service routine, just before returning from
the routine.

For 'C20x devices other than the 'C209, Figure 5-7 shows the IFR.
Descriptions of the bits follow the figure. For a description of the 'C209 IFR,
see section 11.3.1, 'C209 Interrupt Registers, on page 11-12.

Figure 5—-7. 'C20x Interrupt Flag Register (IFR) — Data-Memory Address 0006h

15 6 5 4 3 2 1 0
Reserved TXRXINT XINT RINT TINT INT2/INT3 | HOLD/INT1
0 R/W1C-0 R/WI1C-0 R/W1C-0 R/WI1C-0 R/W1C-0 R/W1C-0

Note: 0 = Always read as zeros; R = Read access; W1C = Write 1 to this bit to clear it to 0;
value following dash (-) is value after reset.

Table 5-6. 'C20x IFR — Data-Memory Address 0006h Bit Descriptions

Bit
No. Name Function

15-6 Reserved Bits 15-6 are reserved and are always read as 0s.

5 TXRXINT Transmit/receive interrupt flag. Bit 5 is tied to the transmit/receive interrupt for the
asynchronous serial port. To avoid double interrupts, write a 1 to this bit in the
interrupt service routine.

0 Interrupt TXRXINT is not pending.

1 Interrupt TXRXINT is pending.

Program Control 5-21

Interrupts

Table 5-6. 'C20x IFR — Data-Memory Address 0006h Bit Descriptions (Continued)

Bit
No. Name Function
4 XINT Transmit interrupt flag. Bit 4 is tied to the transmit interrupt for the synchronous serial
port. To avoid double interrupts, write a 1 to this bit in the interrupt service routine.
0 Interrupt XINT is not pending.
1 Interrupt XINT is pending.
3 RINT Receive interrupt flag. Bit 3 is tied to the receive interrupt for the synchronous serial port.
To avoid double interrupts, write a 1 to this bit in the interrupt service routine.
0 Interrupt RINT is not pending.
1 Interrupt RINT is pending.
2 TINT Timer interrupt flag. Bit 2 is tied to the timer interrupt, TINT.
0 Interrupt TINT is not pending.
1 Interrupt TINT is pending.
1 INT2/INT3 Interrupt 2/Interrupt 3 flag. The INT2 pin and the INT3 pin are both tied to bit 1. If INT2

is requested, INT2/INT3 and FINT2 of the interrupt control register (ICR) are both
automatically set to 1. If INT3 is requested, INT2/INT3 and FINT3 (of the ICR) are both
automatically set to 1.

0 Neither INT2 nor INT3 is pending.

1 At least one of the two interrupts is pending. To determine which one is pending
orif both are pending, read flag bits FINT2 and FINT3 inthe ICR. FINT2 and FINT3
are not automatically cleared when INT2 and INT3 are acknowledged by the CPU;
they must be cleared by the interrupt service routine.

0 HOLD/INT1 HOLD/Interrupt 1 flag. Bit O is a flag for HOLD orINTL. The operation of the HOLD/INT1
pin differs depending on the value of the MODE bit in the ICR. When MODE = 1, an
interrupt is triggered only by a negative edge on the pin. When MODE = 0, interrupts can
be triggered by both a negative edge and a positive edge. This is necessary to implement
the 'C20x HOLD operation (see section 4.6, Direct Memory Access Using The HOLD
Operation, on page 4-18).

0 HOLD/INTL1 is not pending.

1 HOLD/INT1 is pending.

5-22

5.6.5

Interrupts

Interrupt Mask Register (IMR)

The 16-bit interrupt mask register (IMR), located at address 0004h in data-
memory space, is used for masking external and internal hardware interrupts.
Neither NMI nor RS is included in the IMR; thus, IMR has no effect on these
interrupts.

Read the IMR to identify masked or unmasked interrupts, and write to the IMR
to mask or unmask interrupts. To unmask an interrupt, set its corresponding
IMR bit to 1. To mask an interrupt, set its corresponding IMR bitto 0. The IMR
bits are not affected by a device reset.

For 'C20x devices other than the 'C209, Figure 5-8 shows the IMR.
Descriptions of the bits follow the figure. For a description of the 'C209 IMR,
see section 11.3.1, 'C209 Interrupt Registers, on page 11-12.

Figure 5-8. 'C20x Interrupt Mask Register (IMR) — Data-Memory Address 0004h

15 6 5 4 3 2 1 0
Reserved TXRXINT | XINT RINT TINT INT2/INT3 | HOLD/INT1
0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Note: 0 = Always read as zeros; R = Read access; W = Write access; value following dash () is value after reset.

Table 5-7. 'C20x IMR — Data-Memory Address 0004h Bit Descriptions

Bit
No. Name Function
15-6 Reserved Bits 15-6 are reserved and are always read as 0s.
5 TXRXINT Transmit/receive interrupt mask. Bit 5 is tied to the transmit/receive interrupt for the
asynchronous serial port.
0 Interrupt TXRXINT is masked.
1 Interrupt TXRXINT is unmasked.
4 XINT Transmit interrupt mask. Bit 4 is tied to the transmit interrupt for the synchronous serial
port.
0 Interrupt XINT is masked.
1 Interrupt XINT is unmasked.
3 RINT Receive interrupt mask. Bit 3 is tied to the receive interrupt for the synchronous serial

port.
0 Interrupt RINT is masked.

1 Interrupt RINT is unmasked.

Program Control 5-23

Interrupts

Table 5—-7. 'C20x IMR — Data-Memory Address 0004h Bit Descriptions (Continued)

Bit
No. Name Function
2 TINT Timer interrupt mask. Bit 2 is tied to the interrupt for the timer.
0 Interrupt TINT is masked.
1 Interrupt TINT is unmasked.
1 INT2/INT3 Interrupt 2/Interrupt 3 mask. The @ pin and the INT3 pin are both tied to bit 1. With

this bit, you mask both INT2 and INT3 simultaneously. In conjunction with this bit, bits
MINT2 and MINTS3 of the ICR are used to individually unmask INT2 and INT3.

0 INT2 and INT3 are masked.

1 If INT2/INT3 =1 and MINT2 =1, INT2 is unmasked.
If INT2/INT3 =1 and MINT3 = 1, INT3 is unmasked.

0 HOLD/INT1 HOLD/Interrupt 1 mask. This bit masks or unmasks interrupts requested at the
HOLD/INT1 pin.

0 HOLD/INT1 is masked.

1 HOLD/INT1 is unmasked.

5.6.6 Interrupt Control Register (ICR)

The 16-bit interrupt control register (ICR), located at address FFECh in I/O
space, controls the function of the HOLD/INT1 pin and individually controls the
interrupts INT2 and INT3.

Controlling the HOLD /INT1 pin

This pin can be used for triggering the interrupt INT1 and for sending a HOLD
signal to the CPU. Accordingly, the MODE bit provides two possible modes for
the HOLD/INT1 pin. When MODE = 1, the pin is negative-edge sensitive and,
thus, is set appropriately for initiating a standard interrupt (INT1). When
MODE = 0, the pin is both negative- and positive-edge sensitive, which is
necessary for implementing the logic for the HOLD operation (see section 4.6,
Direct Memory Access Using The HOLD Operation, on page 4-18).
Regardless of the value of MODE, the pin is connected to the same interrupt
logic, which initiates only one interrupt service routine. (HOLD/INT1 is mapped
to interrupt vector location 0002h in program memory.) To differentiate the two
uses of the pin, the interrupt service routine must test the value of the MODE
bit.

5-24

Interrupts

Controlling INT2 and INT3

Each of these interrupts has its own pin. However, they share:

[Asingle flag bit (INT2/INT3) in the interrupt flag register (IFR).
1 A single mask bit in the interrupt mask register (IMR).

1 Asingle interrupt service routine. (INT2 and INT3 are mapped to interrupt
vector location 0004h in program memory.)

To allow you to use INT2 and INT3 individually, the ICR provides two mask bits
(MINT2 and MINT3) and two flag bits (FINT2 and FINT3).

When interrupts are requested on the pins INT2 and INT3, MINT2 and MINT3
determine whether the flag bits FINT2, FINT3, and INT2/INT3 are set. To mask
INT2 (prevent the setting of flags FINT2 and INT2/INT3), write a 0 to MINT2;
to mask INT3 (prevent the setting of flags FINT3 and INT2/INT3) write a 0 to
MINT3. If INT2/INT3 is not set, the CPU has not received and will not
acknowledge the interrupt request.

When INT2/INT3 is set, one or both of the interrupts is pending. To differentiate
the occurrences of the two interrupts, your interrupt service routine can test
FINT2 and FINT3 and then branch to the appropriate subroutine. If you want
the interrupt service routine to be executed only in response to one of the
interrupts, mask the other interrupt in the ICR. Each of the ICR flag bits, like
the IFR flag bit, can be cleared by writing a 1 to it.

Note:

1) Neither FINT2 nor FINT3 is automatically cleared when the CPU
acknowledges the corresponding interrupt. If the application requires
the bit(s) be cleared, the clearing must be done in the interrupt service
routine.

2) Writing 1s to FINT2 and FINT3 will set these bits to 0 but will not clear
interrupt requests for INT2 and INT3. To clear requests for INT2 and/or
INT3, write a 1 to the INT2/INT3 bit of the IFR.

If INT2 or INT3 is unmasked in the ICR, the IFR flag bit will be set regardless
of bit 1 (INT2/INT3) in the IMR. If the IFR flag bit is set, the IMR bit is set, and
the INTM bitis 0 (maskable interrupts are enabled), the CPU will acknowledge
the interrupt. If an interrupt is masked by the IMR and/or the ICR, it will not be
acknowledged, even if INTM = 0.

Program Control 5-25

Interrupts

At reset, all ICR bits are set to zero, which means:

[0 The HOLD/INT1 pin is both negative- and positive-edge sensitive
(MODE = 0).

[0 The FINT2 and FINT3 flag bits are cleared.

] INT2 and INT3 are masked.

Figure 5-9 shows the ICR, and bit descriptions follow the figure.

Figure 5-9. 'C20x Interrupt Control Register (ICR) — I/O-Space Address FFECh

15 5 4 3 2 1 0
Reserved MODE FINT3 FINT2 MINT3 MINT2
0 R/W-0 R/W1C-0 R/W1C-0 R/W-0 R/W-0

Note: 0 = Always read as zeros; R = Read access; W = Write access; W1C = Write 1 to this bit to clear it to 0;
value following dash (-) is value after reset.

Table 5-8. 'C20x ICR — I/O-Space Address FFECh Bit Descriptions
Bit
No. Name Function

15-5 Reserved Bits 15-5 are reserved and are always read as 0Os.
4 Mode Pin mode. Bit 4 selects one of two possible modes for the HOLD/INT1 pin.

0 Double-edge mode. The HOLD/INT1 pin is both negative- and positive-edge
sensitive. A falling edge or a rising edge triggers an interrupt request. This mode
is necessary for proper implementation of a HOLD operation.

1 Single-edge mode. A falling edge (only) on the HOLD/INT1 pin triggers an interrupt
request.

3 FINT3 Interrupt 3 flag. If MINT3 = 1, an interrupt request on the INT3 pin sets FINT3 and bit 1
of the IFR (INT2/INT3).

0 INT3 is not pending.
1 INT3 is pending.

2 FINT2 Interrupt 2 flag. If MINT2 = 1, an interrupt request on the INT2 pin sets FINT2 and bit 1
of the IFR (INT2/INT3).

0 INT2 is not pending.

1 INT2 is pending.

5-26

Interrupts

Table 5-8. 'C20x ICR — I/O-Space Address FFECh Bit Descriptions (Continued)

Bit
No. Name Function
1 MINT3 Interrupt 3 mask. This bit masks the external interrupt INT3 or, in conjunction with the
INT2/INT3 bit of the IMR, unmasks INT3.
0 INT3 is masked. Neither FINT3 nor bit 1 of the IFR (INT2/INT3) is set by a request
on the INT3 pin.
1 INT3 is unmasked. Flag bits FINT3 and INT2/INT3 are both set by a request on the
INT3 pin.
0 MINT2 Interrupt 2 mask. This bit masks the external interrupt INT2 or, in conjunction with the

INT2/INT3 bit of the IMR, unmasks INT2.

0 INT2 is masked. Neither FINT2 nor bit 1 of the IFR (INT2/INT3) is set by a request
on the INT2 pin.

1 INT3 is unmasked. Flag bits FINT2 and INT2/INT3 are both set by a request on the
INT2 pin.

5.6.7 Nonmaskable Interrupts
Hardware nonmaskable interrupts can be requested through two pins:

[RS (reset). RS is an interrupt that stops program flow, returns the
processor to a predetermined state, and then begins program execution
ataddress 0000h. For details of the reset operation, see section 5.7, Reset
Operation, on page 5-35. When RS is acknowledged, the interrupt mode
(INTM) bit of status register ST1 is set to 1 to disable maskable interrupts.

1 NMIL. When NMI is activated (either by the NMI pin or by the NMI
instruction), the processor switches program control to vector location
24h. In addition, maskable interrupts are disabled (the INTM bit of status
register STO is set to 1). Although NMI uses the same logic as the
maskable interrupts, it is not maskable. NMI happens regardless of the
value of the INTM bit, and no mask bit exists for NMI. If the NMI pin is not
used, it should be pulled high to prevent an accidental interrupt.

NMI can be used as a soft reset. Unlike a hardware reset (RS), the NMI
neither affects any of the modes of the device nor aborts a currently active
instruction or memory operation.

Software interrupts (which are inherently nonmaskable) are requested by the
following instructions:

[INTR. This instruction allows you to initiate any 'C20x interrupt, including
user-defined interrupts INT8 through INT16 and INT20 through INT31.

Program Control 5-27

Interrupts

5-28

The instruction operand (K) indicates which interrupt vector location the
CPU will branch to. To determine the operand K that corresponds to each
interrupt vector location see section 5.6.2 (on page 5-16). When an INTR
interrupt is acknowledged, the interrupt mode (INTM) bit of status register
ST1is set to 1 to disable maskable interrupts.

Note:

The INTR instruction does not affect IFR flags. When you use the INTR
instruction to initiate an interrupt that has an associated flag bit in the IFR,
the instruction neither sets nor clears the flag bit. No software write operation
can set the IFR flag bits; only the appropriate hardware requests can. If a
hardware request has set the flag for an interrupt and then the INTR
instruction is used to initiate that interrupt, the INTR instruction will not clear
the flag.

[NMI. This instruction forces a branch to interrupt vector location 24h, the
same location used for the nonmaskable hardware interrupt NMI. Thus,
you can either initiate NMI by driving the NMI pin low or by executing an
NMl instruction. When the NMI instruction is executed, INTM is setto 1 to
disable maskable interrupts.

[TRAP. This instruction forces the CPU to branch to interrupt vector
location 22h. The TRAP instruction does not disable maskable interrupts
(INTMis not set to 1); thus when the CPU branches to the interrupt service
routine, that routine can be interrupted by the maskable hardware
interrupts (in addition to RS and NMI).

If the INTM bit is set to 1 during the acknowledgement process, all hardware-
initiated maskable interrupts are disabled and, thus, cannot interfere with the
interrupt service routine.

To determine which vector address has been assigned to each of the interrupts
on a specific 'C20x device, see section 5.6.2 (on page 5-16). Interrupt vector
locations are spaced apart by two addresses so that a 2-word branch
instruction can be accommodated in each location.

Figure 5-10 summarizes how nonmaskable interrupts are handled by the
CPU.

Interrupts

Figure 5-10. Nonmaskable Interrupt Operation Flow Chart

Cnterrupt request sent to CPLD

I Interrupt acknowledged I

No

TRAP
instruction?

z

| INTM bit set to 1 |

I PC saved on stack |1—

| Interrupt service routine run |

I Return instruction restores PC I

(Program continues)

5.6.8 Interrupt Service Routines (ISRs)

After an interrupt has been requested and acknowledged, the CPU follows an
interrupt vector to the ISR. The ISR is the program code that actually performs
the tasks requested by the interrupt. While performing these tasks, the ISR
may also be:

[J Saving and restoring register values
[J Managing ISRs within ISRs

Saving and restoring register values

Only the incremented program counter value is stored automatically before
the CPU enters an interrupt service routine (ISR). You must design the ISR to
save and then restore any other important register values. For example, if your
ISR will need to perform a multiplication, it will need to use the product register
(PREG). If the value currently in the PREG must be in the PREG after the ISR,
the ISR must save the value, perform the new multiplication, store the resulting
PREG value, and then reload the original value. You may find that certain
registers will need to be saved during most ISRs. If so, you can copy acommon
save and restore routine and then individualize it for each interrupt.

Program Control 5-29

Interrupts

Managing ISRs within ISRs

5-30

The 'C20x hardware stack allows you to have ISRs within ISRs. When
considering nesting ISRs like this, keep the following in mind:

a

If you want the ISR be interrupted by a maskable interrupt, the ISR must
unmask the interrupt by setting the appropriate IMR bit (and ICR bit, if
applicable) and executing the enable-interrupts instruction (CLRC INTM).

The hardware stack is limited to eight levels. Each time an interrupt is
serviced or a subroutine is entered, the return address is pushed onto the
hardware stack. This provides a way to return to the previous context
afterwards. The stack contains eight locations, allowing interrupts or
subroutines to be nested up to eight levels deep. (One level of the stack
is reserved for debugging, to be used for breakpoint/single-step
operations. If debugging is not used, this extra level is available for internal
use.) If your software requires more than eight stack levels, you can use
the POPD and PSHD instructions to effectively extend the stack into data
memory.

If you do not nest ISRs, you can avoid stack overflow. The 'C20x has a
feature that allows you to prevent unintentional nesting. If an interrupt
occurs during the execution of a CLRC INTM instruction, the device
always completes CLRC INTM as well as the next instruction before the
pending interrupt is processed. This ensures that a return instruction that
directly follows CLRC INTM will be executed before an interrupt is
processed. The return instruction will pop the previous return address off
the top of the stack before the new return address is pushed onto the stack.

To allow the CPU to complete the return, interrupts are also blocked after a
RET instruction until at least one instruction at the return address is
executed. Interrupts may be blocked for more than one instruction if the
instruction at the return address requires additional blocking for pipeline
protection.

If you want an ISR to occur within the current ISR rather than after the
current ISR, place the CLRC INTM instruction more than one instruction
before the return (RET) instruction.

Interrupts

5.6.9 Interrupt Latency

The length of an interrupt latency—the delay between when an interrupt
request is made and when it is serviced—depends on many factors. For
example, the CPU always completes all instructions in the pipeline before
executing a software vector. This section describes the factors that determine
minimum latency and then describes factors that may cause additional
latency. The maximum latency is a function of wait states and pipeline
protection.

For an external, maskable hardware interrupt, a minimum latency of eight
cycles is required to synchronize the interrupt externally, recognize the
interrupt, and branch to the interrupt vector location. On the ninth cycle, the
interrupt vector is fetched. For a software interrupt, the minimum latency
consists of four cycles needed to branch to the interrupt vector location.

Latency for pipeline protection

Multicycle instructions add additional cycles to empty the pipeline. Instructions
may become multicycle for these reasons:

[An instruction that writes to or reads from external memory may be
delayed by wait states generated by the external READY pin or the
on-chip wait-state generator. These wait states may affect the instruction
being executed at the time the interrupt is requested, and they may affect
the interrupt itself if the interrupt vector must be fetched from external
memory.

[If an interrupt occurs during a HOLD operation and the interrupt vector
must be fetched from external memory, the vector cannot be fetched until
HOLDA is deasserted.

1 When repeated with RPT, instructions run parallel operations in the
pipeline and the context of these additional parallel operations cannot be
saved in an interrupt service routine. To protect the context of the repeated
instruction, the CPU locks out all interrupts except reset until the RPT loop
completes.

Note:

Reset (RS) is not delayed by multicycle instructions. NMI can be delayed by
multicycle instructions.

Program Control 5-31

Interrupts

Latency for stack overflow protection

A return address (incremented program counter value) is forced onto the
hardware stack every time the CPU follows another interrupt service routine
or other subroutine. However, the 'C20x has a feature that can help you to keep
the hardware stack from overflowing. Interrupts cannot be processed between
the CLRC INTM (enable maskable interrupts) instruction and the next
instruction in a program sequence. This ensures that a return instruction that
directly follows CLRC INTM will be executed before an interrupt is processed.
The return instruction will pop the previous return address off the top of the
stack before the new return address is pushed onto the stack. If the interrupt
were to occur before the return, the new return address would be added to the
hardware stack, even if the stack were already full.

To allow the CPU to complete the return, interrupts are also blocked after a
RET instruction until at least one instruction at the return address is executed.

5.6.10 Context Saving During Interrupts

5-32

During context saving and restoring, the order in which registers STO and ST1
are loaded is crucial and changes contingent upon the addressing mode
(direct and indirect). As there is no LPL instruction, you can extend
interruptability by:

[Direct addressing context save
(1 Indirect addressing context save (software stack)

See Figure 5-11 and Figure 5-12 for code examples.

Interrupts

[J Direct addressing context save

Using direct addressing to perform context save to data memory is the
simplest way to extend interruptability to the second level of depth. The
code example below shows the most likely items to be saved, and in so
doing, demonstrates most of the techniques used for contexting in
general. Note, however, that this is not a comprehensive context save
operation, and that you must consider which registers will, and will not, be
maintained for the specific ISR. Given the large number of registers
present on the 'C20x, it is not recommended that you employ a generic, all
encompassing context save process, as this would almost always be
impractical.

Figure 5—11. Direct Addressing Context Save

STATUS .usect “BLOCKBZ?2”", 2 ; Must be located on Data Page 0
.bss CONTEX, 4, 1 ; Located anywhere in Data Memory

text
ISR1: SST #0,STATUS ; STO must go to data page 0
SST #1,STATUS+1 ; ST1 must go to data page 0
LDP #CONTEX ;
SACH CONTEX ; Save ACCH & ACCL
SACL CONTEX+1 ; (if needed, P & T regs saved as shown above)
POPD CONTEX+2 : Offload 1 level of stack
BLDD #04h, CONTEX+3 ; Save IMR
LDP
LACL ; Mask to sub-enable only INT2, for example
SACL ; Write to IMR
CLRC ; Re-allow interruptability
* .
* ; Nestable ISR goes here. . .
* .
SETC ; Interruptability back off
LDP #CONTEX ; Go to page with context values
PSHD CONTEX+2 ; Reload stack with return address
LACL CONTEX+1 ; Restore ACCL w/o sign extension
ADD CONTEX,16 ; Sum in ACCH
LDP #0 ; Go to DP=0. for status registers

BLDD #CONTEX+3, 04h ; Restore to IMR
LST #1, STATUS+1 : Restore ST1
LST #0, STATUS ; Restore STO

CLRC
RET

; Enable interrupts

Program Control 5-33

Interrupts

[0 Indirect addressing context save (software stack)

Using indirect addressing to perform a context save allows any degree of
nestability of interrupts and is typically used in conjunction with a software
stack. In creating a software stack, you should assign one auxiliary
register (AR) as a stack pointer. Following TI's C compiler convention, AR1
has been assigned as the stack pointer (SP).

Figure 5-12. Indirect Addressing Context Save

.bss STACK,100h ; Assign 512 locations for stack

text

OSR1: LAR AR1,#STACK ;AR1is SP, start at beginning
*

*

ISR1: MAR * AR1 ; Select ARL1 to point to stack
SST #1,%+ : Save ST1 & STO
SST #0,*+
SACH *+ ; Save ACCH & ACCL
SACL *+
LDP #0
LACC 4h ; Get IMR
SACL *+ ; Store old IMR
POPD *+ : Offload 1 level of stack
LACL #010B ; Mask to sub-enable only INT2
SACL 4h : New IMR
CLRC INTM ; Re-allow interruptability
* .
* ; Interruptible ISR goes here
* .
SETC INTM ; Interruptability back off
MAR *AR1 ; Select stack pointer
MAR *— ; Move ARL1 to last saved content
PSHD *— ; Reload stack with return address
LACC *— ; Get & restore original IMR value
LDP #0
SACL 4h : Restore IMR
LACL *- ; Load ACCL & sum in ACCH
ADD *-16
LST #0,*— ; Restore STO
LST #1,* : Restore ST1 and ARP
CLRC INTM ; Enable interrupts
RET ; Return to main

5-34

Reset Operation

5.7 Reset Operation

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to put the 'C20x into a known state. Reset is the highest priority interrupt; no
other interrupt takes precedence over reset. Reset is typically applied after
power up when the machine is in an unknown state. Because the reset signal
aborts memory operations and initializes status bits, the system should be
reinitialized after each reset. The NMI interrupt can be used for soft resets
because it neither aborts memory operations nor initializes status bits.

Driving RS low causes the 'C20x to terminate execution and affects various
registers and status bits. For correct system operation after power up, RS must
be asserted for at least six clock cycles. The device latches the reset pulse and
generates an internal reset pulse long enough to ensure a device reset. The
device fetches its first instruction 16 cycles after the rising edge of RS.
Processor execution begins at location 0000h, which normally contains a
branch instruction to the system initialization routine.

When the 'C20x receives a reset signal, the following actions take place:

[Control features:

B The program counter is cleared to 0 (however, the address bus,
A15-A0, is unknown while RS is low).

W Statusbitsinregisters STOand ST1 are loaded with their reset values:
OV=0, INTM=1,CNF=0, SXM=1,C=1, XF=1and PM =00.
(The other status bits remain undefined and should be initialized by a
reset.)

B The INTM (interrupt mode) bit is set to 1, disabling all maskable
interrupts. (RS and NMI are not maskable.) Also, the interrupt flag
register (IFR), interrupt mask register (IMR), and interrupt control
register (ICR) are cleared.

B The MODE bit of the interrupt control register (ICR) is set to 0 so that
the HOLD/INTL1 pin is both negative- and positive-edge sensitive.

B The repeat counter (RPTC) is cleared.

J Memory and I/O spaces:

B A logic 0 is loaded into the CNF (configuration control) bit in status
register ST1, mapping dual-access RAM block B0 into data space.

B The global memory allocation register (GREG) is cleared to make all
memory local.

B The wait-state generator is set to provide the maximum number of wait
states for external memory and I/O accesses.

Program Control 5-35

Reset Operation

(] Peripherals:

The peripherals are not reset until 16 CLKOUT1 cycles from the rising edge
of the RESET pin.

B The timer count is set to its maximum value (FFFFh), the timer
divide-down value is set to 0, and the timer starts counting down.

B The synchronous serial port is reset:

The port emulation mode is set to immediate stop.
Error and status flags are reset.

Receive interrupts are set to occur when the receive buffer is not
empty.

Transmit interrupts are set to occur when the transmit buffer can
accept one or more words.

External clock and frame synchronization sources are selected.
Continuous mode is selected.
Digital loopback mode is disabled.

The receiver and transmitter are enabled.

B The asynchronous serial port is reset:

The port emulation mode is set to immediate stop.

Error and status flags are reset.

Receive, transmit, and delta interrupts are disabled.
One stop bit is selected.

Auto-baud alignment is disabled.

The TX pin is forced high between transmissions.

I/0 pins 100, 101, 102, and 103 are configured as inputs.
A baud rate of (CLKOUTL1 rate)/16 is selected.

The port is disabled.

B CLK register bit O is cleared to 0 so that the CLKOUTL1 signal is
available at the CLKOUT1 pin.

No other registers or status bits (such as the accumulator, DP, ARP, and the
auxiliary registers) are initialized. Table 5—9 and Table 5-10 list the reset val-
ues for all the registers mapped to on-chip addresses.

5-36

Reset Operation

Table 5-9. Reset Values of On-Chip Registers Mapped to Data Space

Name Data-Memory Address Reset Value Description

IMR 0000h Interrupt mask register

GREG 0000h Global memory allocation register
IFR 0000h Interrupt flag register

Table 5-10. Reset Values of On-Chip Registers Mapped to I/0 Space

I/O Address
Name 'C209 Other '"C20x Reset Value Description
PMST - FFE4h 0000x Program memory status register
CLK - FFE8h 0000h CLKOUT1-pin control (CLK) register
ICR - FFECh 0000h Interrupt control register
SDTR - FFFOh xxxxh Synchronous data transmit and receive register
SSPCR - FFF1h 0030h Synchronous serial port control register
SSPST - FFF2h 0000h Synchronous serial port status register
SSPMC - FFF3h 0000h Synchronous serial port multichannel register
ADTR - FFF4h xxxxh Asynchronous data transmit and receive register
ASPCR - FFF5h 0000h Asynchronous serial port control register
IOSR - FFF6h 18xxh I/O status register
BRD - FFF7h 0001h Baud-rate divisor register
TCR FFFCh FFF8h 0000h Timer control register
PRD FFFDh FFF9h FFFFh Timer period register
TIM FFFEh FFFAh FFFFh Timer counter register
SSPCT - FFFBh 0000h Synchronous serial port shift clock and frame
sync prescaler
WSGR FFFFh FFFCh OFFFh Wait-state generator control register

Note: An X in an address represents four bits that are either not affected by reset or dependent on pin levels at reset.

Program Control 5-37

Reset Operation

5.7.1 TMS320C206/LC206 Reset and PLL Lock Conditions

TMS320C206/LC206 devices have special reset conditions compared to the
TMS320C203 and TMS320F206 devices. Table 5-11 explains the reset
conditions for the TMS320C206/LC206 devices.

Table 5-11. Reset Conditions for the 'C206/'LC206

Condition PLLRS RS2 RS PLL T DSP Core
Power on reset (POR) 0 X (Don't care) 0 Reset Reset

After POR Always 1 1 1 No No

After POR Always 1 0 0 No Reset

T PLL-reset means that the PLL resets and initiates locking sequence.
[CaseA

The Case A schematic shows initiation of PLL and DSP core reset at power
up. After power up, reset pulses on RS2 (for example, watchdog timer) reset
the DSP core only. The PLL does not reset as PLLRS remains inactive high
while RS2 is active low. This scheme keeps CLKOUT1 locked for all resets
except for power-on reset.

PLL

ibo»o e
T

DSP core

U

RS2

TMS320C206/LC206

5-38

Reset Operation

] CaseB

The Case B schematic shows initiation of the PLL reset and DSP core reset
for every reset. Following every reset, the PLL initiates the PLL locking
sequence as PLLRS is low during reset RS.

VCC
PLLRS | !
D : PLL !
i ol :
: DSP core !
TMS320C206/LC206
] CaseC

The Case C schematic shown is equivalent to case B. PLL and DSP core are
reset for each reset. PLL initiates the locking sequence for every reset as
PLLRS is low during reset.

PLL

e

1

DSP core

TMS320C206/LC206

Program Control 5-39

Power-Down Mode

5.8 Power-Down Mode

The 'C20x has a power-down mode that allows the 'C20x core to enter a
dormant state and use less power than during normal operation. Executing an
IDLE instruction initiates power-down mode. When the IDLE instruction
executes, the program counter is incremented once, and then all CPU
activities are halted. While the 'C20x is in power-down mode, all of its internal
contents are maintained. The content of all on-chip RAM remains unchanged.
The peripheral circuits continue to operate, allowing the serial ports and the
timer to take the CPU out of the power-down state. The CLKOUT1 pin remains
active if bit 0 of the CLK register is set to 0.

The methods for terminating power-down mode depend on whether the
power-down was initiated under normal circumstances or as part of a HOLD
operation. sections 5.8.1 and 5.8.2 describe the differences.

5.8.1 Normal Termination of Power-Down Mode

5-40

If power-down has been initiated, any hardware interrupt (internal or external)
takes the processor out of the IDLE state. If you use reset or NMI, the CPU will
immediately execute the corresponding interrupt service routine. In addition,
if you use reset, registers will assume their reset values.

For a maskable hardware interrupt to wake the processor, it must be
unmasked by the interrupt mask register (IMR bit = 1). However, if the interrupt
is unmasked and is then requested, the processor will leave the IDLE state
regardless of the value of the INTM bit (bit 9 of status register ST0). The value
of the INTM bit will only determine the action of the CPU after power-down has
been terminated:

[INTM = 0. The interrupt is enabled, and the CPU executes the
corresponding interrupt service routine.

[INTM = 1. The interrupt is disabled, and the CPU continues with the
instruction after IDLE.

If you do not want the CPU to follow an interrupt service routine before
continuing with the interrupted program sequence:

(1 Do not use reset or NMI to bring the processor out of power-down.

[0 Make sure your program globally disables maskable interrupts (sets INTM
to 1) before IDLE is executed.

Power-Down Mode

5.8.2 Termination of Power-Down During a HOLD Operation

One of the necessary steps in the HOLD operation is the execution of an IDLE
instruction (see section 4.6, Direct Memory Access Using The HOLD
Operation, on page 4-18) . There are unique characteristics of the HOLD
operation that affect how the IDLE state can be exited.

Before performing a HOLD operation, your program must write a O to the
MODE bit (bit 4 of the interrupt control register, ICR). This makes the
HOLD/INT1 pin both negative- and positive-edge sensitive. A falling edge on
HOLD/INT1 will cause the CPU to branch to the interrupt service routine, which
initiates the HOLD operation with an IDLE instruction. A subsequent rising
edge on HOLD/INT1 can take the CPU out of the IDLE state and end the HOLD
operation. This rising-edge interrupt does not cause the CPU to branch to the
interrupt service routine.

The recommended software logic for the HOLD operation is described in
section 4.6, Direct Memory Access Using the HOLD Operation.

During a HOLD operation, there are only three valid methods for taking the
CPU out of the IDLE state:

(1 Causing a rising edge on the HOLD/INT1 pin.
[J Asserting a system reset at the reset pin.
[J Asserting the nonmaskable interrupt NMI at the NMI pin.

If you use reset or NMI, the CPU will immediately execute the corresponding
interrupt service routine. In addition, if you use reset, the contents of some
registers will be changed. For more information about exiting a HOLD
operation with reset or NMI, see section 4.6, Direct Memory Access Using The
HOLD Operation.

Program Control 5-41

Chapter 6

Addressing Modes

This chapter explains the three basic memory addressing modes used by the
'C20x instruction set. The three modes are:

[Immediate addressing mode
] Direct addressing mode
J Indirect addressing mode

In immediate addressing, a constant to be manipulated by the instruction is
supplied directly as an operand of that instruction. Two types of immediate
addressing are available—short and long. In short-immediate addressing, an
8-, 9-, or 13-hit operand is included in the instruction word. Long-immediate
addressing uses a 16-bit operand.

When you need to access data memory, you can use direct or indirect addres-
sing. Direct addressing concatenates seven bits of the instruction word with
the nine bits of the data-memory page pointer (DP) to form the 16-bit data
memory address. Indirect addressing accesses data memory through one of
eight 16-bit auxiliary registers.

Topic Page
6.1 Immediate AddressingMode 6-
6.2 Direct Addressing Mode 6l |
6.3 Indirect Addressing Mode ... 6-

6-1

Immediate Addressing Mode

6.1

Immediate Addressing Mode

In immediate addressing, the instruction word contains a constant to be ma-
nipulated by the instruction. The 'C20x supports two types of immediate ad-

dressing:

[0 Short-immediate addressing. Instructions that use short-immediate ad-
dressing take an 8-bit, 9-bit, or 13-bit constant as an operand. Short-im-
mediate instructions require a single instruction word, with the constant

embedded in that word.

[Long-immediate addressing. Instructions that use long-immediate ad-
dressing take a 16-bit constant as an operand and require two instruction
words. The constantis sent as the second instruction word. This 16-bit val-
ue can be used as an absolute constant or as a 2s-complement value.

6.1.1 Examples of Immediate Addressing

In Example 6-1, the immediate operand is contained as a part of the RPT
instruction word. For this RPT instruction, the instruction register will be loaded
with the value shown in Figure 6—1. Immediate operands are preceded by the

symbol #.

Example 6—-1. RPT Instruction Using Short-Immediate Addressing

RPT #99

:Execute the instruction that follows RPT

:100 times.

Figure 6-1. Instruction Register Contents for Example 6—1

15 14 13 12 11 10

9

8

7

1 0 1

1

1 0

1

1

0

1

RPT opcode for immediate addressing

8-bit constant = 99

Immediate Addressing Mode

In Example 6-2, the immediate operand is contained in the second instruction

word. The instruction register receives, consecutively, the two 16-bit values
shown in Figure 6-2.

Example 6—2. ADD Instruction Using Long-Immediate Addressing

ADD #16384,2 ;Shift the value 16384 left by two bits
:and add the result to the accumulator.

Figure 6-2. Two Words Loaded Consecutively to the Instruction Register in Example 62
First instruction word:
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0
1 0 1 1 1 1 1 1 1 0O O 1 0O O 1 0
ADD opcode for long-immediate addressing shift = 2
Second instruction word:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 1 0 0 O O O o o o o o o o o o

16-bit constant = 16 384 = 4000h

Addressing Modes 6-3

Direct Addressing Mode

6.2 Direct Addressing Mode

In the direct addressing mode, data memory is addressed in blocks of 128
words called data pages. The entire 64K of data memory consists of 512 data
pages labeled 0 through 511, as shown in Figure 6—3. The current data page
is determined by the value in the 9-bit data page pointer (DP) in status register
STO. For example, if the DP value is 0000000005, the current data page is O.

If the DP value is 0000000105, the current data page is 2.

Figure 6-3. Pages of Data Memory

DP value Offset
0000 0000 0 | 000 0000

0000 0000 0 | 111 1111
0000 0000 1| 000 0000

0000 0000 1 111 1111
0000 0001 0 000 0000

0000 0001 0 111 1111

1111 11111 | 000 0000

1111 11111 | 111 1111

In addition to the data page, the processor must know the particular word being
referenced on that page. This is determined by a 7-bit offset (see Figure 6-3).
The offset is supplied by the seven least significant bits (LSBs) of the instruc-
tion register, which holds the opcode for the next instruction to be executed.
Indirectaddressing mode, the content of the instruction register has the format

shown in Figure 6—4.

Data Memory

Page 0: 0000h—007Fh

Page 1: 0080h—00FFh

Page 2: 0100h—017Fh

Page 511: FF80h—FFFFh

Direct Addressing Mode

Figure 6—4. Instruction Register (IR) Contents in Direct Addressing Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8 MSBs 0 7 LSBs
8 MSBs Bits 15 through 8 indicate the instruction type (for example,

ADD) and also contain any information regarding a shift of the
data value to be accessed by the instruction.

0 Direct/indirect indicator.
dressing mode as direct.

Bit 7 contains a O to define the ad-

7 LSBs Bits 6 through 0 indicate the offset for the data-memory ad-
dress referenced by the instruction.

To form a complete 16-bit address, the processor concatenates the DP value
and the seven LSBs of the instruction register, as shown in Figure 6-5. The
DP supplies the nine most significant bits (MSBs) of the address (the page
number), and the seven LSBs of the instruction register supply the seven LSBs
of the address (the offset). For example, to access data address 003Fh, you
specify data page 0 (DP = 0000 0000 0) and an offset of 011 1111. Concatenat-
ing the DP and the offset produces the 16-bit address 0000 0000 0011 1111,
which is 003Fh or decimal 63.

Figure 6-5. Generation of Data Addresses in Direct Addressing Mode

Data page pointer (DP)

Instruction register (IR)

9 bits

8 MSBs 0

7 LSBs

All 9 bits from DP

\ 4

7 LSBs from IR

\ 4

Page (9 MSBs)

Offset (7 LSBs)

16-bit data-memory address

Initialize the DP in All Programs

It is critical that all programs initialize the DP. The DP is not
initialized by reset and is undefined after power up. The 'C20x
development tools use default values for many parameters,
including the DP. However, programs that do not explicitly initialize

the DP can execute improperly, depending on whether they are
executed on a 'C20x device or with a development tool.

Addressing Modes

6-5

Direct Addressing Mode

6.2.1 Using Direct Addressing Mode

When you use direct addressing mode, the processor uses the DP to find the
data page and uses the seven LSBs of the instruction register to find a particu-
lar address on that page. Always do the following:

1) Setthe data page. Load the appropriate value (from 0 to 511) into the DP.
The DP register can be loaded by the LDP instruction or by any instruction
that can load a value to STO. The LDP instruction loads the DP directly
without affecting the other bits of STO, and it clearly indicates the value
loaded into the DP. For example, to set the current data page to 32 (ad-
dresses 1000h—107Fh), you can use:

LDP #32 ;Initialize data page pointer

2) Specify the offset. Supply the 7-bit offset as an operand of the instruction.
For example, if you want the ADD instruction to use the value at the second
address of the current data page, you would write:

ADD 1h ;Add to accumulator the value in the current
;data page, offset of 1.

You do not have to set the data page prior to every instruction that uses direct
addressing. Ifall the instructions in a block of code access the same data page,
you can simply load the DP at the front of the block. However, if various data
pages are being accessed throughout the block of code, be sure the DP is
changed whenever a new data page should be accessed.

6.2.2 Examples of Direct Addressing

In Example 6-3, the first instruction loads the DP with 0000001005 (4) to set
the current data page to 4. The ADD instruction then references a data
memory address that is generated as shown following the program code. Be-
fore the ADD instruction is executed, the opcode is loaded into the instruction
register. Together, the DP and the seven LSBs of the instruction register form
the complete 16-bit address, 0000001000001001, (0209h).

Direct Addressing Mode

Example 6—-3. Using Direct Addressing with ADD (Shift of O to 15)

LDP #4 ;Set data page to 4 (addresses 0200h—027Fh).
ADD 9h,5 ;The contents of data address 0209h are
;left—shifted 5 bits and added to the
:contents of the accumulator.

DP =4 Instruction register (IR)
0000 0010 O 0010 : 0010 0| 000 1001
ADD Shift of 5 9h
opcode
All 9 bits from DP 7 LSBs from IR
A 4 A 4
0000 0010 O 000 1001

16-bit data address 0209h

In Example 6—4, the ADD instruction references a data memory address that
is generated as shown following the program code. For any instruction that
performs a shift of 16, the shift value is not embedded directly in the instruction
word; instead, all eight MSBs contain an opcode that not only indicates the
instruction type but also a shift of 16. The eight MSBs of the instruction word
indicate an ADD with a shift of 16.

Example 6—4. Using Direct Addressing with ADD (Shift of 16)

LDP #5 ;Set data page to 5 (addresses 0280h—02FFh).

ADD 9h,16 ;The contents of data address 0289h are
;left—shifted 16 bits and added to the
:contents of the accumulator.

DP =5 Instruction register (IR)
0000 0010 1 0110 0001 0| 000 1001
ADD with shift of 16 9h
opcode
All 9 bits from DP 7 LSBs from IR
A 4 A 4
0000 0010 1 000 1001

16-bit data address 0289h

Addressing Modes 6-7

Direct Addressing Mode

In Example 6-5, the ADDC instruction references a data memory address that
is generated as shown following the program code. Note that if an instruction
does not perform shifts, like the ADDC instruction does not, all eight MSBs of
the instruction contain the opcode for the instruction type.

Example 6-5. Using Direct Addressing with ADDC

DP = 500
1111 1010 O

Instruction register (IR)

LDP #500 ;Set data page to 500 (addresses FAOOh—FA7Fh).
ADDC 6h ;The contents of data address FAO6h
;and the value of the carry bit (C) are
;added to the contents of the accumulator.

0110 0000

0

000 0110

ADDC opcode

6h

All 9 bits from DP

\ 4 Y

7 LSBs from IR

1111

1010 O 000 0110

16-bit data address FAO6h

Indirect Addressing Mode

6.3 Indirect Addressing Mode

Eight auxiliary registers (ARO—ART7) provide flexible and powerful indirect ad-
dressing. Any location in the 64K data memory space can be accessed using
a 16-bit address contained in an auxiliary register.

6.3.1 Current Auxiliary Register

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register STO with a value from 0 to 7. The ARP can be loaded
as a primary operation by the MAR instruction or by the LST instruction. The
ARP can be loaded as a secondary operation by any instruction that supports
indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rentauxiliary register is used as the address at which the data-memory access
will take place. The ARAU passes this address to the data-read address bus
(DRAB) if the instruction requires a read from data memory, or it passes the
address to the data-write address bus (DWAB) if the instruction requires a
write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the
ARAU, which implements unsigned 16-bit arithmetic.

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operation is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: During processing of the NORM
instruction, the auxiliary register and/or ARP modification is done during the
execute phase of the pipeline. For information on the operation of the pipeline,
see section 5.2 on page 5-7.

6.3.2 Indirect Addressing Options

The 'C20x provides four types of indirect addressing options:

[Noincrementordecrement. The instruction uses the content of the current
auxiliary register as the data memory address but neither increments nor
decrements the content of the current auxiliary register.

1 Increment or decrement by 1. The instruction uses the content of the cur-
rent auxiliary register as the data memory address and then increments
or decrements the content of the current auxiliary register by one.

[Incrementordecrementby anindex amount. The value in ARQ is the index
amount. The instruction uses the content of the current auxiliary register

Addressing Modes 6-9

Indirect Addressing Mode

as the data memory address and then increments or decrements the con-
tent of the current auxiliary register by the index amount.

(1 Increment or decrement by an index amount using reverse carry. The val-
ue in ARO is the index amount. After the instruction uses the content of the
current auxiliary register as the data-memory address, that content is in-
cremented or decremented by the index amount. The addition or subtrac-
tion, in this case, is done with the carry propagation reversed (for FFTs).

These four option types provide the seven indirect addressing options listed
in Table 6-1. The table also shows the instruction operand that corresponds
to each indirect addressing option and gives an example of how each option

is used.

Table 6-1. Indirect Addressing Operands

6-10

Option

Operand

Example

No increment or decrement

Increment by 1

Decrement by 1

Increment by index amount

Decrement by index amount

*

*+

*O+

*0—

LT * loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR.

LT *+ loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then adds one to the
content of the current AR.

LT *— loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then subtracts one from
the content of the current AR.

LT *0+ loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then adds the content
of ARO to the content of the current AR.

LT *0- loads the temporary register
(TREG) with the content of the data
memory address referenced by the
current AR and then subtracts the con-
tent of ARO from the content of the cur-
rent AR.

Indirect Addressing Mode

Table 6-1. Indirect Addressing Operands (Continued)

Option Operand Example
Increment by index amount, *BRO+ LT *BRO+ loads the temporary register
adding with reverse carry (TREG) with the content of the data

memory address referenced by the
current AR and then adds the content
of ARO to the content of the current AR,
adding with reverse carry propagation.

Decrement by index amount, *BRO- LT *BRO- loads the temporary register

subtracting with reverse carry (TREG) with the content of the data
memory address referenced by the
current AR and then subtracts the
content of ARO from the content of the
current AR, subtracting with bit reverse
carry propagation.

Allincrements or decrements are performed by the auxiliary register arithmetic
unit (ARAU) in the same cycle during which the instruction is being decoded
in the pipeline.

The bit-reversed indexed addressing allows efficient /O operations by rese-
quencing the data points in a radix-2 FFT program. The direction of carry prop-
agationinthe ARAU is reversed when the address is selected, and ARO is add-
ed to or subtracted from the current auxiliary register. A typical use of this ad-
dressing mode requires that ARO first be set to a value corresponding to half
of the array’s size, and that the current AR value be set to the base address
of the data (the first data point).

6.3.3 Next Auxiliary Register

In addition to updating the current auxiliary register, a number of instructions
can also specify the next auxiliary register or next AR. This register will be the
current auxiliary register when the instruction execution is complete. The
instructions that allow you to specify the next auxiliary register load the ARP
with a new value. When the ARP is loaded with that value, the previous ARP
value is loaded into the auxiliary register pointer buffer (ARB). Example 6—6
illustrates the selection of a next auxiliary register, as well as other indirect ad-
dressing features discussed so far.

Addressing Modes 6-11

Indirect Addressing Mode

Example 6—-6. Selecting a New Current Auxiliary Register

MAR*,AR1 :Load the ARP with 1 to make ARL1 the
;current auxiliary register.

LT *+AR2 ;AR2 is the next auxiliary register.
:Load the TREG with the content of the
;address referenced by AR1, add one to
;the content of AR1, then make AR2 the
;current auxiliary register.

MPY * ;Multiply TREG by content of address
;referenced by AR2.

6.3.4 Indirect Addressing Opcode Format

Figure 6—6 shows the format of the instruction word loaded into the instruction
register when you use indirect addressing. The opcode fields are described
following the figure.

Figure 6—6. Instruction Register Content in Indirect Addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8 MSBs 1 ARU N NAR

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
LT) and also contain any information regarding data shifts.

1 Direct/indirect indicator. Bit 7 contains a 1 to define the
addressing mode as indirect.

ARU Auxiliary register update code. Bits 6 through 4 determine
whether and how the current auxiliary register is incremented
or decremented. See Table 6-2.

N Next auxiliary register indicator. Bit 3 specifies whether the
instruction will change the ARP value.

N=0 If N is 0, the content of the ARP will remain
unchanged.

N=1 If N is 1, the content of NAR will be loaded into
the ARP, and the old ARP value is loaded into
the auxiliary register buffer (ARB) of status

register ST1.
NAR Next auxiliary register value. Bits 2 through O contain the
value of the next auxiliary register. NAR is loaded into the ARP

if N =1.

6-12

Indirect Addressing Mode

Table 6-2. Effects of the ARU Code on the Current Auxiliary Register

ARU Code
6 5 4 Arithmetic Operation Performed on Current AR
0 0 0 No operation on current AR
0 0 1 current AR-1 - current AR
0 1 0 current AR+ 1 - current AR
0 1 1 Reserved
1 0 0 current AR — ARO - current AR [reverse carry propagation]
1 0 1 current AR - ARO - current AR
1 1 0 current AR + ARO - current AR
1 1 1 current AR + ARO - current AR [reverse carry propagation]

Table 6—3 shows the opcode field bits and the notation used for indirect ad-
dressing. It also shows the corresponding operations performed on the current
auxiliary register and the ARP.

Addressing Modes 6-13

Indirect Addressing Mode

Table 6-3. Field Bits and Notation for Indirect Addressing

Instruction Opcode Bits

15 - 876543210 Operand(s) Operation

~« 8MSBs -1 0 0 0 0 —NAR- * No manipulation of current AR

- 8MSBs -1 0 0 0 1 <NAR- * ARn NAR - ARP

- 8MSBs -1 0 0 1 0 ~NAR- *— current AR — 1 - current AR

- 8MSBs -1 0 0 1 1 ~NAR- *~ ARn current AR -1 - current AR
NAR - ARP

- 8MSBs -1 0 1 0 0 <NAR- *+ current AR + 1 — current AR

- 8MSBs -1 0 1 0 1 —NAR- *+ ARnN current AR + 1 - current AR
NAR - ARP

- 8MSBs -1 1 0 0 0 <NAR- *BRO- current AR — rcARO - current AR T

- 8MSBs -1 1 0 0 1 ~NAR- *BRO-,ARnN current AR — rcARO - current AR
NAR - ARP T

- 8MSBs -1 1 0 1 0 <NAR- *0— current AR — ARO - current AR

- 8MSBs -1 1 0 1 1 ~NAR- *0—,ARn current AR — ARO - current AR
NAR - ARP

- 8MSBs -1 1 1 0 0 ~NAR- *0+ current AR + ARO - current AR

- 8MSBs -1 1 1 0 1 <NAR- *0+,ARnN current AR + ARO - current AR
NAR - ARP

- 8MSBs -1 1 1 1 0 <NAR- *BRO+ current AR + rcARO - current AR T

- 8MSBs -1 1 1 1 1 ~NAR- *BRO+,ARN current AR + rcARO - current AR

NAR - ARP T

1 Bit-reversed addressing mode

Legend:

6-14

rc

NAR

n

8 MSBs

—

Reverse carry propagation

Next AR

0,1,2..

,or7

Eight bits determined by instruction type and (sometimes) shift information
Is loaded into

Indirect Addressing Mode

6.3.5 Examples of Indirect Addressing

In Example 6—7, when the ADD instruction is fetched from program memory,

the instruction register is loaded with the value shown.

Example 6—7. No Increment or Decrement

;Add to the accumulator the content of the
;data-memory address referenced by the
;current auxiliary register. The data
;is left-shifted 8 bits before being added.

ADD *,8

15 14 13 12 11 10 9 8 7 6 5 4

0010110001000

ADD opcode Shift =8

Addressing mode = indirect

N = No next AR specified

ARU = No operation on current AR

NAR = don'’t cares

In Example 6-8, when the ADD instruction is fetched from program memory,

the instruction register is loaded with the value shown.

Example 6-8. Increment by 1

;Operates as in Example 6-7, but
;in addition, the current auxiliary
;register is incremented by one, and
;AR4 is chosen as the next auxiliary

ADD *+,8,AR4

Addressing mode = indirect

;register.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0010:100010100100
ADD opcode Shift =8
NAR = 4

N = next AR specified

ARU = increment current AR by 1

Addressing Modes

6-15

Indirect Addressing Mode

Example 6-9. Decrement by 1

ADD *-,8 ;Operates as in Example 6-7, but in
;addition, the current auxiliary register
;is decremented by one.

Example 6-10. Increment by Index Amount

ADD *0+,8 ;Operates as in Example 6—7, but in
;addition, the content of register ARO
;is added to the current auxiliary
;register.

Example 6-11. Decrement by Index Amount

ADD *0-,8 ;Operates as in Example 6—7, but in
;addition, the content of register ARO
;is subtracted from the current auxiliary
;register.

Example 6-12. Increment by Index Amount With Reverse Carry Propagation

ADD *BR0+,8 ;Operates as in Example 6-10, except that
;the content of register ARO is added to
;the current auxiliary register with
;reverse carry propagation.

Example 6—13. Decrement by Index Amount With Reverse Carry Propagation

ADD *BR0-,8 ;Operates as in Example 6-11, except that
;the content of register ARO is subtracted
;from the current auxiliary register with
;reverse carry propagation.

6-16

Indirect Addressing Mode

6.3.6 Modifying Auxiliary Register Content

The LAR, ADRK, SBRK, and MAR instructions are specialized instructions for
changing the content of an auxiliary register (AR):

[The LAR instruction loads an AR.

[J The ADRK nstruction adds an immediate value to an AR; SBRK subtracts
an immediate value.

1 The MAR instruction can increment or decrement an AR value by one or
by an index amount.

However, you are not limited to these four instructions. Auxiliary registers can
be modified by any instruction that supports indirect addressing operands. (In-
direct addressing can be used with all instructions except those that have im-
mediate operands or no operands.)

Addressing Modes 6-17

Chapter 7

Assembly Language Instructions

The 'C20x instruction set supports numerically intensive signal-processing op-
erations as well as general-purpose applications such as multiprocessing and
high-speed control. The 'C20x instruction set is compatible with the 'C2x
instruction set; code written for the 'C2x can be reassembled to run on the
'C20x. The 'C5x instruction set is a superset of that of the 'C20x; thus, code
written for the 'C20x can be upgraded to run on a 'C5x.

This chapter describes the assembly language instructions.

Topic Page
7.1 Instruction Set Summary ... 7-
7.2 How To Use the Instruction Descriptions 7-.1E|
7.3 Instruction Descriptions i S

7-1

Instruction Set Summary

7.1

7-2

Instruction Set Summary

This section provides a summary of the instruction set in six tables (Table 7-1
to Table 7—-6) according to the following functional headings:

a

(I Y Y R

Accumulator, arithmetic, and logic instructions (see Table 7-1 on page
7-4)

Auxiliary register and data page pointer instructions (see Table 7-2 on
page 7-7)

TREG, PREG, and multiply instructions (see Table 7-3 on page 7-8)
Branch instructions (see Table 7—4 on page 7-9)

Control instructions (see Table 7-5 on page 7-9)

I/O and memory operations (see Table 7—6 on page 7-11)

Within each table, the instructions are arranged alphabetically. The number of
words that an instruction occupies in program memory is specified in column
three of each table; the number of cycles that an instruction requires to execute
is in column four. All instructions are assumed to be executed from internal
program memory (RAM) and internal data dual-access memory. The cycle
timings are for single-instruction execution, not for repeat mode. Additional
information about each instruction is presented in the individual instruction
descriptions in section 7.2.

For your reference, here are definitions of the symbols used in these six sum-

mary tables:

ACC The accumulator

AR Auxiliary register

ARX A 3-bit value used in the LAR and SAR instructions to desig-
nate which auxiliary register will be loaded (LAR) or have its
contents stored (SAR)

BITX A 4-bit value (called the bit code) that determines which bit of
a designated data memory value will be tested by the BIT
instruction

CM A 2-bit value. The CMPR instruction performs a comparison

specified by the value of CM:

If CM = 00, test whether current AR = ARO
If CM = 01, test whether current AR < ARO
If CM = 10, test whether current AR > ARO
If CM = 11, test whether current AR # ARO

IAAA AAAA

| NTR#

PM

SHF
SHFT

TP

Instruction Set Summary

(One | followed by seven As) The | at the left represents a bit
that reflects whether direct addressing (I = 0) or indirect ad-
dressing (I=1) is being used. When direct addressing is used,
the seven As are the seven least significant bits (LSBs) of a
data memory address. For indirect addressing, the seven As
are bits that control auxiliary register manipulation (see sec-
tion 6.3, Indirect Addressing Mode, p. 6-9).

(Eight Is) An 8-bit constant used in short immediate addres-
sing

(Nine Is) A 9-bit constant used in short immediate addressing
for the LDP instruction

(Thirteen Is) A 13-bit constant used in short immediate ad-
dressing for the MPY instruction

A 5-bit value representing a number from 0 to 31. The INTR
instruction uses this number to change program control to one
of the 32 interrupt vector addresses.

A 2-bit value copied into the PM bits of status register ST1 by
the SPM instruction

A 3-bit left-shift value
A 4-bit left-shift value

A 2-bit value used by the conditional execution instructions to
represent four conditions:

BIO pin low TP =00
TC bit =1 TP =01
TChit=0 TP =10
No condition TP =11

Assembly Language Instructions 7-3

Instruction Set Summary

ZLVC ZLVC

+ 1 word

Two 4-bit fields — each representing the following conditions:

ACC=0 Z
ACC<O0 L
Overflow \Y
Carry C

A conditional instruction contains two of these 4-bit fields. The
4-LSB field of the instruction is a mask field. A 1 in the corre-
sponding mask bit indicates that condition is being tested. For
example, to test for ACC = 0, the Z and L fields are set, and
the Vand Cfields are not set. The Z field is set to test the condi-
tion ACC = 0, and the L field is reset to test the condition
ACC = 0.The second 4-bit field (bits 4 — 7) indicates the state
of the conditions to test. The conditions possible with these
eight bits are shown in the descriptions for the BCND, CC, and
RETC instructions.

The second word of a two-word opcode. This second word
contains a 16-hit constant. Depending on the instruction, this
constant is a long immediate value, a program memory ad-
dress, or an address for an I/O port or an I/O-mapped register.

Table 7—-1. Accumulator, Arithmetic, and Logic Instructions

Mnemonic Description

Words Cycles Opcode

ABS Absolute value of ACC 1 1 1011 1110 0000 0000

ADD Add to ACC with shift of O to 15, direct or indirect 1 1 0010 SHFT IAAA AAAA
Add to ACC with shift 0 to 15, long immediate 2 2 1011 1111 1001 SHFT

+ 1 word

Add to ACC with shift of 16, direct or indirect 1 1 0110 0001 IAAA AAAA
Add to ACC, short immediate 1 1 1011 1000 1 1t

ADDC Add to ACC with carry, direct or indirect 1 1 0110 0000 IAAA AAAA

ADDS Add to low ACC with sign-extension suppressed, 1 1 0110 0010 IAAA AAAA
direct or indirect

ADDT Add to ACC with shift (0 to 15) specified by TREG, 1 1 0110 0011 IAAA AAAA

direct or indirect

Instruction Set Summary

Table 7-1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic Description Words Cycles Opcode
AND AND ACC with data value, direct or indirect 1 1 0110 1110 IAAA AAAA
AND with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1011 SHFT
+ 1 word
AND with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0001
+ 1 word
CMPL Complement ACC 1 1 1011 1110 0000 0001
LACC Load ACC with shift of 0 to 15, direct or indirect 1 1 0001 SHFT IAAA AAAA
Load ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1000 SHFT
+ 1 word
Load ACC with shift of 16, direct or indirect 1 1 0110 1010 IAAA AAAA
LACL Load low word of ACC, direct or indirect 1 1 0110 1001 IAAA AAAA
Load low word of ACC, short immediate 1 1 1011 1001 [H
LACT Load ACC with shift (0 to 15) specified by TREG, 1 1 0110 1011 IAAA AAAA
direct or indirect
NEG Negate ACC 1 1 1011 1110 0000 0010
NORM Normalize the contents of ACC, indirect 1 1 1010 0000 IAAA AAAA
OR OR ACC with data value, direct or indirect 1 1 0110 1101 IAAA AAAA
OR with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1100 SHFT
+ 1 word
OR with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0010
+ 1 word
ROL Rotate ACC left 1 1 1011 1110 0000 1100
ROR Rotate ACC right 1 1 1011 1110 0000 1101
SACH Store high ACC with shift of 0 to 7, 1 1 1001 1SHF IAAA AAAA
direct or indirect
SACL Store low ACC with shift of 0 to 7, 1 1 1001 OSHF IAAA AAAA
direct or indirect
SFL Shift ACC left 1 1 1011 1110 0000 1001
SFR Shift ACC right 1 1 1011 1110 0000 1010

Assembly Language Instructions 7-5

Instruction Set Summary

Table 7-1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic

Description

Words Cycles Opcode

SuB

SUBB
SUBC

SUBS

SUBT

XOR

ZALR

Subtract from ACC with shift of 0 to 15,

direct or indirect

Subtract from ACC with shift of 0 to 15,

long immediate

Subtract from ACC with shift of 16,

direct or indirect

Subtract from ACC, short immediate
Subtract from ACC with borrow, direct or indirect
Conditional subtract, direct or indirect

Subtract from ACC with sign-extension
suppressed, direct or indirect

Subtract from ACC with shift (O to 15) specified by

TREG, direct or indirect

Exclusive OR ACC with data value, direct or indirect

Exclusive OR with ACC with shift of O to 15,

long immediate

Exclusive OR with ACC with shift of 16, long

immediate

Zero low ACC and load high ACC with rounding,

direct or indirect

0011 SHFT IAAA AAAA

1011 1111 1010 SHFT
+ 1 word

0110 0101 IAAA AAAA

1011 1010 It
0110 0100 IAAA AAAA
0000 1010 IAAA AAAA

0110 0110 IAAA AAAA

0110 0111 IAAA AAAA

0110 1100 IAAA AAAA

1011 1111 1101 SHFT
+ 1 word

1011 1110 1000 0011
+ 1 word

0110 1000 IAAA AAAA

7-6

Table 7-2. Auxiliary Register Instructions

Instruction Set Summary

Mnemonic Description Words Cycles Opcode

ADRK Add constant to current AR, 1 1 0111 1000 M1
short immediate

BANZ Branch on current AR not-zero, 2 4 (condition true) 0111 1011 1AAA AAAA
indirect 2 (condition false) + 1 word

CMPR Compare current AR with ARO 1 1 1011 1111 0100 01CM

LAR Load specified AR from 1 2 0000 OARX IAAA AAAA
specified data location,
direct or indirect
Load specified AR with 1 2 1011 OARX 11 1
constant, short immediate
Load specified AR with 2 2 1011 1111 0000 1ARX
constant, long immediate + 1 word

MAR Modify current AR and/or ARP, 1 1 1000 1011 IAAA AAAA
indirect (performs no operation
when direct)

SAR Store specified AR to specified 1 1 1000 OARX IAAA AAAA
data location, direct or indirect

SBRK Subtract constant from current 1 1 0111 2100 [T

AR, short immediate

Assembly Language Instructions 7-7

Instruction Set Summary

Table 7-3. TREG, PREG, and Multiply Instructions

Mnemonic Description Words Cycles Opcode

APAC Add PREG to ACC 1 1 1011 1110 0000 0100

LPH Load high PREG, direct or indirect 1 1 0111 0101 IAAA AAAA

LT Load TREG, direct or indirect 1 1 0111 0011 IAAA AAAA

LTA Load TREG and accumulate previous product, 1 1 0111 0000 IAAA AAAA
direct or indirect

LTD Load TREG, accumulate previous product, and 1 1 0111 0010 IAAA AAAA
move data, direct or indirect

LTP Load TREG and store PREG in accumulator, 1 1 0111 0001 IAAA AAAA
direct or indirect

LTS Load TREG and subtract previous product, 1 1 0111 0100 IAAA AAAA
direct or indirect

MAC Multiply and accumulate, direct or indirect 2 3 1010 0010 IAAA AAAA

+ 1 word

MACD Multiply and accumulate with data move, direct or 2 3 1010 0011 IAAA AAAA
indirect + 1 word

MPY Multiply TREG by data value, direct or indirect 1 1 0101 0100 IAAA AAAA
Multiply TREG by 13-bit constant, short immediate 1 1 2200 T

MPYA Multiply and accumulate previous product, director 1 1 0101 0000 IAAA AAAA
indirect

MPYS Multiply and subtract previous product, direct or 1 1 0101 0001 IAAA AAAA
indirect

MPYU Multiply unsigned, direct or indirect 1 1 0101 0101 IAAA AAAA

PAC Load ACC with PREG 1 1 1011 1110 0000 0011

SPAC Subtract PREG from ACC 1 1 1011 1110 0000 0101

SPH Store high PREG, direct or indirect 1 1 1000 1101 IAAA AAAA

SPL Store low PREG, direct or indirect 1 1 1000 1100 IAAA AAAA

SPM Set product shift mode 1 1 1011 1111 0000 00PM

SQRA Square and accumulate previous product, director 1 1 0101 0010 IAAA AAAA
indirect

SQRS Square and subtract previous product, direct or 1 1 0101 0011 IAAA AAAA

indirect

7-8

Instruction Set Summary

Table 7-4. Branch Instructions

Mnemonic Description Words Cycles Opcode
B Branch unconditionally, indirect 2 4 0111 1001 1AAA AAAA
+ 1 word
BACC Branch to address specified by 1 4 1011 1110 0010 0000
ACC
BANZ Branch on current AR not-zero, 2 4 (condition true) 0111 1011 1AAA AAAA
indirect 2 (condition false) + 1 word
BCND Branch conditionally 2 4 (conditions true) 1110 00TP ZLVC ZLVC
2 (any condition false) + 1 word
CALA Call subroutine at location 1 4 1011 1110 0011 0000
specified by ACC
CALL Call subroutine, indirect 2 4 0111 1010 1AAA AAAA
+ 1 word
CcC Call conditionally 2 4 (conditions true) 1110 10TP ZLVC ZLVC
2 (any condition false) + 1 word
INTR Soft interrupt 1 4 1011 1110 0111 NTR#
NMI Nonmaskable interrupt 1 4 1011 1110 0101 0010
RET Return from subroutine 1 4 1110 1111 0000 0000
RETC Return conditionally 1 4 (conditions true) 1110 11TP ZLVC ZLVC

2 (any condition false)

TRAP Software interrupt 1 4 1011 1110 0101 0001

Table 7-5. Control Instructions

Mnemonic Description Words Cycles Opcode

BIT Test bit, direct or indirect 1 1 0100 BITX IAAA AAAA

BITT Test bit specified by TREG, direct or indirect 1 1 0110 1111 IAAA AAAA

CLRC Clear C bit 1 1 1011 1110 0100 1110
Clear CNF bit 1 1 1011 1110 0100 0100
Clear INTM bit 1 1 1011 1110 0100 0000
Clear OVM bit 1 1 1011 1110 0100 0010
Clear SXM bit 1 1 1011 1110 0100 0110
Clear TC bit 1 1 1011 1110 0100 1010
Clear XF bit 1 1 1011 1110 0100 1100

Assembly Language Instructions 7-9

Instruction Set Summary

Table 7-5. Control Instructions (Continued)

Mnemonic Description Words Cycles Opcode
IDLE Idle until interrupt 1 1 1011 1110 0010 0010
LDP Load data page pointer, 1 2 0000 1101 IAAA AAAA
direct or indirect
Load data page pointer, 1 2 1011 1101 [
short immediate
LST Load status register STO, direct or indirect 1 2 0000 1110 IAAA AAAA
Load status register ST1, direct or indirect 1 2 0000 1111 IAAA AAAA
NOP No operation 1 1 1000 1011 0000 0000
POP Pop top of stack to low ACC 1 1 1011 1110 0011 0010
POPD Pop top of stack to data memory, direct or indirect 1 1 1000 1010 IAAA AAAA
PSHD Push data memory value on stack, direct or 1 1 0111 0110 IAAA AAAA
indirect
PUSH Push low ACC onto stack 1 1 1011 1110 0011 1100
RPT Repeat next instruction, direct or indirect 1 1 0000 1011 IAAA AAAA
Repeat next instruction, short immediate 1 1 1011 10272 HHE 1
SETC Set C bit 1 1 1011 1110 0100 1111
Set CNF bit 1 1 1011 1110 0100 0101
Set INTM bit 1 1 1011 1110 0100 0001
Set OVM bit 1 1 1011 1110 0100 0011
Set SXM bit 1 1 1011 1110 0100 0111
Set TC bit 1 1 1011 1110 0100 1011
Set XF bit 1 1 1011 1110 0100 1101
SPM Set product shift mode 1 1 1011 1111 0000 0OPM
SST Store status register STO, direct or indirect 1 1 1000 1110 IAAA AAAA
Store status register ST1, direct or indirect 1 1 1000 1111 IAAA AAAA

7-10

Instruction Set Summary

Table 7-6. I/O and Memory Instructions

Mnemonic Description Words Cycles Opcode

BLDD Block move from data memory to data memory, 2 3 1010 1000 IAAA AAAA
direct/indirect with long immediate source + 1 word

Block move from data memory to data memory, 2 3 1010 1001 IAAA AAAA
direct/indirect with long immediate destination + 1 word

BLPD Block move from program memory to data memory, 2 3 1010 0101 IAAA AAAA
direct/indirect with long immediate source + 1 word

DMOV Data move in data memory, direct or indirect 1 1 0111 0111 IAAA AAAA

IN Input data from 1/O location, direct or indirect 2 2 1010 1111 IAAA AAAA
+ 1 word

ouT Output data to port, direct or indirect 2 3 0000 1100 IAAA AAAA
+ 1 word

SPLK Store long immediate to data memory location, 2 2 1010 1110 IAAA AAAA
direct or indirect + 1 word

TBLR Table read, direct or indirect 1 3 1010 0110 IAAA AAAA

TBLW Table write, direct or indirect 1 3 1010 0111 IAAA AAAA

Assembly Language Instructions 7-11

How To Use the Instruction Descriptions

7.2 How To Use the Instruction Descriptions

Section 7.3 contains detailed information on the instruction set. The descrip-
tion for each instruction presents the following categories of information:

Syntax

Opcode

Words
Cycles

oo ououoo

7.2.1 Syntax

Operands
Execution

Status Bits
Description

Examples

Each instruction begins with a list of the available assembler syntax expres-
sions and the addressing mode type(s) for each expression. For example, the
description for the ADD instruction begins with:

ADD dma [, shift]

ADD ind[, shift [, ARn]]

ADD dma, 16
ADD ind, 16 [,
ADD #k

AR~

ADD #lk [, shift]

Direct addressing

Direct with left shift of 16
Indirect addressing

Indirect with left shift of 16
Short immediate addressing
Long immediate addressing

These are the notations used in the syntax expressions:

italic
symbols

boldface
characters

7-12

Italic symbols in an instruction syntax represent variables.

Example:

For the syntax:

ADD dma

you may use a variety of values for dma.
Samples with this syntax follow:

ADD DAT

ADD 15

Boldface characters in an instruction syntax must be typed as

shown.
Example:

For the syntax:

ADD dma, 16

you may use a variety of values for dma, but the
word ADD and the number 16 should be typed
as shown. Samples with this syntax follow:
ADD 7h, 16

ADD X, 16

[X]

[, x1 [, x2]]

How To Use the Instruction Descriptions

Operand x is optional.

Example:

For the syntax:

ADD dma, [, shiff]

you must supply dma, as in the instruction:
ADD 7h

and you have the option of adding a shift value,
as in the instruction:

ADD 7h, 5

Operands x1 and x2 are optional, but you cannot include x2
without also including x1.

Example:

For the syntax:

ADD ind, [, shift[, ARnN]]

you must supply ind, as in the instruction:
ADD *+

You have the option of including shift,

as in the instruction:

ADD *+, 5

If you wish to include ARn, you must also
include shift, as in:

ADD *+, 0, AR2

The # symbol is a prefix for constants used in immediate
addressing. For short- or long- immediate operands, it is
used in instructions where there is ambiguity with other
addressing modes.

Example:

RPT #15 uses short immediate addressing. It
causes the next instruction to be repeated 16
times. But RPT 15 uses direct addressing.
The number of times the next instruction
repeats is determined by a value stored in
memory.

Finally, consider this code example:

MoveData BLDD DATS5, #310h :move data at address

;referenced by DAT5 to address
:310h.

Note the optional label MoveData used as a reference in front of the instruc-
tion mnemonic. Place labels either before the instruction mnemonic on the
same line or on the preceding line in the first column. (Be sure there are no
spaces in your labels.) An optional comment field can conclude the syntax ex-
pression. At least one space is required between fields (label, mnemonic, op-
erand, and comment).

Assembly Language Instructions 7-13

How To Use the Instruction Descriptions

7.2.2 Operands

7.2.3 Opcode

7-14

Operands can be constants, or assembly-time expressions referring to
memory, 1/O ports, register addresses, pointers, shift counts, and a variety of
other constants. The operands category for each instruction description
defines the variables used for and/or within operands in the syntax
expressions. For example, for the ADD instruction, the syntax category gives
these syntax expressions:

ADD dma [, shift] Direct addressing

ADD dma, 16 Direct with left shift of 16
ADD ind[, shift [, ARnN]] Indirect addressing

ADD ind, 16 [, ARnN] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [, shift] Long immediate addressing

The operands category defines the variables dma, shift, ind, n, k, and k. For
ind, an indirect addressing variable, you supply one of the following seven
symbols:

* %+ *_ %0+ *0— *BRO+ *BRO-

These symbols are defined in section 6.3.2, Indirect Addressing Options, on
page 6-9.

The opcode category breaks down the various bit fields that make up each
instruction word. When one of the fields contains a constant value derived
directly from an operand, it has the same name as that operand. The contents
of fields that do not directly relate to operands have other names; the opcode
category either explains these names directly or refers you to a section of this
book that explains them in detail. For example, these opcodes are given for
the ADDC instruction:

ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0o 0o o o oo | dma

ADDC ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 o o o of1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9).

7.2.4 Execution

7.2.5 Status Bits

7.2.6 Description

How To Use the Instruction Descriptions

The field called dma contains the value dma, which is defined in the operands
category. The contents of the fields ARU, N, and NAR are derived from the op-
erands ind and n but do not directly correspond to those operands; therefore,
a note directs you to the appropriate section for more details.

The execution category presents an instruction operation sequence that de-
scribes the processing that takes place when the instruction is executed. If the
execution event or events depend on the addressing mode used, the execu-
tion category specifies which events are associated with which addressing
modes. Here are notations used in the execution category:

n The content of register or location r.
Example: (ACC) represents the value in the accumulator.

X >y Value x is assigned to register or location y.
Example: (data-memory address) - ACC means:
The content of the specified data-memory
address is put into the accumulator.

r(n:m) Bits n through m of register or location r.
Example: ~ ACC(15:0) represents bits 15 through 0 of the
accumulator.

(r(n:m)) The content of bits n through m of register or location r.
Example: (ACC(31:16)) represents the content of bits 31
through 16 of the accumulator.

nnh Indicates that nn represents a hexadecimal number.

The bits in status registers STO and ST1 affect the operation of certain instruc-
tions and are affected by certain instructions. The status bits category of each
instruction description states which of the bits (if any) affect the execution of
the instruction and which of the bits (if any) are affected by the instruction.

The description category explains what happens during instruction execution
and its effect on the rest of the processor or on memory contents. It also dis-
cusses any constraints on the operands imposed by the processor or the as-
sembler. This description parallels and supplements the information given in
the execution category.

Assembly Language Instructions 7-15

How To Use the Instruction Descriptions

7.2.7 Words

7.2.8 Cycles

7-16

The words category specifies the number of memory words (one or two) re-
quired to store the instruction. When the number of words depends on the ad-
dressing mode used for an instruction, the words category specifies which ad-
dressing modes require one word and which require two words.

The cycles category of each instruction description contains tables showing
the number of processor machine cycles (CLKOUT1 periods) required for the
instruction to execute in a given memory configuration when executed as a
single instruction or when repeated with the RPT instruction. For example:

Cycles for a Single Instruction

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1 1+p
External 1+d 1+d 1+d 2+d+p
Cycles for a Repeat (RPT) Execution of an Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n n+p
External n+nd n+nd n+nd n+1+p+nd

The column headings in these tables indicate the program source location, de-
fined as follows:

ROM
DARAM
SARAM

External

The instruction executes from internal program ROM.
The instruction executes from internal dual-access program RAM.
The instruction executes from internal single-access program RAM.

The instruction executes from external program memory.

How To Use the Instruction Descriptions

If an instruction requires memory operand(s), the rows in the table indicate the
location(s) of the operand(s), as defined here:

DARAM The operand is in internal dual-access RAM.
SARAM The operand is in internal single-access RAM.

External The operand is in external memory.

For the RPT mode execution, nindicates the number of times a given instruc-
tion is repeated by an RPT instruction. Additional cycles (wait states) can be
generated for program-memory, data-memory, and I/O accesses by the wait-
state generator or by the external READY signal. These additional wait states
are represented in the tables by the following variables:

p Program-memory wait states. Represents the number of additional clock
cycles the device waits for external program memory to respond to a
single access.

d Data-memory wait states. Represents the number of additional clock
cycles the device waits for external data memory to respond to a single
access.

io I/0 wait states. Represents the number of additional clock cycles the de-

vice waits for an external I/O device to respond to a single access.

n Number of repetitions (where n > 2 to fill the pipeline). Represents the
number of times a repeated instruction is executed.

If there are multiple accesses to one of the spaces, the variable will be preced-
ed by the appropriate integer multiple. For example, two accesses to external
program memory would require 2p wait states. The above variables may also
use the subscripts src, dst, and codeto indicate source, destination, and code,
respectively.

Single access RAM (SARAM) allows for only one access per cycle. However,
the internal single access memory on each 'C20x processor is divided into
2K-word blocks contiguous in address space. You can use SARAM for
simultaneous accesses to program memory and data memory if the accesses
are made to different 2K-word blocks.

All external reads take at least one machine cycle while all external writes take
at least two machine cycles. However, if an external write is immediately fol-
lowed or preceded by an external read cycle, then the external write requires
three cycles. If the wait state generator or the READY pin is used to add m
(m > 0) wait states to an external access, then external reads require m+1
cycles, and external write accesses require m+2 cycles. See Section 8.5,
Wait-State Generator, page 8-15, for the discussion on generating wait states.

Assembly Language Instructions 7-17

How To Use the Instruction Descriptions

7.2.9 Examples

7-18

The instruction-cycle timings are based on the following assumptions:

a

At least the next four instructions are fetched from the same memory sec-
tion (internal or external) that was used to fetch the current instruction (ex-
cept in the case of PC discontinuity instructions, such as B, CALL, etc.)

In the single-execution mode, there is no pipeline conflict between the cur-
rent instruction and the instructions immediately preceding or following
that instruction. The only exception is the conflict between the fetch phase
of the pipeline and the memory read/write (if any) access of the instruction
under consideration. See Section 5.2, Pipeline, on page 5-7 for more in-
formation about pipeline operation.

In the repeat execution mode, all conflicts caused by the pipelined execu-
tion of an instruction are considered.

Example code is included for each instruction. The effect of the code on
memory and/or registers is summarized. Program code is shown in a

specialtypeface

. The sample code is then followed by a verbal or graph-

ic description of the effect of that code. Consider this example of the ADD

instruction:
ADD*+,0,AR0
Before Instruction After Instruction
ARP I 4] ARP [9
AR4 | 0302h] AR4 0303h
Data Memory Data Memory
3021 | | sozn
ACC | 2n] acc [0] 04h
C C

Here are the facts and events represented in this example:

a

o

The auxiliary register pointer (ARP) points to the current auxiliary register.
Because ARP = 4, the current auxiliary register is AR4.

When the addition takes place, the CPU follows AR4 to data-memory
address 0302h. The content of that address, 2h, is added to the content
of the accumulator, also 2h. The result (4h) is placed in the accumulator.
(Because the second operand of the instruction specifies a left shift of 0,
the data-memory value is not shifted before being added to the accumula-
tor value.)

The instruction specifies an increment of one for the contents of the cur-
rent auxiliary register (*+); therefore, after the addition is performed, the
content of AR4 is incremented to 0303h.

How To Use the Instruction Descriptions

The instruction also specifies that ARO will be the next auxiliary register;
therefore, after the instruction ARP = 0.

Because no carry is generated during the addition, the carry bit (C) be-
comes 0.

Assembly Language Instructions 7-19

Instruction Descriptions

7.3 Instruction Descriptions

This section contains detailed information on the instruction set for the *C20x
(For a summary of the instruction set, see Section 7.1.) The instructions are
presented alphabetically, and the description for each instruction presents the
following categories of information:

Syntax
Operands
Opcode
Execution
Status Bits
Description
Words
Cycles
Examples

oo ooo

For a description of how to use each of these categories, see Section 7.2.

7-20

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

ABS

None

15 14 13 12 11 10 9

Absolute Value of Accumulator ABS

(o]
~
o
(6)]
N
w
N

[EnY
o

[1

11 1 1 1 O O O O O O O

Increment PC, then ...
[(ACC)| - ACC;0 - C

Affected by Affects
OVM C and OV

This instruction is not affected by SXM

If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.
The carry bit (C) on the 'C20x is always reset to zero by the execution of this
instruction.

Note that 8000 0000h is a special case. When the overflow mode is not set
(OVM = 0), the ABS of 8000 0000h is 8000 0000h. When the overflow mode
is set (OVM = 1), the ABS of 8000 0000h is 7FFF FFFFh. In either case, the
OV status bit is set.

1
Cycles for a Single ABS Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an ABS Instruction
ROM DARAM SARAM External
n n n n+p

Assembly Language Instructions

7-21

ABS Absolute Value of Accumulator

Example 1 ABS
Before Instruction
ACC | 1234h| ACC
c
Example 2 ABS
Before Instruction
ACC | OFFFFFFFFh] ACC
c
Example 3 ABS ;(OVM =1)
Before Instruction
ACC | 80000000h] ACC
c
oV
Example 4 ABS ;(OVM = 0)
Before Instruction
ACC | 80000000h]| ACC
C
oV

7-22

After Instruction

) E—r
C

After Instruction

o L 1A
C

After Instruction

[0] [__7erereFey
C

ov

After Instruction

[@] [soo000000
C

ov

Syntax

Operands

Opcode

ADD dmal (|, shift]

Add to Accumulator ADD

Direct addressing

ADD dma, 16 Direct with left shift of 16

ADD ind [, shift [, ARA]]
ADD ind, 16 [, AR/

Indirect addressing
Indirect with left shift of 16

ADD #k Shortimmediate addressing
ADD #lk [, shift] Long immediate addressing
dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0)

n: Value from 0 to 7 designating the next auxiliary register

k: 8-bit short immediate value

k: 16-bit long immediate value

ind: Select one of the following seven options:

* e+ 5 %0+ *0- *BRO+ *BRO-

ADD dma [, shift]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 0 1 0| shift | 0 | dma

ADD dma, 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0 o o o 1]o0| dma

ADD ind|[, shift [, ARn]]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 o 1 o] shift 1| ARU [N[NAR
Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

ADD ind, 16 [, ARn]
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0o 0 1[1] ARU |N]| NAR

N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15

0 1 1
Note: ARU,
ADD #k

15

1 0 1

1 1 0 0 O k

ADD #lk [, shiff
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15

1

0

1

11 1 1 1 1 O o0 1 shift

Assembly Language Instructions 7-23

ADD Add to Accumulator

Execution Increment PC, then ...
Event
(ACC) + ((data-memory address) x 2shift) _ ACC

(ACC) + ((data-memory address) x 216) _, ACC

(ACC) + k — ACC

(ACC) + Ik x 2shift , ACC

Status Bits Affected by Affects Addressing mode
SXM and OVM C and OV Direct or indirect
OVM C and OV Short immediate
SXM and OVM C and OV Long immediate

Description The content of the addressed data memory location or an immediate constant

Addressing mode
Direct or indirect

Direct or indirect
(shift of 16)

Short immediate

Long immediate

is left-shifted and added to the accumulator. During shifting, low-order bits are
zero filled. High-order bits are sign extended if SXM = 1 and zero filled if

SXM = 0. The result is stored in the accumulator. When short immediate ad-

dressing is used, the addition is unaffected by SXM and is not repeatable.

If you are using indirect addressing and update the ARP, you must specify a
shift operand. However, if you do not want a shift to occur, enter a 0 for this

operand. For example:

ADD *+,0,AR2

Normally, the carry bitis set (C = 1) if the result of the addition generates a carry
and is cleared (C = 0) if it does not generate a carry. However, when adding
with a shift of 16, the carry bit is set if a carry is generated but otherwise, the
carry bit is unaffected. This allows the accumulator to generate the proper
single carry when adding a 32-bit number to the accumulator.

Words Words
1

7-24

Addressing mode

Direct, indirect, or
short immediate

Long immediate

Cycles

Example 1

Example 2

Add to Accumulator ADD

Cycles for a Single ADD Instruction (Using Direct and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADD Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tif the operand and the code are in the same SARAM block

Cycles for a Single ADD Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1

1+p

Cycles for a Single ADD Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External
2 2 2 2+2p
ADD 1,1 ;(DP =6)

Before Instruction
Data Memory

301h | 1h]
ACC | 2h|
c
ADD *+.0,AR0
Before Instruction
ARP | 4]
AR4 | 0302h|
Data Memory
302h | 2h|
ACC | 2h]
C

After Instruction
Data Memory

301h
acc [0
C

After Instruction

ARP [O

AR4 0303h
Data Memory
302h

acc [o] [ol
C

Assembly Language Instructions 7-25

ADD Add to Accumulator

Example 3 ADD #1h ;Add short immediate
Before Instruction After Instruction
Acc | w oacc [9]
C C
Example 4 ADD #1111h,1 ;Add long immediate with shift of 1
Before Instruction After Instruction
Acc | w oA [9]
C C

7-26

Add to Accumulator With Carry ADDC

Syntax ADDC dma Direct addressing
ADDC ind[, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ *_ %0+ *0- *BRO+ *BRO-

Opcode ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 o0 o 0o | dma

o

ADDC ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 o o o o1 ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) + (C) - ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the addressed data-memory location and the value of the
carry bit are added to the accumulator with sign extension suppressed. The
carry bitis then affected in the normal manner: the carry bitis set (C = 1) if the
result of the addition generates a carry and is cleared (C = 0) if it does not gen-
erate a carry.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Words 1
Cycles Cycles for a Single ADDC Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

T1f the operand and the code are in the same SARAM block

Assembly Language Instructions 7-27

ADDC Add to Accumulator With Carry

Cycles for a Repeat (RPT) Execution of an ADDC Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T If the operand and the code are in the same SARAM block

;(DP = 6: addresses 0300h—-037Fh,;

;DAT300 is a label for 300h)

Example 1 ADDC DAT300
Before Instruction
Data Memory
300h | 04h|
ACC | 13h|
C
Example 2 ADDC *— AR4 :(OVM = 0)
Before Instruction
ARP | 0]
ARO | 300h]
Data Memory
300h | Oh]
ACC | OFFFFFFFFh]|
C
ov

7-28

After Instruction
Data Memory

300h
acc [0
c

After Instruction

ARP
ARO
Data Memory
300h
Acc
C
&

Add to Accumulator With Sign Extension Suppressed ADDS

Syntax ADDS dma Direct addressing

ADDS ind [, ARn] Indirect addressing
Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

¥ % % %0+ *0- *BRO+ *BRO-
Opcode ADDS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[EEN

[0 1 1 0 o0 o 0o | dma

ADDS ind [, AR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 o o 1 of|1|] ARU |[N] NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) — ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the specified data-memory location are added to the accumu-
lator with sign extension suppressed. The data is treated as an unsigned 16-bit
number, regardless of SXM. The accumulator contents are treated as a signed
number. Note that ADDS produces the same results as an ADD instruction
with SXM = 0 and a shift count of 0.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

Words 1
Cycles Cycles for a Single ADDS Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

T1f the operand and the code are in the same SARAM block

Assembly Language Instructions 7-29

ADDS Add to Accumulator With Sign Extension Suppressed

Cycles for a Repeat (RPT) Execution of an ADDS Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

Tifthe operand and the code are in the same SARAM block

Example 1 ADDS 0
Before Instruction
Data Memory
300h | 0F006h]|
ACC | 00000003h]
C
Example 2 ADDS *
Before Instruction
ARP | 0|
ARO | 0300h]
Data Memory
300h | OFFFFh|
ACC | 7FFF0000H]
c

7-30

;(DP = 6: addresses 0300h—037Fh)

After Instruction
Data Memory

300h
acc [0
C
After Instruction
ARP I
ARO

Data Memory

300h OFFFFh
acc [o] 7FFEFFFFh
c

Add to Accumulator With Shift Specified by TREG ADDT

Syntax ADDT dma Direct addressing
ADDT ind [, ARN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % *0+ *0- *BRO+ *BRO-

Opcode ADDT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0o 0o o 1 1]o0| dma

ADDT ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 0 0o 0o 1 1][1]| ARU N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + [(data-memory address) x 2(TREG(3:0))] _, (ACC)

Status Bits Affected by Affects
SXM and OVM C and OV
Description The data-memory value is left shifted and added to the accumulator, and the

result replaces the accumulator contents. The left shift is defined by the four
LSBs of the TREG, resulting in shift options from 0 to 15 bits. Sign extension
on the data-memory value is controlled by SXM. The carry bit (C) is set when
acarryis generated out of the MSB of the accumulator; if no carry is generated,
the carry bit is cleared.

Words 1
Cycles Cycles for a Single ADDT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block.

Assembly Language Instructions 7-31

ADDT Add to Accumulator With Shift Specified by TREG

Cycles for a Repeat (RPT) Execution of an ADDT Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

T If the operand and the code are in the same SARAM block

Example 1 ADDT 127
;SXM = 0)
Before Instruction
Data Memory
027Fh | 09h|
TREG | OFF94h]
ACC | OF715h|
C
Example 2 ADDT *— AR4 {(SXM =0)
Before Instruction
ARP | 0l
ARO | 027Fh|
Data Memory
027Fh | 09h|
TREG | OFF94h|
ACC OF715h|

|
c

7-32

Data Memory
027Fh

TREG
ACC

ARP
ARO

Data Memory
027Fh

TREG
ACC

[o]

C

o[q]

;(DP = 4: addresses 0200h—-027Fh,

After Instruction

OFF94
OF7A5

027E

OFF94
OF7A5

>

=

@

=

=1

7]

23

=

c

3]

=3

s
o o
© ©
S| == = EN S 1=]l =

Add Short-Immediate Value to Auxiliary Register ADRK

Syntax ADRK #k Shortimmediate addressing
Operands k: 8-bit short immediate value
Opcode ADRK #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 k
Execution Increment PC, then ...

(current AR) + 8-bit positive constant — current AR

Status Bits None

Description The 8-bitimmediate value is added, right justified, to the current auxiliary regis-
ter (the one specified by the current ARP value) and the result replaces the
auxiliary register contents. The addition takes place in the ARAU, with the im-
mediate value treated as an 8-bit positive integer. All arithmetic operations on
the auxiliary registers are unsigned.

Words 1
Cycles Cycles for a Single ADRK Instruction
ROM DARAM SARAM External
1 1 1 1+p
Example ADRK #80h
Before Instruction After Instruction
ARP | 5] ARP
AR5 | 4321h| AR5

Assembly Language Instructions 7-33

AND AND With Accumulator

Syntax AND dma Direct addressing
AND ind [, ARn] Indirect addressing
AND #lk [, shiff] Long immediate addressing
AND #lk, 16 Long immediate with left
shift of 16
Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from O to 7 designating the next auxiliary register
Ik: 16-bit long immediate value
ind: Select one of the following seven options:

* %4 % %0+ *0- *BRO+ *BRO-

Opcode AND dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0o 1 1 1 oo | dma

AND ind [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0o 1 1 1 of[1]| ARU | N | NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

AND #lk [, shiff
15 14 13 12 11 10

©
~
(e}
w
N
=
o

1 o 1 1 1 1 1 1 1 O 1 1 shift

AND #lk, 16
15 14 13 12 11 10 9 8 7

1 0 1 1 1 1 1 0 1 0 0 0

Ik
Execution Increment PC, then ...
Event(s) Addressing mode

(ACC(15:0)) AND (data-memory address) — ACC(15:0) Direct or indirect
0 - ACC(31:16)

(ACC(31:0)) AND Ik x 2shift . AccC Long immediate

(ACC(31:0)) AND Ik x 216, ACC Long immediate
with left shift of 16

7-34

Status Bits

Description

Words

Cycles

AND With Accumulator AND

None
This instruction is not affected by SXM.

If direct or indirect addressing is used, the low word of the accumulator is
ANDed with a data-memory value, and the resultis placed in the low word posi-
tion in the accumulator. The high word of the accumulator is zeroed. If immedi-
ate addressing is used, the long-immediate constant can be shifted. During the
shift, low-order and high-order bits not filled by the shifted value are zeroed.
The resulting value is ANDed with the accumulator contents.

Words Addressing mode
1 Direct or indirect
2 Long immediate

Cycles for a Single AND Instruction (Using Direct and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an AND Instruction (Using Direct
and Indirect Addressing)

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

Cycles for a Single AND Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Assembly Language Instructions 7-35

AND AND With Accumulator

Example 1 AND 16

Data Memory
0210h

ACC

Example 2 AND *

ARP
ARO

Data Memory
0301h

ACC

Example 3 AND

ACC

7-36

;(DP = 4: addresses 0200h—-027Fh)

Before Instruction

00FFh|

12345678h|

Before Instruction

0|

0301h]

OFFO00h|

12345678h|

#00FFh,4

Before Instruction

12345678h|

Data Memory
0210h

ACC

ARP
ARO

Data Memory
0301h

ACC

ACC

After Instruction

00FFh
00000078h

After Instruction

0301

OFFO00
00005600

After Instruction

00000670h

Syntax
Operands
Opcode

Execution

Status Bits

Description

APAC

None

APAC
15 14 13 12 11 10 9

Add PREG to Accumulator APAC

[1 o 1 1 1 1

Increment PC, then ...
(ACC) + shifted (PREG) — ACC

Affected by Affects
PM and OVM C and OV

This instruction is not affected by SXM.

The contents of PREG are shifted as defined by the PM status bits of the ST1
register (see Table 7—7) and added to the contents of the accumulator. The re-
sult is placed in the accumulator. APAC is not affected by the SXM bit of the
status register. PREG is always sign extended. The task of the APAC instruc-
tion is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and

SQRA instructions.

Table 7-7. Product Shift Modes

Words

Cycles

PM Bits

Bitl BitO

Resulting Shift

0 0 No shift

0 1 Left shift of 1 bit

1 0 Left shift of 4 bits

1 1 Right shift of 6 bits

1
Cycles for a Single APAC Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an APAC Instruction

ROM DARAM SARAM External
n n n n+p

Assembly Language Instructions 7-37

APAC Add PREG to Accumulator

Example APAC ;(PM =01)
Before Instruction After Instruction
PREG | 40h| PREG
ACC | 20h| Acc [o] AOh
C C

7-38

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Branch Unconditionally B

B pmal, ind[, ARn]] Indirect addressing
pma: 16-bit program-memory address

n: Value from 0O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ *_ %0+ *0- *BRO+ *BRO-

B pmal, ind[, ARnM]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1[1[ARU I N | NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

pma - PC
Modify (current AR) and (ARP) as specified.

None

The current auxiliary register and ARP contents are modified as specified, and
controlis passed to the designated program-memory address (pma). The pma
can be either a symbolic or numeric address.

2
Cycles for a Single B Instruction
ROM DARAM SARAM External
4 4 4 4+4p

Note: Whenthisinstruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

B 191,*+,AR1

The value 191 is loaded into the program counter, and the program continues
to execute from that location. The current auxiliary register is incremented by
1, and ARP is set to point to auxiliary register 1 (AR1).

Assembly Language Instructions 7-39

BACC Branch to Location Specified by Accumulator

Syntax BACC

Operands None

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0

Execution ACC(15:0) - PC

Status Bits None

Description Control is passed to the 16-bit address residing in the lower half of the accumu-
lator.

Words 1

Cycles Cycles for a Single BACC Instruction
ROM DARAM SARAM External
4 4 4 4+3p

Note: Whenthis instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example BACC ;(ACC contains the value 191)

The value 191 is loaded into the program counter, and the program continues
to execute from that location.

7-40

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Branch on Auxiliary Register Not Zero BANZ

BANZ pmal, ind [, ARnN]] Indirect addressing

pma: 16-bit program-memory address
n: Value from 0O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %4 % %0+ *0- *BRO+ *BRO-

BANZ pma [, ind [,ARnN]]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1 1 1 1 0 1 1[1] ARU I N | NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

If (current AR) #0
Then pma - PC
Else (PC)+2 - PC
Modify (current AR) and (ARP) as specified

None

Control is passed to the designated program-memory address (pma) if the
contents of the current auxiliary register are not zero. Otherwise, control
passes to the next instruction.The default modification to the current AR is a
decrement by one. N loop iterations can be executed by initializing an auxiliary
register (as a loop counter) to N-1 prior to loop entry. The pma can be either
a symbolic or a numeric address.

2
Cycles for a Single BANZ Instruction
Conditon ROM DARAM SARAM External
True 4 4 4 4+4p
False 2 2 2 2+2p

Note: The'C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Assembly Language Instructions 7-41

BANZ Branch on Auxiliary Register Not Zero

Example 1

Example 2

7-42

BANZ PGMO ;(PGMO labels program address 0)
Before Instruction After Instruction
ARP I ol ARP [
ARO I 5h| ARO

Because the content of ARO is not zero, the program address denoted by
PGMO is loaded into the program counter (PC), and the program continues ex-
ecuting from that location. The default auxiliary register operation is a decre-
ment of the current auxiliary register content; thus, ARO contains 4h at the end
of the execution.

or
Before Instruction After Instruction
ARP I ol ARP [d
ARO I Oh] ARO

Because the content of ARO is zero, the branch is not executed; instead, the
PCisincremented by 2, and execution continues with the instruction following
the BANZ instruction. Because of the default decrement, ARO is decremented
by 1, becoming —1.

MAR *,ARO ;Set ARP to point to ARO.

LAR AR1,#3 ;Load AR1 with 3.

LAR ARO,#60h ;Load ARO with 60h.
PGM191 ADD *+,AR1 ;Loop: While AR1 not zero,

BANZ PGM191,*-AR0 ;add data referenced by ARO
;to accumulator and increment
:ARO value.

The contents of data-memory locations 60h—63h are added to the accumula-
tor.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Branch Conditionally BCND

BCND pma, cond 1 [,cond?2][,...]

pma: 16-bit program-memory address

cond Condition

EQ ACC=0

NEQ ACC %0

LT ACC<O0

LEQ ACC<0

GT ACC>0

GEQ ACC =0

NC C=0

C c=1

NOV ov=0

ov ov=1

BIO BIO low

NTC TC=0

TC TC=1

UNC Unconditionally
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 o o+ —F—1 ZTVC | ZLVC

pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

If cond 1 AND cond 2 AND ...
Then pma - PC
Else increment PC

None

Abranch is taken to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC.

2
Cycles for a Single BCND Instruction
Condition ROM DARAM SARAM External
True 4 4 4 4+4p
False 2 2 2 2+2p

Note: The'C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Assembly Language Instructions 7-43

BCND Branch Conditionally

Example BCND PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, program address 191 is loaded into the program counter, and the program
continues to execute from that location. If these conditions do not hold, execu-
tion continues from location PC + 2.

7-44

TestBit BIT

Syntax BIT dma, bit code Direct addressing
BIT ind, bit code [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
bit code: Value from 0 to 15 indicating which bit to test (see Figure 7-1)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %+ % %0+ *0- *BRO+ *BRO-

Opcode BIT dma, bit code
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 1 0 0 | bit code ‘ 0 | dma

BIT ind, bit code [,ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 0o o] pitcode [1| ARU |[N| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 — bit code)) —» TC

Status Bits Affects
TC
Description The BIT instruction copies the specified bit of the data-memory value to the TC

bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bit in ST1. A bit code value is specified that
corresponds to a certain bit number of the data-memory value, as shown in
Figure 7—1. For example, if you want to copy bit 6, you specify the bit code as
9, which is 15 minus six (15-6).

Figure 7-1. Bit Numbers and Their Corresponding Bit Codes for BIT Instruction

Bit code o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bitnumber 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LSB

Words 1

Assembly Language Instructions 7-45

BIT TestBit

Cycles Cycles for a Single BIT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p
T If the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of a BIT Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
Tifthe operand and the code are in the same SARAM block
Example 1 BIT 0h,15 ;(DP = 6). Test LSB at 300h
Before Instruction After Instruction
Data Memory Data Memory
300h | 4Dcsh 300h
TC | o TC [0
Example 2 BIT *0,AR1 ;Test MSB at 310h, then set ARP =1
Before Instruction After Instruction
ARP | ol ARP
ARO | 310h| ARO
Data Memory Data Memory
310h | 8000h| 310h
TC | 0] TC

7-46

Test Bit Specified by TREG BITT

Syntax BITT dma Direct addressing
BITT ind[, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from O to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %4 %o %0+ *0— *BRO+ *BRO-

Opcode BITT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0o 1 1 1 10| dma

BITT ind[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 0o 1 1 1 1]1] ARU |[N] NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 -TREG(3:0))) —» TC

Status Bits Affects
TC
Description The BITT instruction copies the specified bit of the data-memory value to the

TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bitin status register ST1. The bit number is spe-
cified by a bit code value contained in the four LSBs of the TREG, as shown
in Figure 7-2.

Figure 7-2. Bit Numbers and Their Corresponding Bit Codes for BITT Instruction

Bitcode (n4LSBsof O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TREG)
Bitnumber 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LsB

Words 1

Assembly Language Instructions 7-47

BITT Test Bit Specified by TREG

Cycles Cycles for a Single BITT Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p
T If the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution of an BITT Instruction
Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
Tifthe operand and the code are in the same SARAM block
Example 1 BITT 00h ;(DP = 6) Test bit 14 of data
;at 300h
Before Instruction After Instruction
Data Memory Data Memory
300h I 4DC8h] 300h
TREG I 1h| TREG
TC | g T
Example 2 BITT * ;Test bit 1 of data at 310h
Before Instruction After Instruction
ARP I 1] ARP
AR1 I 310h] AR1
Data Memory Data Memory
310h I 8000h] 310h
TREG | OEh] TREG OEh
Tc | 0 T I

7-48

Syntax

Operands

Opcode

Block Move From Data Memory to Data Memory BLDD

General syntax: BLDD source, destination

BLDD #lk, dma Direct with long immediate
source

BLDD #lk, ind [, ARn] Indirect with long
immediate source

BLDD dma, #lk Direct with long immediate
destination

BLDD ind, #lk [, ARn] Indirect with long immediate
destination

dma: 7 LSBs of the data-memory address

n Value from 0 to 7 designating the next auxiliary register

16-bit long immediate value

ind: Select one of the following seven options:

* x4 % 0+ *0- *BRO+ *BRO-

BLDD # /k, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0 \o | dma

Ik

BLDD #lk, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 O \1 | ARU \N | NAR

Ik

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

BLDD dma, #lk
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 \o | dma

[

BLDD ind, #lk [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o

1 0 1 0 1 0 1 \1 | ARU \N | NAR

Ik

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Assembly Language Instructions 7-49

BLDD Block Move From Data Memory to Data Memory

Execution

Status Bits

Description

Words

7-50

Increment PC, then ...

(PC) -~ MSTACK

k -~ PC

(source) - destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

While (repeat counter) # O:
(source) — destination
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(repeat counter) —1 - repeat counter

(MSTACK) - PC
None

The word in data memory pointed to by source is copied to a data-memory
space pointed to by destination. The word of the source and/or destination
space can be pointed to with a long-immediate value or by a data-memory ad-
dress. Note that not all source/destination combinations of pointer types are
valid.

Note:

BLDD will not work with memory-mapped registers.

RPT can be used with the BLDD instruction to move consecutive words in data
memory. The number of words to be moved is one greater than the number
contained in the repeat counter (RPTC) at the beginning of the instruction.
When the BLDD instruction is repeated, the source (destination) address spe-
cified by the long immediate constant is stored to the PC. Because the PC is
incremented by 1 during each repetition, it is possible to access a series of
source (destination) addresses. If you use indirect addressing to specify the
destination (source) address, a new destination (source) address can be ac-
cessed during each repetition. If you use the direct addressing mode, the spe-
cified destination (source) address is a constant; it will not be modified during
each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a BLDD operation used with the RPT instruction.
When used with RPT, BLDD becomes a single-cycle instruction once the RPT
pipeline is started.

2

Block Move From Data Memory to Data Memory BLDD

Cycles

Cycles for a Single BLDD Instruction
Operand ROM DARAM SARAM External
Source: DARAM 3 3 3 3+2p
Destination: DARAM
Source: SARAM 3 3 3 3+2p
Destination: DARAM
Source: External 3+dgsc 3+dg/e 3+dgre 3+dget+2p
Destination: DARAM
Source: DARAM 3 3 3 3+2p
Destination: SARAM 4t
Source: SARAM 3 3 3 3+2p
Destination: SARAM 4t
Source: External 3+dge 3+dgre 3+dge 3+dgct2p
Destination: SARAM A+dg
Source: DARAM 4+dygt A+dygt 4+dggt 6+dystt2p
Destination: External
Source: SARAM 4+dygt 4+dygt 4+dggt 6+dystt2p
Destination: External
Source: External 4+dgo+dgst 4+dgo+dgst 4+dgotdyst 6+dg o tdgs+2p

Destination: External

1 1f the destination operand and the code are in the same SARAM block.

Assembly Language Instructions 7-51

BLDD Block Move From Data Memory to Data Memory

Cycles for a Repeat (RPT) Execution of a BLDD Instruction

Operand ROM DARAM SARAM External

Source: DARAM n+2 n+2 n+2 n+2+2p
Destination: DARAM

Source: SARAM n+2 n+2 n+2 n+2+2p
Destination: DARAM

Source: External N+2+ndgc n+2+ndg.c N+2+ndg/c n+2+ndg,c+2p
Destination: DARAM

Source: DARAM n+2 n+2 n+2 n+2+2p
Destination: SARAM n+4t
Source: SARAM n+2 n+2 n+2 n+2+2p
Destination: SARAM 2n# 2n¥ 2n¥ 2n+2p¥

n+4t

2n+28
Source: External n+2+ndg,c n+2+ndg,c n+2+ndg,c n+2+ndg,c+2p
Destination: SARAM n+4+ndg,. T
Source: DARAM 2n+2+ndgg; 2n+2+ndgg; 2n+2+ndgg; 2n+2+ndgg+2p

Destination: External

Source: SARAM 2n+2+ndyst 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndyg+2p
Destination: External

Source: External An+ndge+ndyst An+ndg e +ndyst 4n+ndg,c+ndyst 4n+2+ndg,c+ndyg+2p
Destination: External

T If the destination operand and the code are in the same SARAM block
% If both the source and the destination operands are in the same SARAM block
§8f both operands and the code are in the same SARAM block

7-52

Block Move From Data Memory to Data Memory BLDD

Example 1 BLDD #300h,20h ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
300h | Oh| 300h
320h | OFh]| 320h
Example 2 BLDD *+ #321h,AR3
Before Instruction After Instruction
ARP I 2] ARP
AR2 | 301h] AR2
Data Memory Data Memory
301h | 01h] 301h 01h
321h | OFh] 321h

w

Assembly Language Instructions 7-5

BLPD Block Move From Program Memory to Data Memory

Syntax

Operands

Opcode

Execution

Status Bits

7-54

General syntax: BLPD source, destination

BLPD #pma, dma Direct with long immediate
source

BLPD #pma, ind [, ARnN] Indirect with long immediate
source

pma: 16-bit program-memory address

dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

* %4 % %0+ *0- *BRO+ *BRO-

BLPD #pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1]o0|] dma

pma

BLPD #pma, ind [, ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1|1] ARU [N| NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...

(PC) - MSTACK

pma - PC

(source) - destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC

While (repeat counter) # O:
(source) - destination
For indirect, modify (current AR) and (ARP) as specified
(PC)+1 - PC
(repeat counter) -1 - repeat counter

(MSTACK) - PC

None

Description

Words

Block Move From Program Memory to Data Memory BLPD

A word in program memory pointed to by the sourceis copied to data-memory
space pointed to by destination. The first word of the source space is pointed
to by a long-immediate value. The data-memory destination space is pointed
to by a data-memory address or auxiliary register pointer. Not all source/des-
tination combinations of pointer types are valid.

RPT can be used with the BLPD instruction to move consecutive words. The
number of words to be moved is one greater than the number contained in the
repeat counter (RPTC) at the beginning of the instruction. When the BLPD in-
struction is repeated, the source (program-memory) address specified by the
long immediate constant is stored to the PC. Because the PC is incremented
by 1 during each repetition, it is possible to access a series of program-
memory addresses. If you use indirect addressing to specify the destination
(data-memory) address, a new data-memory address can be accessed during
each repetition. If you use the direct addressing mode, the specified data-
memory address is a constant; it will not be modified during each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a repeated BLPD instruction. When used with
RPT, BLPD becomes a single-cycle instruction once the RPT pipeline is
started.

2

Assembly Language Instructions 7-55

BLPD Block Move From Program Memory to Data Memory

Cycles
Cycles for a Single BLPD Instruction

Operand ROM DARAM SARAM External
Source: DARAM/ROM 3 3 3 3+2Pcode
Destination: DARAM

Source: SARAM 3 3 3 3+2Pcode
Destination: DARAM

Source: External 3+Pgre 3+Pgre 3+Pgre 3+Psret2Pcode
Destination: DARAM

Source: DARAM/ROM 3 3 3 3+2Pcode
Destination: SARAM qt

Source: SARAM 3 3 3 3+2Pcode
Destination: SARAM 4t

Source: External 3+Psrc 3+Psre 3+Psre 3+Psrct2Pcode
Destination: SARAM A+pg,t

Source: DARAM/ROM 4+dyst 4+dggt 4+dggt 6+dyst*t2Pcode

Destination: External

Source: SARAM 4+dygt 4+dggt 4+dggt 6+dystt2Pcode
Destination: External

Source: External A+pgretdyst A+pgrotdyst A+pgrotdyst 6+Psrctdgstt2Pcode
Destination: External

1 1f the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BLPD Instruction

Operand ROM DARAM SARAM External

Source: DARAM/ROM n+2 n+2 n+2 N+2+2Pcode
Destination: DARAM

Source: SARAM n+2 n+2 n+2 N+2+2Pcode
Destination: DARAM

Source: External N+2+npgc N+2+NPgyc N+2+NPgyc N+2+NPsyc+2Pcode
Destination: DARAM

Source: DARAM/ROM n+2 n+2 n+2 N+2+2Pcode
Destination: SARAM n+4t

T 1f the destination operand and the code are in the same SARAM block
% 1f both the source and the destination operands are in the same SARAM block
§f both operands and the code are in the same SARAM block

7-56

Block Move From Program Memory to Data Memory BLPD

Cycles for a Repeat (RPT) Execution of a BLPD Instruction (Continued)

Operand ROM DARAM SARAM External
Source: SARAM n+2 n+2 n+2 N+2+2Pcode
Destination: SARAM 2n? 2n? 2nt 2N+2Pcodet

n+47

2n+28
Source: External N+2+npgc N+2+NPgyc N+2+NpPgyc N+2+NPgrc+2Pcode
Destination: SARAM N+4+npgc
Source: DARAM/ROM 2n+2+ndyg; 2n+2+ndygy 2n+2+ndggy 2n+2+ndgst+2Pcode
Destination: External
Source: SARAM 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndgsi+2Pcode
Destination: External
Source: External An+npgetndygt 4n+npg c+ndyst 4n+npgrctndyst 4n+2+npgrctndygs+
Destination: External 2Pcode

1 1f the destination operand and the code are in the same SARAM block
% 1 both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1

Example 2

BLPD #800h,00h ;(DP=6)

Before Instruction
Program Memory

800h OFh]
Data Memory

300h | oh|

BLPD #800h,*,AR7
Before Instruction
ARP | 0]
ARO | 310h]
Program Memory

800h 1111h|
Data Memory

310h | 0100h]|

Assembly Language Instructions

Program Memory
800h

Data Memory
300h

ARP
ARO

Program Memory
800h

Data Memory
310h

After Instruction

o
m
=3

o
T
=y

After Instruction

310

1111

1111

7-5

]

CALA call Subroutine at Location Specified by Accumulator

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

7-58

CALA
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000110000

PC+1 - TOS
ACC(15:0) - PC

None

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the lower half of the accumulator are
loaded into the PC. Execution continues at this address.

The CALA instruction is used to perform computed subroutine calls.

1
Cycles for a Single CALA Instruction
ROM DARAM SARAM External
4 4 4 4+3p

Note: Whenthis instruction reaches the execute phase of the pipeline, two additional instruc-

tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

CALA
Before Instruction After Instruction
PC | 25h| PC
ACC | 83h| ACC
TOS | 100h] TOS

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Call Unconditionally CALL

CALL pmal, ind[, ARN]] Indirect addressing
pma: 16-bit program-memory address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

¥ k% %0+ *0— *BRO+ *BRO-
CALL pmal, ind[, ARnN]]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 1 1 1 1 0 1 o0[|1|] ARU |[N]| NAR
pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

PC+2 - TOS
pma - PC
Modify (current AR) and (ARP) as specified.

None

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the pma, either a symbolic or numeric
address, are loaded into the PC. Execution continues at this address. The cur-
rent auxiliary register and ARP contents are modified as specified.

2
Cycles for a Single CALL Instruction
ROM DARAM SARAM External
4 4 4 4+4pt

Note: Whenthisinstruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

CALL 191,*+ AR0
Before Instruction After Instruction
ARP |] are I
AR1 | 05h| AR1 06h
pC | 307 PC
TOS | 100h]| TOS 32h

Program address 0BFh (191) is loaded into the program counter, and the pro-
gram continues executing from that location.

©

Assembly Language Instructions 7-5

CC call conditionally

Syntax CC pma, cond 1 [,cond?2][,...]
Operands pma: 16-bit program-memory address
cond Condition
EQ ACC=0
NEQ ACC #0
LT ACC<0
LEQ ACC<0
GT ACC >0
GEQ ACC =0
NC C=0
C c=1
NOV ov=0
oV ov=1
BIO BIO low
NTC TC=0
TC TC=1
UNC Unconditionally
OpCOde 15 14 13 12 11 10 9 8 7 6 5 4 : 3 2 1 0
1 1 1 0 1 ol —F— ZTVC | ZLVC

pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

Execution If cond 1 AND cond 2 AND ...
Then
PC+2 - TOS
pma - PC
Else
Increment PC

Status Bits None

Description Control is passed to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC. The CC instruction operates like the CALL in-
struction if all conditions are true.

Words 2

Cycles Cycles for a Single CC Instruction
Condition ROM DARAM SARAM External
True 4 4 4 4+4pt
False 2 2 2 2+2p

T The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken these two instruction words are discarded.

7-60

Example

Call Conditionally CC

CcC PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, 0BFh (191) is loaded into the program counter, and the program continues
to execute from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.

Assembly Language Instructions 7-61

CLRC clear control Bit

Syntax

Operands

Opcode

Execution

Status Bits

Description

7-62

CLRC control bit

control bit: ~ Select one of the following control bits:
C Carry bit of status register ST1
CNF RAM configuration control bit of status register ST1
INTM Interrupt mode bit of status register STO
OVM Overflow mode bit of status register STO
SXM Sign-extension mode bit of status register ST1
TC Test/control flag bit of status register ST1
XF XF pin status bit of status register ST1

CLRCC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1. 1 1 1 0 0 1 0 0 1 1 1 0|

CLRC CNF

15 14 13 12 11 10 9
[1 o 1 1. 1 1 1 0 0 1 0 0 O 1 0 O|

[ee]
~
(]
ol
ISy
w
N
=
o

CLRC INTM

15 14 13 12 11 10 9
[1 o 1 1 1 1 1 0 o 1 0 0 0 0 0 O]

(o]
~
(]
)]
N
w
N
[N
o

CLRC OVM

15 14 13 12 11 10 9
[1 o 1 1. 1 1. 1 0 0 1 0 0 O 0 1 O]

(o]
~
(o]
()]
SN
w
N
=
o

CLRC SXM
15 14 13 12 11 10 9
[1 o 1 1 1 1 1 0 o 1 0o 0 0 1 1 O]

[ee]
~
)]
(&)]
SN
w
N
=
o

CLRCTC
15 14 13 12 11 10 9
[1 o 1 1. 1 1. 1 0 0 1 0 0 1 0 1 O

(o]
~
(o]
(&)]
SN
w
N
=
o

CLRC XF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 0 1 0 0O 1 1 0 O

Increment PC, then ...
0 - control bit

None

The specified control bit is cleared to 0. Note that the LST instruction can also
be used to load STO and ST1. See section 3.5, Status Registers STO and ST1
on page 3-15, for more information on each of these control bits.

Clear Control Bit CLRC

Words 1

Cycles Cycles for a Single CLRC Instruction
ROM DARAM SARAM External
1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a CLRC Instruction

ROM DARAM SARAM External
n n n n+p

Example CLRCTC ;(TCis bit 11 of ST1)

After Instruction

Before Instruction
x9xxh] ST1

ST1 |

Assembly Language Instructions 7-63

CMPL complement Accumulator

Syntax CMPL
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 1 0 1 1 1 1 1 0 O O O O O O0O 0 1

Execution Increment PC, then ...
(ACC) - ACC
Status Bits None
Description The contents of the accumulator are replaced with its logical inversion (1s
complement). The carry bit is unaffected.
Words 1
Cycles Cycles for a Single CMPL Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an CMPL Instruction
ROM DARAM SARAM External
n n n n+p
Example CMPL
Before Instruction After Instruction
ACC | OF7982513| ACC
C C

7-64

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example

Compare Auxiliary Register With ARO CMPR

CMPR CM
CM: Value from 0 to 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 12 12 1 1 1 0 1 0 0 0 1| CM

Increment PC, then ...
Compare (current AR) to (ARO) and place the result in the TC bit of status
register ST1.

Affects
TC

This instruction is not affected by SXM. It does not affect SXM.
The CMPR instruction performs a comparison specified by the value of CM:

If CM = 00, test whether (current AR) = (ARO)
If CM = 01, test whether (current AR) < (ARO)
If CM = 10, test whether (current AR) > (ARO)
If CM = 11, test whether (current AR) # (ARO)

If the condition is true, the TC bit is set to 1. If the condition is false, the TC bit
is cleared to 0.

Note that the auxiliary register values are treated as unsigned integers in the
comparisons.

1
Cycles for a Single CMPR Instruction
ROM DARAM SARAM External
1 1 1 1+p
Cycles for a Repeat (RPT) Execution of an CMPR Instruction
ROM DARAM SARAM External
n n n n+p
CMPR 2 ;(current AR) > (ARO0)?
Before Instruction After Instruction
ARP | 4] ARP
ARO | OFFFFh] ARO
AR4 I 7FEFN] AR4
TC | 1] TC [d

a1

Assembly Language Instructions 7-6

DMOV Data Move in Data Memory

Syntax DMOV dma Direct addressing
DMOQV ind [, ARnN] Indirect addressing
Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

* %k % 0+ *0- *BRO+ *BRO-

Opcode DMOQV dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 1 0o 1 1 1]o0] dma

DMOV ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 1 0o 1 1 1]1] ARU |[N]| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) — data-memory address + 1

Status Bits Affected by
CNF
Description The contents of the specified data-memory address are copied into the con-

tents of the next higher address. When data is copied from the addressed loca-
tion to the next higher location, the contents of the addressed location remain
unaltered.

DMOV works only within on-chip data DARAM blocks. It works within any con-
figurable RAM block if that block is configured as data memory. In addition, the
data move function is continuous across block boundaries. The data move
function cannot be performed on external data memory. If the instruction spec-
ifies an external memory address, DMOV reads the specified memory location
but performs no operations.

The data move function is useful in implementing the z—1 delay encountered
in digital signal processing. The DMOV function is a subtask of the LTD and
MACD instructions (see the LTD and MACD instructions for more information).

Words 1

7-66

Data Move in Data Memory DMOV

Cycles Cycles for a Single DMOV Instruction
Program
Operand ROM DARAM SARAM External
DARAM 1 1 1 1+p
SARAM 1 1 1,3 1+p
Externalt 2+2d 2+2d 2+2d 5+2d+p

T 1f the operand and the code are in the same SARAM block
1f used on external memory, DMOV reads the specified memory location but performs no
operations.

Cycles for a Repeat (RPT) Execution of a DMQOV Instruction

Program
Operand ROM DARAM SARAM External
DARAM n n n n+p
SARAM 2n-2 2n-2 2n-2, 2n+1T 2n-2+p
External¥ 4n—2+2nd 4n—-2+2nd 4n-2+2nd 4n+1+2nd+p

T1f the operand and the code are in the same SARAM block
1f used on external memory, DMOV reads the specified memory location but performs no

operations.
Example 1 DMOV DAT8 ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
308h I 43h] 308h
Data Memory Data Memory
309h | 2h| 309h 43h
Example 2 DMOV * AR1
Before Instruction After Instruction
ARP | o Are
ARO | 30Ah] ARO 30Ah
Data Memory Data Memory
30Ah | 40h] 30Ah 40h
Data Memory Data Memory
30Bh I 41h| 30Bh

J

Assembly Language Instructions 7-6

IDLE Idle Until Interrupt

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

7-68

IDLE
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 0 0 1 0 0 0 1 O|

Increment PC, then wait for unmasked or nonmaskable hardware interrupt.

Affected by
INTM

The IDLE instruction forces the program being executed to halt until the CPU
receives arequest from an unmasked hardware interrupt (external or internal),
NMI, or reset. Execution of the IDLE instruction causes the 'C20x to enter a
power-down mode. The PC is incremented once before the 'C20x enters pow-
er down; itis notincremented during the idle state. On-chip peripherals remain
active; thus, their interrupts are among those that can wake the processor.

The idle state is exited by an unmasked interrupt even if INTM is 1. (INTM, the
interrupt mode bit of status register STO, normally disables maskable inter-
rupts when it is set to 1.) When the idle state is exited by an unmasked inter-
rupt, the CPU’s next action, however, depends on INTM:

O IfINTMis 0, the program branches to the corresponding interrupt service
routine.

[IfINTMis 1, the program continues executing at the instruction following
the IDLE.

NMI and reset are not maskable; therefore, if the idle state is exited by NMI or
reset, the corresponding interrupt service routine will be executed, regardless
of INTM.

1
Cycles for a Single IDLE Instruction
ROM DARAM SARAM External
1 1 1 1+p
IDLE ;The processor idles until a hardware reset,
;a hardware NMI, or an unmasked interrupt
;occurs.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Input Data From Port IN

IN dma, PA Direct addressing
IN ind, PA[, ARN] Indirect addressing
dma: 7 LSBs of the data-memory address
n: Value from O to 7 designating the next auxiliary register
PA: 16-bit I/O port or I/O-mapped register address
ind: Select one of the following seven options:
¥ *+ *— *0+ *0-— *BRO+ *BRO-
IN dma, PA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 1 1 1|0 | dma

PA

IN ind ,PA [,ARN]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1|1] ARU |[N| NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Increment PC, then ...
PA - address bus lines A15-A0
Data bus lines D15-D0 - data-memory address
(PA) - data-memory address

None

The IN instruction read