
R

MicroBlaze
Processor
Reference Guide
Embedded Development Kit
EDK 9.2i

UG081 (v8.0)

MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v8.0)
1-800-255-7778

© 2007 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.
NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information “as is.” By providing the design, code, or information as one
possible implementation of this feature, application, or standard, Xilinx makes no representation that this implementation is free from any
claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any
warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that
this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

MicroBlaze Processor Reference Guide
UG081 (v8.0)
The following table shows the revision history for this document.

Date Version Revision

10/01/02 1.0 Xilinx EDK 3.1 release

03/11/03 2.0 Xilinx EDK 3.2 release

09/24/03 3.0 Xilinx EDK 6.1 release

02/20/04 3.1 Xilinx EDK 6.2 release

08/24/04 4.0 Xilinx EDK 6.3 release

09/21/04 4.1 Minor corrections for EDK 6.3 SP1 release

11/18/04 4.2 Minor corrections for EDK 6.3 SP2 release

01/20/05 5.0 Xilinx EDK 7.1 release

04/02/05 5.1 Minor corrections for EDK 7.1 SP1 release

05/09/05 5.2 Minor corrections for EDK 7.1 SP2 release

10/05/05 5.3 Minor corrections for EDK 8.1 release

02/21/06 5.4 Corrections for EDK 8.1 SP2 release

06/01/06 6.0 Xilinx EDK 8.2 release

07/24/06 6.1 Minor corrections for EDK 8.2 SP1 release

08/21/06 6.2 Minor corrections for EDK 8.2 SP2 release

08/29/06 6.3 Minor corrections for EDK 8.2 SP2 release

09/15/06 7.0 Xilinx EDK 9.1 release

02/22/07 7.1 Minor corrections for EDK 9.1 SP1 release

03/27/07 7.2 Minor corrections for EDK 9.1 SP2 release

06/25/07 8.0 Xilinx EDK 9.2 release

http://www.xilinx.com

Table of Contents

Preface: About This Guide
Guide Contents . 5
Conventions . 6

Typographical . 6
Online Document . 7

Chapter 1: MicroBlaze Architecture
Overview . 10

Features . 10
Data Types and Endianness . 12
Instructions . 13
Registers . 21

General Purpose Registers . 21
Special Purpose Registers . 22

Pipeline Architecture . 44
Three Stage Pipeline . 44
Five Stage Pipeline . 44
Branches . 44

Memory Architecture. 46
Privileged Instructions. 47
Virtual-Memory Management. 48

Real Mode . 48
Virtual Mode . 49
Translation Look-Aside Buffer . 50
Access Protection . 55
UTLB Management . 56
Recording Page Access and Page Modification . 57

Reset, Interrupts, Exceptions, and Break . 58
Reset . 58
Hardware Exceptions . 59
Breaks . 61
Interrupt . 62
User Vector (Exception) . 62

Instruction Cache . 63
Overview . 63
General Instruction Cache Functionality . 63
Instruction Cache Operation . 64
Instruction Cache Software Support . 64

Data Cache . 65
Overview . 65
General Data Cache Functionality . 65
Data Cache Operation . 66
Data Cache Software Support . 66

Floating Point Unit (FPU) . 67
Overview . 67
UG081 (v8.0) www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778

http://www.xilinx.com

Format . 67
Rounding . 68
Operations . 68
Exceptions . 68

Fast Simplex Link (FSL) . 69
Hardware Acceleration using FSL . 69

Debug and Trace . 70
Debug Overview . 70
Trace Overview . 70

Chapter 2: MicroBlaze Signal Interface Description
Overview . 71

Features . 71
MicroBlaze I/O Overview . 72
Processor Local Bus (PLB) Interface Description . 77
On-Chip Peripheral Bus (OPB) Interface Description . 77
Local Memory Bus (LMB) Interface Description. 77

LMB Signal Interface . 78
LMB Transactions . 80
Read and Write Data Steering . 82

Fast Simplex Link (FSL) Interface Description . 83
Master FSL Signal Interface . 83
Slave FSL Signal Interface . 83
FSL Transactions . 84

Xilinx CacheLink (XCL) Interface Description . 84
CacheLink Signal Interface . 85
CacheLink Transactions . 86

Debug Interface Description . 88
Trace Interface Description . 89
MicroBlaze Core Configurability . 91

Chapter 3: MicroBlaze Application Binary Interface
Data Types . 97
Register Usage Conventions . 98
Stack Convention . 99

Calling Convention . 101
Memory Model . 101

Small Data Area . 101
Data Area . 101
Common Un-Initialized Area . 101
Literals or Constants . 101

Interrupt and Exception Handling . 102

Chapter 4: MicroBlaze Instruction Set Architecture
Notation . 103
Formats . 104
Instructions . 105
UG081 (v8.0) www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778

http://www.xilinx.com

R

Preface

About This Guide

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit soft processor,
MicroBlaze, which is part of the Embedded Processor Development Kit (EDK). The document is
intended as a guide to the MicroBlaze hardware architecture.

Guide Contents
This guide contains the following chapters:

• Chapter 1, “MicroBlaze Architecture”, contains an overview of MicroBlaze features as well as
information on Big-Endian bit-reversed format, 32-bit general purpose registers, cache
software support, and Fast Simplex Link interfaces.

• Chapter 2, “MicroBlaze Signal Interface Description”, describes the types of signal interfaces
that can be used to connect MicroBlaze.

• Chapter 3, “MicroBlaze Application Binary Interface”, describes the Application Binary
Interface important for developing software in assembly language for the soft processor.

• Chapter 4, “MicroBlaze Instruction Set Architecture”, provides notation, formats, and
instructions for the Instruction Set Architecture of MicroBlaze.

For additional information, go to http://support.xilinx.com. The following table lists some of the
resources you can access directly using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx® design flows, from design entry to verification
and debugging.
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records.
http://support.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches.
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=
Application+Notes

Data Book Pages from The Programmable Logic Data Book, which contains device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging.
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues.
http://support.xilinx.com/support/troubleshoot/psolvers.htm
MicroBlaze Processor Reference Guide www.xilinx.com 5
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm

Preface: About This GuideR
Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Tech Tips Latest news, design tips, and patch information for the Xilinx design
environment.
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

GNU Manuals The entire set of GNU manuals.
http://www.gnu.org/manual

Resource Description/URL

Convention Meaning or Use Example

Courier font
Messages, prompts, and program
files that the system displays. speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement. ngdbuild design_name

Helvetica bold
Commands that you select from a
menu. File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values.

ngdbuild design_name

References to other manuals. See the Development System
Reference Guide for more
information.

Emphasis in text. If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more. lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices. lowpwr ={on|off}
6 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.gnu.org/manual

Conventions R
Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Cross-reference link to a location
in the current document

See the section “Additional
Resources” for details.
Refer to “Title Formats” in
Chapter 1 for details.

Cross-reference link to a location
in another document

See Figure 2-5 in the Virtex-II
Handbook.

Hyperlink to a web-site (URL) Go to http://www.xilinx.com for
the latest speed files.

Vertical ellipsis
.
.
.

Repetitive material that has been
omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’

.

.

.

Horizontal ellipsis . . . Repetitive material that has been
omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Blue text

Red text

Blue, underlined text
MicroBlaze Processor Reference Guide www.xilinx.com 7
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Preface: About This GuideR
8 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

R

Chapter 1

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian bit-reversed format, 32-bit general purpose registers,
virtual-memory management, cache software support, and Fast Simplex Link (FSL) interfaces.

This chapter has the following sections:

• “Overview”
• “Data Types and Endianness”
• “Instructions”
• “Registers”
• “Pipeline Architecture”
• “Memory Architecture”
• “Privileged Instructions”
• “Virtual-Memory Management”
• “Reset, Interrupts, Exceptions, and Break”
• “Instruction Cache”
• “Data Cache”
• “Floating Point Unit (FPU)”
• “Fast Simplex Link (FSL)”
• “Debug and Trace”
MicroBlaze Processor Reference Guide www.xilinx.com 9
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Overview
The MicroBlaze™ embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs). Figure 1-1
shows a functional block diagram of the MicroBlaze core.

Features
The MicroBlaze soft core processor is highly configurable, allowing you to select a specific set of
features required by your design.

The fixed feature set of the processor includes:

• Thirty-two 32-bit general purpose registers
• 32-bit instruction word with three operands and two addressing modes
• 32-bit address bus
• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow selective
enabling of additional functionality. Older (deprecated) versions of MicroBlaze support a subset of
the optional features described in this manual. Only the latest (preferred) version of MicroBlaze
(v7.00) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the MicroBlaze
processor.

Table 1-1, page 11 provides an overview of the configurable features by Microblaze versions.

Figure 1-1: MicroBlaze Core Block Diagram

DXCL_M

DXCL_S

Data-sideInstruction-side

DOPB

DLMB

IOPB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

MFSL 0..15

SFSL 0..15

IXCL_M

IXCL_S

I-C
ache

D
-C

ache

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

IPLB DPLB

UTLBITLB DTLB

Memory Management Unit (MMU)
10 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Overview R
Feature
MicroBlaze Versions

v4.00 v5.00 v6.00 v7.00

Version Status deprecated deprecated deprecated preferred

Processor pipeline depth 3 5 3/5 3/5

On-chip Peripheral Bus (OPB) data side interface option option option option

On-chip Peripheral Bus (OPB) instruction side interface option option option option

Local Memory Bus (LMB) data side interface option option option option

Local Memory Bus (LMB) instruction side interface option option option option

Hardware barrel shifter option option option option

Hardware divider option option option option

Hardware debug logic option option option option

Fast Simplex Link (FSL) interfaces 0-7 0-7 0-7 0-15

Machine status set and clear instructions option Yes option option

Instruction cache over IOPB interface option No No No

Data cache over IOPB interface option No No No

Instruction cache over CacheLink (IXCL) interface option option option option

Data cache over CacheLink (DXCL) interface option option option option

4 or 8-word cache line on XCL 4 option option option

Hardware exception support option option option option

Pattern compare instructions option Yes option option

Floating point unit (FPU) option option option option

Disable hardware multiplier1 option option option option

Hardware debug readable ESR and EAR Yes Yes Yes Yes

Processor Version Register (PVR) - option option option

Area or speed optimized - - option option

Hardware multiplier 64-bit result - - option option

LUT cache memory - - option option

Processor Local Bus (PLB) data side interface - - - option

Processor Local Bus (PLB) instruction side interface - - - option

Floating point conversion and square root instructions - - - option

Memory Management Unit (MMU) - - - option

Extended Fast Simplex Link (FSL) instructions - - - option

Table 1-1: Configurable Feature Overview by MicroBlaze Version

1. Used in Virtex™-II and subsequent families, for saving MUL18 and DSP48 primitives.
MicroBlaze Processor Reference Guide www.xilinx.com 11
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Data Types and Endianness
MicroBlaze uses Big-Endian bit-reversed format to represent data. The hardware supported data
types for MicroBlaze are word, half word, and byte. The bit and byte organization for each type is
shown in the following tables.

Byte address n n+1 n+2 n+3

Byte label 0 1 2 3

Byte significance MSByte LSByte

Bit label 0 31

Bit significance MSBit LSBit

Byte address n n+1

Byte label 0 1

Byte significance MSByte LSByte

Bit label 0 15

Bit significance MSBit LSBit

Byte address n

Bit label 0 7

Bit significance MSBit LSBit

Table 1-2: Word Data Type

Table 1-3: Half Word Data Type

Table 1-4: Byte Data Type
12 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
Instructions
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand. Type B
instructions have one source register and a 16-bit immediate operand (which can be extended to 32
bits by preceding the Type B instruction with an imm instruction). Type B instructions have a single
destination register operand. Instructions are provided in the following functional categories:
arithmetic, logical, branch, load/store, and special. Table 1-6 lists the MicroBlaze instruction set.
Refer to Chapter 4, “MicroBlaze Instruction Set Architecture”for more information on these
instructions. Table 1-5 describes the instruction set nomenclature used in the semantics of each
instruction.

Table 1-5: Instruction Set Nomenclature

Symbol Description

Ra R0 - R31, General Purpose Register, source operand a

Rb R0 - R31, General Purpose Register, source operand b

Rd R0 - R31, General Purpose Register, destination operand

SPR[x] Special Purpose Register number x

MSR Machine Status Register = SPR[1]

ESR Exception Status Register = SPR[5]

EAR Exception Address Register = SPR[3]

FSR Floating Point Unit Status Register = SPR[7]

PVRx Processor Version Register, where x is the register number = SPR[8192 + x]

BTR Branch Target Register = SPR[11]

PC Execute stage Program Counter = SPR[0]

x[y] Bit y of register x

x[y:z] Bit range y to z of register x

x Bit inverted value of register x

Imm 16 bit immediate value

Immx x bit immediate value

FSLx 4 bit Fast Simplex Link (FSL) port designator where x is the port number

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit value

*Addr Memory contents at location Addr (data-size aligned)

:= Assignment operator

= Equality comparison
MicroBlaze Processor Reference Guide www.xilinx.com 13
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
!= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

+ Arithmetic add

* Arithmetic multiply

/ Arithmetic divide

>> x Bit shift right x bits

<< x Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

op1 if cond else op2 Perform op1 if condition cond is true, else perform op2

& Concatenate. E.g. “0000100 & Imm7” is the concatenation of the fixed field “0000100” and a 7 bit
immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed on signed
word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating point data type

Table 1-5: Instruction Set Nomenclature (Continued)

Symbol Description

Table 1-6: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00000000000 Rd := Rb + Ra + C
14 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
CMP Rd,Ra,Rb 000101 Rd Ra Rb 00000000001 Rd := Rb + Ra + 1
Rd[0] := 0 if (Rb >= Ra) else
Rd[0] := 1

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00000000011 Rd := Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra, unsigned) else
Rd[0] := 1

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 Rd := (Ra * Rb) >> 32 (signed)

MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 Rd := (Ra * Rb) >> 32 (unsigned)

MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 Rd := (Ra, signed * Rb, unsigned) >> 32
(signed)

BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 Rd := s(Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 Rd := (Ra << Rb) & 0

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 00000000000 &
Imm5

Rd : = 0 & (Ra >> Imm5)

BSRAI Rd,Ra,Imm 011001 Rd Ra 00000010000 &
Imm5

Rd := s(Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00000100000 &
Imm5

Rd := (Ra << Imm5) & 0

IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra

IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000010 Rd := Rb/Ra, unsigned

TNEAGETD Rd,Rb 010011 Rd 00000 Rb 0N0TAE
00000

Rd := FSL Rb[28:31] (data read)
MSR[FSL] := 1 if (FSL_S_Control = 1)
MSR[C] := not FSL_S_Exists if N = 1

TNAPUTD Ra,Rb 010011 00000 Ra Rb 0N0TA0
00000

FSL Rb[28:31] := Ra (data write)
MSR[C] := FSL_M_Full if N = 1

Table 1-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 15
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
TNECAGETD Rd,Rb 010011 Rd 00000 Rb 0N1TAE
00000

Rd := FSL Rb[28:31] (control read)
MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1

TNCAPUTD Ra,Rb 010011 00000 Ra Rb 0N1TA0
00000

FSL Rb[28:31] := Ra (control write)
MSR[C] := FSL_M_Full if N = 1

FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 Rd := Rb+Ra, float1

FRSUB Rd,Ra,Rb 010110 Rd Ra Rb 00010000000 Rd := Rb-Ra, float1

FMUL Rd,Ra,Rb 010110 Rd Ra Rb 00100000000 Rd := Rb*Ra, float1

FDIV Rd,Ra,Rb 010110 Rd Ra Rb 00110000000 Rd := Rb/Ra, float1

FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb 01000000000 Rd := 1 if (Rb = NaN or Ra = NaN, float1)
else
Rd := 0

FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 Rd := 1 if (Rb < Ra, float1) else
Rd := 0

FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 Rd := 1 if (Rb = Ra, float1) else
Rd := 0

FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 Rd := 1 if (Rb <= Ra, float1) else
Rd := 0

FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb 01001000000 Rd := 1 if (Rb > Ra, float1) else
Rd := 0

FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb 01001010000 Rd := 1 if (Rb != Ra, float1) else
Rd := 0

FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb 01001100000 Rd := 1 if (Rb >= Ra, float1) else
Rd := 0

FLT Rd,Ra 010110 Rd Ra 0 01010000000 Rd := float (Ra)1

FINT Rd,Ra 010110 Rd Ra 0 01100000000 Rd := int (Ra)1

FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 Rd := sqrt (Ra)1

TNEAGET Rd,FSLx 011011 Rd 00000 0N0TAE000000 &
FSLx

Rd := FSLx (data read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] := not FSLx_S_Exists if N = 1

TNAPUT Ra,FSLx 011011 00000 Ra 1N0TA0000000 &
FSLx

FSLx := Ra (data write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

TNECAGET Rd,FSLx 011011 Rd 00000 0N1TAE000000 &
FSLx

Rd := FSLx (control read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSR[C] := not FSLx_S_Exists if N = 1

TNCAPUT Ra,FSLx 011011 00000 Ra 1N1TA0000000 &
FSLx

FSLx := Ra (control write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

Table 1-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
16 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd := 0

PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 Rd := 1 if (Rd = Ra) else
Rd := 0

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb 10000000000 Rd := 1 if (Rd != Ra) else
Rd := 0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)
C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C & (Ra >> 1)
C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0 & (Ra >> 1)
C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd := s(Ra[16:31])

WIC Ra,Rb 100100 00000 Ra Rb 01101000 ICache_Line[Ra >> 4].Tag := 0 if
(C_ICACHE_LINE_LEN = 4)
ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)

WDC Ra,Rb 100100 00000 Ra Rb 01100100 DCache_Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)
DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)

MTS Sd,Ra 100101 00000 Ra 11 & Sd SPR[Sd] := Ra, where:
• SPR[0x0001] is MSR
• SPR[0x0007] is FSR
• SPR[0x1000] is PID
• SPR[0x1001] is ZPR
• SPR[0x1002] is TLBX
• SPR[0x1003] is TLBLO
• SPR[0x1004] is TLBHI
• SPR[0x1005] is TLBSX

Table 1-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 17
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
MFS Rd,Sa 100101 Rd 00000 10 & Sa Rd := SPR[Sa], where:
• SPR[0x0000] is PC
• SPR[0x0001] is MSR
• SPR[0x0003] is EAR
• SPR[0x0005] is ESR
• SPR[0x0007] is FSR
• SPR[0x000B] is BTR
• SPR[0x000D] is EDR
• SPR[0x1000] is PID
• SPR[0x1001] is ZPR
• SPR[0x1002] is TLBX
• SPR[0x1003] is TLBLO
• SPR[0x1004] is TLBHI
• SPR[0x2000 to 0x200B] is PVR[0 to 11]

MSRCLR Rd,Imm 100101 Rd 00001 00 & Imm14 Rd := MSR
MSR := MSR and Imm14

MSRSET Rd,Imm 100101 Rd 00000 00 & Imm14 Rd := MSR
MSR := MSR or Imm14

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb
Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb
Rd := PC

BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb
Rd := PC
MSR[BIP] := 1

BEQ Ra,Rb 100111 00000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNE Ra,Rb 100111 00001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLT Ra,Rb 100111 00010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLE Ra,Rb 100111 00011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGT Ra,Rb 100111 00100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGE Ra,Rb 100111 00101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

BEQD Ra,Rb 100111 10000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

Table 1-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
18 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
BNED Ra,Rb 100111 10001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLTD Ra,Rb 100111 10010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLED Ra,Rb 100111 10011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGTD Ra,Rb 100111 10100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGED Ra,Rb 100111 10101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm)
MSR[IE] := 1

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm)
MSR[BIP] := 0

RTED Ra,Imm 101101 10100 Ra Imm PC := Ra + s(Imm)
MSR[EE] := 1, MSR[EIP] := 0
ESR := 0

BRI Imm 101110 00000 00000 Imm PC := PC + s(Imm)

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)
Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)
Rd := PC

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)
Rd := PC
MSR[BIP] := 1

BEQI Ra,Imm 101111 00000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEI Ra,Imm 101111 00001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTI Ra,Imm 101111 00010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEI Ra,Imm 101111 00011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTI Ra,Imm 101111 00100 Ra Imm PC := PC + s(Imm) if Ra > 0

Table 1-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 19
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
BGEI Ra,Imm 101111 00101 Ra Imm PC := PC + s(Imm) if Ra >= 0

BEQID Ra,Imm 101111 10000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEID Ra,Imm 101111 10001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTID Ra,Imm 101111 10010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEID Ra,Imm 101111 10011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTID Ra,Imm 101111 10100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEID Ra,Imm 101111 10101 Ra Imm PC := PC + s(Imm) if Ra >= 0

LBU Rd,Ra,Rb 110000 Rd Ra Rb 00000000000 Addr := Ra + Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHU Rd,Ra,Rb 110001 Rd Ra Rb 00000000000 Addr := Ra + Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LW Rd,Ra,Rb 110010 Rd Ra Rb 00000000000 Addr := Ra + Rb
Rd := *Addr

SB Rd,Ra,Rb 110100 Rd Ra Rb 00000000000 Addr := Ra + Rb
*Addr[0:8] := Rd[24:31]

SH Rd,Ra,Rb 110101 Rd Ra Rb 00000000000 Addr := Ra + Rb
*Addr[0:16] := Rd[16:31]

SW Rd,Ra,Rb 110110 Rd Ra Rb 00000000000 Addr := Ra + Rb
*Addr := Rd

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full description of the
behavior can be found in Chapter 4, “MicroBlaze Instruction Set Architecture.”

Table 1-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
20 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Registers
MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit general purpose
registers and up to eighteen 32-bit special purpose registers, depending on configured options.

General Purpose Registers
The thirty-two 32-bit General Purpose Registers are numbered R0 through R31. The register file is
reset on bit stream download (reset value is 0x00000000). Figure 1-2 is a representation of a General
Purpose Register and Table 1-7 provides a description of each register and the register reset value (if
existing).

Note: The register file is not reset by the external reset inputs: Reset and Debug_Rst.

Refer to Table 3-2 for software conventions on general purpose register usage.

0 31

↑
R0-R31

Figure 1-2: R0-R31

Table 1-7: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 R0 Always has a value of zero. Anything written to
R0 is discarded

0x00000000

0:31 R1 through R13 32-bit general purpose registers -

0:31 R14 32-bit register used to store return addresses
for interrupts.

-

0:31 R15 32-bit general purpose register. Recommended
for storing return addresses for user vectors.

-

0:31 R16 32-bit register used to store return addresses
for breaks.

-

0:31 R17 If MicroBlaze is configured to support
hardware exceptions, this register is loaded
with the address of the instruction following
the instruction causing the HW exception,
except for exceptions in delay slots that use
BTR instead (see “Branch Target Register
(BTR)”); if not, it is a general purpose register.

-

0:31 R18 through R31 R18 through R31 are 32-bit general purpose
registers.

-

MicroBlaze Processor Reference Guide www.xilinx.com 21
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Special Purpose Registers

Program Counter (PC)
The Program Counter (PC) is the 32-bit address of the execution instruction. It can be read with an
MFS instruction, but it cannot be written with an MTS instruction. When used with the MFS
instruction the PC register is specified by setting Sa = 0x0000. Figure 1-3 illustrates the PC and
Table 1-8 provides a description and reset value.

Machine Status Register (MSR)
The Machine Status Register contains control and status bits for the processor. It can be read with an
MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the carry copy. MSR can be
written using either an MTS instruction or the dedicated MSRSET and MSRCLR instructions.

When writing to the MSR, the Carry bit takes effect immediately and the remaining bits take effect
one clock cycle later. Any value written to bit 0 is discarded. When used with an MTS or MFS
instruction, the MSR is specified by setting Sx = 0x0001. Figure 1-4 illustrates the MSR register and
Table 1-9 provides the bit description and reset values.

0 31

↑
PC

Figure 1-3: PC

Table 1-8: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter
Address of executing instruction, for example, “mfs r2 0”
stores the address of the mfs instruction itself in R2.

0x00000000

0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
CC RESERVED VMS VM UMS UM PVR EIP EE DCE DZ ICE FSL BIP C IE BE

Figure 1-4: MSR
22 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Table 1-9: Machine Status Register (MSR)

Bits Name Description Reset Value

0 CC Arithmetic Carry Copy
Copy of the Arithmetic Carry (bit 29). CC is
always the same as bit C.

0

1:16 Reserved

17 VMS Virtual Protected Mode Save
Only available when configured with an MMU
(if C_USE_MMU>1)
Read/Write

0

18 VM Virtual Protected Mode
0 MMU address translation and access
protection disabled, with C_USE_MMU = 3.
Access protection disabled, with C_USE_MMU
= 2.
1 MMU address translation and access
protection enabled, with C_USE_MMU = 3.
Access protection enabled, with C_USE_MMU
= 2.
Only available when configured with an MMU
(if C_USE_MMU>1)
Read/Write

0

19 UMS User Mode Save
Only available when configured with an MMU
(if C_USE_MMU>0)
Read/Write

0

20 UM User Mode
0 Privileged Mode, all instructions are allowed
1 User Mode, certain instructions are not
allowed
Only available when configured with an MMU
(if C_USE_MMU>0)
Read/Write

0

21 PVR Processor Version Register exists
0 No Processor Version Register
1 Processor Version Register exists
Read only

Based on
parameter
C_PVR
MicroBlaze Processor Reference Guide www.xilinx.com 23
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
22 EIP Exception In Progress
0 = No hardware exception in progress
1 = Hardware exception in progress
Only available if configured with exception
support (C_*_EXCEPTION or C_USE_MMU)
Read/Write

0

23 EE Exception Enable
0 = Hardware exceptions disabled1
1 = Hardware exceptions enabled

Only available if configured with exception
support (C_*_EXCEPTION or C_USE_MMU)

Read/Write

0

24 DCE Data Cache Enable
0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(C_USE_DCACHE = 1)

Read/Write

0

25 DZ Division by Zero2

0 = No division by zero has occurred
1 = Division by zero has occurred

Only available if configured to use hardware
divider (C_USE_DIV = 1)

Read/Write

0

26 ICE Instruction Cache Enable
0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction
cache (C_USE_ICACHE = 1)

Read/Write

0

27 FSL FSL Error
0 = FSL get/getd/put/putd had no error
1 = FSL get/getd/put/putd control type mismatch

Only available if configured to use FSL links
(C_FSL_LINKS > 0)

Read/Write

0

Table 1-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
24 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
28 BIP Break in Progress
0 = No Break in Progress
1 = Break in Progress
Break Sources can be software break instruction
or hardware break from Ext_Brk or
Ext_NM_Brk pin.
Read/Write

0

29 C Arithmetic Carry
0 = No Carry (Borrow)
1 = Carry (No Borrow)
Read/Write

0

30 IE Interrupt Enable
0 = Interrupts disabled
1 = Interrupts enabled
Read/Write

0

31 BE Buslock Enable3

0 = Buslock disabled on data-side PLB or OPB
1 = Buslock enabled on data-side PLB or OPB
Buslock Enable does not affect operation of
IXCL, DXCL, ILMB, DLMB, IPLB or IOPB.

Only available if using data-side PLB or OPB

Read/Write

0

1. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception,
Instruction TLB Miss Exception) cannot be disabled, and are not affected by this bit.

2. This bit is only used for integer divide-by-zero signaling. There is a floating point equivalent in the FSR.
The DZ-bit flags divide by zero conditions regardless if the processor is configured with exception
handling or not.

3. For details on the bus protocols, refer to the IBM CoreConnect specifications: 128-Bit Processor
Local Bus, Architectural Specifications, Version 4.6 and 64-Bit On-Chip Peripheral Bus,
Architectural Specifications, Version 2.0.

Table 1-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 25
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Exception Address Register (EAR)
The Exception Address Register stores the full load/store address that caused the exception for the
following:

• An unaligned access exception that means the unaligned access address
• A DPLB or DOPB exception that specifies the failing PLB or OPB data access address
• A data storage exception that specifies the (virtual) effective address accessed
• An instruction storage exception that specifies the (virtual) effective address read
• A data TLB miss exception that specifies the (virtual) effective address accessed
• An instruction TLB miss exception that specifies the (virtual) effective address read

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is illustrated in
Figure 1-5 and Table 1-10 provides bit descriptions and reset values.

0 31

↑
EAR

Figure 1-5: EAR

Table 1-10: Exception Address Register (EAR)

Bits Name Description Reset Value

0:31 EAR Exception Address Register 0x00000000
26 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Exception Status Register (ESR)
The Exception Status Register contains status bits for the processor. When read with the MFS
instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated in
Figure 1-6, Table 1-11 provides bit descriptions and reset values, and Table 1-12 provides the
Exception Specific Status (ESS).

19 20 26 27 31

↑ ↑ ¦ ↑
RESERVED DS ESS EC

Figure 1-6: ESR

Table 1-11: Exception Status Register (ESR)

Bits Name Description Reset Value

0:18 Reserved

19 DS Delay Slot Exception.
0 = not caused by delay slot instruction
1 = caused by delay slot instruction
Read-only

0

20:26 ESS Exception Specific Status
For details refer to Table 1-12.
Read-only

See Table 1-12

27:31 EC Exception Cause
00000 = Fast Simplex Link exception
00001 = Unaligned data access exception
00010 = Illegal op-code exception
00011 = Instruction bus error exception
00100 = Data bus error exception
00101 = Divide by zero exception
00110 = Floating point unit exception
00111 = Privileged instruction exception
10000 = Data storage exception
10001 = Instruction storage exception
10010 = Data TLB miss exception
10011 = Instruction TLB miss exception
Read-only

0

MicroBlaze Processor Reference Guide www.xilinx.com 27
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Table 1-12: Exception Specific Status (ESS)

Exception
Cause Bits Name Description Reset Value

Unaligned
Data Access

20 W Word Access Exception
0 = unaligned halfword access
1 = unaligned word access

0

21 S Store Access Exception
0 = unaligned load access
1 = unaligned store access

0

22:26 Rx Source/Destination Register
General purpose register used as
source (Store) or destination (Load)
in unaligned access

0

Illegal
Instruction

20:26 Reserved 0

Instruction
bus error

20:26 Reserved 0

Data bus
error

20:26 Reserved 0

Divide by
zero

20:26 Reserved 0

Floating
point unit

20:26 Reserved 0

Privileged
instruction

20:26 Reserved 0

Fast Simplex
Link

20:22 Reserved 0

23:26 FSL Fast Simplex Link index that caused
the exception

0

Data storage 20 DIZ Data storage - Zone protection
0 = Did not occur
1 = Occurred

0

21 S Data storage - Store instruction
0 = Did not occur
1 = Occurred

0

22:26 Reserved 0

Instruction
storage

20 DIZ Instruction storage - Zone protection
0 = Did not occur
1 = Occurred

0

21:26 Reserved 0
28 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Branch Target Register (BTR)
The Branch Target Register only exists if the MicroBlaze processor is configured to use exceptions.
The register stores the branch target address for all delay slot branch instructions executed while
MSR[EIP] = 0. If an exception is caused by an instruction in a delay slot (for example, ESR[DS]=1),
the exception handler should return execution to the address stored in BTR instead of the normal
exception return address stored in R17. When read with the MFS instruction, the BTR is specified
by setting Sa = 0x000B. The BTR register is illustrated in Figure 1-7 and Table 1-13 provides bit
descriptions and reset values.

Data TLB
miss

20 Reserved 0

21 S Data TLB miss - Store instruction
0 = Did not occur
1 = Occurred

0

22:26 Reserved 0

Instruction
TLB miss

20:26 Reserved 0

Table 1-12: Exception Specific Status (ESS) (Continued)

Exception
Cause Bits Name Description Reset Value

0 31

↑
BTR

Figure 1-7: BTR

Table 1-13: Branch Target Register (BTR)

Bits Name Description Reset Value

0:31 BTR Branch target address used by handler when
returning from an exception caused by an
instruction in a delay slot.
Read-only

0x00000000
MicroBlaze Processor Reference Guide www.xilinx.com 29
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Floating Point Status Register (FSR)
The Floating Point Status Register contains status bits for the floating point unit. It can be read with
an MFS, and written with an MTS instruction. When read or written, the register is specified by
setting Sa = 0x0007. Figure 1-8 illustrates the FSR register and Table 1-14 provides bit descriptions
and reset values.

27 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑
RESERVED IO DZ OF UF DO

Exception Data Register (EDR)
The Exception Data Register stores data read on an FSL link that caused an FSL exception.

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EAR is specified by setting Sa = 0x000D. Figure 1-9 illustrates the EDR register and
Table 1-15 provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION
is set to 1.

Figure 1-8: FSR

Table 1-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value

0:26 Reserved undefined

27 IO Invalid operation 0

28 DZ Divide-by-zero 0

29 OF Overflow 0

30 UF Underflow 0

31 DO Denormalized operand error 0

0 31

↑
EDR

Figure 1-9: EDR

Table 1-15: Exception Address Register (EDR)

Bits Name Description Reset Value

0:31 EDR Exception Data Register 0x00000000
30 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Process Identifier Register (PID)
The Process Identifier Register is used to uniquely identify a software process during MMU address
translation. It is controlled by the C_MMU configuration option on MicroBlaze. The register is only
implemented if C_MMU is greater than 1. When accessed with the MFS and MTS instructions, the
PID is specified by setting Sa = 0x1000. The register is accessible according to the memory
management special registers parameter C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

• When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in the
TID field of the TLB entry

• When reading TLBHI the value in the TID field is stored in PID

Figure 1-10 illustrates the PID register and Table 1-16 provides bit descriptions and reset values.

24 31

↑ ↑
RESERVED PID

Figure 1-10: PID

Table 1-16: Process Identifier Register (PID)

Bits Name Description Reset Value

0:23 Reserved

24:31 PID Used to uniquely identify a software process during
MMU address translation.
Read/Write

0x00
MicroBlaze Processor Reference Guide www.xilinx.com 31
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Zone Protection Register (ZPR)
The Zone Protection Register is used to override MMU memory protection defined in TLB entries.
It is controlled by the C_MMU configuration option on MicroBlaze. The register is only implemented
if C_MMU is greater than 1 and if the number of specified memory protection zones is greater than
zero (C_MMU_ZONES > 0). The implemented register bits depend on the number of specified
memory protection zones (C_MMU_ZONES). When accessed with the MFS and MTS instructions,
the ZPR is specified by setting Sa = 0x1001. The register is accessible according to the memory
management special registers parameter C_MMU_TLB_ACCESS. Figure 1-11 illustrates the ZPR
register and Table 1-17 provides bit descriptions and reset values.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
ZP0 ZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZP14 ZP15

Figure 1-11: ZPR

Table 1-17: Zone Protection Register (ZPR)

Bits Name Description Reset Value

0:1
2:3
...
30:31

ZP0
ZP1
...
ZP15

Zone Protect
User mode (MSR[UM] = 1):
00 = Override V in TLB entry. No access to the page is
allowed
01 = No override. Use V, WR and EX from TLB entry
10 = No override. Use V, WR and EX from TLB entry
11 = Override WR and EX in TLB entry. Access the page
as writable and executable
Privileged mode (MSR[UM] = 0):
00 = No override. Use V, WR and EX from TLB entry
01 = No override. Use V, WR and EX from TLB entry
10 = Override WR and EX in TLB entry. Access the page
as writable and executable
11 = Override WR and EX in TLB entry. Access the page
as writable and executable
Read/Write

0x00000000
32 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Translation Look-Aside Buffer Low Register (TLBLO)
The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation Look-
Aside Buffer (UTLB) entries. It is controlled by the C_MMU configuration option on MicroBlaze.
The register is only implemented if C_MMU is greater than 1. When accessed with the MFS and MTS
instructions, the TLBLO is specified by setting Sa = 0x1002. When reading or writing TLBLO, the
UTLB entry indexed by the TLBX register is accessed. The register is readable according to the
memory management special registers parameter C_MMU_TLB_ACCESS.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst.

Figure 1-12 illustrates the TLBLO register and Table 1-18 provides bit descriptions and reset
values.

0 22 23 24 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
RPN EX WR ZSEL W I M G

Figure 1-12: TLBLO

Table 1-18: Translation Look-Aside Buffer Low Register (TLBLO)

Bits Name Description Reset Value

0:21 RPN Real Page Number or Physical Page Number
When a TLB hit occurs, this field is read from the TLB
entry and is used to form the physical address. Depending
on the value of the SIZE field, some of the RPN bits are
not used in the physical address. Software must clear
unused bits in this field to zero.
Only defined when C_USE_MMU=3.
Read/Write

0x000000

22 EX Executable
When bit is set to 1, the page contains executable code,
and instructions can be fetched from the page. When bit is
cleared to 0, instructions cannot be fetched from the page.
Attempts to fetch instructions from a page with a clear EX
bit cause an instruction-storage exception.
Read/Write

0

MicroBlaze Processor Reference Guide www.xilinx.com 33
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
23 WR Writable
When bit is set to 1, the page is writable and store
instructions can be used to store data at addresses within
the page.
When bit is cleared to 0, the page is read-only (not
writable). Attempts to store data into a page with a clear
WR bit cause a data storage exception.
Read/Write

0

24:27 ZSEL Zone Select
This field selects one of 16 zone fields (Z0-Z15) from the
zone-protection register (ZPR).
For example, if ZSEL 0x5, zone field Z5 is selected. The
selected ZPR field is used to modify the access protection
specified by the TLB entry EX and WR fields. It is also
used to prevent access to a page by overriding the TLB V
(valid) field.
Read/Write

0x0

28 W Write Through
This bit is fixed to 1, because accesses to pages on
MicroBlaze are always cached using a write-through
caching policy.
Read Only

1

29 I Inhibit Caching
When bit is set to 1, accesses to the page are not cached
(caching is inhibited).
When cleared to 0, accesses to the page are cacheable.
Read/Write

0

30 M Memory Coherent
This bit is fixed to 0, because memory coherence is not
implemented on MicroBlaze.
Read Only

0

31 G Guarded
When bit is set to 1, speculative page accesses are not
allowed (memory is guarded).
When cleared to 0, speculative page accesses are allowed.
The G attribute can be used to protect memory-mapped
I/O devices from inappropriate instruction accesses.
Read/Write

0

Table 1-18: Translation Look-Aside Buffer Low Register (TLBLO) (Continued)

Bits Name Description Reset Value
34 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Translation Look-Aside Buffer High Register (TLBHI)
The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the C_MMU configuration option on
MicroBlaze. The register is only implemented if C_MMU is greater than 1. When accessed with the
MFS and MTS instructions, the TLBHI is specified by setting Sa = 0x1003. When reading or
writing TLBHI, the UTLB entry indexed by the TLBX register is accessed. The register is readable
according to the memory management special registers parameter C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

• When writing TLBHI the value of PID is stored in the TID field of the TLB entry
• When reading TLBHI the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst.

Figure 1-13 illustrates the TLBHI register and Table 1-19 provides bit descriptions and reset values.

0 22 25 26 27 28 31

↑ ↑ ↑ ↑ ↑ ↑
TAG SIZE V E U0 Reserved

Figure 1-13: TLBHI

Table 1-19: Translation Look-Aside Buffer High Register (TLBHI)

Bits Name Description Reset
Value

0:21 TAG TLB-entry tag
Is compared with the page number portion of the virtual
memory address under the control of the SIZE field.
Read/Write

0x000000

22:24 SIZE Size
Specifies the page size. The SIZE field controls the bit
range used in comparing the TAG field with the page
number portion of the virtual memory address.
Read/Write

000

25 V Valid
When bit is set to 1, the TLB entry is valid and contains
a page-translation entry.
When cleared to 0, the TLB entry is invalid.
Read/Write

0

MicroBlaze Processor Reference Guide www.xilinx.com 35
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
26 E Endian
This bit is fixed to 0, since accesses to pages on
MicroBlaze are always big endian.
Read Only

0

27 U0 User Defined
This bit is fixed to 0, since there are no user defined
storage attributes on MicroBlaze.
Read Only

0

28:31 Reserved

Table 1-19: Translation Look-Aside Buffer High Register (TLBHI) (Continued)

Bits Name Description Reset
Value
36 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Translation Look-Aside Buffer Index Register (TLBX)
The Translation Look-Aside Buffer Index Register is used as an index to the Unified Translation
Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is controlled by the
C_MMU configuration option on MicroBlaze. The register is only implemented if C_MMU is greater
than 1. When accessed with the MFS and MTS instructions, the TLBX is specified by setting Sa =
0x1004. Figure 1-14 illustrates the TLBX register and Table 1-20 provides bit descriptions and reset
values.

0 26 31

↑ ↑ ↑
MISS Reserved INDEX

Figure 1-14: TLBX

Table 1-20: Translation Look-Aside Buffer Index Register (TLBX)

Bits Name Description Reset Value

0 MISS TLB Miss
This bit is cleared to 0 when the TLBSX register is
written with a virtual address, and the virtual address is
found in a TLB entry.
The bit is set to 1 if the virtual address is not found. It is
also cleared when the TLBX register itself is written.
Read Only
Can be read if the memory management special registers
parameter C_MMU_TLB_ACCESS > 0.

0

1:25 Reserved

26:31 INDEX TLB Index
This field is used to index the Translation Look-Aside
Buffer entry accessed by the TLBLO and TLBHI
registers. The field is updated with a TLB index when the
TLBSX register is written with a virtual address, and the
virtual address is found in the corresponding TLB entry.
Read/Write
Can be read and written if the memory management
special registers parameter C_MMU_TLB_ACCESS >
0.

000000
MicroBlaze Processor Reference Guide www.xilinx.com 37
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Translation Look-Aside Buffer Search Index Register (TLBSX)
The Translation Look-Aside Buffer Search Index Register is used to search for a virtual page
number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by the C_MMU
configuration option on MicroBlaze. The register is only implemented if C_MMU is greater than 1.
When written with the MTS instruction, the TLBSX is specified by setting Sa = 0x1005.
Figure 1-15 illustrates the TLBSX register and Table 1-21 provides bit descriptions and reset values.

0 22 31

↑ ↑
VPN Reserved

Figure 1-15: TLBSX

Table 1-21: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits Name Description Reset Value

0:21 VPN Virtual Page Number
This field represents the page number portion of the
virtual memory address. It is compared with the page
number portion of the virtual memory address under the
control of the SIZE field, in each of the Translation
Look-Aside Buffer entries that have the V bit set to 1.
If the virtual page number is found, the TLBX register is
written with the index of the TLB entry and the MISS bit
in TLBX is cleared to 0. If the virtual page number is not
found in any of the TLB entries, the MISS bit in the
TLBX register is set to 1.
Write Only

22:31 Reserved
38 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Processor Version Register (PVR)
The Processor Version Register is controlled by the C_PVR configuration option on MicroBlaze.

• When C_PVR is set to 0 the processor does not implement any PVR and MSR[PVR]=0.
• When C_PVR is set to 1, MicroBlaze implements only the first register: PVR0, and if set to 2,

all 12 PVR registers (PVR0 to PVR11) are implemented.

When read with the MFS instruction the PVR is specified by setting Sa = 0x200x, with x being the
register number between 0x0 and 0xB.

Table 1-22 throughTable 1-32 provide bit descriptions and values.

Bits Name Description Value

0 CFG PVR implementation: 0=basic,
1=full

Based on C_PVR

1 BS Use barrel shifter C_USE_BARREL

2 DIV Use divider C_USE_DIV

3 MUL Use hardware multiplier C_USE_HW_MUL > 0

4 FPU Use FPU C_USE_FPU > 0

5 EXC Use any type of exceptions Based on C_*_EXCEPTION

6 ICU Use instruction cache C_USE_ICACHE

7 DCU Use data cache C_USE_DCACHE

8 MMU Use MMU C_USE_MMU > 0

9:15 Reserved 0

16:23 MBV MicroBlaze release version code
0x1 = v5.00.a
0x2 = v5.00.b
0x3 = v5.00.c
0x4 = v6.00.a
0x6 = v6.00.b
0x5 = v7.00.a

Release Specific

24:31 USR1 User configured value 1 C_PVR_USER1

Bits Name Description Value

0:31 USR2 User configured value 2 C_PVR_USER2

Table 1-22: Processor Version Register 0 (PVR0)

Table 1-23: Processor Version Register 1 (PVR1)
MicroBlaze Processor Reference Guide www.xilinx.com 39
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Table 1-24: Processor Version Register 2 (PVR2)

Bits Name Description Value

0 DOPB Data side OPB in use C_D_OPB

1 DLMB Data side LMB in use C_D_LMB

2 IOPB Instruction side OPB in use C_I_OPB

3 ILMB Instruction side LMB in use C_I_LMB

4 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS_EDGE

5 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE

6 DPLB Data side PLB in use C_D_PLB

7 IPLB Instruction side PLB in use C_I_PLB

8 INTERCON Use PLB interconnect C_INTERCONNECT

9:11 Reserved

12 FSL Use extended FSL instructions C_USE_EXTENDED_FSL_INSTR

13 FSLEXC Generate exception for FSL
control bit mismatch

C_FSL_EXCEPTION

14 MSR Use msrset and msrclr
instructions

C_USE_MSR_INSTR

15 PCMP Use pattern compare
instructions

C_USE_PCMP_INSTR

16 AREA Optimize area C_AREA_OPTIMIZED

17 BS Use barrel shifter C_USE_BARREL

18 DIV Use divider C_USE_DIV

19 MUL Use hardware multiplier C_USE_HW_MUL > 0

20 FPU Use FPU C_USE_FPU > 0

21 MUL64 Use 64-bit hardware multiplier C_USE_HW_MUL = 2

22 FPU2 Use floating point conversion
and square root instructions

C_USE_FPU = 2

23 IPLBEXC Generate exception for IPLB
error

C_IPLB_BUS_EXCEPTION

24 DPLBEXC Generate exception for DPLB
error

C_DPLB_BUS_EXCEPTION

25 OP0EXC Generate exception for 0x0
illegal opcode

C_OPCODE_0x0_ILLEGAL

26 UNEXC Generate exception for
unaligned data access

C_UNALIGNED_EXCEPTION
40 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
27 OPEXC Generate exception for any
illegal opcode

C_ILL_OPCODE_EXCEPTION

28 IOPBEXC Generate exception for IOPB
error

C_IOPB_BUS_EXCEPTION

29 DOPBEXC Generate exception for DOPB
error

C_DOPB_BUS_EXCEPTION

30 DIVEXC Generate exception for division
by zero

C_DIV_ZERO_EXCEPTION

31 FPUEXC Generate exceptions from FPU C_FPU_EXCEPTION

Bits Name Description Value

0 ICU Use instruction cache C_USE_ICACHE

1:5 ICTS Instruction cache tag size C_ADDR_TAG_BITS

6 Reserved 1

7 ICW Allow instruction cache write C_ALLOW_ICACHE_WR

8:10 ICLL The base two logarithm of the
instruction cache line length

log2(C_ICACHE_LINE_LEN)

11:15 ICBS The base two logarithm of the
instruction cache byte size

log2(C_DCACHE_BYTE_SIZE)

16:31 Reserved 0

Bits Name Description Value

0 DCU Use data cache C_USE_DCACHE

1:5 DCTS Data cache tag size C_DCACHE_ADDR_TAG

6 Reserved 1

7 DCW Allow data cache write C_ALLOW_DCACHE_WR

8:10 DCLL The base two logarithm of the
data cache line length

log2(C_DCACHE_LINE_LEN)

11:15 DCBS The base two logarithm of the
data cache byte size

log2(C_DCACHE_BYTE_SIZE)

16:31 Reserved 0

Table 1-25: Processor Version Register 4 (PVR4)

Table 1-26: Processor Version Register 5 (PVR5)

Table 1-24: Processor Version Register 2 (PVR2) (Continued)

Bits Name Description Value
MicroBlaze Processor Reference Guide www.xilinx.com 41
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Table 1-27: Processor Version Register 6 (PVR6)

Bits Name Description Value

0:31 ICBA Instruction Cache Base Address C_ICACHE_BASEADDR

Table 1-28: Processor Version Register 7 (PVR7)

Bits Name Description Value

0:31 ICHA Instruction Cache High Address C_ICACHE_HIGHADDR

Table 1-29: Processor Version Register 8 (PVR8)

Bits Name Description Value

0:31 DCBA Data Cache Base Address C_DCACHE_BASEADDR

Table 1-30: Processor Version Register 9 (PVR9)

Bits Name Description Value

0:31 DCHA Data Cache High Address C_DCACHE_HIGHADDR

Table 1-31: Processor Version Register 10 (PVR10)

Bits Name Description Value

0:7 ARCH Target architecture:
0x4 = Virtex™2
0x5 = Virtex2Pro
0x6 = Spartan™3
0x7 = Virtex4
0x8 = Virtex5
0x9 = Spartan3E
0xA = Spartan3A
0xB = Spartan3AN
0xC = Spartan3Adsp

Defined by parameter C_FAMILY

8:31 Reserved 0
42 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Registers R
Table 1-32: Processor Version Register 11 (PVR11)

Bits Name Description Value

0:1 MMU Use MMU:
0 = None
1 = User Mode
2 = Protection
3 = Virtual

C_USE:_MMU

2:4 ITLB Instruction Shadow TLB size log2(C_MMU_ITLB_SIZE)

5:7 DTLB Data Shadow TLB size log2(C_MMU_DTLB_SIZE)

8:9 TLBACC TLB register access:
0 = Minimal
1 = Read
2 = Write
3 = Full

C_MMU_TLB_ACCESS

10:14 ZONES Number of memory protection
zones

C_MMU_ZONES

15:20 Reserved Reserved for future use 0

21:31 RSTMSR Reset value for MSR C_RESET_MSR
MicroBlaze Processor Reference Guide www.xilinx.com 43
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Pipeline Architecture
MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one clock
cycle to complete. Consequently, the number of clock cycles necessary for a specific instruction to
complete is equal to the number of pipeline stages, and one instruction is completed on every cycle.
A few instructions require multiple clock cycles in the execute stage to complete. This is achieved
by stalling the pipeline.

When executing from slower memory, instruction fetches may take multiple cycles. This additional
latency directly affects the efficiency of the pipeline. MicroBlaze implements an instruction prefetch
buffer that reduces the impact of such multi-cycle instruction memory latency. While the pipeline is
stalled by a multi-cycle instruction in the execution stage, the prefetch buffer continues to load
sequential instructions. When the pipeline resumes execution, the fetch stage can load new
instructions directly from the prefetch buffer instead of waiting for the instruction memory access to
complete.

Three Stage Pipeline
When area optimization is enabled, the pipeline is divided into three stages to minimize hardware
cost: Fetch, Decode, and Execute.

cycle 1 cycle 2 cycle 3 cycle4 cycle5 cycle6 cycle7

instruction 1 Fetch Decode Execute

instruction 2 Fetch Decode Execute Execute Execute

instruction 3 Fetch Decode Stall Stall Execute

Five Stage Pipeline
When area optimization is disabled, the pipeline is divided into five stages to maximize
performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and Writeback
(WB).

cycle
1

cycle
2

cycle
3

cycle
4

cycle
5

cycle
6

cycle
7

cycle
8

cycle
9

instruction 1 IF OF EX MEM WB

instruction 2 IF OF EX MEM MEM MEM WB

instruction 3 IF OF EX Stall Stall MEM WB

Branches
Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are flushed
when executing a taken branch. The fetch pipeline stage is then reloaded with a new instruction from
the calculated branch address. A taken branch in MicroBlaze takes three clock cycles to execute,
two of which are required for refilling the pipeline. To reduce this latency overhead, MicroBlaze
supports branches with delay slots.
44 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Pipeline Architecture R
Delay Slots
When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze is
flushed. The instruction in the decode stage (branch delay slot) is allowed to complete. This
technique effectively reduces the branch penalty from two clock cycles to one. Branch instructions
with delay slots have a D appended to the instruction mnemonic. For example, the BNE instruction
does not execute the subsequent instruction (does not have a delay slot), whereas BNED executes
the next instruction before control is transferred to the branch location.

A delay slot must not contain the following instructions: IMM, branch, or break. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Instructions that could cause recoverable exceptions (e.g. unaligned word or halfword load and
store) are allowed in the delay slot. If an exception is caused in a delay slot the ESR[DS] bit is set,
and the exception handler is responsible for returning the execution to the branch target (stored in
the special purpose register BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it
contains the address following the instruction causing the exception).
MicroBlaze Processor Reference Guide www.xilinx.com 45
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Memory Architecture
MicroBlaze is implemented with a Harvard memory architecture; instruction and data accesses are
done in separate address spaces. Each address space has a 32-bit range (for example, handles up to
4-Gb of instructions and data memory respectively). The instruction and data memory ranges can be
made to overlap by mapping them both to the same physical memory. The latter is useful for
software debugging.

Both instruction and data interfaces of MicroBlaze are 32 bits wide and use big endian, bit-reversed
format. MicroBlaze supports word, halfword, and byte accesses to data memory.

Data accesses must be aligned (word accesses must be on word boundaries, halfword on halfword
boundaries), unless the processor is configured to support unaligned exceptions. All instruction
accesses must be word aligned.

MicroBlaze does not separate data accesses to I/O and memory (it uses memory mapped I/O). The
processor has up to three interfaces for memory accesses:

• Local Memory Bus (LMB)
• Processor Local Bus (PLB) or On-Chip Peripheral Bus (OPB)
• Xilinx CacheLink (XCL)

The LMB memory address range must not overlap with PLB, OPB or XCL ranges.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read hits,
except with area optimization enabled when data side accesses and data cache read hits require two
clock cycles. A data cache write normally has two cycles of latency (more if the posted-write buffer
in the memory controller is full).

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word cache lines. When
using a longer cache line, more bytes are prefetched, which generally improves performance for
software with sequential access patterns. However, for software with a more random access pattern
the performance can instead decrease for a given cache size. This is caused by a reduced cache hit
rate due to fewer available cache lines.

For details on the different memory interfaces refer to Chapter 2, “MicroBlaze Signal Interface
Description”.
46 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Privileged Instructions R
Privileged Instructions
The following MicroBlaze instructions are privileged:

• GET, PUT, NGET, NPUT, CGET, CPUT, NCGET, NCPUT
• WIC, WDC
• MTS

• MSRCLR, MSRSET (except when only the C bit is affected)
• BRK

• RTID, RTBD, RTED
• BRKI (except when jumping to physical address 0x8 or 0x18)

Attempted use of these instructions when running in user mode causes a privileged instruction
exception.

There are six ways to leave user mode and virtual mode:

1. Hardware generated reset (including debug reset)
2. Hardware exception
3. Non-maskable break or hardware break
4. Interrupt
5. Executing the instruction "BRALID Re, 0x8” to perform a user vector exception
6. Executing the software break instructions “BRKI” jumping to physical address 0x8 or 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode status is saved
in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged mode
programs) using the BRALID or BRKI instruction, jumping to physical address 0x8. Executing this
instruction causes a system-call exception to occur. The exception handler determines which
system-service routine to call and whether the calling application has permission to call that service.
If permission is granted, the exception handler performs the actual procedure call to the system-
service routine on behalf of the application program.

The execution environment expected by the system-service routine requires the execution of
prologue instructions to set up that environment. Those instructions usually create the block of
storage that holds procedural information (the activation record), update and initialize pointers, and
save volatile registers (registers the system-service routine uses). Prologue code can be inserted by
the linker when creating an executable module, or it can be included as stub code in either the
system-call interrupt handler or the system-library routines.

Returns from the system-service routine reverse the process described above. Epilog code is
executed to unwind and deallocate the activation record, restore pointers, and restore volatile
registers. The interrupt handler executes a return from exception instruction (RTED) to return to the
application.
MicroBlaze Processor Reference Guide www.xilinx.com 47
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Virtual-Memory Management
Programs running on MicroBlaze use effective addresses to access a flat 4 Gb address space. The
processor can interpret this address space in one of two ways, depending on the translation mode:

• In real mode, effective addresses are used to directly access physical memory
• In virtual mode, effective addresses are translated into physical addresses by the virtual-

memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data anywhere in
the physical address space. System software can move inactive programs and data out of physical
memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually implemented
by the system. This frees the programmer from working within the limits imposed by the amount of
physical memory present in a system. Programmers do not need to know which physical-memory
addresses are assigned to other software processes and hardware devices. The addresses visible to
programs are translated into the appropriate physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small as 1 KB
can be individually protected from unauthorized access. Protection and relocation enable system
software to support multitasking. This capability gives the appearance of simultaneous or near-
simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU), available
when C_USE_MMU is set to 3. The MMU controls effective-address to physical-address mapping
and supports memory protection. Using these capabilities, system software can implement demand-
paged virtual memory and other memory management schemes.

The MicroBlaze MMU implementation is based upon PowerPC™ 405. For details, see the
PowerPC Processor Reference Guide document.

The MMU features are summarized as follows:

• Translates effective addresses into physical addresses
• Controls page-level access during address translation
• Provides additional virtual-mode protection control through the use of zones
• Provides independent control over instruction-address and data-address translation and

protection
• Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any

combination of page sizes can be used by system software
• Software controls the page-replacement strategy

Real Mode
The processor references memory when it fetches an instruction and when it accesses data with a
load or store instruction. Programs reference memory locations using a 32-bit effective address
calculated by the processor. When real mode is enabled, the physical address is identical to the
effective address and the processor uses it to access physical memory. After a processor reset, the
processor operates in real mode. Real mode can also be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the effective
address. Real mode does not provide system software with virtual address translation, but the full
memory access-protection is available, implemented when C_USE_MMU > 1. Implementation of a
real-mode memory manager is more straightforward than a virtual-mode memory manager. Real
48 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Virtual-Memory Management R
mode is often an appropriate solution for memory management in simple embedded environments,
when access-protection is necessary, but virtual address translation is not required.

Virtual Mode
In virtual mode, the processor translates an effective address into a physical address using the
process shown in Figure 1-16. Virtual mode can be enabled by setting the VM bit in the MSR..

Each address shown in Figure 1-16 contains a page-number field and an offset field. The page
number represents the portion of the address translated by the MMU. The offset represents the byte
offset into a page and is not translated by the MMU. The virtual address consists of an additional
field, called the process ID (PID), which is taken from the PID register (see Process-ID Register,
page 176). The combination of PID and effective page number (EPN) is referred to as the virtual
page number (VPN). The value n is determined by the page size, as shown in Table 1-33.

System software maintains a page-translation table that contains entries used to translate each
virtual page into a physical page. The page size defined by a page translation entry determines the
size of the page number and offset fields. For example, when a 4 kB page size is used, the page-
number field is 20 bits and the offset field is 12 bits. The VPN in this case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside buffer
(TLB). When translating a virtual address, the MMU examines the page-translation entries for a
matching VPN (PID and EPN). Rather than examining all entries in the table, only entries contained
in the processor TLB are examined. When a page-translation entry is found with a matching VPN,
the corresponding physical-page number is read from the entry and combined with the offset to form
the 32-bit physical address. This physical address is used by the processor to reference memory.

Figure 1-16: Virtual-Mode Address Translation

UG011_37_021302

32-Bit Effective Address
0

Effective Page Number Offset

n 31

0

PID

24 31

Translation Look-Aside
Buffer (TLB) Look-Up

0

Effective Page Number Offset

n+8 39

PID

8

40-Bit Virtual Address

0

Real Page Number Offset

n 31

32-Bit Physical Address

Process ID Register
MicroBlaze Processor Reference Guide www.xilinx.com 49
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in effective-
address regions that overlap each other. This overlap must be resolved by system software if
multitasking is supported. Assigning a PID to each process enables system software to resolve the
overlap by relocating each process into a unique region of virtual-address space. The virtual-address
space mappings enable independent translation of each process into the physical-address space.

Page-Translation Table
The page-translation table is a software-defined and software-managed data structure containing
page translations. The requirement for software-managed page translation represents an
architectural trade-off targeted at embedded-system applications. Embedded systems tend to have a
tightly controlled operating environment and a well-defined set of application software. That
environment enables virtual-memory management to be optimized for each embedded system in the
following ways:

• The page-translation table can be organized to maximize page-table search performance (also
called table walking) so that a given page-translation entry is located quickly. Most general-
purpose processors implement either an indexed page table (simple search method, large page-
table size) or a hashed page table (complex search method, small page-table size). With
software table walking, any hybrid organization can be employed that suits the particular
embedded system. Both the page-table size and access time can be optimized.

• Independent page sizes can be used for application modules, device drivers, system service
routines, and data. Independent page-size selection enables system software to more efficiently
use memory by reducing fragmentation (unused memory). For example, a large data structure
can be allocated to a 16 MB page and a small I/O device-driver can be allocated to a 1 KB
page.

• Page replacement can be tuned to minimize the occurrence of missing page translations. As
described in the following section, the most-frequently used page translations are stored in the
translation look-aside buffer (TLB). Software is responsible for deciding which translations are
stored in the TLB and which translations are replaced when a new translation is required. The
replacement strategy can be tuned to avoid thrashing, whereby page-translation entries are
constantly being moved in and out of the TLB. The replacement strategy can also be tuned to
prevent replacement of critical-page translations, a process sometimes referred to as page
locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data page-
translation entries accessible by the MMU. Software uses the unified TLB to cache a subset of
instruction and data page-translation entries for use by the MMU. Software is responsible for
reading entries from the page-translation table in system memory and storing them in the TLB. The
following section describes the unified TLB in more detail. Internally, the MMU also contains
shadow TLBs for instructions and data, with sizes configurable by C_MMU_ITLB_SIZE and
C_MMU_DTLB_SIZE respectively.

These shadow TLBs are managed entirely by the processor (transparent to software) and are used to
minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address translation
when the processor is running in virtual mode, memory protection, and storage control. Each entry
within the TLB contains the information necessary to identify a virtual page (PID and effective page
number), specify its translation into a physical page, determine the protection characteristics of the
page, and specify the storage attributes associated with the page.
50 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Virtual-Memory Management R
The MicroBlaze TLB is physically implemented as three separate TLBs:

• Unified TLB—The UTLB contains 64 entries and is pseudo-associative. Instruction-page and
data-page translation can be stored in any UTLB entry. The initialization and management of
the UTLB is controlled completely by software.

• Instruction Shadow TLB—The ITLB contains instruction page-translation entries and is fully
associative. The page-translation entries stored in the ITLB represent the most-recently
accessed instruction-page translations from the UTLB. The ITLB is used to minimize
contention between instruction translation and UTLB-update operations. The initialization and
management of the ITLB is controlled completely by hardware and is transparent to software.

• Data Shadow TLB—The DTLB contains data page-translation entries and is fully associative.
The page-translation entries stored in the DTLB represent the most-recently accessed data-
page translations from the UTLB. The DTLB is used to minimize contention between data
translation and UTLB-update operations. The initialization and management of the DTLB is
controlled completely by hardware and is transparent to software.

Figure 1-17 provides the translation flow for TLB.

Figure 1-17: TLB Address Translation Flow

Generate I-side
Effective Address

Generate D-side
Effective Address

No Translation Perform ITLB
Look-Up

Perform DTLB
Look-Up No Translation

Translation Disabled
(MSR[VM]=0)

Translation Enabled
(MSR[VM]=1)

Translation Enabled
(MSR[VM]=1)

Translation Disabled
(MSR[VM]=0)

Perform UTLB
Look-Up

Extract Real
Address from ITLB

Extract Real
Address from DTLB

ITLB Hit ITLB Miss DTLB Miss DTLB Hit

UTLB Hit UTLB Miss

I-Side TLB Miss
or

D-Side TLB Miss
Exception

Extract Real
Address from UTLB

Route Address
to ITLB

Route Address
to DTLB

Continue I-cache
Access

Continue I-cache
or D-cache
Access
MicroBlaze Processor Reference Guide www.xilinx.com 51
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
TLB Entry Format
Figure 1-18 shows the format of a TLB entry. Each TLB entry is 68 bits and is composed of two
portions: TLBLO (also referred to as the data entry), and TLBHI (also referred to as the tag entry).

TLBLO:
0 22 23 24 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
RPN EX WR ZSEL W I M G

TLBHI:
0 22 25 26 27 28 35

↑ ↑ ↑ ↑ ↑ ↑
TAG SIZE V E U0 TID

Figure 1-18: TLB Entry Format

The TLB entry contents are described in Table 1-18, page 33 and Table 1-19, page 35.

The fields within a TLB entry are categorized as follows:

• Virtual-page identification (TAG, SIZE, V, TID)—These fields identify the page-translation
entry. They are compared with the virtual-page number during the translation process.

• Physical-page identification (RPN, SIZE)—These fields identify the translated page in
physical memory.

• Access control (EX, WR, ZSEL)—These fields specify the type of access allowed in the page
and are used to protect pages from improper accesses.

• Storage attributes (W, I, M, G, E, U0)—These fields specify the storage-control attributes, such
as whether a page is cacheable and how bytes are ordered (endianness).

Table 1-33 shows the relationship between the TLB-entry SIZE field and the translated page size.
This table also shows how the page size determines which address bits are involved in a tag
comparison, which address bits are used as a page offset, and which bits in the physical page number
are used in the physical address.

Page
Size

SIZE
(TLBHI
Field)

Tag Comparison
Bit Range Page Offset

Physical
Page

Number

RPN Bits
Clear to 0

1 KB 000 TAG[0:21] - Address[0:21] Address[22:31] RPN[0:21] -

4 KB 001 TAG[0:19] - Address[0:19] Address[20:31] RPN[0:19] 20:21

16 KB 010 TAG[0:17] - Address[0:17] Address[18:31] RPN[0:17] 18:21

64 KB 011 TAG[0:15] - Address[0:15] Address[16:31] RPN[0:15] 16:21

256
KB

100 TAG[0:13] - Address[0:13] Address[14:31] RPN[0:13] 14:21

1 MB 101 TAG[0:11] - Address[0:11] Address[12:31] RPN[0:11] 12:21

4 MB 110 TAG[0:9] - Address[0:9] Address[10:31] RPN[0:9] 10:21

16 MB 111 TAG[0:7] - Address[0:7] Address[8:31] RPN[0:7] 8:21

Table 1-33: Page-Translation Bit Ranges by Page Size
52 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Virtual-Memory Management R
When assigning sizes to instruction pages, software must be careful to avoid creating the
opportunity for instruction-cache synonyms.

TLB Access
When the MMU translates a virtual address (the combination of PID and effective address) into a
physical address, it first examines the appropriate shadow TLB for the page translation entry. If an
entry is found, it is used to access physical memory. If an entry is not found, the MMU examines the
UTLB for the entry. A delay occurs each time the UTLB must be accessed due to a shadow TLB
miss. The miss latency ranges from 2-32 cycles. The DTLB has priority over the ITLB if both
simultaneously access the UTLB.

Figure 1-19, page 54 shows the logical process the MMU follows when examining a page-
translation entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

• The entry is valid
• The TAG field in the entry matches the effective address EPN under the control of the SIZE

field in the entry
• The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an exception,
described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID. Only the
TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-independent
translation. Pages that are accessed globally by all processes should be assigned a TID value of
0x00. A PID value of 0x00 does not identify a process that can access any page. When PID=0x00,
a page-translation hit only occurs when TID=0x00. It is possible for software to load the TLB with
multiple entries that match an EA[EPN] and PID combination. However, this is considered a
programming error and results in undefined behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some or all of
the bits in this field are used, depending on the value of the SIZE field (see Table 1-33). For
example, if the SIZE field specifies a 256 kB page size, RPN[0:13] represents the physical page
number and is used to form the physical address. RPN[14:21] is not used, and software must clear
those bits to 0 when initializing the TLB entry. The remainder of the physical address is taken from
the page-offset portion of the EA. If the page size is 256 kB, the 32-bit physical address is formed by
concatenating RPN[0:13] with bits14:31 of the effective address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields. These
fields indicate whether the currently executing program is allowed to perform the requested memory
access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to access the
page. The storage-attribute fields specify the caching policy for memory accesses.

TLB Access Failures
A TLB-access failure causes an exception to occur. This interrupts execution of the instruction that
caused the failure and transfers control to an interrupt handler to resolve the failure. A TLB access
can fail for two reasons:
MicroBlaze Processor Reference Guide www.xilinx.com 53
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
• A matching TLB entry was not found, resulting in a TLB miss
• A matching TLB entry was found, but access to the page was prevented by either the storage

attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to 0. In real mode,
all address translation and memory-protection checks performed by the MMU are disabled. After
system software initializes the UTLB with page-translation entries, management of the MicroBlaze
UTLB is usually performed using interrupt handlers running in real mode.

Table 1-19 diagrams the general process for examining a TLB entity.

The following sections describe the conditions under which exceptions occur due to TLB access
failures.

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access to a
page is not permitted for any of the following reasons:

Figure 1-19: General Process for Examining a TLB Entry

UG011_41_033101

Check Access

Read TLBLO[RPN]
using TLBHI[SIZE]

TLBHI[V]=1

TLBHI[TID]=0x00

Compare
TLBHI[TID] with PID

Compare
TLBHI[TAG] with EA[EPN]

using TLBHI[SIZE]

Yes

NoYes

Match

Match (TLB Hit)

Check for
Guarded Storage

Instruction FetchData Reference

Allowed

Not Guarded

Extract Offset from EA
using TLBHI[SIZE]

Generate Physical Address
from TLBLO[RPN] and Offset

TLB-Entry MissNo Match

Storage ViolationGuarded

Access ViolationNot Allowed

No TLB-Entry Miss

TLB-Entry MissNo Match
54 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Virtual-Memory Management R
• From user mode:
♦ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00). This

applies to load and store instructions.
♦ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise

overridden by the zone field (ZPR[Zn]‚ 11). This applies to store instructions.
• From privileged mode:

♦ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when access
to a page is not permitted for any of the following reasons:

• From user mode:
♦ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).
♦ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise

overridden by the zone field (ZPR[Zn]‚ 11).
♦ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

• From privileged mode:
♦ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise

overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11).
♦ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid, matching
TLB entry was not found in the TLB (shadow and UTLB). Any load or store instruction can cause
a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction fetch can cause
an instruction TLB-miss exception.

Access Protection
System software uses access protection to protect sensitive memory locations from improper access.
System software can restrict memory accesses for both user-mode and privileged-mode software.
Restrictions can be placed on reads, writes, and instruction fetches. Access protection is available
when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for a virtual
page specifies the type of access allowed to the page. The TLB entry also specifies a zone-protection
field in the zone-protection register that is used to override the access controls specified by the TLB
entry.

TLB Access-Protection Controls
Each TLB entry controls three types of access:
MicroBlaze Processor Reference Guide www.xilinx.com 55
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
• Process—Processes are protected from unauthorized access by assigning a unique process ID
(PID) to each process. When system software starts a user-mode application, it loads the PID
for that application into the PID register. As the application executes, memory addresses are
translated using only TLB entries with a TID field in Translation Look-Aside Buffer High
(TLBHI) that matches the PID. This enables system software to restrict accesses for an
application to a specific area in virtual memory.
A TLB entry with TID=0x00 represents a process-independent translation. Pages that are
accessed globally by all processes should be assigned a TID value of 0x00.

• Execution—The processor executes instructions only if they are fetched from a virtual page
marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0 prevents execution of
instructions fetched from a page, instead causing an instruction-storage interrupt (ISI) to occur.
The ISI does not occur when the instruction is fetched, but instead occurs when the instruction
is executed. This prevents speculatively fetched instructions that are later discarded (rather
than executed) from causing an ISI.

The zone-protection register can override execution protection.

• Read/Write—Data is written only to virtual pages marked as writable (TLBLO[WR]=1).
Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only page
causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs running in
user mode can be prevented from reading a page. Privileged programs always have read access to a
page.

Zone Protection
Zone protection is used to override the access protection specified in a TLB entry. Zones are an
arbitrary grouping of virtual pages with common access protection. Zones can contain any number
of pages specifying any combination of page sizes. There is no requirement for a zone to contain
adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection override
applied to each of 16 possible zones. The protection override for a zone is encoded in the ZPR as a
2-bit field. The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects one of the 16 zone
fields from the ZPR (Z0–Z15). For example, zone Z5 is selected when ZSEL = 0101.

Changing a zone field in the ZPR applies a protection override across all pages in that zone. Without
the ZPR, protection changes require individual alterations to each page translation entry within the
zone.

UTLB Management
The UTLB serves as the interface between the processor MMU and memory-management software.
System software manages the UTLB to tell the MMU how to translate virtual addresses into
physical addresses. When a problem occurs due to a missing translation or an access violation, the
MMU communicates the problem to system software using the exception mechanism. System
software is responsible for providing interrupt handlers to correct these problems so that the MMU
can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively. These
instructions use the TLBX register index (numbered 0 to 63) corresponding to one of the 64 entries
56 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Virtual-Memory Management R
in the UTLB. The tag and data portions are read and written separately, so software must execute
two MFS or MTS instructions to completely access an entry. The UTLB is searched for a specific
translation using the TLBSX register. TLBSX locates a translation using an effective address and
loads the corresponding UTLB index into the TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the tag
portion of a TLB entry (TLBHI[V]).

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

• In a virtual-memory environment, software and data often consume more memory than is
physically available. Some of the software and data pages must be stored outside physical
memory, such as on a hard drive, when they are not used. Ideally, the most-frequently used
pages stay in physical memory and infrequently used pages are stored elsewhere.

• When pages in physical-memory are replaced to make room for new pages, it is important to
know whether the replaced (old) pages were modified. If they were modified, they must be
saved prior to loading the replacement (new) pages. If the old pages were not modified, the
new pages can be loaded without saving the old pages.

• A limited number of page translations are kept in the UTLB. The remaining translations must
be stored in the page-translation table. When a translation is not found in the UTLB (due to a
miss), system software must decide which UTLB entry to discard so that the missing
translation can be loaded. It is desirable for system software to replace infrequently used
translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses and page
modifications. MicroBlaze does not track page access and page modification in hardware. Instead,
system software can use the TLB-miss exceptions and the data-storage exception to collect this
information. As the information is collected, it can be stored in a data structure associated with the
page-translation table.

Page-access information is used to determine which pages should be kept in physical memory and
which are replaced when physical-memory space is required. System software can use the valid bit
in the TLB entry (TLBHI[V]) to monitor page accesses. This requires page translations be
initialized as not valid (TLBHI[V]=0) to indicate they have not been accessed. The first attempt to
access a page causes a TLB-miss exception, either because the UTLB entry is marked not valid or
because the page translation is not present in the UTLB. The TLB-miss handler updates the UTLB
with a valid translation (TLBHI[V]=1). The set valid bit serves as a record that the page and its
translation have been accessed. The TLB-miss handler can also record the information in a separate
data structure associated with the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten with a
new page or the old page must first be stored to a hard disk. System software can use the write-
protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This requires page
translations be initialized as read-only (TLBLO[WR]=0) to indicate they have not been modified.
The first attempt to write data into a page causes a data-storage exception, assuming the page has
already been accessed and marked valid as described above. If software has permission to write into
the page, the data-storage handler marks the page as writable (TLBLO[WR]=1) and returns. The set
write-protection bit serves as a record that a page has been modified. The data-storage handler can
also record this information in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new process is
started.
MicroBlaze Processor Reference Guide www.xilinx.com 57
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Reset, Interrupts, Exceptions, and Break
MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The following
section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset
2. Hardware Exception
3. Non-maskable Break
4. Break
5. Interrupt
6. User Vector (Exception)

Table 1-34 defines the memory address locations of the associated vectors and the hardware
enforced register file locations for return addresses. Each vector allocates two addresses to allow full
address range branching (requires an IMM followed by a BRAI instruction). The address range 0x28
to 0x4F is reserved for future software support by Xilinx. Allocating these addresses for user
applications is likely to conflict with future releases of EDK support software.

Event Vector Address Register File
Return Address

Reset

User Vector (Exception)

Interrupt

Break: Non-maskable hardware

Break: Hardware

Break: Software

Hardware Exception

Reserved by Xilinx for future use

Reset
When a Reset or Debug_Rst (1) occurs, MicroBlaze flushes the pipeline and starts fetching
instructions from the reset vector (address 0x0). Both external reset signals are active high and
should be asserted for a minimum of 16 cycles.

Equivalent Pseudocode
PC ← 0x00000000
MSR ← C_RESET_MSR (see “MicroBlaze Core Configurability” in Chapter 2)
EAR ← 0; ESR ← 0; FSR ← 0
PID ← 0; ZPR ← 0; TLBX ← 0

Table 1-34: Vectors and Return Address Register File Location

0x00000000 - 0x00000004 -

0x00000008 - 0x0000000C Rx

0x00000010 - 0x00000014 R14

0x00000018 - 0x0000001C R16

0x00000020 - 0x00000024 R17 or BTR

0x00000028 - 0x0000004F -

1. Reset input controlled by the XMD debugger via MDM.
58 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Reset, Interrupts, Exceptions, and Break R
Hardware Exceptions
MicroBlaze can be configured to trap the following internal error conditions: illegal instruction,
instruction and data bus error, and unaligned access. The divide by zero exception can only be
enabled if the processor is configured with a hardware divider (C_USE_DIV=1). When configured
with a hardware floating point unit (C_USE_FPU>0), it can also trap the following floating point
specific exceptions: underflow, overflow, float division-by-zero, invalid operation, and
denormalized operand error.

When configured with a hardware Memory Management Unit, it can also trap the following
memory management specific exceptions: Illegal Instruction Exception, Data Storage Exception,
Instruction Storage Exception, Data TLB Miss Exception, and Instruction TLB Miss Exception.

A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware exception
vector (address 0x20). The execution stage instruction in the exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

• For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB
Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception upon
return. The value is adjusted to return to a preceding IMM instruction, if any. If the exception is
caused by an instruction in a branch delay slot, the value is adjusted to return to the branch
instruction, including adjustment for a preceding IMM instruction, if any.

• For all other exceptions the register R17 is loaded with the program counter value of the
subsequent instruction, unless the exception is caused by an instruction in a branch delay slot.
If the exception is caused by an instruction in a branch delay slot, the ESR[DS] bit is set. In
this case the exception handler should resume execution from the branch target address stored
in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing the
RTED, RTBD, and RTID instructions.

Exception Causes
• Fast Simplex Link Exception

The Fast Simplex Link (FSL) exception is caused by executing a get or getd instruction with
the ‘e’ bit set to ‘1’ when there is a control bit mismatch.

• Instruction Bus Exception
The instruction Processor Local Bus(PLB) exception is caused by an active error signal from
the slave (IPLB_MRdErr) or timeout signal from the arbiter (IPLB_MTimeout). The
instruction On-chip Peripheral Bus exception is caused by an active error signal from the slave
(IOPB_errAck) or timeout signal from the arbiter (IOPB_timeout). The instructions side
local memory (ILMB) and CacheLink (IXCL) interfaces cannot cause instruction bus
exceptions.

• Illegal Opcode Exception
The illegal opcode exception is caused by an instruction with an invalid major opcode (bits 0
through 5 of instruction). Bits 6 through 31 of the instruction are not checked. Optional
processor instructions are detected as illegal if not enabled. If the optional feature
C_OPCODE_0x0_ILLEGAL is enabled, an illegal opcode exception is also caused if the
instruction is equal to 0x00000000.
MicroBlaze Processor Reference Guide www.xilinx.com 59
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
• Data Bus Exception
The data Processor Local Bus exception is caused by an active error signal from the slave
(DPLB_MRdErr or DPLB_MWrErr) or timeout signal from the arbiter (DPLB_MTimeout).
The data On-chip Peripheral Bus exception is caused by an active error signal from the slave
(DOPB_errAck) or timeout signal from the arbiter (DOPB_timeout). The data side local
memory (DLMB) and CacheLink (DXCL) interfaces can not cause data bus exceptions.

• Unaligned Exception
The unaligned exception is caused by a word access where the address to the data bus has bits
30 or 31 set, or a half-word access with bit 31 set.

• Divide by Zero Exception
The divide-by-zero exception is caused by an integer division (idiv or idivu) where the divisor
is zero.

• FPU Exception
An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal operation, or
denormalized operand occurring with a floating point instruction.

♦ Underflow occurs when the result is denormalized.
♦ Overflow occurs when the result is not-a-number (NaN).
♦ The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero when rB

is not infinite.
♦ Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero

operand combinations.
• Privileged Instruction Exception

The Privileged Instruction exception is caused by an attempt to execute a privileged instruction
in User Mode.

• Data Storage Exception
The Data Storage exception is caused by an attempt to access data in memory that results in a
memory-protection violation.

• Instruction Storage Exception
The Instruction Storage exception is caused by an attempt to access instructions in memory that
results in a memory-protection violation.

• Data TLB Miss Exception
The Data TLB Miss exception is caused by an attempt to access data in memory, when a valid
Translation Look-Aside Buffer entry is not present, and virtual protected mode is enabled.

• Instruction TLB Miss Exception
The Instruction TLB Miss exception is caused by an attempt to access instructions in memory,
when a valid Translation Look-Aside Buffer entry is not present, and virtual protected mode is
enabled.
60 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Reset, Interrupts, Exceptions, and Break R
Equivalent Pseudocode
ESR[DS] ← exception in delay slot
if ESR[DS] then

BTR ← branch target PC
if MMU exception then

if branch preceeded by IMM then
r17 ← PC - 8

else
r17 ← PC - 4

else
r17 ← invalid value

else if MMU exception then
if instruction preceeded by IMM then

r17 ← PC - 4
else

r17 ← PC
else

r17 ← PC + 4
PC ← 0x00000020
MSR[EE] ← 0, MSR[EIP]← 1
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
ESR[EC] ← exception specific value
ESR[ESS]← exception specific value
EAR ← exception specific value
FSR ← exception specific value

Breaks
There are two kinds of breaks:

• Hardware (external) breaks
• Software (internal) breaks

Hardware Breaks
Hardware breaks are performed by asserting the external break signal (for example, the Ext_BRK
and Ext_NM_BRK input ports). On a break, the instruction in the execution stage completes while
the instruction in the decode stage is replaced by a branch to the break vector (address 0x18). The
break return address (the PC associated with the instruction in the decode stage at the time of the
break) is automatically loaded into general purpose register R16. MicroBlaze also sets the Break In
Progress (BIP) flag in the Machine Status Register (MSR).

A normal hardware break (for example, the Ext_BRK input port) is only handled when there is no
break in progress (for example, MSR[BIP] is set to 0). The Break In Progress flag disables
interrupts. A non-maskable break (for example, the Ext_NM_BRK input port) is always handled
immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

Software Breaks
To perform a software break, use the brk and brki instructions. Refer to Chapter 4, “MicroBlaze
Instruction Set Architecture” for detailed information on software breaks.
MicroBlaze Processor Reference Guide www.xilinx.com 61
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Latency
The time it takes MicroBlaze to enter a break service routine from the time the break occurs depends
on the instruction currently in the execution stage and the latency to the memory storing the break
vector.

Equivalent Pseudocode
r16 ← PC
PC ← 0x00000018
MSR[BIP] ← 1
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0

Interrupt
MicroBlaze supports one external interrupt source (connected to the Interrupt input port). The
processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine Status Register
(MSR) is set to 1. On an interrupt, the instruction in the execution stage completes while the
instruction in the decode stage is replaced by a branch to the interrupt vector (address 0x10). The
interrupt return address (the PC associated with the instruction in the decode stage at the time of the
interrupt) is automatically loaded into general purpose register R14. In addition, the processor also
disables future interrupts by clearing the IE bit in the MSR. The IE bit is automatically set again
when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (BIP) or exception in
progress (EIP) bits in the MSR are set to 1.

Latency
The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an interrupt
occurs, depends on the configuration of the processor and the latency of the memory controller
storing the interrupt vectors. If MicroBlaze is configured to have a hardware divider, the largest
latency happens when an interrupt occurs during the execution of a division instruction.

Equivalent Pseudocode
r14 ← PC
PC ← 0x00000010
MSR[IE] ← 0
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0

User Vector (Exception)
The user exception vector is located at address 0x8. A user exception is caused by inserting a
‘BRALID Rx,0x8’ instruction in the software flow. Although Rx could be any general purpose
register, Xilinx recommends using R15 for storing the user exception return address, and to use the
RTSD instruction to return from the user exception handler.

Pseudocode
rx ← PC
PC ← 0x00000008
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
62 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instruction Cache R
Instruction Cache

Overview
MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

The instruction cache has the following features:

• Direct mapped (1-way associative)
• User selectable cacheable memory address range
• Configurable cache and tag size
• Caching over CacheLink (XCL) interface
• Option to use 4 or 8 word cache-line
• Cache on and off controlled using a bit in the MSR
• Optional WIC instruction to invalidate instruction cache lines

General Instruction Cache Functionality
When the instruction cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable segment is determined by two
parameters: C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR. All addresses within this
range correspond to the cacheable address segment. All other addresses are non-cacheable.

The cacheable instruction address consists of two parts: the cache address, and the tag address. The
MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This corresponds to a cache
address of between 6 and 16 bits. The tag address together with the cache address should match the
full address of cacheable memory. When selecting cache sizes below 2 kB, distributed RAM is used
to implement the Tag RAM and Instruction RAM.

For example: in a MicroBlaze configured with C_ICACHE_BASEADDR= 0x00300000,
C_ICACHE_HIGHADDR=0x0030ffff, C_CACHE_BYTE_SIZE=4096, and
C_ICACHE_LINELEN=8; the cacheable memory of 64 kB uses 16 bits of byte address, and the 4
kB cache uses 12 bits of byte address, thus the required address tag width is: 16-12=4 bits. The total
number of block RAM primitives required in this configuration is: 2 RAMB16 for storing the 1024
instruction words, and 1 RAMB16 for 128 cache line entries, each consisting of: 4 bits of tag, 8
word-valid bits, 1 line-valid bit. In total 3 RAMB16 primitives.

Figure 1-20, page 64 shows the organization of Instruction Cache.
MicroBlaze Processor Reference Guide www.xilinx.com 63
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR

Instruction Cache Operation
For every instruction fetched, the instruction cache detects if the instruction address belongs to the
cacheable segment. If the address is non-cacheable, the cache controller ignores the instruction and
lets the PLB, OPB or LMB complete the request. If the address is cacheable, a lookup is performed
on the tag memory to check if the requested address is currently cached. The lookup is successful if:
the word and line valid bits are set, and the tag address matches the instruction address tag segment.
On a cache miss, the cache controller requests the new instruction over the instruction CacheLink
(IXCL) interface, and waits for the memory controller to return the associated cache line.

Instruction Cache Software Support

MSR Bit
The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You can invalidate
cache lines using the WIC instruction or using the hardware debug logic of MicroBlaze.

WIC Instruction
The optional WIC instruction (C_ALLOW_ICACHE_WR=1) is used to invalidate cache lines in the
instruction cache from an application. For a detailed description, refer to Chapter 4, “MicroBlaze
Instruction Set Architecture”. The cache must be disabled (MSR[ICE]=0) when the instruction is
executed.

Figure 1-20: Instruction Cache Organization

Instruction Address Bits
0 30 31

Cache AddressTag Address --

Tag

Instruction
 RAM

RAM
Line Addr

Word Addr

=
Tag

Valid (word and line)
Cache_Hit

Cache_instruction_data
64 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Data Cache R
Data Cache

Overview
MicroBlaze can be used with an optional data cache for improved performance. The cached memory
range must not include addresses in the LMB address range.

The data cache has the following features

• Direct mapped (1-way associative)
• Write-through
• User selectable cacheable memory address range
• Configurable cache size and tag size
• Caching over CacheLink (XCL) interface
• Option to use 4 or 8 word cache-lines
• Cache on and off controlled using a bit in the MSR
• Optional WDC instruction to invalidate data cache lines

General Data Cache Functionality
When the data cache is used, the memory address space is split into two segments: a cacheable
segment and a non-cacheable segment. The cacheable area is determined by two parameters:
C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses within this range correspond
to the cacheable address space. All other addresses are non-cacheable.

The cacheable data address consists of two parts: the cache address, and the tag address. The
MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to a cache
address of between 6 and 16 bits. The tag address together with the cache address should match the
full address of cacheable memory. When selecting cache sizes below 2 kB, distributed RAM is used
to implement the Tag RAM and Data RAM.

Figure 1-20 shows the Data Cache Organization.

Figure 1-21: Data Cache Organization

Data Address Bits
0 30 31

Cache Word AddressTag Address --

Tag

Data
 RAM

RAM
Addr

Addr

=Tag

Valid Cache_Hit

Cache_data

Load_Instruction
MicroBlaze Processor Reference Guide www.xilinx.com 65
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
For example, in a MicroBlaze configured with C_ICACHE_BASEADDR= 0x00400000,
C_ICACHE_HIGHADDR=0x00403fff, C_CACHE_BYTE_SIZE=2048, and
C_ICACHE_LINELEN=4; the cacheable memory of 16 kB uses 14 bits of byte address, and the 2
kB cache uses 11 bits of byte address, thus the required address tag width is 14-11=3 bits. The total
number of block RAM primitives required in this configuration is 1 RAMB16 for storing the 512
instruction words, and 1 RAMB16 for 128 cache line entries, each consisting of 3 bits of tag, 4
word-valid bits, 1 line-valid bit. In total, 2 RAMB16 primitives.

Data Cache Operation
The MicroBlaze data cache implements a write-through protocol. Provided that the cache is
enabled, a store to an address within the cacheable range generates an equivalent byte, halfword, or
word write over the data CacheLink (DXCL) to external memory. The write also updates the cached
data if the target address word is in the cache (for example, the write is a cache-hit). A write cache-
miss does not load the associated cache line into the cache.

Provided that the cache is enabled a load from an address within the cacheable range triggers a check
to determine if the requested data is currently cached. If it is (for example, on a cache-hit) the
requested data is retrieved from the cache. If not (for example, on a cache-miss) the address is
requested over data CacheLink (DXCL), and the processor pipeline stalls until the cache line
associated to the requested address is returned from the external memory controller.

Data Cache Software Support

MSR Bit
The DCE bit in the MSR controls whether or not the cache is enabled. When disabling caches the
user must ensure that all the prior writes within the cacheable range have been completed in external
memory before reading back over PLB or OPB. This can be done by writing to a semaphore
immediately before turning off caches, and then in a loop poll until it has been written.

The contents of the cache are preserved when the cache is disabled.

WDC Instruction
The optional WDC instruction (C_ALLOW_DCACHE_WR=1) is used to invalidate cache lines in the
data cache from an application. For a detailed description, please refer to Chapter 4, “MicroBlaze
Instruction Set Architecture”.
66 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Floating Point Unit (FPU) R
Floating Point Unit (FPU)

Overview
The MicroBlaze floating point unit is based on the IEEE 754 standard:

• Uses IEEE 754 single precision floating point format, including definitions for infinity, not-a-
number (NaN), and zero

• Supports addition, subtraction, multiplication, division, comparison, conversion and square
root instructions

• Implements round-to-nearest mode
• Generates sticky status bits for: underflow, overflow, and invalid operation
For improved performance, the following non-standard simplifications are made:
• Denormalized (1) operands are not supported. A hardware floating point operation on a

denormalized number returns a quiet NaN and sets the denormalized operand error bit in FSR;
see "Floating Point Status Register (FSR)" on page 30

• A denormalized result is stored as a signed 0 with the underflow bit set in FSR. This method is
commonly referred to as Flush-to-Zero (FTZ)

• An operation on a quiet NaN returns the fixed NaN: 0xFFC00000, rather than one of the NaN
operands

• Overflow as a result of a floating point operation always returns signed ∞, even when the
exception is trapped

Format
An IEEE 754 single precision floating point number is composed of the following three fields:
1. 1-bit sign
2. 8-bit biased exponent
3. 23-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 32 bit word as defined in Figure 1-22:

0 1 9 31

↑ ↑ ↑

The value of a floating point number v in MicroBlaze has the following interpretation:
1. If exponent = 255 and fraction <> 0, then v= NaN, regardless of the sign bit
2. If exponent = 255 and fraction = 0, then v= (-1)sign * ∞
3. If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) * (1.fraction)
4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-126 * (0.fraction)
5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0

1. Numbers that are so close to 0, that they cannot be represented with full precision, for example, any number n that falls in
the following ranges: (1.17549*10-38 > n > 0), or (0 > n > -1.17549 * 10-38)

sign exponent fraction

Figure 1-22: IEEE 754 Single Precision Format
MicroBlaze Processor Reference Guide www.xilinx.com 67
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316&page=0

Chapter 1: MicroBlaze ArchitectureR
For practical purposes only 3 and 5 are useful, while the others all represent either an error or
numbers that can no longer be represented with full precision in a 32 bit format.

Rounding
The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”, specified in
IEEE 754. By definition, the result of any floating point operation should return the nearest single
precision value to the infinitely precise result. If the two nearest representable values are equally
near, then the one with its least significant bit zero is returned.

Operations
All MicroBlaze FPU operations use the processors general purpose registers rather than a dedicated
floating point register file, see “General Purpose Registers”.

Arithmetic
The FPU implements the following floating point operations:

• addition, fadd
• subtraction, fsub
• multiplication, fmul
• division, fdiv
• square root, fsqrt (available if C_USE_FPU = 2)

Comparison
The FPU implements the following floating point comparisons:

• compare less-than, fcmp.lt
• compare equal, fcmp.eq
• compare less-or-equal, fcmp.le
• compare greater-than, fcmp.gt
• compare not-equal, fcmp.ne
• compare greater-or-equal, fcmp.ge
• compare unordered, fcmp.un (used for NaN)

Conversion
The FPU implements the following conversions (available if C_USE_FPU = 2):

• convert from signed integer to floating point, flt
• convert from floating point to signed integer, fint

Exceptions
The floating point unit uses the regular hardware exception mechanism in MicroBlaze. When
enabled, exceptions are thrown for all the IEEE standard conditions: underflow, overflow, divide-
by-zero, and illegal operation, as well as for the MicroBlaze specific exception: denormalized
operand error.

A floating point exception inhibits the write to the destination register (Rd). This allows a floating
point exception handler to operate on the uncorrupted register file.
68 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Fast Simplex Link (FSL) R
Fast Simplex Link (FSL)
MicroBlaze can be configured with up to 16 Fast Simplex Link (FSL) interfaces, each consisting of
one input and one output port. The FSL channels are dedicated uni-directional point-to-point data
streaming interfaces. For detailed information on the FSL interface, please refer to the FSL Bus data
sheet (DS449).

The FSL interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in the MicroBlaze ISA is used to
transfer information from an FSL port to a general purpose register. The put instruction is used to
transfer data in the opposite direction. Both instructions come in 4 flavors: blocking data, non-
blocking data, blocking control, and non-blocking control. For a detailed description of the get and
put instructions, please refer to Chapter 4, “MicroBlaze Instruction Set Architecture”.

Hardware Acceleration using FSL
Each FSL provides a low latency dedicated interface to the processor pipeline. Thus they are ideal
for extending the processors execution unit with custom hardware accelerators. A simple example is
illustrated in Figure 1-23.

MicroBlaze

Custom HW Accelerator
FSLx// Configure fx

cput Rc,RFSLx

// Store operands

put Ra, RFSLx // op 1

put Rb, RFSLx // op 2

// Load result

get Rt, RFSLx

Example code:

Register
File

ConfigReg

Op1Reg Op2Reg

fx

ResultReg

FSLx

Figure 1-23: FSL Used with HW Accelerated Function fx
This method is similar to extending the ISA with custom instructions, but has the benefit of not
making the overall speed of the processor pipeline dependent on the custom function. Also, there are
no additional requirements on the software tool chain associated with this type of functional
extension.
MicroBlaze Processor Reference Guide www.xilinx.com 69
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 1: MicroBlaze ArchitectureR
Debug and Trace

Debug Overview
MicroBlaze features a debug interface to support JTAG based software debugging tools (commonly
known as BDM or Background Debug Mode debuggers) like the Xilinx Microprocessor Debug
(XMD) tool. The debug interface is designed to be connected to the Xilinx Microprocessor Debug
Module (MDM) core, which interfaces with the JTAG port of Xilinx FPGAs. Multiple MicroBlaze
instances can be interfaced with a single MDM to enable multiprocessor debugging. The debugging
features include:

• Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

• External processor control enables debug tools to stop, reset, and single step MicroBlaze
• Read from and write to: memory, general purpose registers, and special purpose register,

except EAR, EDR, ESR, BTR and PVR0 - PVR11, which can only be read
• Support for multiple processors
• Write to instruction and data caches

Trace Overview
The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis. Xilinx recommends that users only use the trace interface through Xilinx
developed analysis cores. This interface is not guaranteed to be backward compatible in future
releases of MicroBlaze.
70 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

R

Chapter 2

MicroBlaze Signal Interface Description

This chapter describes the types of signal interfaces that can be used to connect MicroBlaze™. This
chapter contains the following sections:

• “Overview”
• “MicroBlaze I/O Overview”
• “On-Chip Peripheral Bus (OPB) Interface Description”
• “Local Memory Bus (LMB) Interface Description”
• “Fast Simplex Link (FSL) Interface Description”
• “Xilinx CacheLink (XCL) Interface Description”
• “Debug Interface Description”
• “Trace Interface Description”
• “MicroBlaze Core Configurability”

Overview
The MicroBlaze core is organized as a Harvard architecture with separate bus interface units for data
and instruction accesses. The following three memory interfaces are supported: Local Memory Bus
(LMB), the IBM Processor Local Bus (PLB) or the IBM
On-chip Peripheral Bus (OPB), and Xilinx® CacheLink (XCL). The LMB provides single-cycle
access to on-chip dual-port block RAM. The PLB and OPB interfaces provide a connection to both
on-chip and off-chip peripherals and memory. The CacheLink interface is intended for use with
specialized external memory controllers. MicroBlaze also supports up to 16 Fast Simplex Link
(FSL) ports, each with one master and one slave FSL interface.

Features
MicroBlaze can be configured with the following bus interfaces:

• A 32-bit version of the PLB V4.6 interface (see IBM’s 128-Bit Processor Local Bus
Architectural Specifications, Version 4.6).

• A 32-bit version of the OPB V2.0 bus interface (see IBM’s 64-Bit On-Chip Peripheral Bus,
Architectural Specifications, Version 2.0)

• LMB provides simple synchronous protocol for efficient block RAM transfers
• FSL provides a fast non-arbitrated streaming communication mechanism
• XCL provides a fast slave-side arbitrated streaming interface between caches and external

memory controllers
• Debug interface for use with the Microprocessor Debug Module (MDM) core
• Trace interface for performance analysis
MicroBlaze Processor Reference Guide www.xilinx.com 71
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
MicroBlaze I/O Overview
The core interfaces shown in Figure 2-1 and the following Table 2-1 are defined as follows:

DPLB: Data interface, Processor LocalBus
DOPB: Data interface, On-chip Peripheral Bus
DLMB: Data interface, Local Memory Bus (BRAM only)

IPLB: Instruction interface, Processor Local Bus
IOPB: Instruction interface, On-chip Peripheral Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)

MFSL 0..15: FSL master interfaces
SFSL 0..15: FSL slave interfaces

IXCL: Instruction side Xilinx CacheLink interface (FSL master/slave pair)
DXCL: Data side Xilinx CacheLink interface (FSL master/slave pair)

Core: Miscellaneous signals for: clock, reset, debug, and trace

Figure 2-1: MicroBlaze Core Block Diagram

DXCL_M

DXCL_S

Data-sideInstruction-side

DOPB

DLMB

IOPB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

MFSL 0..15

SFSL 0..15

IXCL_M

IXCL_S

I-C
ache

D
-C

ache

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

IPLB DPLB

UTLBITLB DTLB

Memory Management Unit (MMU)
72 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

MicroBlaze I/O Overview R
Table 2-1: Summary of MicroBlaze Core I/O

Signal Interface I/O Description

DM_ABus[0:31] DOPB O Data interface OPB address bus

DM_BE[0:3] DOPB O Data interface OPB byte enables

DM_busLock DOPB O Data interface OPB bus lock

DM_DBus[0:31] DOPB O Data interface OPB write data bus

DM_request DOPB O Data interface OPB bus request

DM_RNW DOPB O Data interface OPB read, not write

DM_select DOPB O Data interface OPB select

DM_seqAddr DOPB O Data interface OPB sequential address

DOPB_DBus[0:31] DOPB I Data interface OPB read data bus

DOPB_errAck DOPB I Data interface OPB error acknowledge

DOPB_MGrant DOPB I Data interface OPB bus grant

DOPB_retry DOPB I Data interface OPB bus cycle retry

DOPB_timeout DOPB I Data interface OPB timeout error

DOPB_xferAck DOPB I Data interface OPB transfer acknowledge

IM_ABus[0:31] IOPB O Instruction interface OPB address bus

IM_BE[0:3] IOPB O Instruction interface OPB byte enables

IM_busLock IOPB O Instruction interface OPB bus lock

IM_DBus[0:31] IOPB O Instruction interface OPB write data bus
(always 0x00000000)

IM_request IOPB O Instruction interface OPB bus request

IM_RNW IOPB O Instruction interface OPB read, not write
(tied to IM_select)

IM_select IOPB O Instruction interface OPB select

IM_seqAddr IOPB O Instruction interface OPB sequential address

IOPB_DBus[0:31] IOPB I Instruction interface OPB read data bus

IOPB_errAck IOPB I Instruction interface OPB error
acknowledge

IOPB_MGrant IOPB I Instruction interface OPB bus grant

IOPB_retry IOPB I Instruction interface OPB bus cycle retry

IOPB_timeout IOPB I Instruction interface OPB timeout error

IOPB_xferAck IOPB I Instruction interface OPB transfer
acknowledge
MicroBlaze Processor Reference Guide www.xilinx.com 73
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
DPLB_M_ABort DPLB O Data Interface PLB abort bus request
indicator

DPLB_M_ABus DPLB O Data Interface PLB address bus

DPLB_M_UABus DPLB O Data Interface PLB upper address bus

DPLB_M_BE DPLB O Data Interface PLB byte enables

DPLB_M_busLock DPLB O Data Interface PLB bus lock

DPLB_M_lockErr DPLB O Data Interface PLB lock error indicator

DPLB_M_MSize DPLB O Data Interface PLB master data bus size

DPLB_M_priority DPLB O Data Interface PLB bus request priority

DPLB_M_rdBurst DPLB O Data Interface PLB burst read transfer
indicator

DPLB_M_request DPLB O Data Interface PLB bus request

DPLB_M_RNW DPLB O Data Interface PLB read/not write

DPLB_M_size DPLB O Data Interface PLB transfer size

DPLB_M_TAttribute DPLB O Data Interface PLB Transfer Attribute bus

DPLB_M_type DPLB O Data Interface PLB transfer type

DPLB_M_wrBurst DPLB O Data Interface PLB burst write transfer
indicator

DPLB_M_wrDBus DPLB O Data Interface PLB write data bus

DPLB_MBusy DPLB I Data Interface PLB slave busy indicator

DPLB_MRdErr DPLB I Data Interface PLB slave read error indicator

DPLB_MWrErr DPLB I Data Interface PLB slave write error
indicator

DPLB_MIRQ DPLB I Data Interface PLB slave interrupt indicator

DPLB_MWrBTerm DPLB I Data Interface PLB terminate write burst
indicator

DPLB_MWrDAck DPLB I Data Interface PLB write data acknowledge

DPLB_MAddrAck DPLB I Data Interface PLB address acknowledge

DPLB_MMRdBTerm DPLB I Data Interface PLB terminate read burst
indicator

DPLB_MRdDAck DPLB I Data Interface PLB read data acknowledge

DPLB_MRdDBus DPLB I Data Interface PLB read data bus

DPLB_MRdWdAddr DPLB I Data Interface PLB read word address

DPLB_MRearbitrate DPLB I Data Interface PLB bus rearbitrate indicator

Table 2-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
74 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

MicroBlaze I/O Overview R
DPLB_MSSize DPLB I Data Interface PLB slave data bus size

DPLB_MTimeout DPLB I Data Interface PLB bus timeout

IPLB_M_ABort IPLB O Instruction Interface PLB abort bus request
indicator

IPLB_M_ABus IPLB O Instruction Interface PLB address bus

IPLB_M_UABus IPLB O Instruction Interface PLB upper address bus

IPLB_M_BE IPLB O Instruction Interface PLB byte enables

IPLB_M_busLock IPLB O Instruction Interface PLB bus lock

IPLB_M_lockErr IPLB O Instruction Interface PLB lock error
indicator

IPLB_M_MSize IPLB O Instruction Interface PLB master data bus
size

IPLB_M_priority IPLB O Instruction Interface PLB bus request
priority

IPLB_M_rdBurst IPLB O Instruction Interface PLB burst read transfer
indicator

IPLB_M_request IPLB O Instruction Interface PLB bus request

IPLB_M_RNW IPLB O Instruction Interface PLB read/not write

IPLB_M_size IPLB O Instruction Interface PLB transfer size

IPLB_M_TAttribute IPLB O Instruction Interface PLB Transfer Attribute
bus

IPLB_M_type IPLB O Instruction Interface PLB transfer type

IPLB_M_wrBurst IPLB O Instruction Interface PLB burst write
transfer indicator

IPLB_M_wrDBus IPLB O Instruction Interface PLB write data bus

IPLB_MBusy IPLB I Instruction Interface PLB slave busy
indicator

IPLB_MRdErr IPLB I Instruction Interface PLB slave read error
indicator

IPLB_MWrErr IPLB I Instruction Interface PLB slave write error
indicator

IPLB_MIRQ IPLB I Instruction Interface PLB slave interrupt
indicator

IPLB_MWrBTerm IPLB I Instruction Interface PLB terminate write
burst indicator

IPLB_MWrDAck IPLB I Instruction Interface PLB write data
acknowledge

Table 2-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 75
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
IPLB_MAddrAck IPLB I Instruction Interface PLB address
acknowledge

IPLB_MMRdBTerm IPLB I Instruction Interface PLB terminate read
burst indicator

IPLB_MRdDAck IPLB I Instruction Interface PLB read data
acknowledge

IPLB_MRdDBus IPLB I Instruction Interface PLB read data bus

IPLB_MRdWdAddr IPLB I Instruction Interface PLB read word address

IPLB_MRearbitrate IPLB I Instruction Interface PLB bus rearbitrate
indicator

IPLB_MSSize IPLB I Instruction Interface PLB slave data bus size

IPLB_MTimeout IPLB I Instruction Interface PLB bus timeout

Data_Addr[0:31] DLMB O Data interface LMB address bus

Byte_Enable[0:3] DLMB O Data interface LMB byte enables

Data_Write[0:31] DLMB O Data interface LMB write data bus

D_AS DLMB O Data interface LMB address strobe

Read_Strobe DLMB O Data interface LMB read strobe

Write_Strobe DLMB O Data interface LMB write strobe

Data_Read[0:31] DLMB I Data interface LMB read data bus

DReady DLMB I Data interface LMB data ready

Instr_Addr[0:31] ILMB O Instruction interface LMB address bus

I_AS ILMB O Instruction interface LMB address strobe

IFetch ILMB O Instruction interface LMB instruction fetch

Instr[0:31] ILMB I Instruction interface LMB read data bus

IReady ILMB I Instruction interface LMB data ready

FSL0_M .. FSL15_M MFSL O Master interface to output FSL channels

FSL0_S .. FSL15_S SFSL I Slave interface to input FSL channels

ICache_FSL_in... IXCL_S IO Instruction side CacheLink FSL slave
interface

ICache_FSL_out... IXCL_M IO Instruction side CacheLink FSL master
interface

DCache_FSL_in... DXCL_S IO Data side CacheLink FSL slave interface

DCache_FSL_out... DXCL_M IO Data side CacheLink FSL master interface

Interrupt Core I Interrupt

Table 2-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
76 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Processor Local Bus (PLB) Interface Description R
Processor Local Bus (PLB) Interface Description
The MicroBlaze PLB interfaces are implemented as byte-enable capable 32-bit masters. Please refer
to the PLBV46 Interconnect and Interfaces document for details.

On-Chip Peripheral Bus (OPB) Interface Description
The MicroBlaze OPB interfaces are implemented as byte-enable capable masters. Please refer to the
OPB Usage in Xilinx FPGA document for details.

Local Memory Bus (LMB) Interface Description
The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a minimum
number of control signals and a simple protocol to ensure that local block RAM are accessed in a
single clock cycle. LMB signals and definitions are shown in the following table. All LMB signals
are active high.

Reset Core I Core reset, active high. Should be held for at
least 1 Clk clock cycle.

Mb_Reset Core I Core reset, active high. Should be held for at
least 1 Clk clock cycle.

Clk Core I Clock1

Ext_BRK Core I Break signal from OPB JTAG UART

Ext_NM_BRK Core I Non-maskable break signal from OPB JTAG
UART

MB_Halted Core O Pipeline is halted

Dbg_... Core IO Debug signals from OPB MDM. See
Table 2-9 for details.

Trace_... Core O Trace signals for real time HW analysis. See
Table 2-10 for details.

1. MicroBlaze is a synchronous design clocked with the Clk signal, except for hardware debug logic, which is
clocked with the Dbg_Clk signal. If hardware debug logic is not used, there is no minimum frequency limit for
Clk. However, if hardware debug logic is used, there are signals transferred between the two clock regions. In this
case Clk must have a higher frequency than Dbg_Clk.

Table 2-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 77
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
Signal Data Interface Instruction
Interface Type Description

Addr[0:31] O Address bus

Byte_Enable[0:3] O Byte enables

Data_Write[0:31] O Write data bus

AS O Address strobe

Read_Strobe O Read in progress

Write_Strobe O Write in progress

Data_Read[0:31] I Read data bus

Ready I Ready for next
transfer

Clk I Bus clock

LMB Signal Interface

Addr[0:31]
The address bus is an output from the core and indicates the memory address that is being accessed
by the current transfer. It is valid only when AS is high. In multicycle accesses (accesses requiring
more than one clock cycle to complete), Addr[0:31] is valid only in the first clock cycle of the
transfer.

Byte_Enable[0:3]
The byte enable signals are outputs from the core and indicate which byte lanes of the data bus
contain valid data. Byte_Enable[0:3] is valid only when AS is high. In multicycle accesses (accesses
requiring more than one clock cycle to complete), Byte_Enable[0:3] is valid only in the first
clock cycle of the transfer. Valid values for Byte_Enable[0:3] are shown in the following table:

Table 2-2: LMB Bus Signals

Data_Addr[0:31] Instr_Addr[0:31]

Byte_Enable[0:3] not used

Data_Write[0:31] not used

D_AS I_AS

Read_Strobe IFetch

Write_Strobe not used

Data_Read[0:31] Instr[0:31]

DReady IReady

Clk Clk

Table 2-3: Valid Values for Byte_Enable[0:3]

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]

0000

0001 x

0010 x

0100 x

1000 x

0011 x x
78 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description R
Data_Write[0:31]
The write data bus is an output from the core and contains the data that is written to memory. It
becomes valid when AS is high and goes invalid in the clock cycle after Ready is sampled high.
Only the byte lanes specified by Byte_Enable[0:3] contain valid data.

AS
The address strobe is an output from the core and indicates the start of a transfer and qualifies the
address bus and the byte enables. It is high only in the first clock cycle of the transfer, after which it
goes low and remains low until the start of the next transfer.

Read_Strobe
The read strobe is an output from the core and indicates that a read transfer is in progress. This signal
goes high in the first clock cycle of the transfer, and remains high until the clock cycle after Ready
is sampled high. If a new read transfer is started in the clock cycle after Ready is high, then
Read_Strobe remains high.

Write_Strobe
The write strobe is an output from the core and indicates that a write transfer is in progress. This
signal goes high in the first clock cycle of the transfer, and remains high until the clock cycle after
Ready is sampled high. If a new write transfer is started in the clock cycle after Ready is high, then
Write_Strobe remains high.

Data_Read[0:31]
The read data bus is an input to the core and contains data read from memory. Data_Read[0:31] is
valid on the rising edge of the clock when Ready is high.

Ready
The Ready signal is an input to the core and indicates completion of the current transfer and that the
next transfer can begin in the following clock cycle. It is sampled on the rising edge of the clock. For
reads, this signal indicates the Data_Read[0:31] bus is valid, and for writes it indicates that the
Data_Write[0:31] bus has been written to local memory.

Clk
All operations on the LMB are synchronous to the MicroBlaze core clock.

1100 x x

1111 x x x x

Table 2-3: Valid Values for Byte_Enable[0:3] (Continued)

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]
MicroBlaze Processor Reference Guide www.xilinx.com 79
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
LMB Transactions
The following diagrams provide examples of LMB bus operations.

Generic Write Operation

Generic Read Operation

Figure 2-2: LMB Generic Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0

Figure 2-3: LMB Generic Read Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0
80 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description R
Back-to-Back Write Operation

Single Cycle Back-to-Back Read Operation

Back-to-Back Mixed Read/Write Operation

Figure 2-4: LMB Back-to-Back Write Operation

Figure 2-5: LMB Single Cycle Back-to-Back Read Operation

Figure 2-6: Back-to-Back Mixed Read/Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A2

BE0 BE2BE1

A1

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1 A2

BE0 BE1 BE2

D0 D1 D2

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1

BE0 BE1

D1

D0
MicroBlaze Processor Reference Guide www.xilinx.com 81
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write steering required to
support the following transfers:

• byte, halfword, and word transfers to word devices
• byte and halfword transfers to halfword devices
• byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These types of
transfers require dynamic bus sizing and conversion cycles that are not supported by the MicroBlaze
bus interface. Data steering for read cycles is shown in Table 2-4, and data steering for write cycles
is shown in Table 2-5.

Register rD Data

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 0001 byte Byte3

10 0010 byte Byte2

01 0100 byte Byte1

00 1000 byte Byte0

10 0011 halfword Byte2 Byte3

00 1100 halfword Byte0 Byte1

00 1111 word Byte0 Byte1 Byte2 Byte3

Write Data Bus Bytes

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size Byte0 Byte1 Byte2 Byte3

11 0001 byte rD[24:31]

10 0010 byte rD[24:31]

01 0100 byte rD[24:31]

00 1000 byte rD[24:31]

10 0011 halfword rD[16:23] rD[24:31]

00 1100 halfword rD[16:23] rD[24:31]

00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]

Note: Other OPB masters may have more restrictive requirements for byte lane placement than
those allowed by MicroBlaze. OPB slave devices are typically attached “left-justified” with byte
devices attached to the most-significant byte lane, and halfword devices attached to the most
significant halfword lane. The MicroBlaze steering logic fully supports this attachment method.

Table 2-4: Read Data Steering (Load to Register rD)

Table 2-5: Write Data Steering (Store from Register rD)
82 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Fast Simplex Link (FSL) Interface Description R
Fast Simplex Link (FSL) Interface Description
The Fast Simplex Link bus provides a point-to-point communication channel between an output
FIFO and an input FIFO. For more information on the generic FSL protocol, see DS449 Data Sheet.

Master FSL Signal Interface
MicroBlaze may contain up to 16 master FSL interfaces. The master signals are depicted in
Table 2-6.

Signal Name Description VHDL Type Direction

FSLn_M_Clk Clock input

FSLn_M_Write Write enable signal indicating
that data is being written to the
output FSL

output

FSLn_M_Data Data value written to the output
FSL

output

FSLn_M_Control Control bit value written to the
output FSL

output

FSLn_M_Full Full Bit indicating output FSL
FIFO is full when set

input

Slave FSL Signal Interface
MicroBlaze may contain up to 16 slave FSL interfaces. The slave FSL interface signals are depicted
in Table 2-7.

Signal Name Description VHDL Type Direction

FSLn_S_Clk Clock input

FSLn_S_Read Read acknowledge signal
indicating that data has been
read from the input FSL

output

FSLn_S_Data Data value currently available at
the top of the input FSL

input

FSLn_S_Control Control Bit value currently
available at the top of the input
FSL

input

FSLn_S_Exists Flag indicating that data exists
in the input FSL

input

Table 2-6: Master FSL Signals

std_logic

std_logic

std_logic_vector

std_logic

std_logic

Table 2-7: Slave FSL Signals

std_logic

std_logic

std_logic_vector

std_logic

std_logic
MicroBlaze Processor Reference Guide www.xilinx.com 83
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_publications_showall.jsp?sGlobalNavPick=&sSecondaryNavPick=&category=-18708&iLanguageID=1

Chapter 2: MicroBlaze Signal Interface DescriptionR
FSL Transactions

FSL BUS Write Operation
A write to the FSL bus is performed by MicroBlaze using one of the put or putd instructions. A write
operation transfers the register contents to an output FSL bus. The transfer is completed in a single
clock cycle for blocking mode writes to the FSL (put and cput instructions) as long as the FSL FIFO
does not become full. If the FSL FIFO is full, the processor stalls until the FSL full flag is lowered.
The non-blocking instructions (with prefix n), always completes in a single clock cycle even if the
FSL was full. If the FSL was full, the write is inhibited and the carry bit is set in the MSR.

FSL BUS Read Operation
A read from the FSL bus is performed by MicroBlaze using one of the get or getd instructions. A
read operations transfers the contents of an input FSL to a general purpose register. The transfer is
typically completed in 2 clock cycles for blocking mode reads from the FSL as long as data exists in
the FSL FIFO. If the FSL FIFO is empty, the processor stalls at this instruction until the FSL exists
flag is set. In the non-blocking mode (instructions with prefix n), the transfer is completed in two
clock cycles irrespective of whether or not the FSL was empty. In the case the FSL was empty, the
transfer of data does not take place and the carry bit is set in the MSR.

Xilinx CacheLink (XCL) Interface Description
Xilinx CacheLink (XCL) is a high performance solution for external memory accesses. The
MicroBlaze CacheLink interface is designed to connect directly to a memory controller with
integrated FSL buffers, for example, the MPMC. This method has the lowest latency and minimal
number of instantiations (see Figure 2-7).

BEGIN microblaze
...
BUS_INTERFACE IXCL = myIXCL
...

END

BEGIN mpmc
...
BUS_INTERFACE XCL0 = myIXCL
...

END

Memory

MicroBlaze

Controller

FS
L

FS
L

Schematic Example MHS code

Figure 2-7: CacheLink Connection with Integrated FSL Buffers
 (Only Instruction Cache Used in this Example)
84 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Xilinx CacheLink (XCL) Interface Description R
The interface is only available on MicroBlaze when caches are enabled. It is legal to use a
CacheLink cache on the instruction side or the data side without caching the other. Memory
locations outside the cacheable range are accessed over PLB, OPB or LMB. Cached memory range
is accessed over PLB or OPB whenever the caches are software disabled (for example,
MSR[DCE]=0 or MSR[ICE]=0).

The CacheLink cache controllers handle 4 or 8-word cache lines with critical word first. At the same
time the separation from the PLB or OPB bus reduces contention for non-cached memory accesses.

CacheLink Signal Interface
The CacheLink signals on MicroBlaze are listed in Table 2-8.

Table 2-8: MicroBlaze Cache Link Signals

Signal Name Description VHDL Type Direction

ICACHE_FSL_IN_Clk Clock output to I-side return
read data FSL

std_logic output

ICACHE_FSL_IN_Read Read signal to I-side return
read data FSL.

std_logic output

ICACHE_FSL_IN_Data Read data from I-side return
read data FSL

std_logic_vector
(0 to 31)

input

ICACHE_FSL_IN_Control FSL control-bit from I-side
return read data FSL.
Reserved for future use

std_logic input

ICACHE_FSL_IN_Exists More read data exists in I-
side return FSL

std_logic input

ICACHE_FSL_OUT_Clk Clock output to I-side read
access FSL

std_logic output

ICACHE_FSL_OUT_Write Write new cache miss access
request to I-side read access
FSL

std_logic output

ICACHE_FSL_OUT_Data Cache miss access
(=address) to I-side read
access FSL

std_logic_vector
(0 to 31)

output

ICACHE_FSL_OUT_Control FSL control-bit to I-side
read access FSL. Reserved
for future use

std_logic output

ICACHE_FSL_OUT_Full FSL access buffer for I-side
read accesses is full

std_logic input

DCACHE_FSL_IN_Clk Clock output to D-side
return read data FSL

std_logic output

DCACHE_FSL_IN_Read Read signal to D-side return
read data FSL

std_logic output

DCACHE_FSL_IN_Data Read data from D-side
return read data FSL

std_logic_vector
(0 to 31)

input
MicroBlaze Processor Reference Guide www.xilinx.com 85
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
CacheLink Transactions
All individual CacheLink accesses follow the FSL FIFO based transaction protocol:

• Access information is encoded over the FSL data and control signals (e.g.
DCACHE_FSL_OUT_Data, DCACHE_FSL_OUT_Control, ICACHE_FSL_IN_Data,
and ICACHE_FSL_IN_Control)

• Information is sent (stored) by raising the write enable signal (e.g.
DCACHE_FSL_OUT_Write)

• The sender is only allowed to write if the full signal from the receiver is inactive (e.g.
DCACHE_FSL_OUT_Full = 0). The full signal is not used by the instruction cache
controller.

• Information is received (loaded) by raising the read signal (e.g. ICACHE_FSL_IN_Read)
• The receiver is only allowed to read as long as the sender signals that new data exists (e.g.

ICACHE_FSL_IN_Exists = 1)

For details on the generic FSL protocol, please see DS449 Data Sheet.

The CacheLink solution uses one incoming (slave) and one outgoing (master) FSL per cache
controller. The outgoing FSL is used to send access requests, while the incoming FSL is used for
receiving the requested cache lines. CacheLink also uses a specific encoding of the transaction
information over the FSL data and control signals.

The cache lines used for reads in the CacheLink protocol are 4 or 8 words long. Each cache line is
expected to start with the critical word first (for example, if an access to address 0x348 is a miss with

DCACHE_FSL_IN_Control FSL control bit from D-side
return read data FSL

std_logic input

DCACHE_FSL_IN_Exists More read data exists in D-
side return FSL

std_logic input

DCACHE_FSL_OUT_Clk Clock output to D-side read
access FSL

std_logic output

DCACHE_FSL_OUT_Write Write new cache miss access
request to D-side read access
FSL

std_logic output

DCACHE_FSL_OUT_Data Cache miss access (read
address or write address +
write data + byte write
enable) to D-side read access
FSL

std_logic_vector
(0 to 31)

output

DCACHE_FSL_OUT_Control FSL control-bit to D-side
read access FSL. Used with
address bits [30 to 31] for
read/write and byte enable
encoding.

std_logic output

DCACHE_FSL_OUT_Full FSL access buffer for D-side
read accesses is full

std_logic input

Table 2-8: MicroBlaze Cache Link Signals

Signal Name Description VHDL Type Direction
86 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_publications_showall.jsp?sGlobalNavPick=&sSecondaryNavPick=&category=-18708&iLanguageID=1
http://www.xilinx.com/xlnx/xweb/xil_publications_showall.jsp?sGlobalNavPick=&sSecondaryNavPick=&category=-18708&iLanguageID=1

Xilinx CacheLink (XCL) Interface Description R
a 4 word cache line, then the returned cache line should have the following address sequence:
0x348, 0x34c, 0x340, 0x344). The cache controller forwards the first word to the execution unit as
well as stores it in the cache memory. This allows execution to resume as soon as the first word is
back. The cache controller then follows through by filling up the cache line with the remaining 3 or
7 words as they are received.

All write operations to the data cache are single-word write-through.

Instruction Cache Read Miss
On a read miss the cache controller performs the following sequence:

1. Write the word aligned (1) missed address to ICACHE_FSL_OUT_Data, with the control bit
set low (ICACHE_FSL_OUT_Control = 0) to indicate a read access

2. Wait until ICACHE_FSL_IN_Exists goes high to indicate that data is available
Note: There must be at least one clock cycle before ICACHE_FSL_IN_Exists goes high (for
example, at least one wait state must be used).

3. Store the word from ICACHE_FSL_IN_Data to the cache
4. Forward the critical word to the execution unit in order to resume execution
5. Repeat 3 and 4 for the subsequent 3 or 7 words in the cache line

Data Cache Read Miss
On a read miss the cache controller will perform the following sequence:

1. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low
2. Write the word aligned1 missed address to DCACHE_FSL_OUT_Data, with the control bit set

low (DCACHE_FSL_OUT_Control = 0) to indicate a read access
3. Wait until DCACHE_FSL_IN_Exists goes high to indicate that data is available
Note: There must be at least one clock cycle before DCACHE_FSL_IN_Exists goes high (for
example, at least one wait state must be used).

4. Store the word from DCACHE_FSL_IN_Data to the cache
5. Forward the critical word to the execution unit in order to resume execution
6. Repeat 3 and 4 for the subsequent 3 or 7 words in the cache line

Data Cache Write
Note that writes to the data cache always are write-through, and thus there is a write over the
CacheLink regardless of whether there was a hit or miss in the cache. On a write, the cache
controller performs the following sequence:

1. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low
2. Write the missed address to DCACHE_FSL_OUT_Data, with the control bit set high

(DCACHE_FSL_OUT_Control = 1) to indicate a write access. The two least-significant bits
(30:31) of the address are used to encode byte and half-word enables: 0b00=byte0, 0b01=byte1
or halfword0, 0x10=byte2, and 0x11=byte3 or halfword1. The selection of half-word or byte
access is based on the control bit for the data word in step 4.

3. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low

1. Byte and halfword read misses are naturally expected to return complete words, the cache controller then provides the
execution unit with the correct bytes.
MicroBlaze Processor Reference Guide www.xilinx.com 87
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
4. Write the data to be stored to DCACHE_FSL_OUT_Data. For byte and halfword accesses the
data is mirrored onto byte-lanes. Mirroring outputs the byte or halfword to be written on all four
byte-lanes or on both halfword-lanes, respectively. The control bit should be low
(DCACHE_FSL_OUT_Control = 0) for a word or halfword access, and high for a byte
access. Word or halfword accesses can be distinguished by the least significant bit of the
address (0=word and 1=halfword).

Debug Interface Description
The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor Debug
Module (MDM) IP core. The MDM is controlled by the Xilinx Microprocessor Debugger (XMD)
through the JTAG port of the FPGA. The MDM can control multiple MicroBlaze processors at the
same time. The debug signals are grouped in the DEBUG bus. The debug signals on MicroBlaze are
listed in Table 2-9

Signal Name Description VHDL Type Direction

Dbg_Clk JTAG clock from MDM std_logic input

Dbg_TDI JTAG TDI from MDM std_logic input

Dbg_TDO JTAG TDO to MDM std_logic output

Dbg_Reg_En Debug register enable from
MDM

std_logic input

Dbg_Shift1 JTAG BSCAN shift signal from
MDM

std_logic input

Dbg_Capture JTAG BSCAN capture signal
from MDM

std_logic input

Dbg_Update JTAG BSCAN update signal
from MDM

std_logic input

Debug_Rst1 Reset signal from MDM, active
high. Should be held for at least
1 Clk clock cycle.

std_logic input

.

Table 2-9: MicroBlaze Debug Signals

1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus
88 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Trace Interface Description R
Trace Interface Description
The MicroBlaze core exports a number of internal signals for trace purposes. This signal interface is
not standardized and new revisions of the processor may not be backward compatible for signal
selection or functionality. It is recommended that you not design custom logic for these signals, but
rather to use them via Xilinx provided analysis IP. The trace signals are grouped in the TRACE bus.
The current set of trace signals were last updated for MicroBlaze v7.00 and are listed in Table 2-10.
The Trace exception types are listed in Table 2-11. All unused Trace exception types are reserved.

Table 2-10: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction

Trace_Valid_Instr Valid instruction on trace port. std_logic output

Trace_Instruction 1 Instruction code std_logic_vector (0 to 31) output

Trace_PC 1 Program counter std_logic_vector (0 to 31) output

Trace_Reg_Write 1 Instruction writes to the register
file

std_logic output

Trace_Reg_Addr 1 Destination register address std_logic_vector (0 to 4) output

Trace_MSR_Reg1 Machine status register std_logic_vector (0 to 14)2 output

Trace_PID_Reg1,2 Process identifier register std_logic_vector (0 to 7) output

Trace_New_Reg_Value1 Destination register update
value

std_logic_vector (0 to 31) output

Trace_Exception_Taken1 Instruction result in taken
exception

std_logic output

Trace_Exception_Kind1,3 Exception type. The description
for the exception type is
documented below.

std_logic_vector (0 to 4)2 output

Trace_Jump_Taken1 Branch instruction evaluated
true, i.e taken

std_logic output

Trace_Delay_Slot1 Instruction is in delay slot of a
taken branch

std_logic output

Trace_Data_Access1 Valid D-side memory access std_logic output

Trace_Data_Address1 Address for D-side memory
access

std_logic_vector (0 to 31) output

Trace_Data_Write_Value1 Value for D-side memory write
access

std_logic_vector (0 to 31) output

Trace_Data_Byte_Enable1 Byte enables for D-side memory
access

std_logic_vector (0 to 3) output

Trace_Data_Read1 D-side memory access is a read std_logic output

Trace_Data_Write1 D-side memory access is a write std_logic output

Trace_DCache_Req Data memory address is within
D-Cache range

std_logic output
MicroBlaze Processor Reference Guide www.xilinx.com 89
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
Trace_DCache_Hit Data memory address is present
in D-Cache

std_logic output

Trace_ICache_Req Instruction memory address is in
I-Cache range

std_logic output

Trace_ICache_Hit Instruction memory address is
present in I-Cache

std_logic output

Trace_OF_PipeRun Pipeline advance for Decode
stage

std_logic output

Trace_EX_PipeRun4 Pipeline advance for Execution
stage

std_logic output

Trace_MEM_PipeRun3 Pipeline advance for Memory
stage

std_logic output

Trace_Exception_Kind [0:4] Description

00000 Fast Simplex Link exception1

00001 Unaligned exception

00010 Illegal Opcode exception

00011 Instruction Bus exception

00100 Data Bus exception

00101 Div by Zero exception

00110 FPU exception

00111 Privileged instruction exception1

01010 Interrupt

01011 External non maskable break

01100 External maskable break

10000 Data storage exception1

10001 Instruction storage exception1

10010 Data TLB miss exception1

10011 Instruction TLB miss exception1

1. Valid only when Trace_Valid_Instr = 1
2. Updated for MicroBlaze v7.00: 4 bits added to Trace_MSR_Reg, Trace_PID_Reg added, and 1 bit added to Trace_Exception Kind
3. Valid only when Trace_Exception_Taken = 1
4. Not used with area optimization feature

Table 2-10: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction

Table 2-11: Type of Trace Exception

1. Added for MicroBlaze v7.00
90 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

MicroBlaze Core Configurability R
MicroBlaze Core Configurability
The MicroBlaze core has been developed to support a high degree of user configurability. This
allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done via parameters that typically enable, size, or select certain processor features.
For example, the instruction cache is enabled by setting the C_USE_ICACHE parameter. The size of
the instruction cache, and the cacheable memory range, are all configurable using:
C_CACHE_BYTE_SIZE, C_ICACHE_BASEADDR, and C_ICACHE_HIGHADDR respectively.

Parameters valid for MicroBlaze v7.00 are listed in Table 2-12. Not all of these are recognized by
older versions of MicroBlaze; however, the configurability is fully backward compatibility.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Table 2-12: MPD Parameters

Parameter Name Feature/Description Allowable
Values

Default
Value

EDK
Tool

Assig
ned

VHDL Type

C_FAMILY Target Family qrvirtex2
qvirtex2
spartan3
spartan3a

spartan3adsp
spartan3an
spartan3e

virtex2
virtex2p
virtex4
virtex5

virtex2

yes string

C_DATA_SIZE Data Size 32 32 NA integer

C_DYNAMIC_BUS_SIZING Legacy 1 1 NA integer

C_SCO Xilinx internal 0 0 NA integer

C_AREA_OPTIMIZED Select speed optimization 0, 1 0 integer

C_INTERCONNECT Select PLB interconnect 0, 1 1 integer

C_PVR Processor version register
mode selection 0, 1, 2 0 integer

C_PVR_USER1 Processor version register
USER1 constant 0x00-0xff 0x00 std_logic_vector

(0 to 7)

C_PVR_USER2 Processor version register
USER2 constant

0x00000000-
0xffffffff

0x0000
0000

std_logic_vector
(0 to 31)

C_RESET_MSR Reset value for MSR
register

0x00, 0x20,
0x80, 0xa0 0x00 std_logic_vector

C_INSTANCE Instance Name Any instance
name

micro
blaze

yes string

C_D_PLB Data side PLB interface 0, 1 1 yes integer
MicroBlaze Processor Reference Guide www.xilinx.com 91
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
C_D_OPB Data side OPB interface 0, 1 1 yes integer

C_D_LMB Data side LMB interface 0, 1 1 yes integer

C_I_PLB Instruction side PLB
interface 0, 1 1 yes integer

C_I_OPB Instruction side OPB
interface 0, 1 1 yes integer

C_I_LMB Instruction side LMB
interface 0, 1 1 yes integer

C_USE_BARREL Include barrel shifter 0, 1 0 integer

C_USE_DIV Include hardware divider 0, 1 0 integer

C_USE_HW_MUL Include hardware
multiplier (Virtex2 and
later)

0, 1, 2 1
integer

C_USE_FPU Include hardware floating
point unit (Virtex2 and
later)

0, 1, 2 0
integer

C_USE_MSR_INSTR Enable use of instructions:
MSRSET and MSRCLR 0, 1 0 integer

C_USE_PCMP_INSTR Enable use of instructions:
PCMPBF, PCMPEQ, and
PCMPNE

0, 1 0
integer

C_UNALIGNED_EXCEPTION Enable exception handling
for unaligned data
accesses

0, 1 0
integer

C_ILL_OPCODE_EXCEPTION Enable exception handling
for illegal op-code 0, 1 0 integer

C_IPLB_BUS_EXCEPTION Enable exception handling
for IPLB bus error 0, 1 0 integer

C_DPLB_BUS_EXCEPTION Enable exception handling
for DPLB bus error 0, 1 0 integer

C_IOPB_BUS_EXCEPTION Enable exception handling
for IOPB bus error 0, 1 0 integer

C_DOPB_BUS_EXCEPTION Enable exception handling
for DOPB bus error 0, 1 0 integer

C_DIV_ZERO_EXCEPTION Enable exception handling
for division by zero 0, 1 0 integer

Table 2-12: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

EDK
Tool

Assig
ned

VHDL Type
92 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

MicroBlaze Core Configurability R
C_FPU_EXCEPTION Enable exception handling
for hardware floating point
unit exceptions

0, 1 0
integer

C_OPCODE_0x0_ILLEGAL Detect opcode 0x0 as an
illegal instruction 0,1 0 integer

C_FSL_EXCEPTION Enable exception handling
for Fast Simplex Link 0,1 0 integer

C_DEBUG_ENABLED MDM Debug interface 0,1 0 integer

C_NUMBER_OF_PC_BRK Number of hardware
breakpoints 0-8 1 integer

C_NUMBER_OF_RD_ADDR_BRK Number of read address
watchpoints 0-4 0 integer

C_NUMBER_OF_WR_ADDR_BRK Number of write address
watchpoints 0-4 0 integer

C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0, 1 0 integer

C_EDGE_IS_POSITIVE Negative/Positive Edge
Interrupt 0, 1 1 integer

C_FSL_LINKS1 Number of FSL interfaces 0-16 0 yes integer

C_FSL_DATA_SIZE FSL data bus size 32 32 NA integer

C_USE_EXTENDED_FSL_INSTR Enable use of extended
FSL instructions 0, 1 0 integer

C_ICACHE_BASEADDR Instruction cache base
address

0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic_vector

C_ICACHE_HIGHADDR Instruction cache high
address

0x00000000 -
0xFFFFFFFF

0x3FFF
FFFF

std_logic_vector

C_USE_ICACHE Instruction cache 0, 1 0 integer

C_ALLOW_ICACHE_WR Instruction cache write
enable 0, 1 1 integer

C_ICACHE_LINELEN Instruction cache line
length 4, 8 4 integer

C_ADDR_TAG_BITS Instruction cache address
tags 0-25 17 yes integer

Table 2-12: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

EDK
Tool

Assig
ned

VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 93
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
C_CACHE_BYTE_SIZE Instruction cache size 64, 128, 256,
512, 1024,

2048, 4096,
8192, 16384,

32768,
655362

8192

integer

C_ICACHE_USE_FSL Cache over CacheLink
instead of OPB for
instructions

1 1
integer

C_DCACHE_BASEADDR Data cache base address 0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic_vector

C_DCACHE_HIGHADDR Data cache high address 0x00000000 -
0xFFFFFFFF

0x3FFF
FFFF

std_logic_vector

C_USE_DCACHE Data cache 0,1 0 integer

C_ALLOW_DCACHE_WR Data cache write enable 0,1 1 integer

C_DCACHE_LINELEN Data cache line length 4, 8 4 integer

C_DCACHE_ADDR_TAG Data cache address tags 0-25 17 yes integer

C_DCACHE_BYTE_SIZE Data cache size 64, 128, 256,
512, 1024,

2048, 4096,
8192, 16384,

32768,
655362

8192

integer

C_DCACHE_USE_FSL Cache over CacheLink
instead of OPB for data 1 1 integer

C_DPLB_DWIDTH Data side PLB data width 32 32 integer

C_DPLB_NATIVE_DWIDTH Data side PLB native data
width 32 32 integer

C_DPLB_BURST_EN Data side PLB burst
enable 0 0 integer

C_DPLB_P2P Data side PLB Point-to-
point 0, 1 0 integer

C_IPLB_DWIDTH Instruction side PLB data
width 32 32 integer

C_IPLB_NATIVE_DWIDTH Instruction side PLB
native data width 32 32 integer

C_IPLB_BURST_EN Instruction side PLB burst
enable 0 0 integer

Table 2-12: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

EDK
Tool

Assig
ned

VHDL Type
94 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

MicroBlaze Core Configurability R
C_IPLB_P2P Instruction side PLB
Point-to-point 0, 1 0 integer

C_USE_MMU Memory Management:
0 = None
1 = Usermode
2 = Protection
3 = Virtual

0, 1, 2, 3 0

integer

C_MMU_DTLB_SIZE Data shadow Translation
Look-Aside Buffer size 1, 2, 4, 8 8 integer

C_MMU_ITLB_SIZE Instruction shadow
Translation Look-Aside
Buffer size

1, 2, 4, 8 4
integer

C_MMU_TLB_ACCESS Access to memory
management special
registers:
0 = Minimal
1 = Read
2 = Write
3 = Full

0, 1, 2, 3 3

integer

C_MMU_ZONES Number of memory
protection zones 0-16 16 integer

1. The number of FSL Links is assigned by the tool itself if you are using the co-processor wizard. If you add the IP manually, you must update the
parameter manually.

2. Not all sizes are permitted in all architectures. The cache uses between 0 and 32 RAMB primitives (0 if cache size is less than 2048).

Table 2-12: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

EDK
Tool

Assig
ned

VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 95
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 2: MicroBlaze Signal Interface DescriptionR
96 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

R

Chapter 3

MicroBlaze Application Binary Interface

This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important for
developing software in assembly language for the soft processor. The MicroBlaze GNU compiler
follows the conventions described in this document. Any code written by assembly programmers
should also follow the same conventions to be compatible with the compiler generated code.
Interrupt and Exception handling is also explained briefly.

This chapter contains the following sections:

• “Data Types”
• “Register Usage Conventions”
• “Stack Convention”
• “Memory Model”
• “Interrupt and Exception Handling”

Data Types
The data types used by MicroBlaze assembly programs are shown in Table 3-1. Data types such as
data8, data16, and data32 are used in place of the usual byte, half-word, and word.

MicroBlaze data types
(for assembly programs)

Corresponding
ANSI C data types Size (bytes)

data8 char 1

data16 short 2

data32 int 4

data32 long int 4

data32 float 4

data32 enum 4

data16/data32 pointera 2/4

register

Table 3-1: Data Types in MicroBlaze Assembly Programs

a. Pointers to small data areas, which can be accessed by global pointers are data16.
MicroBlaze Processor Reference Guide www.xilinx.com 97
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 3: MicroBlaze Application Binary InterfaceR
Register Usage Conventions
The register usage convention for MicroBlaze is given in Table 3-2.

Table 3-2: Register Usage Conventions

Register Type Enforcement Purpose

R0 Dedicated HW Value 0

R1 Dedicated SW Stack Pointer

R2 Dedicated SW Read-only small data area anchor

R3-R4 Volatile SW Return Values/Temporaries

R5-R10 Volatile SW Passing parameters/Temporaries

R11-R12 Volatile SW Temporaries

R13 Dedicated SW Read-write small data area anchor

R14 Dedicated HW Return address for Interrupt

R15 Dedicated SW Return address for Sub-routine

R16 Dedicated HW Return address for Trap (Debugger)

R17 Dedicated HW, if configured
to support HW

exceptions,
else SW

Return address for Exceptions

R18 Dedicated SW Reserved for Assembler

R19-R31 Non-volatile SW Must be saved across function calls.
Callee-save

RPC Special HW Program counter

RMSR Special HW Machine Status Register

REAR Special HW Exception Address Register

RESR Special HW Exception Status Register

RFSR Special HW Floating Point Status Register

RBTR Special HW Branch Target Register

REDR Special HW Exception Data Register

RPID Special HW Process Identifier Register

RZPR Special HW Zone Protection Register

RTLBLO Special HW Translation Look-Aside Buffer Low
Register

RTLBHI Special HW Translation Look-Aside Buffer High
Register

RTLBX Special HW Translation Look-Aside Buffer Index
Register
98 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Stack Convention R
The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers are
classified as volatile, non-volatile, and dedicated.

• The volatile registers (also known as caller-save) are used as temporaries and do not retain
values across the function calls. Registers R3 through R12 are volatile, of which R3 and R4 are
used for returning values to the caller function, if any. Registers R5 through R10 are used for
passing parameters between subroutines.

• Registers R19 through R31 retain their contents across function calls and are hence termed as
non-volatile registers (a.k.a callee-save). The callee function is expected to save those non-
volatile registers, which are being used. These are typically saved to the stack during the
prologue and then reloaded during the epilogue.

• Certain registers are used as dedicated registers and programmers are not expected to use them
for any other purpose.
♦ Registers R14 through R17 are used for storing the return address from interrupts, sub-

routines, traps, and exceptions in that order. Subroutines are called using the branch and
link instruction, which saves the current Program Counter (PC) onto register R15.

♦ Small data area pointers are used for accessing certain memory locations with 16- bit
immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to access
the constants such as literals. The other SDA anchor R13 (Read-Write) is used for
accessing the values in the small data read-write section.

♦ Register R1 stores the value of the stack pointer and is updated on entry and exit from
functions.

♦ Register R18 is used as a temporary register for assembler operations.
• MicroBlaze includes special purpose registers such as: program counter (rpc), machine status

register (rmsr), exception status register (resr), exception address register (rear), floating point
status register (rfsr), branch target register (rbtr), exception data register (redr), memory
management registers (rpid, rzpr, rtlblo, rtlbhi, rtlbx, rtlbsx), and processor version registers
(rpvr0-rpvr11). These registers are not mapped directly to the register file and hence the usage
of these registers is different from the general purpose registers. The value of a special purpose
registers can be transferred to or from a general purpose register by using mts and mfs
instructions respectively.

Stack Convention
The stack conventions used by MicroBlaze are detailed in Table 3-3.

The shaded area in Table 3-3 denotes a part of the stack frame for a caller function, while the
unshaded area indicates the callee frame function. The ABI conventions of the stack frame define
the protocol for passing parameters, preserving non-volatile register values, and allocating space for
the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These non-leaf
functions have to create a new stack frame area for its own use. When the program starts executing,

RTLBSX Special HW Translation Look-Aside Buffer Search
Index

RPVR0-
RPVR11

Special HW Processor Version Register 0 through 11

Table 3-2: Register Usage Conventions

Register Type Enforcement Purpose
MicroBlaze Processor Reference Guide www.xilinx.com 99
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 3: MicroBlaze Application Binary InterfaceR
the stack pointer has the maximum value. As functions are called, the stack pointer is decremented
by the number of words required by every function for its stack frame. The stack pointer of a caller
function always has a higher value as compared to the callee function.

Table 3-3: Stack Convention

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack representation
at different instances is depicted in Figure 3-1. After the call from Func 1 to Func 2, the value of the
stack pointer (SP) is decremented. This value of SP is again decremented to accommodate the stack
frame for Func3. On return from Func 3 the value of the stack pointer is increased to its original
value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 3-1.

High Address

Function Parameters for called sub-routine (Arg n .. Arg1)
(Optional: Maximum number of arguments required for any called
procedure from the current procedure).

Old Stack
Pointer

Link Register (R15)

Callee Saved Register (R31....R19)
(Optional: Only those registers which are used by the current
procedure are saved)

Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)
(Optional: Maximum number of arguments required for any called
procedure from the current procedure)

New Stack
Pointer

Link Register

Low Address

Figure 3-1: Stack Frame

X9584

High Memory

Low Memory

SP

Func 1

SP

Func 1

Func 2

SP

Func 1

Func 2

Func 3
SP

Func 1

Func 2
100 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Memory Model R
Calling Convention
The caller function passes parameters to the callee function using either the registers
(R5 through R10) or on its own stack frame. The callee uses the stack area of the caller to store the
parameters passed to the callee.

Refer to Figure 3-1. The parameters for Func 2 are stored either in the registers R5 through R10 or
on the stack frame allocated for Func 1.

Memory Model
The memory model for MicroBlaze classifies the data into four different parts: Small Data Area,
Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area
Global initialized variables which are small in size are stored in this area. The threshold for deciding
the size of the variable to be stored in the small data area is set to 8 bytes in the MicroBlaze C
compiler (mb-gcc), but this can be changed by giving a command line option to the compiler.
Details about this option are discussed in the GNU Compiler Tools chapter. 64 kilobytes of memory
is allocated for the small data areas. The small data area is accessed using the read-write small data
area anchor (R13) and a 16-bit offset. Allocating small variables to this area reduces the requirement
of adding IMM instructions to the code for accessing global variables. Any variable in the small
data area can also be accessed using an absolute address.

Data Area
Comparatively large initialized variables are allocated to the data area, which can either be accessed
using the read-write SDA anchor R13 or using the absolute address, depending on the command line
option given to the compiler.

Common Un-Initialized Area
Un-initialized global variables are allocated in the common area and can be accessed either using the
absolute address or using the read-write small data area anchor R13.

Literals or Constants
Constants are placed into the read-only small data area and are accessed using the read-only small
data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual values of the
SDA anchors are decided by the linker, in the final linking stages. For more information on the
various sections of the memory please refer to the Address Management chapter. The compiler
generates appropriate sections, depending on the command line options. Please refer to the GNU
Compiler Tools chapter for more information about these options.
MicroBlaze Processor Reference Guide www.xilinx.com 101
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 3: MicroBlaze Application Binary InterfaceR
Interrupt and Exception Handling
MicroBlaze assumes certain address locations for handling interrupts and exceptions as indicated in
Table 3-4. At these locations, code is written to jump to the appropriate handlers.

On Hardware jumps to Software Labels

Start / Reset 0x0 _start

User exception 0x8 _exception_handler

Interrupt 0x10 _interrupt_handler

Break (HW/SW) 0x18

Hardware exception 0x20 _hw_exception_handler

Reserved by Xilinx for
future use

0x28 - 0x4F

The code expected at these locations is as shown below. For programs compiled without the -xl-
mode-xmdstub compiler option, the crt0.o initialization file is passed by the mb-gcc
compiler to the mb-ld linker for linking. This file sets the appropriate addresses of the exception
handlers.

For programs compiled with the -xl-mode-xmdstub compiler option, the crt1.o
initialization file is linked to the output program. This program has to be run with the xmdstub
already loaded in the memory at address location 0x0. Hence at run-time, the initialization code in
crt1.o writes the appropriate instructions to location 0x8 through 0x14 depending on the address
of the exception and interrupt handlers.

The following is code for passing control to Exception and Interrupt handlers:

0x00: bri _start1
0x04: nop
0x08: imm high bits of address (user exception handler)
0x0c: bri _exception_handler
0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler
0x20: imm high bits of address (HW exception handler
0x24: bri _hw_exception_handler

MicroBlaze allows exception and interrupt handler routines to be located at any address location
addressable using 32 bits. The user exception handler code starts with the label
_exception_handler, the hardware exception handler starts with
_hw_exception_handler, while the interrupt handler code starts with the label
_interrupt_handler.

In the current MicroBlaze system, there are dummy routines for interrupt and exception handling,
which you can change. In order to override these routines and link your interrupt and exception
handlers, you must define the interrupt handler code with an attribute interrupt_handler. For
more details about the use and syntax of the interrupt handler attribute, please refer to the GNU
Compiler Tools chapter in the Embedded System Tools Reference Guide.

When software breakpoints are used in the Xilinx Microprocessor Debug (XMD) tool, the Break
(HW/SW) address location is reserved for handling the software breakpoint.

Table 3-4: Interrupt and Exception Handling

-

-

102 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

R

Chapter 4

MicroBlaze Instruction Set Architecture

This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™ and
contains the following sections:

• “Notation”
• “Formats”
• “Instructions”

Notation
The symbols used throughout this chapter are defined in Table 4-1.

Table 4-1: Symbol Notation

Symbol Meaning

+ Add

- Subtract

× Multiply

∧ Bitwise logical AND

∨ Bitwise logical OR

⊕ Bitwise logical XOR

x Bitwise logical complement of x

← Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit i in register x

x[i:j] Bits i through j in register x

= Equal comparison

≠ Not equal comparison

> Greater than comparison

>= Greater than or equal comparison
MicroBlaze Processor Reference Guide www.xilinx.com 103
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
Formats
MicroBlaze uses two instruction formats: Type A and Type B.

Type A
Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Opcode Destination Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

< Less than comparison

<= Less than or equal comparison

sext(x) Sign-extend x

Mem(x) Memory location at address x

FSLx FSL interface x

LSW(x) Least Significant Word of x

isDnz(x) Floating point: true if x is denormalized

isInfinite(x) Floating point: true if x is +∞ or -∞

isPosInfinite(x) Floating point: true if x is +∞

isNegInfinite(x) Floating point: true if x -∞

isNaN(x) Floating point: true if x is a quiet or signalling NaN

isZero(x) Floating point: true if x is +0 or -0

isQuietNaN(x) Floating point: true if x is a quiet NaN

isSigNaN(x) Floating point: true if x is a signaling NaN

signZero(x) Floating point: return +0 for x > 0, and -0 if x < 0

signInfinite(x) Floating point: return +∞ for x > 0, and -∞ if x < 0

Table 4-1: Symbol Notation (Continued)

Symbol Meaning
104 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
Type B
Type B is used for register-immediate instructions. It contains the opcode, one destination and one
source registers, and a source 16-bit immediate value.

Opcode Destination Reg Source Reg A Immediate Value

0 6 1
1

1
6

3
1

Instructions
This section provides descriptions of MicroBlaze instructions. Instructions are listed in alphabetical
order. For each instruction Xilinx® provides the mnemonic, encoding, a description, pseudocode of
its semantics, and a list of registers that it modifies.
MicroBlaze Processor Reference Guide www.xilinx.com 105
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
add Arithmetic Add

Description
The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set to one
for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (add, addk), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C = 0 then
(rD) ← (rA) + (rB)

else
(rD) ← (rA) + (rB) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
1 cycle

Note
The C bit in the instruction opcode is not the same as the carry bit in the MSR.

The “add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually indicates
uninitialized memory. If you are using illegal instruction exceptions you can trap these instructions
by setting the MicroBlaze parameter C_OPCODE_0x0_ILLEGAL=1.

add rD, rA, rB Add

addc rD, rA, rB Add with Carry

addk rD, rA, rB Add and Keep Carry

addkc rD, rA, rB Add with Carry and Keep Carry

0 0 0 K C 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

106 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
addi Arithmetic Add Immediate

Description
The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits, is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C = 0 then
(rD) ← (rA) + sext(IMM)

else
(rD) ← (rA) + sext(IMM) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.

By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

addi rD, rA, IMM Add Immediate

addic rD, rA, IMM Add Immediate with Carry

addik rD, rA, IMM Add Immediate and Keep Carry

addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 0 1 K C 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 107
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
and Logical AND

Description
The contents of register rA are ANDed with the contents of register rB; the result is placed into
register rD.

Pseudocode
(rD) ← (rA) ∧ (rB)

Registers Altered
• rD

Latency
1 cycle

and rD, rA, rB

1 0 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

108 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
andi Logial AND with Immediate

Description
The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ sext(IMM)

Registers Altered
• rD

Latency
1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

andi rD, rA, IMM

1 0 1 0 0 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 109
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
andn Logical AND NOT

Description
The contents of register rA are ANDed with the logical complement of the contents of register rB;
the result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ (rB)

Registers Altered
• rD

Latency
1 cycle

andn rD, rA, rB

1 0 0 0 1 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

110 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
andni Logical AND NOT with Immediate

Description
The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ (sext(IMM))

Registers Altered
• rD

Latency
1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

andni rD, rA, IMM

1 0 1 0 1 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 111
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
beq Branch if Equal

Description
Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA = 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

beq rA, rB Branch if Equal

beqd rA, rB Branch if Equal with Delay

1 0 0 1 1 1 D 0 0 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

112 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
beqi Branch Immediate if Equal

Description
Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA = 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

beqi rA, IMM Branch Immediate if Equal

beqid rA, IMM Branch Immediate if Equal with Delay

1 0 1 1 1 1 D 0 0 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 113
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
bge Branch if Greater or Equal

Description
Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA >= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bge rA, rB Branch if Greater or Equal

bged rA, rB Branch if Greater or Equal with Delay

1 0 0 1 1 1 D 0 1 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

114 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
bgei Branch Immediate if Greater or Equal

Description
Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA >= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bgei rA, IMM Branch Immediate if Greater or Equal

bgeid rA, IMM Branch Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 0 1 0 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 115
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
bgt Branch if Greater Than

Description
Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA > 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bgt rA, rB Branch if Greater Than

bgtd rA, rB Branch if Greater Than with Delay

1 0 0 1 1 1 D 0 1 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

116 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
bgti Branch Immediate if Greater Than

Description
Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA > 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bgti rA, IMM Branch Immediate if Greater Than

bgtid rA, IMM Branch Immediate if Greater Than with Delay

1 0 1 1 1 1 D 0 1 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 117
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
ble Branch if Less or Equal

Description
Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA <= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

ble rA, rB Branch if Less or Equal

bled rA, rB Branch if Less or Equal with Delay

1 0 0 1 1 1 D 0 0 1 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

118 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
blei Branch Immediate if Less or Equal

Description
Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA <= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

blei rA, IMM Branch Immediate if Less or Equal

bleid rA, IMM Branch Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 0 0 1 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 119
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
blt Branch if Less Than

Description
Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA < 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

blt rA, rB Branch if Less Than

bltd rA, rB Branch if Less Than with Delay

1 0 0 1 1 1 D 0 0 1 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

120 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
blti Branch Immediate if Less Than

Description
Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA < 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

blti rA, IMM Branch Immediate if Less Than

bltid rA, IMM Branch Immediate if Less Than with Delay

1 0 1 1 1 1 D 0 0 1 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 121
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
bne Branch if Not Equal

Description
Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA ≠ 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bne rA, rB Branch if Not Equal

bned rA, rB Branch if Not Equal with Delay

1 0 0 1 1 1 D 0 0 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

122 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
bnei Branch Immediate if Not Equal

Description
Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (for
example, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
If rA ≠ 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bnei rA, IMM Branch Immediate if Not Equal

bneid rA, IMM Branch Immediate if Not Equal with Delay

1 0 1 1 1 1 D 0 0 0 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 123
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
br Unconditional Branch

1 0 0 1 1 0 rD D A L 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

Description
Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in rB, otherwise, it is a relative branch and the target
will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (for example, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)
if D = 1 then

allow following instruction to complete execution

Registers Altered
• rD
• PC

Latency
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set)

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay
124 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
Note
The instructions brl and bral are not available. A delay slot must not be used by the following: imm,
branch, or break instructions. Interrupts and external hardware breaks are deferred until after the
delay slot branch has been completed.
MicroBlaze Processor Reference Guide www.xilinx.com 125
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
bri Unconditional Branch Immediate

Description
Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch
is to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and the
target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there is
a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (for example, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and
“bralid rD, 0x8“is used to perform a User Vector Exception, the Machine Status Register bits
User Mode and Virtual Mode are cleared.

Pseudocode
if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (IMM)

else
PC ← PC + (IMM)

if D = 1 then
allow following instruction to complete execution

if D = 1 and A = 1 and L = 1 and IMM = 0x8 then
MSR[UMS] ← MSR[UM]
MSR[VMS] ← MSR[VM]
MSR[UM] ← 0
MSR[VM] ← 0

bri IMM Branch Immediate

brai IMM Branch Absolute Immediate

brid IMM Branch Immediate with Delay

braid IMM Branch Absolute Immediate with Delay

brlid rD, IMM Branch and Link Immediate with Delay

bralid rD, IMM Branch Absolute and Link Immediate with Delay

1 0 1 1 1 0 rD D A L 0 0 IMM

0 6 1
1

1
6

3
1

126 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
Registers Altered
• rD
• PC
• MSR[UM], MSR[VM]

Latency
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set)

Notes
The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide www.xilinx.com 127
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
brk Break

Description
Branch and link to the instruction located at address value in rB. The current value of PC will be
stored in rD. The BIP flag in the MSR will be set.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
(rD) ← PC
PC ← (rB)
MSR[BIP] ← 1

Registers Altered
• rD
• PC
• MSR[BIP]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 3 cycles

brk rD, rB

1 0 0 1 1 0 rD 0 1 1 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

128 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
brki Break Immediate

Description
Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged,
except as a special case when “brki rD, 0x8” or “brki rD, 0x18” is used to perform a
Software Break. This means that, apart from the special case, if the instruction is attempted in User
Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and “brki
rD, 0x8” or “brki rD, 0x18” is used to perform a Software Break, the Machine Status Register
bits User Mode and Virtual Mode are cleared.

Pseudocode
if MSR[UM] == 1 && IMM != 0x8 && IMM != 0x18 then
ESR[EC] ← 00111

else
(rD) ← PC
PC ← sext(IMM)
MSR[BIP] ← 1
if IMM = 0x8 || IMM = 0x18 then
MSR[UMS] ← MSR[UM]
MSR[VMS] ← MSR[VM]
MSR[UM] ← 0
MSR[VM] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• PC
• MSR[BIP], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 3 cycles

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

brki rD, IMM

1 0 1 1 1 0 rD 0 1 1 0 0 IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 129
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
bs Barrel Shift

Description
Shifts the contents of register rA by the amount specified in register rB and puts the result in register
rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode
if S = 1 then
(rD) ← (rA) << (rB)[27:31]

else
if T = 1 then
if ((rB)[27:31]) ≠ 0 then
(rD)[0:(rB)[27:31]-1] ← (rA)[0]
(rD)[(rB)[27:31]:31] ← (rA) >> (rB)[27:31]

else
(rD) ← (rA)

else
(rD) ← (rA) >> (rB)[27:31]

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

bsrl rD, rA, rB Barrel Shift Right Logical

bsra rD, rA, rB Barrel Shift Right Arithmetical

bsll rD, rA, rB Barrel Shift Left Logical

0 1 0 0 0 1 rD rA rB S T 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

130 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
bsi Barrel Shift Immediate

Description
Shifts the contents of register rA by the amount specified by IMM and puts the result in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode
if S = 1 then
(rD) ← (rA) << IMM

else
if T = 1 then
if IMM ≠ 0 then
(rD)[0:IMM-1] ← (rA)[0]
(rD)[IMM:31] ← (rA) >> IMM

else
(rD) ← (rA)

else
(rD) ← (rA) >> IMM

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Notes
These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate

bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate

bslli rD, rA, IMM Barrel Shift Left Logical Immediate

0 1 1 0 0 1 rD rA 0 0 0 0 0 S T 0 0 0 0 IMM

0 6 1
1

1
6

2
1

2
7

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 131
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
cmp Integer Compare

Description
The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and
rB is considered unsigned values. If the U bit is clear, rA and rB is considered signed values.

Pseudocode
(rD) ← (rB) + (rA) + 1
(rD)(MSB) ← (rA) > (rB)

Registers Altered
• rD

Latency
• 1 cycle

cmp rD, rA, rB compare rB with rA (signed)

cmpu rD, rA, rB compare rB with rA (unsigned)

0 0 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 U 1

0 6 1
1

1
6

2
1

3
1

132 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
fadd Floating Point Arithmetic Add

Description
The floating point sum of registers rA and rB, is placed into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if isSigNaN(rA) or isSigNaN(rB)or
(isPosInfinite(rA) and isNegInfinite(rB)) or
(isNegInfinite(rA) and isPosInfinite(rB))) then

(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isDnz((rA)+(rB)) then
(rD) ← signZero((rA)+(rB))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rA)+(rB)) and then
(rD) ← signInfinite((rA)+(rB))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rA) + (rB)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

fadd rD, rA, rB Add

0 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 133
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
frsub Reverse Floating Point Arithmetic Subtraction

Description
The floating point value in rA is subtracted from the floating point value in rB and the result is
placed into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if (isSigNaN(rA) or isSigNaN(rB) or
(isPosInfinite(rA) and isPosInfinite(rB)) or
(isNegInfinite(rA) and isNegInfinite(rB))) then

(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isDnz((rB)-(rA)) then
(rD) ← signZero((rB)-(rA))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rB)-(rA)) and then
(rD) ← signInfinite((rB)-(rA))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rB) - (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

frsub rD, rA, rB Reverse subtract

0 1 0 1 1 0 rD rA rB 0 0 0 1 0 0 0 0 0 0 0

0 6 11 16 21 31
134 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
fmul Floating Point Arithmetic Multiplication

Description
The floating point value in rA is multiplied with the floating point value in rB and the result is placed
into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or

(isZero(rB) and isInfinite(rA)) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isDnz((rB)*(rA)) then
(rD) ← signZero((rA)*(rB))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rB)*(rA)) and then
(rD) ← signInfinite((rB)*(rA))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rB) * (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

fmul rD, rA, rB Multiply

0 1 0 1 1 0 rD rA rB 0 0 1 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 135
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
fdiv Floating Point Arithmetic Division

fdiv rD, rA, rB Divide

0 1 0 1 1 0 rD rA rB 0 0 1 1 0 0 0 0 0 0 0

0 6 11 16 21

Description
The floating point value in rB is divided by the floating point value in rA and the result is placed into
register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or

(isInfinite(rA) and isInfinite(rB)) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isZero(rA) and not isInfinite(rB) then
(rD) ← signInfinite((rB)/(rA))
FSR[DZ] ← 1
ESR[EC] ← 00110

else if isDnz((rB)/(rA)) then
(rD) ← signZero((rA)/(rB))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rB)/(rA)) and then
(rD) ← signInfinite((rB)/(rA))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rB) / (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO,DZ]

Latency
• 28 cycles with C_AREA_OPTIMIZED=0, 30 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

31
136 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
fcmp Floating Point Number Comparison

Description
The floating point value in rB is compared with the floating point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0
FSR[DO] ← 1
ESR[EC] ← 00110

else
{read out behavior from Table 4-2}

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

Table 4-2, page 138 lists the floating point comparison operations.

fcmp.un rD, rA, rB Unordered floating point comparison

fcmp.lt rD, rA, rB Less-than floating point comparison

fcmp.eq rD, rA, rB Equal floating point comparison

fcmp.le rD, rA, rB Less-or-Equal floating point comparison

fcmp.gt rD, rA, rB Greater-than floating point comparison

fcmp.ne rD, rA, rB Not-Equal floating point comparison

fcmp.ge rD, rA, rB Greater-or-Equal floating point comparison

0 1 0 1 1 0 rD rA rB 0 1 0 0 OpSel 0 0 0 0

0 6 11 16 21 25 28 31
MicroBlaze Processor Reference Guide www.xilinx.com 137
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
Comparison Type Operand Relationship

Description OpSel (rB) > (rA) (rB) < (rA) (rB) = (rA) isNaN(rA) or isNaN(rB)

Unordered 000 (rD) ← 0 (rD) ← 0 (rD) ← 0 (rD) ← 1

Less-than 001 (rD) ← 0 (rD) ← 1 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Equal 010 (rD) ← 0 (rD) ← 0 (rD) ← 1 (rD) ← 0

Less-or-equal 011 (rD) ← 0 (rD) ← 1 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Greater-than 100 (rD) ← 1 (rD) ← 0 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Not-equal 101 (rD) ← 1 (rD) ← 1 (rD) ← 0 (rD) ← 1

Greater-or-equal 110 (rD) ← 1 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Table 4-2: Floating Point Comparison Operation
138 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
flt Floating Point Convert Integer to Float

Description
Converts the signed integer in register rA to floating point and puts the result in register rD. This is
a 32-bit rounding signed conversion that will produce a 32-bit floating point result.

Pseudocode
(rD) ← float ((rA))

Registers Altered
• rD

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2.

flt rD, rA

0 1 0 1 1 0 rD rA 0 0 1 0 1 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 139
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
fint Floating Point Convert Float to Integer

Description
Converts the floating point number in register rA to a signed integer and puts the result in register
rD. This is a 32-bit signed conversion that will produce a 32-bit integer result.

Pseudocode
if isDnz(rA) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if isSigNaN(rA) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) then
(rD) ← 0xFFC00000

else if isInf(rA) or (rA) < -231 or (rA) > 231 - 1 then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else
(rD) ← int ((rA))

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 5 cycles with C_AREA_OPTIMIZED=0
• 7 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2.

fint rD, rA

0 1 0 1 1 0 rD rA 0 0 1 1 0 0 0 0 0 0 0 0

0 6 11 16 21 31
140 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
fsqrt Floating Point Arithmetic Square Root

Description
Performs a floating point square root on the value in rA and puts the result in register rD.

Pseudocode
if isDnz(rA) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if isSigNaN(rA) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) then
(rD) ← 0xFFC00000

else if (rA) < 0 then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if (rA) = -0 then
(rD) ← -0

else
(rD) ← sqrt ((rA))

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 27 cycles with C_AREA_OPTIMIZED=0
• 29 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2.

fsqrt rD, rA Square Root

0 1 0 1 1 0 rD rA 0 0 1 1 1 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 141
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
get get from fsl interface

Description
MicroBlaze will read from the FSLx interface and place the result in register rD.

The get instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall microblaze until the data from the FSL interface
is valid. The non-blocking versions will not stall microblaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register contents
is undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the FSL interface to be ‘0’.
If this is not the case, the instruction will set MSR[FSL_Error] to ‘1’. All control get instructions
(when ‘c’ bit is ‘1’) expect the control bit from the FSL interface to be ‘1’. If this is not the case, the
instruction will set MSR[FSL_Error] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the FSL
index. The target register, rD, is not updated when an exception is generated, instead the FSL data is
stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read signal
to the FSL link is not asserted.

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic FSL
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) these instructions are
privileged. This means that if these instructions are attempted in User Mode (MSR[UM]=1) a
Privileged Instruction exception occurs.

tneaget rD, FSLx get data from FSL x
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecaget rD, FSLx get control from FSL x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 1 0 1 1 rD 0 0 0 0 0 0 n c t a e 0 0 0 0 0 0 FSLx

0 6 11 16 28 31
142 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
(rD) ← FSLx
if (n = 1) then
MSR[Carry] ← not (FSLx Exists bit)

if (FSLx Control bit ≠ c) then
MSR[FSL_Error] ← 1
if (e = 1) then
ESR[EC] ← 00000
ESR[ESS]← instruction bits [28:31]
EDR ← FSLx

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[FSL_Error]
• MSR[Carry]
• ESR[EC], in case an FSL exception or a privileged instruction exception is generated
• ESR[ESS], in case an FSL exception is generated
• EDR, in case an FSL exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is
set to 1, and the instruction is not atomic.

Note
For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0.

The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.
MicroBlaze Processor Reference Guide www.xilinx.com 143
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
getd get from fsl interface dynamic

Description
MicroBlaze will read from the FSL interface defined by the four least significant bits in rB and place
the result in register rD.

The getd instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall microblaze until the data from the FSL interface
is valid. The non-blocking versions will not stall microblaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register contents
is undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the FSL interface to be ‘0’.
If this is not the case, the instruction will set MSR[FSL_Error] to ‘1’. All control get instructions
(when ‘c’ bit is ‘1’) expect the control bit from the FSL interface to be ‘1’. If this is not the case, the
instruction will set MSR[FSL_Error] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the FSL
index. The target register, rD, is not updated when an exception is generated, instead the FSL data is
stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read signal
to the FSL link is not asserted.

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic FSL
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) these instructions are
privileged. This means that if these instructions are attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

tneagetd rD, rB get data from FSL rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecagetd rD, rB get control from FSL rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 0 0 1 1 rD 0 0 0 0 0 rB 0 n c t a e 0 0 0 0 0

0 6 11 16 21 31
144 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
(rD) ← (FSL rB[28:31])
if (n = 1) then
MSR[Carry] ← not (FSL rB[28:31] Exists bit)

if (FSL rB[28:31] Control bit ≠ c) then
MSR[FSL_Error] ← 1
if (e = 1) then
ESR[EC] ← 00000
ESR[ESS]← rB[28:31]
EDR ← (FSL rB[28:31])

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[FSL_Error]
• MSR[Carry]
• ESR[EC], in case an FSL exception or a privileged instruction exception is generated
• ESR[ESS], in case an FSL exception is generated
• EDR, in case an FSL exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note
For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.
MicroBlaze Processor Reference Guide www.xilinx.com 145
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
idiv Integer Divide

Description
The contents of register rB is divided by the contents of register rA and the result is placed into
register rD.

If the U bit is set, rA and rB is considered unsigned values. If the U bit is clear, rA and rB is
considered signed values

If the value of rA is 0, the divide_by_zero bit in MSR will be set and the value in rD will be 0, unless
an exception is generated.

Pseudocode
if (rA) = 0 then
(rD) <- 0
MSR[DZ] <- 1
ESR[EC] <- 00101

else
(rD) ← (rB) / (rA)

Registers Altered
• rD, unless “Divide by zero” exception is generated, in which case the register is unchanged
• MSR[Divide_By_Zero], if the value in rA is zero
• ESR[EC], if the value in rA is zero

Latency
• 1 cycle if (rA) = 0, otherwise 32 cycles with C_AREA_OPTIMIZED=0
• 1 cycle if (rA) = 0, otherwise 34 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE_DIV =
1).

idiv rD, rA, rB divide rB by rA (signed)

idivu rD, rA, rB divide rB by rA (unsigned)

0 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 U 0

0 6 1
1

1
6

2
1

3
1

146 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
imm Immediate

Description
The instruction imm loads the IMM value into a temporary register. It also locks this value so it can
be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions have
only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-
bit immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit
IMM field value and sign extend it to 32 bits to use as the immediate operand. This behavior can be
overridden by preceding the Type B instruction with an imm instruction. The imm instruction locks
the 16-bit IMM value temporarily for the next instruction. A Type B instruction that immediately
follows the imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of
the imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If no
Type B instruction follows the imm instruction, the locked value gets unlocked and becomes
useless.

Latency
• 1 cycle

Notes
The imm instruction and the Type B instruction following it are atomic; consequently, no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions. When a 32-
bit IMM value is specified in a Type B instruction, the assembler converts the IMM value to a 16-
bit one to assemble the instruction and inserts an imm instruction before it in the executable file.

imm IMM

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 147
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
lbu Load Byte Unsigned

Description
Loads a byte (8 bits) from the memory location that results from adding the contents of registers rA
and rB. The data is placed in the least significant byte of register rD and the other three bytes in rD
are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] == 1 and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

lbu rD, rA, rB

1 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
148 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
lbui Load Byte Unsigned Immediate

Description
Loads a byte (8 bits) from the memory location that results from adding the contents of register rA
with the value in IMM, sign-extended to 32 bits. The data is placed in the least significant byte of
register rD and the other three bytes in rD are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] == 1 and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

lbui rD, rA, IMM

1 1 1 0 0 0 rD rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 149
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
lhu Load Halfword Unsigned

Description
Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in the least significant halfword of register rD and
the most significant halfword in rD is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] == 1 and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

lhu rD, rA, rB

1 1 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
150 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
lhui Load Halfword Unsigned Immediate

1 1 1 0 0 1 rD rA IMM

0 6 11 16

Description
Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of register rA and the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant halfword of register rD and the most significant halfword in rD is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the least significant bit
in the address is not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] == 1 and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

lhui rD, rA, IMM

31
MicroBlaze Processor Reference Guide www.xilinx.com 151
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
lw Load Word

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] == 1 and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD) ← Mem(Addr)

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

lw rD, rA, rB

1 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
152 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
lwi Load Word Immediate

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of register rA and the value IMM, sign-extended to 32 bits. The data is placed in register rD. A data
TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the two least
significant bits in the address are not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] == 1 and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD) ← Mem(Addr)

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

lwi rD, rA, IMM

1 1 1 0 1 0 rD rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 153
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
mfs Move From Special Purpose Register

Description
Copies the contents of the special purpose register rS into register rD. The special purpose registers
TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by TLBX.

Pseudocode
switch (rS):
case 0x0000 : (rD) ← PC
case 0x0001 : (rD) ← MSR
case 0x0003 : (rD) ← EAR
case 0x0005 : (rD) ← ESR
case 0x0007 : (rD) ← FSR
case 0x000B : (rD) ← BTR
case 0x000D : (rD) ← EDR
case 0x1000 : (rD) ← PID
case 0x1001 : (rD) ← ZPR
case 0x1002 : (rD) ← TLBX
case 0x1003 : (rD) ← TLBLO
case 0x1004 : (rD) ← TLBHI
case 0x200x : (rD) ← PVR[x] (where x = 0 to 11)
default : (rD) ← Undefined

Registers Altered
• rD

Latency
• 1 cycle

mfs rD, rS

1 0 0 1 0 1 rD 0 0 0 0 0 1 0 rS

0 6 11 16 18 31
154 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
Notes
To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear for
EAR, resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rpid for PID, rzpr for ZPR, rtlblo for
TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rpvr0 - rpvr11 for PVR0 - PVR11.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). A NOP should be inserted before the MFS instruction to
guarantee correct MSR value.

EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze
C_*_EXCEPTION parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_EXCEPTION is set to 1 and the
parameter C_FSL_LINKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C_USE_MMU > 1
and the parameter C_MMU_TLB_ACCESS = 1 or 3.

TLBX is only valid as operand when the parameter C_USE_MMU > 1 and the parameter
C_MMU_TLB_ACCESS > 0.

PVR0 is only valid as an operand when C_PVR is 1 or 2, and PVR1 - PVR11 are only valid as
operands when C_PVR is set to 2.
MicroBlaze Processor Reference Guide www.xilinx.com 155
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
msrclr Read MSR and clear bits in MSR

Description
Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in the IMM
value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] == 1 && IMM != 0x4 then
ESR[EC] ← 00111

else
(rD) ← (MSR)
(MSR) ← (MSR) ∧ (IMM))

Registers Altered
• rD
• MSR
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

Note
MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed.

The immediate values has to be less than 215. Only bits 17 to 31 of the MSR can be cleared.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

msrclr rD, Imm

1 0 0 1 0 1 rD 0 0 0 0 1 0 Imm15

0 6 11 16 17 31
156 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
msrset Read MSR and set bits in MSR

Description
Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are set in the MSR. Bit positions that are 0 in the IMM
value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] == 1 && IMM != 0x4 then
ESR[EC]← 00111

else
(rD) ← (MSR)
(MSR) ← (MSR) ∨ (IMM)

Registers Altered
• rD
• MSR
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

Note
MSRSET will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed.

The immediate values has to be less than 215. Only bits 17 to 31 of the MSR can be set.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

msrset rD, Imm

1 0 0 1 0 1 rD 0 0 0 0 0 0 Imm15

0 6 11 16 17 31
MicroBlaze Processor Reference Guide www.xilinx.com 157
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
mts Move To Special Purpose Register

Description
Copies the contents of register rD into the special purpose register rS. The special purpose registers
TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
switch (rS)

 case 0x0001 : MSR ← (rA)
 case 0x0007 : FSR ← (rA)
 case 0x1000 : PID ← (rA)
 case 0x1001 : ZPR ← (rA)
 case 0x1002 : TLBX ← (rA)
 case 0x1003 : TLBLO ← (rA)
 case 0x1004 : TLBHI ← (rA)
 case 0x1005 : TLBSX ← (rA)

Registers Altered
• rS
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

Notes
When writing MSR using MTS, the Carry bit takes effect immediately while the remaining bits take
effect one cycle after the instruction has been executed.
To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rpid for
PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rtlbsx for TLBSX.
The PC, ESR, EAR, BTR, EDR and PVR0 - PVR11 cannot be written by the MTS instruction.
The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than 0.
PID, ZPR and TLBSX are only valid as destinations when the parameter C_USE_MMU > 1 and the
parameter C_MMU_TLB_ACCESS > 1. TLBLO, TLBHI and TLBX are only valid as destinations
when the parameter C_USE_MMU > 1.
When changing MSR[VM] or PID the instruction must always be followed by a synchronizing
branch instruction, for example BRI 4.

mts rS, rA

1 0 0 1 0 1 0 0 0 0 0 rA 1 1 rS

0 6 11 16 18 31
158 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
mul Multiply

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit multiplication that will produce a 64-bit result. The least significant word of this value is
placed in rD. The most significant word is discarded.

Pseudocode
(rD) ← LSW((rA) × (rB))

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

mul rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 159
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
mulh Multiply High

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit signed multiplication that will produce a 64-bit result. The most significant word of this value
is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA) × (rB)), signed

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2.

When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.

mulh rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 1

0 6 1
1

1
6

2
1

3
1

160 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
mulhu Multiply High Unsigned

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant word
of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA) × (rB)), unsigned

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2.

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

mulhu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 1

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 161
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
mulhsu Multiply High Signed Unsigned

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit
signed by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most
significant word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA), signed × (rB), unsigned), signed

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2.

When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

mulhsu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 0

0 6 1
1

1
6

2
1

3
1

162 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
muli Multiply Immediate

Description
Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the
result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The
least significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD) ← LSW((rA) × sext(IMM))

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

muli rD, rA, IMM

0 1 1 0 0 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 163
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
or Logical OR

Description
The contents of register rA are ORed with the contents of register rB; the result is placed into
register rD.

Pseudocode
(rD) ← (rA) ∨ (rB)

Registers Altered
• rD

Latency
• 1 cycle

or rD, rA, rB

1 0 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

164 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
ori Logical OR with Immediate

Description
The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) ← (rA) ∨ (IMM)

Registers Altered
• rD

Latency
• 1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

ori rD, rA, IMM

1 0 1 0 0 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 165
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
pcmpbf Pattern Compare Byte Find

Description
The contents of register rA is bytewise compared with the contents in register rB.

• rD is loaded with the position of the first matching byte pair, starting with MSB as position 1,
and comparing until LSB as position 4

• If none of the byte pairs match, rD is set to 0

Pseudocode
if rB[0:7] = rA[0:7] then
(rD) ← 1

else
if rB[8:15] = rA[8:15] then
(rD) ← 2

else
if rB[16:23] = rA[16:23] then
(rD) ← 3

else
if rB[24:31] = rA[24:31] then
(rD) ← 4

else
(rD) ← 0

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpbf rD, rA, rB bytewise comparison returning position of
first match

1 0 0 0 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

166 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
pcmpeq Pattern Compare Equal

Description
The contents of register rA is compared with the contents in register rB.

• rD is loaded with 1 if they match, and 0 if not

Pseudocode
if (rB) = (rA) then
(rD) ← 1

else
(rD) ← 0

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpeq rD, rA, rB equality comparison with a positive boolean
result

1 0 0 0 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 167
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
pcmpne Pattern Compare Not Equal

Description
The contents of register rA is compared with the contents in register rB.

• rD is loaded with 0 if they match, and 1 if not

Pseudocode
if (rB) = (rA) then
(rD) ← 0

else
(rD) ← 1

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpne rD, rA, rB equality comparison with a negative boolean
result

1 0 0 0 1 1 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

168 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
put Put to fsl interface

Description
MicroBlaze will write the value from register rA to the FSLx interface.

The put instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the FSL
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data put instructions (when ‘c’ is ‘0’) will set the control bit to the FSL interface to ‘0’ and all
control put instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write signal
to the FSL link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic FSL
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) these instructions are
privileged. This means that if these instructions are attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
(FSLx) ← (rA)
if (n = 1) then
MSR[Carry] ← (FSLx Full bit)

(FSLx Control bit) ← C

naput rA, FSLx put data to FSL x
n = non-blocking
a = atomic

tnaput FSLx put data to FSL x test-only
n = non-blocking
a = atomic

ncaput rA, FSLx put control to FSL x
n = non-blocking
a = atomic

tncaput FSLx put control to FSL x test-only
n = non-blocking
a = atomic

0 1 1 0 1 1 0 0 0 0 0 rA 1 n c t a 0 0 0 0 0 0 0 FSLx

0 6 11 16 28 31
MicroBlaze Processor Reference Guide www.xilinx.com 169
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
Registers Altered
• MSR[Carry]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is
set to 1, and the instruction is not atomic.

Note
These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0.

The extended instructions (atomic versions) are only available when the MicroBlaze parameter
C_USE_EXTENDED_FSL_INSTR is set to 1.
170 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
putd Put to fsl interface dynamic

Description
MicroBlaze will write the value from register rA to the FSL interface defined by the four least
significant bits in rB.

The putd instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the FSL
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data putd instructions (when ‘c’ is ‘0’) will set the control bit to the FSL interface to ‘0’ and all
control putd instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write signal
to the FSL link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic FSL
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) these instructions are
privileged. This means that if these instructions are attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
(FSL rB[28:31]) ← (rA)
if (n = 1) then
MSR[Carry] ← (FSL rB[28:31] Full bit)

(FSL rB[28:31] Control bit) ← C

naputd rA, rB put data to FSL rB[28:31]
n = non-blocking
a = atomic

tnaputd rB put data to FSL rB[28:31] test-only
n = non-blocking
a = atomic

ncaputd rA, rB put control to FSL rB[28:31]
n = non-blocking
a = atomic

tncaputd rB put control to FSL rB[28:31] test-only
n = non-blocking
a = atomic

0 1 0 0 1 1 0 0 0 0 0 rA rB 1 n c t a 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 171
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
Registers Altered
• MSR[Carry]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note
These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.
172 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
rsub Arithmetic Reverse Subtract

Description
The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsubk.
Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsubc. Both bits are
set to one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the carry
flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then
(rD) ← (rB) + (rA) + 1

else
(rD) ← (rB) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

Notes
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsub rD, rA, rB Subtract

rsubc rD, rA, rB Subtract with Carry

rsubk rD, rA, rB Subtract and Keep Carry

rsubkc rD, rA, rB Subtract with Carry and Keep Carry

0 0 0 K C 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 173
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
rsubi Arithmetic Reverse Subtract Immediate

Description
The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits, and the
result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for
the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic), then
the carry flag will be affected by the execution of the instruction. When bit 4 of the instruction is set
to one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the execution of the
instruction. When bit 4 is cleared (rsubi, rsubik), the content of the carry flag does not affect the
execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then
(rD) ← sext(IMM) + (rA) + 1

else
(rD) ← sext(IMM) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

Notes
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type B
Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use as the immediate
operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate values.

rsubi rD, rA, IMM Subtract Immediate

rsubic rD, rA, IMM Subtract Immediate with Carry

rsubik rD, rA, IMM Subtract Immediate and Keep Carry

rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 0 1 K C 1 rD rA IMM

0 6 1
1

1
6

3
1

174 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
rtbd Return from Break
rn from Interrupt

Description
Return from break will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP flag in the
MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed
before the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[BIP] ← 0
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]

Registers Altered
• PC
• MSR[BIP], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 2 cycles

Note
Convention is to use general purpose register r16 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

rtbd rA, IMM

1 0 1 1 0 1 1 0 0 1 0 rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 175
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
rtid Return from Interrupt
rn from Interrupt

Description
Return from interrupt will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed
before the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[IE] ← 1
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]

Registers Altered
• PC
• MSR[IE], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 2 cycles

Note
Convention is to use general purpose register r14 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

rtid rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31
176 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
rted Return from Exception

Description
Return from exception will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed
before the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[EE] ← 1
MSR[EIP] ← 0
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]
ESR ← 0

Registers Altered
• PC
• MSR[EE], MSR[EIP], MSR[UM], MSR[VM]
• ESR

Latency
• 2 cycles

Note
Convention is to use general purpose register r17 as rA. This instruction requires that one or more of
the MicroBlaze parameters C_*_EXCEPTION are set to 1.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Note: Code returning from an exception must first check if MSR[DS] is set, and in that case return
to the address in BTR.

rted rA, IMM

1 0 1 1 0 1 1 0 1 0 0 rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 177
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
rtsd Return from Subroutine

Description
Return from subroutine will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always executed
before the branch target.

Pseudocode
PC ← (rA) + sext(IMM)
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 2 cycles

Note
Convention is to use general purpose register r15 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

rtsd rA, IMM

1 0 1 1 0 1 1 0 0 0 0 rA IMM

0 6 1
1

1
6

3
1

178 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
sb Store Byte

Description
Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of registers rA and rB.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
Mem(Addr) ← (rD)[24:31]

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

sb rD, rA, rB

1 1 0 1 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 179
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
sbi Store Byte Immediate

Description
Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of register rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
Mem(Addr) ← (rD)[24:31]

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

sbi rD, rA, IMM

1 1 1 1 0 0 rD rA IMM

0 6 11 16 31
180 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
sext16 Sign Extend Halfword

Description
This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied
into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode
(rD)[0:15] ← (rA)[16]
(rD)[16:31] ← (rA)[16:31]

Registers Altered
• rD

Latency
• 1 cycle

sext16 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 181
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
sext8 Sign Extend Byte

Description
This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into bits
0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode
(rD)[0:23] ← (rA)[24]
(rD)[24:31] ← (rA)[24:31]

Registers Altered
• rD

Latency
• 1 cycle

sext8 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 6 1
1

1
6

3
1

182 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
sh Store Halfword

Description
Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of registers rA and rB.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[16:31]

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

sh rD, rA, rB

1 1 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 183
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
shi Store Halfword Immediate

Description
Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of register rA and the value IMM, sign-extended to 32
bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if virtual
protected mode is enabled, and access is prevented by no-access-allowed or read-only zone
protection. No-access-allowed can only occur in user mode. An unaligned data access exception
occurs if the least significant bit in the address is not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[16:31]

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

shi rD, rA, IMM

1 1 1 1 0 1 rD rA IMM

0 6 11 16 31
184 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
sra Shift Right Arithmetic

Description
Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD. The
most significant bit of rA (for example, the sign bit) placed in the most significant bit of rD. The
least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← (rA)[0]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

sra rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 185
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
src Shift Right with Carry

Description
Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← MSR[C]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

src rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 6 1
1

1
6

3
1

186 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
srl Shift Right Logical

Description
Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← 0
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

srl rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 187
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
sw Store Word

Description
Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and rB.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[0:31]

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

sw rD, rA, rB

1 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
188 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
swi Store Word Immediate

Description
Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] == 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] == 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] != 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[0:31]

Register Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

swi rD, rA, IMM

1 1 1 1 1 0 rD rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 189
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
wdc Write to Data Cache

Description
Write into the data cache tag to invalidate a cache line. The register rB value is not used. Register rA
contains the address of the affected cache line.

The WDC instruction should only be used when the data cache is disabled (for example,
MSR[DCE]=0).

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
if C_DCACHE_LINE_LEN = 4 then
(DCache Line)[(Ra) >> 4].Tag ← 0

if C_DCACHE_LINE_LEN = 8 then
(DCache Line)[(Ra) >> 5].Tag ← 0

Registers Altered
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

wdc rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB 0 0 0 0 1 1 0 0 1 0 0

0 6 1
1

1
6

3
1

190 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
wic Write to Instruction Cache

Description
Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

The WIC instruction should only be used when the instruction cache is disabled (for example,
MSR[ICE]=0).

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] == 1 then
ESR[EC] ← 00111

else
if C_ICACHE_LINE_LEN = 4 then
(ICache Line)[(Ra) >> 4].Tag ← 0

if C_ICACHE_LINE_LEN = 8 then
(ICache Line)[(Ra) >> 5].Tag ← 0

Registers Altered
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

wic rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB 0 0 0 0 1 1 0 1 0 0 0

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 191
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
xor Logical Exclusive OR

Description
The contents of register rA are XORed with the contents of register rB; the result is placed into
register rD.

Pseudocode
(rD) ← (rA) ⊕ (rB)

Registers Altered
• rD

Latency
• 1 cycle

xor rD, rA, rB

1 0 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

192 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

Instructions R
xori Logical Exclusive OR with Immediate

Description
The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register
rA are XOR’ed with the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ⊕ sext(IMM)

Registers Altered
• rD

Latency
• 1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 147 for details on using 32-bit immediate
values.

xori rA, rD, IMM

1 0 1 0 1 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 193
UG081 (v8.0) 1-800-255-7778

http://www.xilinx.com

Chapter 4: MicroBlaze Instruction Set ArchitectureR
194 www.xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UG081 (v8.0)

http://www.xilinx.com

	MicroBlaze Processor Reference Guide
	Table of Contents
	About This Guide
	Guide Contents
	Conventions
	Typographical
	Online Document

	MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating Point Status Register (FSR)
	Exception Data Register (EDR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBS X)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Branches
	Delay Slots

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Page-Translation Table

	Translation Look-Aside Buffer
	TLB Entry Format
	TLB Access
	TLB Access Failures

	Access Protection
	TLB Access-Protection Controls
	Zone Protection

	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Equivalent Pseudocode

	Hardware Exceptions
	Exception Causes
	Equivalent Pseudocode

	Breaks
	Hardware Breaks
	Software Breaks
	Latency
	Equivalent Pseudocode

	Interrupt
	Latency
	Equivalent Pseudocode

	User Vector (Exception)
	Pseudocode

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Instruction Cache Software Support
	MSR Bit
	WIC Instruction

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Data Cache Software Support
	MSR Bit
	WDC Instruction

	Floating Point Unit (FPU)
	Overview
	Format
	Rounding
	Operations
	Arithmetic
	Comparison
	Conversion

	Exceptions

	Fast Simplex Link (FSL)
	Hardware Acceleration using FSL

	Debug and Trace
	Debug Overview
	Trace Overview

	MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	Processor Local Bus (PLB) Interface Description
	On-Chip Peripheral Bus (OPB) Interface Description
	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	Addr[0:31]
	Byte_Enable[0:3]
	Data_Write[0:31]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:31]
	Ready
	Clk

	LMB Transactions
	Generic Write Operation
	Generic Read Operation
	Back-to-Back Write Operation
	Single Cycle Back-to-Back Read Operation
	Back-to-Back Mixed Read/Write Operation

	Read and Write Data Steering

	Fast Simplex Link (FSL) Interface Description
	Master FSL Signal Interface
	Slave FSL Signal Interface
	FSL Transactions
	FSL BUS Write Operation
	FSL BUS Read Operation

	Xilinx CacheLink (XCL) Interface Description
	CacheLink Signal Interface
	CacheLink Transactions
	Instruction Cache Read Miss
	Data Cache Read Miss
	Data Cache Write

	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	MicroBlaze Application Binary Interface
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt and Exception Handling

	MicroBlaze Instruction Set Architecture
	Notation
	Formats
	Type A
	Type B

	Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bge
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ble
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency

	fadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	frsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fdiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	flt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fint
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fsqrt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	getd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imm
	Description
	Latency
	Notes

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrclr
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	msrset
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulh
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulhsu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	putd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rted
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sb
	Description
	Pseudocode
	Registers Altered
	Latency

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency

	swi
	Description
	Pseudocode
	Register Altered
	Latency
	Note

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency

	wic
	Description
	Pseudocode
	Registers Altered
	Latency

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

