
32-Bit Programmer’s Reference Manual

Nios Embedded Processor

MNL-NIOS32PROG-3.1

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Document Version: 3.1
Document Date: January 2003

http://www.altera.com

ii Altera Corporation

Copyright Nios Embedded Processor 32-Bit Programmer’s Reference Manual

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor
products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Altera Corporation
About this Manual
This manual provides comprehensive information about the Altera®
Nios® 32-bit CPU.

The terms Nios processor or Nios embedded processor are used when
referring to the Altera soft core microprocessor in a general or abstract
context. The term Nios CPU is used when referring to the specific block of
logic, in whole or part, that implements the Nios processor architecture.

Table 1 shows this manual’s revision history.

How to Find
Information

� The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click the binoculars toolbar icon to open the Find dialog
box.

� Bookmarks serve as an additional table of contents.
� Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
� Numerous links, shown in green text, allow you to jump to related

information.

Table 1. Revision History

Date Description

January 2003 Updated PDF and printed manual for Nios CPU v3.0. Includes
changes for instruction cache, data cache, and the Nios on-
chip instrumentation (OCI) debug core.

April 2002 Updated PDF - version 2.1

January 2002 Printed manual and PDF- version 2.0

July 2001 Updated PDF

March 2001 Printed manual and PDF- version 1.1
 iii

About this Manual Nios Embedded Processor 32-Bit Programmer’s Reference Manual
How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to
http://www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Technical support (800) 800-EPLD (3753)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

FTP site ftp.altera.com ftp.altera.com
iv Altera Corporation

http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
ftp.altera.com
ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport

Nios Embedded Processor 32-Bit Programmer’s Reference Manual About this Manual
Typographic
Conventions

The Nios 32-Bit Programmer’s Reference Manual uses the typographic
conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \QuartusII directory, d: drive, chiptrip.gdf file.

Bold italic type Book titles are shown in bold italic type with initial capital letters. Example:
1999 Device Data Book.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75
(High-Speed Board Design).

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of Quartus II Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster™ Download Cable.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\quartusII\qdesigns\tutorial\chiptrip.gdf. Also, sections
of an actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

� Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation v

Contents
About this Manual .. iii
How to Find Information .. iii
How to Contact Altera .. iv
Typographic Conventions ..v

Overview ..13
Introduction ..13

Audience ...13
Nios CPU Overview ..13
Instruction Set ...14
Register Overview ...14

General-Purpose Registers ...14
K Register ..16
%r0 (%g0) Register ...16
Program Counter ...16
Control Registers ..16

STATUS (%ctl0) ..16
ISTATUS (%ctl1) ..19
WVALID (%ctl2) ..19
ICACHE (%ctl5) ...20
CPU_ID (%ctl6) ..20
DCACHE (%ctl7) ..20
CLR_IE (%ctl8) ...21
SET_IE (%ctl9) ..21

Memory Access Overview ..21
Reading from Memory (or Peripherals) ...22
Writing to Memory (or Peripherals) ...23

Cache Memory ...24
Initializing Cache Memory ...26
Bypassing the Data Cache when Reading Peripherals ...27

Addressing Modes ...27
5/16-bit Immediate Value ..27
Full Width Register-Indirect ...29
Partial Width Register-Indirect ..29
Full Width Register-Indirect with Offset ..30
Partial Width Register-Indirect with Offset ...31

Program-Flow Control ..31
Relative-Branch Instructions ..31
Absolute-Jump Instructions ...32
Altera Corporation vii

Contents Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Trap Instructions ..32
Conditional Instructions ...33

Exceptions ...33
Exception Handling Overview ..33
Exception Vector Table ...34
External Hardware Interrupt Sources ...34
Internal Exception Sources ...35

Register Window Underflow ...35
Register Window Overflow ..36

Direct Software Exceptions (TRAP Instructions) ..37
Exception Processing Sequence ...37

Register Window Usage ..38
Status Preservation: ISTATUS Register ..39

Return Address ..39
Simple & Complex Exception Handlers ...40

Simple Exception Handlers ..40
Complex Exception Handlers ..40

Pipeline Implementation ...41
Direct CWP Manipulation ..41
Branch Delay Slots ...42

32-Bit Instruction Set ..43
ABS..52
ADD ... 53
ADDI...54
AND... 55
ANDN...56
ASR... 57
ASRI ..58
BGEN ... 59
BR ..60
BSR ... 61
CALL...62
CMP ... 63
CMPI ...64
EXT16D.. 65
EXT16S..66
EXT8D.. 67
EXT8S..68
FILL16.. 69
FILL8 ...70
IF0... 71
IF1..72
IFRNZ .. 73
IFRZ...74
IFS... 75
viii Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Contents
JMP..76
LD... 77
LDP ...78
LDS... 79
LRET ...80
LSL ... 81
LSLI ...82
LSR ... 83
LSRI...84
MOV... 85
MOVHI...86
MOVI ... 87
MSTEP ..88
MUL ... 89
NEG...90
NOP.. 91
NOT...92
OR... 93
PFX ..94
PFXIO... 95
RDCTL..96
RESTORE... 97
RET..98
RLC .. 99
RRC ...100
SAVE.. 101
SEXT16..102
SEXT8... 103
SKP0 ..104
SKP1 ... 105
SKPRNZ ...106
SKPRZ.. 107
SKPS..108
ST.. 109
ST16D..110
ST16S.. 111
ST8D..112
ST8S.. 113
STP ..114
STS.. 115
STS16S...116
STS8S.. 117
SUB..118
SUBI ... 119
SWAP..120
TRAP.. 121
Altera Corporation ix

Contents Nios Embedded Processor 32-Bit Programmer’s Reference Manual
TRET ...122
USR0... 123
USRx [x = 1,2,3,or 4]..124
WRCTL .. 125
XOR...126

Index ..127
x Altera Corporation

List of Tables
Table 1. Revision History ... iii
Table 2. How to Contact Altera ... iv
Table 3. Conventions... v
Table 4. Nios CPU Architecture .. 13
Table 5. Register Groups .. 14
Table 6. Programmer’s Model ... 15
Table 7. Condition Code Flags... 19
Table 8. Typical 32-bit Nios CPU Program/Data Memory at Address 0x0100 21
Table 9. N-bit-wide Peripheral at Address 0x0100 (32-bit Nios CPU)... 21
Table 10. Instructions Using 5/16-bit Immediate Values.. 28
Table 11. Instructions Using Register-Indirect Addressing .. 29
Table 12. Instructions Using Partial Width Register-Indirect Addressing ... 30
Table 13. Instructions Using Full Width Register-Indirect with Offset Addressing 30
Table 14. Instructions Using Partial Width Register-Indirect with Offset Addressing..................... 31
Table 15. BR Branch Delay Slot Example ... 42
Table 16. Notation Details .. 44
Table 17. Instruction Format .. 45
Table 18. 32-bit Opcode Table.. 47
Table 19. GNU Compiler/Assembler Pseudo-Instructions .. 50
Table 20. Nios Operators .. 50
Table 21. Smallest Nios Register File .. 51
Altera Corporation xi

Altera Corporation

1

Overview

O

verview
Introduction This document describes the 32-bit variant of the Nios embedded
processor. The Nios embedded processor is a soft core CPU optimized for
Altera programmable logic devices and system-on-a-programmable chip
(SOPC) integration. It is a configurable, general-purpose RISC processor
that can be combined with user logic and programmed into an Altera
programmable logic device (PLD). The Nios CPU can be configured for a
wide range of applications. A 32-bit Nios CPU core with external flash
program storage and large external main memory is a powerful 32-bit
embedded processor system.

Audience

This reference manual is for software and hardware engineers creating
Nios processor-based systems. This manual assumes you are familiar
with electronics, microprocessors, and assembly language programming.
To become familiar with the conventions used with the Nios CPU, see
Table 13 on page 44.

Nios CPU
Overview

The Nios CPU is a pipelined, single-issue RISC processor in which most
instructions run in a single clock cycle. The Nios instruction set is targeted
for compiled embedded applications. The 32-bit Nios CPU has a word size
of 32 bits. In the context of the Nios processor, byte refers to an 8-bit
quantity, half-word refers to a 16-bit quantity, and word refers to a 32-bit
quantity. The Nios family of soft core processors includes 32-bit and 16-bit
architecture variants as shown in Table 1.

Table 1. Nios CPU Architecture

Nios CPU Details 32-bit Nios CPU 16-bit Nios CPU
Data bus size (bits) 32 16

ALU width (bits) 32 16

Internal register width (bits) 32 16

Address bus size (bits) 32 16

Instruction size (bits) 16 16
13

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Nios development kits ship with the GNUPro compiler and debugger
from Cygnus, an industry-standard open-source C/C++ compiler, linker
and debugger toolkit. The GNUPro toolkit includes a C/C++ compiler,
macro- assembler, linker, debugger, binary utilities, and libraries.

Instruction Set The Nios instruction set is tailored to support programs compiled from C
and C++. It includes a standard set of arithmetic and logical operations,
and instruction support for bit operations, byte extraction, data
movement, control flow modification, and conditionally executed
instructions, which can be useful in eliminating short conditional
branches.

Register
Overview

This section describes the organization of the Nios CPU general-purpose
registers and control registers. The Nios CPU architecture has a large
general-purpose register file, several machine-control registers, a
program counter, and the K register used for instruction prefixing.

General-Purpose Registers

The general-purpose registers are 32 bits wide in the 32-bit Nios CPU. The
register file size is configurable and contains a total of either 128, 256, or
512 registers. The software can access the registers using a 32-register-long
sliding window that moves with a 16-register granularity. This sliding
window can traverse the entire register file and provides access to a subset
of the register file.

The register window is divided into four even sections as shown in
Table 2. The lowest eight registers (%r0-%r7) are Global registers, also
known as %g0-%g7. These Global registers do not change with the
movement or position of the window, but remain accessible as (%g0-%g7).
The top 24 registers (%r8-%r31) in the register file are accessible through
the current window.

The top eight registers (%i0-%i7) are known as In registers, the next eight
(%L0-%L7) as Local registers, and the other eight (%o0-%o7) are known
as Out registers. When a register window moves down 16-registers (as it
does for a SAVE instruction), the Out registers become the In registers of
the new window position. Also, the Local and In registers of the last
window position become inaccessible. See Table 3 on page 15 for more
detailed information.

Table 2. Register Groups

In registers %r24-%r31 or %i0-%i7

Local registers %r16-%r23 or %L0-%L7

Out registers %r8-%r15 or %o0-%o7

Global registers %r0-%r7 or %g0-%g7
14 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1

.

.

Table 3. Programmer’s Model
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
N

%i7 %r31 SAVED return-address

%i6 %r30 %fp—frame pointer

%i5 %r29

%i4 %r28

%i3 %r27

%i2 %r26

%i1 %r25

%i0 %r24

L
O
C
A
L

%L7 %r23

%L6 %r22

%L5 %r21

%L4 %r20

%L3 %r19 Base-pointer 3 for STP/LDP (or general-purpose local)

%L2 %r18 Base-pointer 2 for STP/LDP (or general-purpose local)

%L1 %r17 Base-pointer 1 for STP/LDP (or general-purpose local)

%L0 %r16 Base-pointer 0 for STP/LDP (or general-purpose local)

O
U
T

%o7 %r15 current return-address

%o6 %r14 %sp-Stack Pointer

%o5 %r13

%o4 %r12

%o3 %r11

%o2 %r10

%o1 %r9

%o0 %r8

G
L
O
B
A
L

%g7 %r7

%g6 %r6

%g5 %r5

%g4 %r4

%g3 %r3

%g2 %r2

%g1 %r1

%g0 %r0
31 10 0

K REGISTER

PC

%ctl9 SET_IE Any write (WRCTL) operation to this register sets STATUS[15] (IE) = 1. Result of any read operation (RDCTL) is undefined.

%ctl8 CLR_IE Any write (WRCTL) operation to this register clears STATUS[15] (IE) = 0. Result of any read operation (RDCTL) is undefined.

%ctl7 DCACHE data cache (DCACHE) invalidate

%ctl6 CPU_ID CPU ID

%ctl5 ICACHE instruction cache (ICACHE) invalidate

%ctl4 — —reserved —

%ctl3 — —reserved —

%ctl2 WVALID HI_LIMIT LO_LIMIT

%ctl1 ISTATUS Saved Status

%ctl0 STATUS DC IC IE IPRI CWP N V Z C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Altera Corporation 15

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
K Register

The K register is an 11-bit prefix value and is set to 0 by every instruction
except PFX or PFXIO. A PFX or PFXIO instruction sets K directly from the
IMM11 instruction field. The K register contains a non-zero value only for
an instruction immediately following PFX or PFXIO.

A PFX or PFXIO instruction disables interrupts for one cycle, so the two-
instruction PFX or PFXIO sequence is an atomic CPU operation. Also, PFX
or PXFIO sequence instruction pairs are skipped together by SKP-type
conditional instructions.

The K register is not directly accessed by software, but is used indirectly.
A MOVI instruction, for example, transfers all 11 bits of the K register into
bits 15..5 of the destination register. This K-reading operation only yields
a non-zero result when the previous instruction is PFX with a non-zero
argument.

%r0 (%g0) Register

This register is explicitly used as an argument or result for the
instructions: STS16S, STS8S, ST8S, ST16S, ST8D, ST16D, FILL8, FILL16,
MSTEP, and USR1-USR4.

Program Counter

The program counter (PC) register contains the byte-address of the
currently executing instruction. Since all instructions must be half-word-
aligned, the least-significant bit of the PC value is always 0.

The PC increments by two (PC ← PC + 2) after every instruction unless
the PC is explicitly set. The BR, BSR, CALL, JMP, LRET, RET and TRET
instructions modify the PC directly.

Control Registers

There are five defined control registers that are addressed independently
from the general-purpose registers. The RDCTL and WRCTL instructions
are the only instructions that can read or write to these control registers
(meaning %ctl0 is unrelated to %g0).

STATUS (%ctl0)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DC IC IE IPRI CWP N V Z C
16 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Data Cache Enable (DC)

DC is the data-cache enable bit. This bit is present in Nios CPUs that have
a data cache. When DC is 0, the data cache is disabled, and load
instructions (LD, LDP, and LDS) act as if there is no cache memory. When
DC is 1, load instructions check whether the data cache contains the
addressed value. If the cache contains the addressed value ("hits"), the
value from the cache is used instead of accessing the memory or
peripherals. If the cache does not contain the addressed value ("misses"),
the CPU accesses the desired memory or peripheral. Using a data cache
can improve performance of systems with slow memories. Systems with
fast, pipelined memories can improve as well. See “Cache Memory” on
page 24 for more information.

When the CPU is reset, the data cache is disabled and DC is set to 0.

1 You must initialize the data cache before enabling it. See
“DCACHE (%ctl7)” on page 20.

Instruction Cache Enable (IC)

IC is the instruction-cache enable bit. This bit is present in CPUs that have
an instruction cache. When IC is 0, the instruction cache is disabled, and
instruction fetches act as if there is no cache memory. When IC is 1,
instruction fetches check whether the instruction cache contains the
addressed instruction. If the cache contains the addressed instruction
("hits"), the instruction from the cache is used instead of accessing the
memory. If the cache does not contain the addressed instruction
("misses"), the CPU fetches the instruction from memory. Using an
instruction cache can improve performance of systems with slow
memories. Systems with fast, pipelined memories can improve as well.

When the CPU is reset, the instruction cache is disabled and IC is set to 0.

1 You must initialize the instruction cache before enabling it. See
“ICACHE (%ctl5)” on page 20.

Interrupt Enable (IE)

IE is the interrupt enable bit. When IE = 1, it enables external interrupts
and internal exceptions. IE = 0 disables external interrupts and exceptions.
Software TRAP instructions still execute normally even when IE = 0. You
can set IE directly without affecting the rest of the STATUS register by
writing to the SET_IE (%ctl9) and CLR_IE (%ctl8) control registers. When
the CPU is reset, IE is set to 0 (interrupts disabled).
Altera Corporation 17

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Interrupt Priority (IPRI)

IPRI contains the current running interrupt priority. When an exception is
processed, the IPRI value is set to the exception number. See “Exceptions”
on page 33 for more information. For external hardware interrupts, the
IPRI value is set directly from the 6-bit hardware interrupt number. For
TRAP instructions, the IPRI field is set directly from the IMM6 field of
the instruction. For internal exceptions, the IPRI field is set from the
predefined 6-bit exception number.

A hardware interrupt is not processed if its internal number is greater
than or equal to IPRI or IE = 0. A TRAP instruction is processed
unconditionally. IPRI disables interrupts above a certain number. For
example, if IPRI is 3, then interrupts 0, 1 and 2 are processed, but all others
(interrupts 3-63) are disabled. When the CPU is reset, IPRI is set to 63
(lowest-priority).

Current Window Pointer (CWP)

CWP points to the base of the sliding register window in the general-
purpose register file. Incrementing CWP moves the register window up
16 registers. Decrementing CWP moves the register window down
16 registers. CWP is decremented by SAVE instructions and incremented
by RESTORE instructions.

Only specialized system software such as register window-management
facilities should directly write values to CWP through WRCTL. Software
normally modifies CWP by using SAVE and RESTORE instructions.
When the CPU is reset, CWP is set to the largest valid value, HI_LIMIT.
For example, in a 256 register file size, there are 16 register windows. After
reset, the WVALID register (%ct12) is set to 0x01C1 (that is, LO_LIMIT = 1
and HI_ LIMIT = 14). See “WVALID (%ctl2)” on page 19 for more
information. For a 128 register option, HI_LIMIT = 6; for 256 registers,
HI_LIMIT = 14; for 512 registers, HI_LIMIT = 30. See Table 18 on page 51
for details.
18 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Condition Code Flags

Some instructions modify the condition code flags. These flags are the
four least significant bits of the status register as shown in Table 4.

ISTATUS (%ctl1)

ISTATUS is the saved copy of the STATUS register. When an exception is
processed, the value of the STATUS register is copied into the ISTATUS
register. This action allows the pre-exception value of the STATUS
register to be restored before control returns to the interrupted program.
See “Exceptions” on page 33 for more information. A return-from-trap
(TRET) instruction automatically copies the ISTATUS register back into
the STATUS register. Interrupts are disabled (IE = 0) when an exception is
processed. Before re-enabling interrupts, an exception handler must
preserve the value of the ISTATUS register. When the CPU is reset,
ISTATUS is set to 0.

WVALID (%ctl2)

WVALID contains two values, HI_LIMIT and LOW_LIMIT. When a
SAVE instruction decrements CWP from LOW_LIMIT to LOW_LIMIT –1
a register window underflow (exception #1) is generated. When a
RESTORE instruction increments CWP from HI_LIMIT to HI_LIMIT +1, a
register window overflow (exception #2) is generated. WVALID is
configurable and may be read-only or read/write. When the CPU is reset,
LO_LIMIT is set to 1 and HI_LIMIT is set to the highest valid window
pointer ((register file size / 16) – 2).

Table 4. Condition Code Flags

Flag Bit Result

N 3 Sign of result, or most significant bit

V 2 Arithmetic overflow—set if bit 31 of 32-bit result is different from
sign of result computed with unlimited precision.

Z 1 Result is 0

C 0 Carry-out of addition, borrow-out of subtraction

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNUSED HI_LIMIT LO_LIMIT
Altera Corporation 19

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
ICACHE (%ctl5)

ICACHE is the instruction-cache's line-invalidate register. Writing an
address to ICACHE invalidates the cache line that contains the addressed
instruction. You must use ICACHE to initialize the instruction cache
before enabling it. You must use ICACHE to inform the Nios processor's
instruction cache when instructions are written to cached memory.

ICACHE is a write-only control register. Reading a value from ICACHE
(by executing the sequence PFX 5; RDCTL) will produce an undefined
value in the destination register.

Be aware that the instruction cache must be disabled (IC in STATUS must
be 0) before writing to ICACHE.

CPU_ID (%ctl6)

CPU_ID contains a 16-bit constant value that identifies the version of Nios
processor. Each released version returns a unique CPU_ID. The CPU_ID
value is provided in the readme file distributed with each Nios processor
release.

Bit 15 of CPU_ID is always 0 for a 32-bit Nios CPU. Bits 14 through 12 are
the major version number. The remaining bits are unique for each release
of a major version. Bits 3 through 0 are the value 0x8 (1000 binary) for
OpenCore® Plus evaluation Nios processors and a value other than 0x8
are for fully-functional processors.

DCACHE (%ctl7)

DCACHE is the data-cache's line-invalidate register. Writing an address
to DCACHE invalidates the cache line that contains the addressed data.
You must use DACHE to initialize the data cache before enabling it. Also,
you can use DCACHE to inform the Nios processor's data cache that
another master has written data to cached memory.

DCACHE is a write-only control register. Reading a value from DCACHE
(by executing the sequence PFX 7; RDCTL) will produce an undefined
value in the destination register.

Be aware that the data cache must be disabled (DC in STATUS must be 0)
before writing to DCACHE. If large amounts of cache need to be
invalidated, you may consider declaring the memory region volatile. This
causes the C-compiler nios-elf-gcc to use PFXIO to access the data, thereby
bypassing the cache and avoiding the need to invalidate.
20 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
CLR_IE (%ctl8)

Any WRCTL operation to the CLR_IE register clears the IE bit in the
STATUS register (IE ← 0) and the WRCTL value is ignored. A RDCTL
operation from CLR_IE produces an undefined result.

SET_IE (%ctl9)

Any WRCTL operation to the SET_IE register sets the IE bit in the STATUS
register (IE ← 1) and the WRCTL value is ignored. A RDCTL operation
from SET_IE produces an undefined result.

Memory Access
Overview

The Nios processor is little-endian. Data memory must occupy contiguous
words. If the physical memory device is narrower than the word size, then
the data bus should implement dynamic-bus sizing to simulate full-width
data to the Nios CPU. Peripherals present their registers as word widths,
padded by 0s in the most significant bits if the registers happen to be
smaller than words. Table 5 and Table 6 show examples of the 32-bit Nios
CPU word widths.

Table 5. Typical 32-bit Nios CPU Program/Data Memory at Address 0x0100

Address Contents

31 24 23 16 15 8 7 0

0x0100 byte 3 byte 2 byte 1 byte 0

0x0104 byte 7 byte 6 byte 5 byte 4

0x0108 byte 11 byte 10 byte 9 byte 8

0x010c byte 15 byte 14 byte 13 byte 12

Table 6. N-bit-wide Peripheral at Address 0x0100 (32-bit Nios CPU)

Address Contents

31 N N-1 0

0x0100 (zero padding) register 0

0x0104 (zero padding) register 1

0x0108 (zero padding) register 2

0x010c (zero padding) register 3
Altera Corporation 21

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Reading from Memory (or Peripherals)

The Nios CPU can only perform aligned memory accesses. A 32-bit read
operation can only read a full word starting at a byte address that is a
multiple of 4. Instructions which read from memory always treat the low
two bits of the address as 0. Instructions are provided for extracting
particular bytes and half-words from words.

The simplest instruction that reads data from memory is the LD
instruction. A typical example of this instruction is LD %g3, [%o4]. The
first register operand, %g3, is the destination register, where data is
loaded. The second register operand specifies a register containing an
address to read from. This address is aligned to the nearest word meaning
the lowest two bits are treated as if they are 0.

Quite often, however, software must read data smaller than 32 bits. The
Nios CPU provides instructions for extracting individual bytes and half-
words from words. The EXT8D instruction is used for extracting a byte,
and the EXT16D instruction is used for extracting a half-word. A typical
example of the EXT8D instruction is EXT8D %g3,%o4. The EXT8D
instruction uses the lowest two bits of the second register operand to
extract a byte from the first register operand, and replaces the entire
contents of the first register operand with that byte. The EXT8D
instruction extracts a byte as shown in Figure 1.

Figure 1. EXT8D Instruction

The assembly-language example in Code Example 1 shows how to read a
single byte from memory, even if the address of the byte is not word-
aligned.

15 8 7 0

RA
before

RA
after

n

031

byte 3 byte 2 byte 1 byte 0

byte

RB[1..0]

31 24 23 16

--------------------------------- 0 ---------------------------------
22 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Code Example 1. Reading a Single Byte from Memory

Contents of memory:

; 0 1 2 3
;0x00001200 0x46 0x49 0x53 0x48

;Instructions executed on a 32-bit Nios CPU

; Let’s assume %o4 contains the address x00001202

LD %g3,[%o4] ; %g3 gets the contents of address 0x1200,
; so %g3 contains 0x48534946

EXT8D %g3,%o4 ; %g3 gets replaced with byte 2 from %g3,
; so %g3 contains 0x00000053

Writing to Memory (or Peripherals)

The Nios CPU can perform aligned writes to memory in widths of byte,
half-word, or word. A word can be written to any address that is a
multiple of 4 in one instruction. A half-word can be written to any address
that is a multiple of 2 in two instructions. A byte can be written to any
address in two instructions.

The lowest byte of a register can be written only to an address that is a
multiple of 4; the middle-low byte of a register can be written only as an
address that is a multiple of 4, plus 1, and so on.

The Nios CPU can also write the low half-word of a register to an address
that is a multiple of four, and the high half-word of a register to an address
which is a multiple of 4, plus 2.

The ST instruction writes a full word to a word aligned memory address
from any register; the ST8D and ST16D instructions write a byte and half-
word, respectively, with the alignment constraints described above, from
register %r0.

Often it is necessary for software to write a particular byte or half-word to
an arbitrary location in memory. The position within the source register
may not correspond with the location in memory to be written. The FILL8
and FILL16 instructions takes the lowest byte or half-word, respectively,
of a register and replicates it across register %r0.
Altera Corporation 23

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Code Example 2 shows how to write a single byte to memory, even if the
address of the byte is not word-aligned.

Code Example 2. Single Byte Written to Memory—Address Not Word Aligned

;Contents of memory before:
;
; 0 1 2 3
;0x00001200 0x46 0x49 0x53 0x54

; Let’s assume %o4 contains the address 0x00001203
; and that %g3 contains the value 0x000000BC
FILL8 %r0,%g3 ; (First operand can only be %r0)

; replicate low byte of %g3 across %r0
; so %r0 contains 0xBCBCBCBC

ST8D [%o4],%r0 ; (Second operand can only be %r0)
; Stores the 3rd byte of %r0 to address 0x1203

;Contents of memory after:
;
; 0 1 2 3
;0x00001200 0x46 0x49 0x53 0xBC

Cache Memory The Nios CPU optionally has an instruction cache and a data cache. The
data cache influences Nios memory access.

The data cache stores recently accessed data words and, whenever
possible, uses the cached data value instead of performing a memory read
cycle. The Nios CPU uses direct-mapped, the simplest cache
implementation. This means that low bits of the data address are used to
directly access the selected line of the cache memory as shown in Figure 2
on page 25. In a direct-mapped cache, data words whose addresses differ
by a multiple of the cache size will be stored in the same cache line. To
determine which of these words is stored in a line, the high bits of the
word's address are stored as a tag along with the word's data and a valid
bit.
24 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Figure 2. Accessing Lines of Cache with Low Bits of Word Address

Note:
(1) The total number of data cache lines is equal to the size of the data cache divided

by four. The total number of instruction cache lines is equal to the size the size of
the data cache divided by two.

When executing a load instruction (LD, LDP, or LDS), the Nios CPU
compares the high bits of the load address with the selected cache line's
tag. If the high bits match the tag and the line contains valid data, then the
processor uses the cached data instead of reading memory, thereby
accelerating processor performance. When the processor uses cached
data, it is called a "hit." When the cache does not contain the desired data,
it is called a "miss."

The Nios CPU uses write-through, the simplest cache policy. This means
that all word-store instructions (ST, STP, and STS) store data to the cache
and also perform a memory write cycle. The cache line that is written is
determined by the same low bits of the data address that are used by
word-load instructions, and so subsequent loads from the same address
will hit. In addition to writing data to the cache, the high bits of the
address are written as the data's tag, and the valid bit is set.

When the cache misses, the processor performs a memory read cycle,
retrieves the desired data word, writes the word to the register indicated
in the store instruction, and writes the data to the cache. That is,
subsequent loads from the same memory address will hit.
Altera Corporation 25

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Initializing Cache Memory

You must initialize cache memory and enable it before it can be used.
Initialize the data cache by writing a range of addresses to the DCACHE
control register. Initialization clears the valid bits of all cache-memory
lines to prevent uninitialized tag data from causing a false hit. The Data
Cache Enable (DC) bit in the STATUS register must be zero during any
write to the DCACHE register. Writing a value to DCACHE while DC = 1
will produce an undefined result. See“Data Cache Enable (DC)” on page
17 for more Data Cache Enable (DC) information.

Code Example 2 shows use of the cache control registers and status
register to initialize and enable the instruction cache. Enabling the data
cache is similar. The macros nm_icache_enable and
nm_icache_disable use a combination of C and assembly language to
read the status registers with RDCTL, change a single bit within it, and
write it back out with WRCTL.

Code Example 2. Initializing Cache Memory

#define np_nios_icache_bit 0x00010000 // bit in control register 0
#define np_nios_dcache_bit 0x00020000 // bit in control register 0

#define np_nios_icache_reg 5 // register to invalidate a line of icache
#define np_nios_dcache_reg 7 // register to invalidate a line of dcache

#define nm_icache_invalidate_line(byte_address) \
asm("pfx 5 \n\t wrctl %0" : : "r" (byte_address));

#define nm_icache_enable() \
{ \
int status; \
asm("rdctl %0" : "=r" (status)); \
status |= np_nios_icache_bit; \
asm("wrctl %0 \n\t nop" : : "r" (status)); \
}

#define nm_icache_disable() \
{ \
int status; \
asm("rdctl %0" : "=r" (status)); \
status &= ~np_nios_icache_bit; \
asm("wrctl %0 \n\t nop" : : "r" (status)); \
}

void nr_icache_init(void)
{
int i;

nm_icache_disable();

for(i = 0; i < nasys_icache_size; i+= nasys_icache_line_size)
nm_icache_invalidate_line(i);

nm_icache_enable();
}

26 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Bypassing the Data Cache when Reading Peripherals

Since repeated accesses to the same memory word cause the cache to hit,
it would be undesirable for the data cache to intercept peripheral accesses.
For example, repeated reads from a UART always load from the same
data address but return different data each time. Allowing the data cache
to intercept all reads after the first read would prevent proper operation.
Peripheral reads need to be identified.

Nios provides an instruction for disabling the data cache on an
instruction-by-instruction basis. Any LD or LDP instruction immediately
preceded by a PFXIO instruction will read data directly from memory
(bypassing the cache), even if the cache is enabled. Any LD and LDP
instruction, not immediately preceded by a PFXIO instruction, will use
the data cache if it is enabled (DC = 1).

All LDS instructions always use the data cache if it is enabled. A
PFXIO/LDS sequence will produce an undefined result. See “PFXIO” on
page 95 for PFXIO instruction details.

The Nios C-compiler (nios-elf-gcc) inserts PFXIO instructions as necessary
to bypass the cache for any variable declared with the type-qualifier
volatile. Any registers, variables, or buffers declared as volatile will
not be cached.

Addressing
Modes

The topics in this section includes a description of the addressing modes:

� 5/16-bit immediate
� Full width register-indirect
� Partial width register-indirect
� Full width register-indirect with offset
� Partial width register-indirect with offset

5/16-bit Immediate Value

Many arithmetic and logical instructions take a 5-bit immediate value as
an operand. The ADDI instruction, for example, has two operands: a
register and a 5-bit immediate value. A 5-bit immediate value represents
a constant from 0 to 31. To specify a constant value that requires from 6 to
16 bits (a number from 32 to 65,535), the 11-bit K register can be set using
the PFX instruction. This value is concatenated with the 5-bit immediate
value. The PFX instruction must be used directly before the instruction it
modifies.
Altera Corporation 27

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
To support breaking 16-bit immediate constants into a PFX value and a
5-bit immediate value, the assembler provides the operators %hi() and
%lo(). %hi(x) extracts the high 11 bits (bit 5..15) from constant x, and
%lo(x) extracts the low 5 bits (0..4) from constant x.

Code Example 3 shows an ADDI instruction being used both with and
without a PFX.

Code Example 3. The ADDI Instruction Used With/Without a PFX

; Assume %g3 contains the value 0x00000041
ADDI %g3,5 ; Add 5 to %g3

; so %g3 now contains 0x00000046
PFX %hi(0x1234) ; Load K with upper 11 bits of 0x1234
ADDI %g3,%lo(0x1234) ; Add low 5 bits of 0x1234 to %g3

; so the K register contained 0x091
; and the immediate operand of the ADDI
; instruction contained 0x14, which
; concatenated together make 0x00001234
; Now %g3 contains 0x0000127A

Besides arithmetic and logical instructions, several other instructions use
immediate-mode constants of various widths, and the constant is not
modified by the K register. See the description of each instruction in the
“32-Bit Instruction Set” for a precise explanation of its operation. Table 7
shows instructions using 5/16-bit immediate values.

Note:
(1) AND, ANDN, OR, and XOR can only use PFX’d 16-bit immediate values. These

instructions act on two register operands if not preceded by a PFX instruction.

Table 7. Instructions Using 5/16-bit Immediate Values

ADDI AND(1) ANDN(1) ASRI

CMPI LSLI LSRI MOVI

MOVHI OR(1) SUBI XOR(1)
28 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Full Width Register-Indirect

The LD and ST instructions can load and store, respectively, a word to or
from a register using another register to specify the address. See Table 8.
The address is first aligned downward to a word-aligned address, as
described in “Memory Access Overview” on page 21. The K register is
treated as a signed offset, in words, from the word-aligned value of the
address register. The offset range is (-4096..4092) bytes. The effective
address is K (signed) x 4 + (address-register-value & 0xFFFFFFFC).

If the Nios processor includes a data cache, reading peripherals will
require prefixing LD with PFXIO. See “Bypassing the Data Cache when
Reading Peripherals” on page 27 for further information.

Partial Width Register-Indirect

None of the 32-bit instructions read a partial word. To read a partial word,
combine a full width register-indirect read instruction with an extraction
instruction (EXT8D, EXT8S, EXT16D or EXT16S).

Several instructions can write a partial word. Each of these instructions
has a static and a dynamic variant. The position within both the source
register and the word of memory is determined by the low bits of an
addressing register. In the case of a static variant, the position within both
the source register and the word of memory is determined by a 1- or 2-bit
immediate operand to the instruction. As with full width register-indirect
addressing, the K register is treated as a signed offset in words from the
word aligned value of the address register.

Table 8. Instructions Using Register-Indirect Addressing

Instruction Address Register Data Register

LD Any Any

ST Any Any
Altera Corporation 29

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
The partial width register-indirect instructions all use %r0 as the source of
data to write as shown in Table 9. These instructions are convenient to use
in conjunction with the FILL8 or FILL16 instructions.

Full Width Register-Indirect with Offset

The LDP, LDS, STP and STS instructions can load or store a full word to
or from a register using another register to specify an address, and an
immediate value to specify an offset, in words, from that address.

Unlike the LD and ST instructions, which can use any register to specify a
memory address, these instructions may each only use particular registers
for their address. The LDP and STP instructions may each only use the
register %L0, %L1, %L2, or %L3 for their address registers. See Table 10.
The LDS and STS instructions may only use the stack pointer, register %sp
(equivalent to %o6), as their address register. These instructions each take
a signed immediate index value that specifies an offset in words from the
word-aligned address pointed in the address register.

Table 9. Instructions Using Partial Width Register-Indirect Addressing

Instruction Address Register Data Register Byte/Half-word Selection

ST8S Any %r0 Immediate

ST16S Any %r0 Immediate

ST8D Any %r0 Low bits of address register

ST16D Any %r0 Low bits of address register

Table 10. Instructions Using Full Width Register-Indirect with Offset Addressing

Instruction Address Register Data Register Offset Range without PFX or PFXIO

LDP %L0, %L1, %L2, %L3 Any 0..124 bytes

LDS %sp Any 0..1020 bytes

STP %L0, %L1, %L2, %L3 Any 0..124 bytes

STS %sp Any 0..1020 bytes
30 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Partial Width Register-Indirect with Offset

There are no instructions that read a partial word from memory. To read
a partial word, you may combine a full-width indexed register-indirect
read instruction with an extraction instruction, EXT8D, EXT8S, EXT16D or
EXT16S to write a partial word. You may use the STS8S and STS16S
instructions (which use an immediate constant) to specify a byte or half-
word offset, respectively, from the stack pointer to write the
correspondingly aligned partial width of the source register %r0. See
Table 11. These instructions may each only use the stack pointer, register
%sp (equivalent to %o6), as their address register, and may only use
register %r0 (equivalent to %g0, but must be called %r0 in the assembly
instruction) as the data register. These instructions are convenient to use
with the FILL8 or FILL16 instructions.

Program-Flow
Control

The topics in this section include a description of the following:

� Two relative-branch instructions (BR and BSR)
� Two absolute-jump instructions (JMP and CALL)
� Two trap instructions (TRET and TRAP)
� Five conditional instructions (SKP, SKP0, SKP1, SKPRZ and

SKPRNZ)

Relative-Branch Instructions

There are two relative-branch instructions: BR and BSR. The branch target
address is computed from the current program-counter (that is, the
address of the BR instruction itself) and the IMM11 instruction field.
Details of the branch-offset computation are provided in the description
of the BR and BSR instructions. BSR is identical to BR except that the
return-address is saved in %o7. Details of the return-address computation
are provided in the description of the BSR instruction. Both BR and BSR
are unconditional. Conditional branches are implemented by preceding
BR or BSR with a SKP-type instruction.

Table 11. Instructions Using Partial Width Register-Indirect with Offset Addressing

Instruction Address
Register

Data Register Byte/Half-word
Selection

Index Range

STS8S %sp %r0 Immediate 0..1023 bytes

STS16S %sp %r0 Immediate 0..511 half-words
Altera Corporation 31

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Both BR and BSR instructions have branch delay slot behavior: The
instruction immediately following a BR or BSR is executed after BR or
BSR, but before the instruction at the branch-target. See “Branch Delay
Slots” on page 42 for more information. The branch range of the BR and
BSR instructions is forward by 2048 bytes, or backwards by 2046 bytes
relative to the address of the BR or BSR instruction.

Absolute-Jump Instructions

There are two absolute (computed) jump instructions: JMP and CALL.
The jump-target address is given by the contents of a general-purpose
register. The register contents are left-shifted by one and transferred into
the PC. CALL is identical to JMP except that the return-address is saved
in %o7. Details of the return-address computation are provided in the
description of the CALL instruction. Both JMP and CALL are
unconditional. Conditional jumps are implemented by preceding JMP or
CALL with a SKP-type instruction.

Both JMP and CALL instructions have branch delay slot behavior: The
instruction immediately following a JMP or CALL is executed after JMP
or CALL, but before the instruction at the jump-target. The LRET pseudo-
instruction, which is an assembler alias for JMP %o7, is conventionally
used to return from subroutines.

Trap Instructions

The Nios processor implements two instructions for software exception
processing: TRAP and TRET. See “TRAP” on page 121 and “TRET” on
page 122 for detailed descriptions of both these instructions. Unlike JMP
and CALL, neither TRAP nor TRET has a branch delay-slot: The
instruction immediately following TRAP is not executed until the
exception-handler returns. The instruction immediately following TRET
is not executed at all as part of TRET’s operation.
32 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Conditional Instructions

There are five conditional instructions (SKPS, SKP0, SKP1, SKPRZ, and
SKPRNZ). Each of these instructions has a converse assembler-alias
pseudo-instruction (IFS, IF0, IF1, IFRZ, and IFRNZ, respectively). Each of
these instructions tests a CPU-internal condition and then executes the
next instruction or not, depending on the outcome. The operation of all
five SKP-type instructions (and their pseudo-instruction aliases), are
identical except for the particular test performed. In each case, the
subsequent instruction is fetched from memory regardless of the test
outcome. Depending on the outcome of the test, the subsequent
instruction is either executed or cancelled. A cancelled instruction has no
effect.

f See the Nios Embedded Processor Software Development Reference Manual for
more information about pseudo-instructions.

While SKPx and IFx type conditional instructions are often used to
conditionalize jump (JMP, CALL) and branch (BR, BSR) instructions, they
can be used to conditionalize any instruction. Conditionalized PFX or
PFXIO instructions (PFX or PFXIO immediately after a SKPx or IFx
instruction) present a special case; the next two instructions are either both
cancelled or both executed. PFX or PFXIO instruction pairs are
conditionalized as an atomic unit.

Exceptions The topics in this section include a description of the following:

� Exception vector table
� How external hardware interrupts, internal exceptions, register

window underflow, register window overflow and TRAP
instructions are handled

� Direct software exceptions (TRAP) and exception processing
sequence

Exception Handling Overview

The Nios processor allows up to 64 vectored exceptions. Exceptions can be
enabled or disabled globally by the IE control-bit in the STATUS register,
or selectively enabled on a priority basis by the IPRI field in the STATUS
register. Exceptions can be generated from any of three sources: external
hardware interrupts, internal exceptions or explicit software TRAP
instructions.
Altera Corporation 33

http://www.altera.com/literature/manual/mnl_niossoft.pdf

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
The Nios exception-processing model allows precise handling of all
internally generated exceptions. That is, the exception-transfer
mechanism leaves the exception-handling subroutine with enough
information to restore the status of the interrupted program as if nothing
had happened. Internal exceptions are generated if a SAVE or RESTORE
instruction causes a register-window underflow or overflow,
respectively.

Exception-handling subroutines always execute in a newly opened
register window, allowing very low interrupt latency. The exception
handler does not need to manually preserve the interruptee’s register
contents.

The Nios processor has one non-maskable exception, interrupt priority 0,
for use by the Nios on-chip instrumentation (OCI) debug module. The
Nios OCI debug module is an intellectual property core designed by First
Silicon Solutions (FS2) Inc. It is implemented as an FS2 OCI block that
connects directly to signals internal to the Nios CPU. When triggered, this
non-maskable exception interrupts execution, regardless of the values of
IE or IPRI. The non-maskable exception is reserved for debug
functionality, and is not accessible to users. User programs never handle
non-maskable interrupts. After a non-maskable interrupt is serviced, the
CPU always returns to its pre-exception status.

Exception Vector Table

The exception vector table is a set of 64 exception-handler addresses and
each entry is 4 bytes. The base-address (VECBASE) of the exception vector
table is configurable. For interrupt priorities 1 through 63, when the Nios
CPU processes exception number n, the CPU fetches the nth entry from
the exception vector table, doubles the fetched value, and then loads the
result into the PC. The non-maskable interrupt 0 behaves differently and
does not depend on entries in the vector table. The 0th vector table entry
is unused.

The exception vector table can physically reside in RAM or ROM,
depending on the hardware memory map of the target system. A ROM
exception vector table does not require run-time initialization.

External Hardware Interrupt Sources

An external source can request a hardware interrupt by driving a 6-bit
interrupt number on the Nios CPU irq_number inputs while
simultaneously asserting true (1) the Nios CPU irq input pin. In typical
systems, the Nios CPU’s irq and irq_number inputs are driven by
automatically-generated interconnect (bus) logic. As such, system
34 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
peripherals typically have a single irq output. The automatically-
generated bus logic converts multiple one-bit irq-sources into a single irq-
input to the CPU, accompanied by an associated 6-bit irq_number. The
Nios CPU processes the indicated exception if the IE bit is true (1) and the
requested interrupt number is smaller (higher priority) than the current
value in the IPRI field of the STATUS register. The non-maskable
exception, interrupts priority 0, is processed regardless of the value of the
IE bit. Control is transferred to the exception handler whose number is
given by the irq_number inputs.

The Nios irq input is level sensitive. The irq and irq_number inputs are
sampled at the rising edge of each clock. External sources that generate
interrupts should assert their irq output signals until the interrupt is
acknowledged by software (such as by writing a register inside the
interrupting peripheral to 0). Interrupts that are asserted and then de-
asserted before the Nios CPU core can begin processing the exception are
ignored.

Internal Exception Sources

There are two sources of internal exceptions: register window-overflow
and register window-underflow. The Nios processor architecture allows
precise exception handling for all internally generated exceptions. In each
case, it is possible for the exception handler to service the exceptional
condition and resume normal execution of the interrupted program.

Register Window Underflow

The register window underflow exception is exception number 1. A
register window-underflow exception occurs whenever the lowest valid
register window is in use (CWP = LO_LIMIT) and a SAVE instruction is
issued. The SAVE instruction moves CWP below LO_LIMIT and %sp is
set per the normal operation of SAVE. A register window underflow
exception is generated, which transfers control to an exception-handling
subroutine before the instruction following SAVE is executed.

When a SAVE instruction causes a register window underflow exception,
CWP is decremented only once before control is passed to the exception-
handling subroutine. The CPU does not process a register window
underflow exception if interrupts are disabled (IE = 0) or the current value
in IPRI is less than or equal to 1.
Altera Corporation 35

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
The action taken by the underflow exception-handler subroutine depends
upon the requirements of the system. For systems running larger or more
complex code, the underflow (and overflow) handlers can implement a
virtual register file that extends beyond the limits of the physical register
file. When an underflow occurs, the underflow handler may, for example,
save the current contents of the entire register file to memory and re-start
CWP back at HI_LIMIT, allowing room for code to continue opening
register windows. Many embedded systems, on the other hand, might
wish to tightly control stack usage and subroutine call-depth. Such
systems might implement an underflow handler that prints an error
message and exits the program.

The programmer determines the nature of and actions taken by the
register window underflow exception handler. The Nios software
development kit (SDK) includes, and automatically installs by default, a
register window underflow handler that virtualizes the register file using
the stack as temporary storage.

A register window underflow exception can only be generated by a SAVE
instruction. Directly writing CWP (via a WRCTL instruction) to a value
less than LO_LIMIT does not cause a register window underflow
exception. Executing a SAVE instruction when CWP is already below
LO_LIMIT does not generate a register window underflow exception.

Register Window Overflow

The register window overflow exception is exception number 2. A register
window overflow exception occurs whenever the highest valid register
window is in use (CWP = HI_LIMIT) and a RESTORE instruction is
issued. Control is transferred to an exception-handling subroutine before
the instruction following RESTORE is executed.

When a register window overflow exception is taken, the exception
handler sees CWP at HI_LIMIT. You can think of CWP being incremented
by the RESTORE instruction, but then immediately decremented as a
consequence of normal exception processing.

The action taken by the overflow exception handler subroutine depends
upon the requirements of the system. For systems running larger or more
complex code, the overflow (and underflow) handlers can implement a
virtual register file that extends beyond the limits of the physical register
file. When an overflow occurs, such an overflow handler may, for
example, reload the entire contents of the physical register file from the
stack and restart CWP back at LO_LIMIT. Many embedded systems, on
the other hand, might wish to tightly control stack usage and subroutine
call depth. Such systems might implement an overflow handler that prints
an error message and exits the program.
36 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
The programmer determines the nature of any actions taken by the
register window overflow exception handler. The Nios SDK
automatically installs by default a register window overflow handler
which virtualizes the register file using the stack.

A register window overflow exception can only be generated by a
RESTORE instruction. Directly writing CWP (via a WRCTL instruction) to
a value greater than HI_LIMIT does not cause a register window overflow
exception. Executing a RESTORE instruction when CWP is already above
HI_LIMIT does not generate a register window overflow exception.

Direct Software Exceptions (TRAP Instructions)

Software can directly request that control be transferred to an exception
handler by issuing a TRAP instruction. The IMM6 field of the instruction
gives the exception number. TRAP instructions are always processed,
regardless of the setting of the IE or IPRI bits. TRAP instructions do not
have a delay slot. The instruction immediately following a TRAP is not
executed before control is transferred to the indicated exception-handler.
A reference to the instruction following TRAP is saved in %o7, so a TRET
instruction transfers control back to the instruction following TRAP at the
conclusion of exception processing.

Exception Processing Sequence

When an exception is processed from any of the above sources, the
following sequence occurs:

1. The contents of the STATUS register are copied into the ISTATUS
register.

2. CWP is decremented, opening a new window for use by the
exception-handler routine (This is not the case for register window
underflow exceptions, where CWP was already decremented by the
SAVE instruction that caused the exception).

3. IE is set to 0, disabling interrupts.

4. IPRI is set with the 6-bit number of the exception.

5. The address of the next non-executed instruction in the interrupted
program is transferred into %o7.

6. The start-address of the exception handler is fetched from the
exception vector table and written into the PC.
Altera Corporation 37

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
7. After the exception handler finishes, a TRET instruction is issued to
return control to the interrupted program.

Register Window Usage

All exception processing starts in a newly opened register window. This
process decreases the complexity and latency of exception handlers
because they are not responsible for maintaining the interruptee’s register
contents. An exception handler can freely use registers %o0..%o5 and
%L0..%L7 in the newly opened window. An exception handler should not
execute a SAVE instruction upon entry. The use of SAVE and RESTORE
from within exception handlers is discussed later.

Because the transfer to an exception handler always opens a new register
window, programs must always leave at least one register window
available for exceptions. Setting LO-LIMIT to greater than zero guarantees
that a new register window is available for exceptions. For example,
whenever a program executes a SAVE instruction that would then use up
the last register window (CWP = 0), a register-underflow trap is
generated. The register-underflow handler itself executes in the final
window (with CWP = 0).

Correctly written software never processes an exception when CWP is 0.
CWP should be 0 only when an exception is being processed. New
exception handlers must take certain well-defined precautions before
re-enabling interrupts. See “Simple & Complex Exception Handlers” on
page 40 for more information.

If the Nios OCI debug module is enabled in the Nios CPU core, the reset
value for LO_LIMIT is 2; otherwise, the reset value for LO_LIMIT is 1. Safe
usage of the Nios OCI debug module requires that LO_LIMIT be 2,
because the non-maskable exception must always have a register window
available. For example, a program executing with CWP = 2 (LO_LIMIT)
may be interrupted, decrementing CWP to 1 (less than LO_LIMIT) and
transferring execution to the register window underflow interrupt service
routine. Before this service routine completes, it could be interrupted by
the non-maskable exception, decrementing CWP to 0. The non-maskable
exception service routine can then execute safely in the last available
register window with CWP = 0.
38 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
Status Preservation: ISTATUS Register

When an exception occurs, the interruptee’s STATUS register is copied
into the ISTATUS register. The STATUS register is then modified (IE set
to 0, IPRI set, CWP decremented). The original contents of the STATUS
register are preserved in the ISTATUS register. When exception
processing returns control to the interruptee, the original program’s
STATUS register contents are restored from ISTATUS by the TRET
instruction.

Interrupts are automatically disabled upon entry to an exception handler,
so there is no danger of ISTATUS being overwritten by a subsequent
interrupt or exception. The case of nested exception handlers (exception
handlers that use or re-enable exceptions) is discussed in detail below.
Nested exception handlers must explicitly preserve, maintain, and restore
the contents of the ISTATUS register before and after enabling subsequent
interrupts.

When the non-maskable exception (TRAP 0) is triggered, both STATUS
and ISTATUS are saved. ISTATUS is saved because the non-maskable
exception can interrupt an exception handler in progress. After the non-
maskable interrupt is serviced, the CPU returns to its pre-exception status,
and STATUS and ISTATUS are restored.

Return Address

When an exception occurs, execution of the interrupted program is
temporarily suspended. The instruction in the interrupted program that
was preempted (that is, the instruction that would have executed, if the
exception had not occurred) is taken as the return location for exception
processing.

The return location is saved in %o7 (in the exception handler’s newly
opened register window) before control is transferred to the exception
handler. The value stored in %o7 is the byte address of the return-
instruction right-shifted by one place. This value is suitable directly for
use as the target of a TRET instruction without modification. Exception
handlers usually execute a TRET %o7 instruction to return control to the
interrupted program.
Altera Corporation 39

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Simple & Complex Exception Handlers

The Nios processor architecture permits efficient, simple exception
handlers. The hardware itself accomplishes much of the status- and
register-preservation overhead required by an exception handler. Simple
exception handlers can substantially ignore all automatic aspects of
exception handling. Complex exception handlers (such as nested
exception handlers) must follow additional precautions.

Simple Exception Handlers

An exception handler is considered simple if it obeys the following rules:

� It does not re-enable interrupts.
� It does not use SAVE or RESTORE (either directly or by calling

subroutines that use SAVE or RESTORE).
� It does not use any TRAP instructions (or call any subroutines that

use TRAP instructions).
� It does not alter the contents of registers %g0..%g7, or %i0..%i7.

Any exception handler that obeys these rules need not take special
precautions with ISTATUS or the return address in %o7. A simple
exception handler need not be concerned with CWP or register-window
management.

Complex Exception Handlers

An exception handler is considered complex if it violates any of the
requirements of a simple exception handler, listed above. Complex
exception handlers may allow nested exception handling and the
execution of more complex code (such as subroutines that SAVE and
RESTORE). A complex exception handler has the following additional
responsibilities:

� It must preserve the contents of ISTATUS before re-enabling
interrupts. For example, ISTATUS could be saved on the stack.

� It must check CWP before re-enabling interrupts to be sure CWP is at
or above LO_LIMIT. If CWP is below LO_LIMIT, it must take an
action to open up more available register windows (such as save the
register file contents to RAM), or it must signal an error.

� It must re-enable interrupts subject to the above two conditions
before executing any SAVE or RESTORE instructions or calling any
subroutines that execute any SAVE or RESTORE instructions.

� Prior to returning control to the interruptee, it must restore the
contents of the ISTATUS register, including any adjustments to CWP
if the register-window has been deliberately shifted.
40 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Overview

O
verview

1
� Prior to returning control to the interruptee, it must restore the
contents of the interruptee’s register window.

Pipeline
Implementation

The Nios CPU is a pipelined RISC architecture as shown in Figure 3. The
pipeline implementation is hidden from software except for branch delay
slots and when CWP is modified by a WRCTL write.

Figure 3. Nios CPU Block Diagram

Direct CWP Manipulation

Every WRCTL instruction that modifies the STATUS register (%ctl0) must
be followed by a NOP instruction.

ALU

Q

Q

Interrupt
Control

wait

irq

irq #

reset

clock

data out

address

read / write

ifetch

byte enable

6

32

Control

32

4

D
data in

32

Instruction
Decoder

Operand
Fetch

General-Purpose Processor
Register File

Clock
Enable

Program
Counter
Altera Corporation 41

Overview Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Branch Delay Slots

A branch delay slot is defined as the instruction immediately after a BR,
BSR, CALL, or JMP instruction. A branch delay slot is executed after the
branch instruction but before the branch-target instruction. Table 12
illustrates a branch delay-slot for a BR instruction.

After branch instruction (b) is taken, instruction (c) is executed before
control is transferred to the branch target (e). The execution sequence of
the above code fragment would be (a), (b), (c), and (e). Instruction (c) is
instruction (b)’s branch delay slot. Instruction (d) is not executed. Most
instructions can be used as a branch delay slot—the exceptions are:

� BR
� BSR
� CALL
� IF1
� IF0
� IFRNZ
� IFRZ
� IFS
� JMP
� LRET
� PFX
� PFXIO
� RET
� SKP1
� SKP0
� SKPRNZ
� SKPRZ
� SKPS
� TRET
� TRAP

Table 12. BR Branch Delay Slot Example

…

(a) ADD %g2, %g3

(b) BR Target

(c) ADD %g4, %g5

(d) ADD %g6, %g7

…

Target:

(e) ADD %g8, %g9

Branch Delay Slot
42 Altera Corporation

Altera Corporation
32-Bit Instruction Set
32-Bit

2

Instruction Set
This section provides a detailed description of the 32-bit Nios CPU
instructions. The descriptions are arranged in alphabetical order
according to instruction mnemonic. Each instruction page includes:

� Instruction mnemonic and description
� Description of operation
� Assembler syntax
� Syntax example
� Operation description
� Prefix actions
� Condition codes
� Delay slot behavior (when applicable)
� Instruction format
� Instruction fields

1 The ∆ symbol in the condition code flags table indicates flags are
changed by the instruction.

Before the instruction set, the following tables are provided:

� Notation details table (Table 13)
� Instruction format (Table 14)
� 32-bit opcode table (Table 15)
� GNU compiler/assembler pseudo instructions (Table 16)
� Nios operators understood by nios-elf [when available (Table 17)]
� Smallest Nios register file (Table 18)
43

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
Table 13. Notation Details

Notation Meaning Notation Meaning

X ← Y X is written with Y X >> n The value X after being right-shifted n
bit positions

∅ ← e Expression e is evaluated, and the result
is discarded

X << n The value X after being left-shifted n bit
positions

RA One of the 32 visible registers, selected
by the 5-bit a-field of the instruction word

bnX The nth byte (8-bit field) within the
full-width value X. b0X = X[7..0],
b1X = X[15..8], b2X = X[23..16], and
b3X = X[31..24]

RB One of the 32 visible registers, selected
by the 5-bit b-field of the instruction word

hnX The nth half-word (16-bit field) within
the full-width value X. h0X = X[15..0],
h1X = X[31..16]

RP One of the 4 pointer-enabled (P-type)
registers, selected by the 2-bit p-field of
the instruction word

X & Y Bitwise logical AND

IMMn An n-bit immediate value, embedded in
the instruction word

X | Y Bitwise logical OR

K The 11-bit value held in the K register. (K
can only be set by a PFX or PFXIO
instruction)

X ⊕ Y Bitwise logical exclusive OR

0xnn.mm Hexadecimal notation (decimal points not
significant, added for clarity)

~X Bitwise logical NOT (one’s
complement)

X : Y Bitwise-concatenation operator.
 For example: (0x12 : 0x34) = 0x1234

|X| The absolute value of X
 (that is, –X if (X < 0), X otherwise).

{e1, e2} Conditional expression. Evaluates to e2
if previous instruction was PFX or PFXIO,
e1 otherwise

Mem32[X] The aligned 32-bit word value stored in
external memory, starting at byte
address X

σ(X) X after being sign-extended into a full
register-sized signed integer

align32(X) X & 0xFF.FF.FF.FC, which is the
integer value X forced into full-word
alignment via truncation

X[n] The nth bit of X (n = 0 means LSB) VECBASE Byte address of Vector #0 in the
interrupt vector table (VECBASE is
configurable)

X[n..m] Consecutive bits n through m of X

C The C (carry) flag in the STATUS register

CTLk One of the 2047 control registers selected
by K

PC (Program Counter) Byte address of
currently executing instruction.
44 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
Table 14. Instruction Format (Part 1 of 2)

RR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 B A

Ri5 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 IMM5 A

Ri4 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 0 IMM4 A

RPi5 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op4 P B A

Ri6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op5 IMM6 A

Ri8 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op3 IMM8 A

i9 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 IMM9 0

i10 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 IMM10

i11 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op5 IMM11

Ri1u 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 op3u IMM1u 0 A

Ri2u 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 op3u IMM2u A
Altera Corporation 45

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
i8v 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 op2v IMM8v

i6v 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 op2v 0 0 IMM6v

Rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 op5w A

i4w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 op5w 0 IMM4w

w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op6 op5w 0 0 0 0 0

Table 14. Instruction Format (Part 2 of 2)
46 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
Table 15. 32-bit Opcode Table (Part 1 of 3)

Opcode Mnemonic Format Summary

000000 ADD RR RA ← RA + RB
Flags affected: N, V, C, Z

000001 ADDI Ri5 RA ← RA + (0×00.00 : K : IMM5)
Flags affected: N, V, C, Z

000010 SUB RR RA ← RA – RB
Flags affected: N, V, C, Z

000011 SUBI Ri5 RA ← RA – (0×00.00 : K : IMM5)
Flags affected: N, V, C, Z

000100 CMP RR ∅ ← RA – RB
Flags affected: N, V, C, Z

000101 CMPI Ri5 ∅ ← RA – (0×00.00 : K : IMM5)
Flags affected: N, V, C, Z

000110 LSL RR RA ← (RA << RB [4..0]),
Zero-fill from right

000111 LSLI Ri5 RA ← (RA << IMM5),
Zero-fill from right

001000 LSR RR RA ← (RA >> RB [4..0]),
Zero-fill from left

001001 LSRI Ri5 RA ← (R >> IMM5),
Zero-fill form left

001010 ASR RR RA ← (RA >> RB [4..0]),
Fill from left with RA[31]

001011 ASRI Ri5 RA ← (RA >> IMM5),
Fill from left with RA[31]

001100 MOV RR RA ← RB

001101 MOVI Ri5 RA ← (0×00.00 : K : IMM5)

001110 AND RR
Ri5

RA ← RA & {RB, (0×00.00 : K : IMM5)}
Flags affected: N, Z

001111 ANDN RR,
Ri5

RA ← RA & ~({RB, (0×00.00 : K : IMM5)})
Flags affected: N, Z

010000 OR RR,
Ri5

RA ← RA | {RB, (0×00.00 : K : IMM5)}
Flags affected: N, Z

010001 XOR RR,
Ri5

RA ← RA ⊕ {RB, (0×00.00 : K : IMM5)}
Flags affected: N, Z

010010 BGEN Ri5 RA ← 2IMM5

010011 EXT8D RR RA ← (0×00.00.00 : bnRA) where n = RB[1..0]

010100 SKP0 Ri5 Skip next instruction if: (RA [IMM5] == 0)

010101 SKP1 Ri5 Skip next instruction if: (RA [IMM5] == 1)

010110 LD RR RA ← Mem32 [align32(RB + (σ(K) × 4))]
Altera Corporation 47

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
010111 ST RR Mem32 [align32(RB + (σ(K) × 4))] ← RA

011000 STS8S i10 bnMem32 [align32(%sp + IMM10)] ← bn%r0
where n = IMM10[1..0]

011001 STS16S i9 hnMem32 [align32(%sp + IMM9 × 2)] ← hn%r0
where n = IMM9[0]

011010 EXT16D RR RA ← (0×00.00 : hnRA) where n = RB[1]

011011 MOVHI Ri5 h1RA ← (K : IMM5), h0RA unaffected

011100 USR0 RR RA ← RA <user-defined operation> RB

011101000 EXT8S Ri1u RA ← (0×00.00.00 : bnRA) where n = IMM2u

011101001 EXT16S Ri1u RA ← (0×00.00 : hnRA) where n = IMM1u

011101010 Unused

011101011 Unused

011101100 ST8S Ri1u bnMem32 [align32(RA + (σ(K) × 4))] ← bn%r0
where n = IMM2u

011101101 ST16S Ri1u hnMem32 [align32(RA + (σ(K) × 4))] ← hn%r0
where n = IMM1u

01111000 SAVE i8v CWP ← CWP – 1; %sp ← %fp – (IMM8v × 4)
If (old-CWP == LO_LIMIT) then TRAP #1

0111100100 TRAP i6v ISTATUS ← STATUS; IE ← 0; CWP ← CWP – 1;
IPRI ← IMM6v; %r15 ← ((PC + 2) >> 1) ;
PC ← Mem32 [VECBASE + (IMM6v × 4)] × 2

01111100000 NOT Rw RA ← ~RA

01111100001 NEG Rw RA ← 0 – RA

01111100010 ABS Rw RA ← |RA|

01111100011 SEXT8 Rw RA ← σ(b0RA)

01111100100 SEXT16 Rw RA ← σ(h0RA)

01111100101 RLC Rw C ← msb (RA); RA ← (RA << 1) : C
Flag affected: C

01111100110 RRC Rw C ← RA[0]; RA ← C : (RA >> 1)
Flag affected: C

01111100111 Unused

01111101000 SWAP Rw RA ← h0RA : h1RA

01111101001 USR1 Rw RA ← RA <user-defined operation> R0

01111101010 USR2 Rw RA ← RA <user-defined operation> R0

01111101011 USR3 Rw RA ← RA <user-defined operation> R0

01111101100 USR4 Rw RA ← RA <user-defined operation> R0

01111101101 RESTORE w CWP ← CWP + 1; if (old-CWP == HI_LIMIT) then TRAP #2

01111101110 TRET Rw PC ← (RA × 2); STATUS ← ISTATUS

Table 15. 32-bit Opcode Table (Part 2 of 3)

Opcode Mnemonic Format Summary
48 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
01111101111 Unused

01111110000 ST8D Rw bnMem32 [align32(RA +(σ(K) × 4))] ← bn%r0
where n = RA[1..0]

01111110001 ST16D Rw hnMem32 [align32(RA + (σ(K) × 4))] ← hn%r0
where n = RA[1]

01111110010 FILL8 Rw %r0 ← (b0RA : b0RA : b0RA : b0RA)

01111110011 FILL16 Rw %r0 ← (h0RA : h0RA)

01111110100 MSTEP Rw if (%r0[31] == 1) then %r0 ← (%r0 << 1) + RA else %r0
← (%r0 << 1)

01111110101 MUL Rw %r0 ← (%r0 & 0x0000.ffff) × (RA & 0x0000.ffff)

01111110110 SKPRZ Rw Skip next instruction if: (RA == 0)

01111110111 SKPS i4w Skip next instruction if condition encoded by IMM4w is true

01111111000 WRCTL Rw CTLk ← RA

01111111001 RDCTL Rw RA ← CTLk

01111111010 SKPRNZ Rw Skip next instruction if: (RA != 0)

01111111011 Unused

01111111100 Unused

01111111101 Unused

01111111110 JMP Rw PC ← (RA × 2)

01111111111 CALL Rw R15 ←((PC + 4) >> 1); PC ← (RA × 2)

100000 BR i11 PC ← PC + ((σ(IMM11) + 1) × 2)

100001 Unused

100010 BSR i11 PC ← PC + ((σ(IMM11) + 1) × 2);
%r15 ← ((PC + 4) >> 1)

10010 PFXIO i11 K ← IMM11 (K set to zero after next instruction and forces
subsequent memory load instruction to bypass the data cache)

10011 PFX i11 K ← IMM11 (K set to zero after next instruction)

1010 STP RPi5 Mem32[align32(RP + (σ(K : IMM5) × 4))] ← RA

1011 LDP RPi5 RA ← Mem32 [align32(RP + (σ(K : IMM5) × 4))]

110 STS Ri8 Mem32[align32(%sp + (IMM8 × 4))] ← RA

111 LDS Ri8 RA ← Mem32 [align32(%sp + (IMM8 × 4))]

Table 15. 32-bit Opcode Table (Part 3 of 3)

Opcode Mnemonic Format Summary
Altera Corporation 49

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
The following pseudo-instructions are generated by nios-elf-gcc (GNU
compiler) and understood by nios-elf-as (GNU assembler).

The following operators are understood by nios-elf-as. These operators
may be used with constants and symbolic addresses, and can be correctly
resolved either by the assembler or the linker.

Table 16. GNU Compiler/Assembler Pseudo-Instructions

Pseudo-Instruction Equivalent Instruction Notes

LRET JMP %o7 LRET has no operands

RET JMP %i7 RET has no operands

NOP MOV %g0,%g0 NOP has no operands

IF0 %rA,IMM5 SKP1 %rA,IMM5

IF1 %rA,IMM5 SKP0 %rA,IMM5

IFRZ%rA SKPRNZ %rA

IFRNZ %rA SKPRZ %rA

IFS cc_c SKPS cc_nc

IFS cc_nc SKPS cc_c

IFS cc_z SKPS cc_nz

IFS cc_nz SKPS cc_z

IFS cc_mi SKPS cc_pl

IFS cc_pl SKPS cc_mi

IFS ccge SKPS cc_lt

IFS cc_lt SKPS cc_ge

IFS cc_le SKPS cc_gt

IFS cc_gt SKPS cc_le

IFS cc_v SKPS cc_nv

IFS cc_nv SKPS cc_v

IFS cc_ls SKPS cc_hi

IFS cc_hi SKPS cc_ls

Table 17. Nios Operators

Operator Description Operation

%lo(x) Extract low 5 bits of x x & 0×0000001f

%hi(x) Extract bits 15..5 of x (x >> 5) & 0×000007ff

%xlo(x) Extract bits 20..16 of x (x >> 16) & 0×0000001f

%xhi(x) Extract bits 31..21 of x (x >> 21) & 0×000007ff

x@h Half-word address of x x >> 1
50 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
Table 18. Smallest Nios Register File
Altera Corporation 51

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
ABS
Absolute Value

Operation: RA ← |RA|

Assembler Syntax: ABS %rA

Example: ABS %r6

Description: Calculate the absolute value of RA; store the result in RA.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 1 0 A

N V Z C

– – – –
52 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
ADD

Operation: RA ← RA + RB

Assembler Syntax: ADD %rA,%rB

Example: ADD %L3,%g0 ; ADD %g0 to %L3

Description: Adds the contents of register A to register B and stores the result in register A.

Condition Codes: Flags:

N: Result bit 31
V: Signed-arithmetic overflow
Z: Set if result is zero; cleared otherwise
C: Carry-out of addition

Instruction Format: RR

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 B A

N V Z C

∆ ∆ ∆ ∆
Altera Corporation 53

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
ADDI
Add Immediate

Operation: RA ← RA + (0x00.00 : K : IMM5)

Assembler Syntax: ADDI %rA,IMM5

Example: Not preceded by PFX:
ADDI %L5,6 ; add 6 to %L5
Preceded by PFX:
PFX %hi(1000)
ADDI %g3,%lo(1000) ; ADD 1000 to %g3

Description: Not preceded by PFX:
Adds 5-bit immediate value to register A, stores result in register A. IMM5 is in the
range [0..31].
Preceded by PFX:
The immediate operand is extended from 5 to 16 bits by concatenating the
contents of the K-register (11 bits) with IMM5 (5 bits). The 16-bit immediate value
(K : IMM5) is zero-extended to 32 bits and added to register A.

Condition Codes: Flags:

N: Result bit 31
V: Signed-arithmetic overflow
Z: Set if result is zero; cleared otherwise
C: Carry-out of addition

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 IMM5 A

N V Z C

∆ ∆ ∆ ∆
54 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
AND
Bitwise Logical AND

Operation: Not preceded by PFX:
RA ← RA & RB
Preceded by PFX:
RA ← RA & (0x00.00 : K : IMM5)

Assembler Syntax: Not preceded by PFX:
AND %rA,%rB
Preceded by PFX:
PFX %hi(const)
AND %rA,%lo(const)

Example: Not preceded by PFX:
AND %g0,%g1 ; %g0 gets %g1 & %g0
Preceded by PFX:
PFX %hi(16383)
AND %g0,%lo(16383) ; AND %g0 with 16383

Description: Not preceded by PFX:
Logically-AND the individual bits in RA with the corresponding bits in RB; store
the result in RA.
Preceded by PFX:
The RB operand is replaced by an immediate constant formed by concatenating
the contents of the K-register (11 bits) with IMM5 (5 bits). This 16-bit value (zero-
extended to 32 bits) is bitwise-ANDed with RA, and the result is written back into
RA.

Condition Codes: Flags:

N: Result bit 31
Z: Set if result is zero, cleared otherwise

Instruction Format: RR, Ri5

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand
IMM5 = 5-bit immediate value

Not preceded by PFX (RR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 B A

Preceded by PFX (Ri5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 IMM5 A

N V Z C

∆ – ∆ –
Altera Corporation 55

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
ANDN
Bitwise Logical AND NOT

Operation: Not preceded by PFX:
RA ← RA & ~RB
Preceded by PFX:
RA ← RA & ~(0x00.00 : K : IMM5)

Assembler Syntax: Not preceded by PFX:
ANDN %rA,%rB
Preceded by PFX:
PFX %hi(const)
ANDN %rA,%lo(const)

Example: Not preceded by PFX:
ANDN %g0,%g1 ; %g0 gets %g0 & ~%g1
Preceded by PFX:
PFX %hi(16384)
ANDN %g0,%lo(16384) ; clear bit 14 of %g0

Description: Not preceded by PFX:
Logically-AND the individual bits in RA with the corresponding bits in the one’s-
complement of RB; store the result in RA.
Preceded by PFX:
The RB operand is replaced by an immediate constant formed by concatenating
the contents of the K-register (11 bits) with IMM5 (5 bits). This 16-bit value is zero-
extended to 32 bits, then bitwise-inverted and bitwise-ANDed with RA. The result
is written back into RA.

Condition Codes: Flags:

N: Result bit 31
Z: Set if result is zero, cleared otherwise

Instruction Format: RR, Ri5

Instruction Fields: A = Register index of operand RA
B = Register index of operand RB
IMM5 = 5-bit immediate value

Not preceded by PFX (RR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 B A

Preceded by PFX (Ri5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 IMM5 A

N V Z C

∆ – ∆ –
56 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
ASR
Arithmetic Shift Right

Operation: RA ← (RA >> RB[4..0]), fill from left with RA[31]

Assembler Syntax: ASR %rA,%rB

Example: ASR %L3,%g0 ; shift %L3 right by %g0 bits

Description: Arithmetically shift right the value in RA by the value of RB; store the result in RA.
Bits 31..5 of RB are ignored. If the value in RB[4..0] is 31, RA is zero or negative
one depending on the original sign of RA.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 B A

31 30 29 28 2 1 0

 . .

copy bit 31

N V Z C

– – – –
Altera Corporation 57

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
ASRI
Arithmetic Shift Right Immediate

Operation: RA ← (RA >> IMM5), fill from left with RA[31]

Assembler Syntax: ASRI %rA,IMM5

Example: ASRI %i5,6 ; shift %i5 right 6 bits

Description: Arithmetically shift right the contents of RA by IMM5 bits. If IMM5 is 31, RA is zero
or negative one depending on the original sign of RA.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 IMM5 A

31 30 29 28 2 1 0

 . .

copy bit 31

N V Z C

– – – –
58 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
BGEN
Bit Generate

Operation: RA ← 2IMM5

Assembler Syntax: BGEN %rA,IMM5

Example: BGEN %g7,6 ; set %g7 to 64

Description: Sets RA to an integer power-of-two with the exponent given by IMM5. This is
equivalent to setting a single bit in RA, and clearing the rest.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 IMM5 A

N V Z C

– – – –
Altera Corporation 59

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
BR
Branch

Operation: PC ← PC + ((σ(IMM11) + 1) << 1)

Assembler Syntax: BR addr

Example: BR MainLoop

NOP ; (delay slot)

Description: The offset given by IMM11 is interpreted as a signed number of half-words
(instructions) relative to the instruction immediately following BR. Program control
is transferred to instruction at this offset.

Condition Codes: Flags: Unaffected

Delay Slot Behavior: The instruction immediately following BR (BR’s delay slot) is executed after BR,
but before the destination instruction. There are restrictions on which instructions
may be used as a delay slot (see “Branch Delay Slots” on page 42).

Instruction Format: i11

Instruction Fields: IMM11 = 11-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 IMM11

N V Z C

– – – –
60 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
BSR
Branch To Subroutine

Operation: %o7 ← ((PC + 4) >> 1)
PC ← PC + ((σ(IMM11) + 1) << 1)

Assembler Syntax: BSR addr

Example: BSR SendCharacter

NOP ; (delay slot)

Description: The offset given by IMM11 is interpreted as a signed number of half-words
(instructions) relative to the instruction immediately following BR. Program control
is transferred to instruction at this offset. The return-address is the address of the
BSR instruction plus four, which is the address of the second subsequent
instruction. The return-address is shifted right one bit and stored in %o7. The
right-shifted value stored in %o7 is a destination suitable for direct use by JMP
without modification.

Condition Codes: Flags: Unaffected

Delay Slot Behavior: The instruction immediately following BSR (BSR’s delay slot) is executed after
BSR, but before the destination instruction. There are restrictions on which
instructions may be used as a delay slot (see “Branch Delay Slots” on page 42).

Instruction Format: i11

Instruction Fields: IMM11 = 11-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 0 1 IMM11

N V Z C

– – – –
Altera Corporation 61

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
CALL
Call Subroutine

Operation: %o7 ← ((PC + 4) >> 1)
PC ← (RA << 1)

Assembler Syntax: CALL %rA

Example: CALL %g0

NOP ; (delay slot)

Description: The value of RA is shifted left by one and transferred into PC. RA contains the
address of the called subroutine right-shifted by one bit. The return-address is the
address of the second subsequent instruction. Return-address is shifted right one
bit and stored in %o7. The right-shifted value stored in %o7 is a destination
suitable for direct use by JMP without modification.

Condition Codes: Flags: Unaffected

Delay Slot Behavior: The instruction immediately following CALL (CALL’s delay slot) is executed after
CALL, but before the destination instruction. There are restrictions on which
instructions may be used as a delay slot (see “Branch Delay Slots” on page 42).

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 1 1 A

N V Z C

– – – –
62 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
CMP
Compare

Operation: ∅ ← RA − RB

Assembler Syntax: CMP %rA,%rB

Example: CMP %g0,%g1 ; set flags by %g0 - %g1

Description: Subtract the contents of RB from RA, and discard the result. Set the condition
codes according to the subtraction. Neither RA nor RB are altered.

Condition Codes: Flags:

N: Result bit 31
V: Signed-arithmetic overflow
Z: Set if result is zero; cleared otherwise
C: Set if there was a borrow from the subtraction; cleared otherwise

Instruction Format: RR

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 B A

N V Z C

∆ ∆ ∆ ∆
Altera Corporation 63

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
CMPI
Compare Immediate

Operation: ∅ ← RA – (0x00.00 : K : IMM5)

Assembler Syntax: CMPI & %rA,IMM5

Example: Not preceded by PFX:
CMPI %i3,24 ; compare %i3 to 24
Preceded by PFX:
PFX %hi(1000)
CMPI %i4,%lo(1000) ; compare %i4 to 1000

Description: Not preceded by PFX:
Subtract a 5-bit immediate value given by IMM5 from RA, and discard the result.
Set the condition codes according to the subtraction. RA is not altered.
Preceded by PFX:
The Immediate operand is extended from 5 to 16 bits by concatenating the
contents of the K-register (11 bits) with IMM5 (5 bits). The 16-bit immediate value
(K : IMM5) is zero-extended to 32 bits and subtracted from RA. Condition codes
are set and the result is discarded. RA is not altered.

Condition Codes: Flags:

N: Result bit 31
V: Signed-arithmetic overflow
Z: Set if result is zero; cleared otherwise
C: Set if there was a borrow from the subtraction; cleared otherwise

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 IMM5 A

N V Z C

∆ ∆ ∆ ∆
64 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
EXT16D
Half-Word Extract (Dynamic)

Operation: RA ← (0x00.00 : hnRA) where n = RB[1]

Assembler Syntax: EXT16D %rA,%rB

Example: LD %i3,[%i4] ; get 32 bits from [%i4 & 0xFF.FF.FF.FC]

EXT16D %i3,%i4 ; extract short int at %i4

Description: Extracts one of the two half-words in RA. The half-word to-be-extracted is chosen
by bit 1 of RB. The selected half-word is written into bits 15..0 of RA, and the
more-significant bits 31..16 are set to zero.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of operand RA
B = Register index of operand RB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 B A

31
RA

before
half word 1 half word 0

RA
after

RB[1..0]

0 half word n

01516

31 01516

N V Z C

– – – –
Altera Corporation 65

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
EXT16S
Half-Word Extract (Static)

Operation: RA ← (0x00.00 : hnRA) where n = IMM1

Assembler Syntax: EXT16S %rA,IMM1

Example: EXT16S %L3,1 ; %L3 gets upper short int of itself

Description: Extracts one of the two half-words in RA. The half-word to-be-extracted is chosen
by the one-bit immediate value IMM1. The selected half-word is written into bits
15..0 of RA, and the more significant bits 31..16 are set to zero.

Condition Codes: Flags: Unaffected

Instruction Format: Ri1u

Instruction Fields: A = Register index of operand RA
IMM1 = 1-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 1 IMM1 0 A

half word 0

IMM1

 15 0 31 16

RA
before

RA
after

half word 1

half word n -------------------- 0 --------------------

 15 0 31 16

N V Z C

– – – –
66 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
EXT8D
Byte-Extract (Dynamic)

Operation: RA ← (0x00.00.00 : bnRA) where n = RB[1..0]

Assembler Syntax: EXT8D %rA,%rB

Example: LD %g4,[%i0] ; get 32 bits from [%i0 & 0xFF.FF.FF.FC]

EXT8D %g4,%i0 ; extract the particular byte at %i0

Description: Extracts one of the four bytes in RA. The byte to-be-extracted is chosen by bits
1..0 of RB (byte 3 being the most-significant byte of RA). The selected byte is
written into bits 7..0 of RA, and the more-significant bits 31..8 are set to zero.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of operand RA
B = Register index of operand RB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 B A

15 8 7 0

RA
before

RA
after

n

031

byte 3 byte 2 byte 1 byte 0

byte

RB[1..0]

31 24 23 16

--------------------------------- 0 ---------------------------------

N V Z C

– – – –
Altera Corporation 67

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
EXT8S
Byte-Extract (Static)

Operation: RA ← (0x00.00.00 : bnRA) where n = IMM2

Assembler Syntax: EXT8S %rA,IMM2

Example: EXT8S %g6,3 ; %g6 gets the 3rd byte of itself

Description: Extracts one of the four bytes in RA. The byte to-be-extracted is chosen by the
immediate value IMM2 (byte 3 being the most-significant byte of RA). The
selected byte is written into bits 7..0 of RA, and the more-significant bits 31..8 are
set to zero.

Condition Codes: Flags: Unaffected

Instruction Format: Ri2u

Instruction Fields: A = Register index of operand RA
IMM2 = 2-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 0 IMM2 A

15 8 7 0

RA
before

RA
after n --------------------------------- 0 ---------------------------------

031

byte 3 byte 2 byte 1 byte 0

byte

31 24 23 16

IMM2

N V Z C

– – – –
68 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
FILL16
Half-Word Fill

Operation: R0 ← (h0RA : h0RA)

Assembler Syntax: FILL16 %r0,%rA

Example: FILL16 %r0,%i3 ; %r0 gets 2 copies of %i3[0..15]

; first operand must be %r0

Description: The least significant half-word of RA is copied into both half-word positions
in %r0. %r0 is the only allowed destination operand for FILL instructions.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 1 A

half word 0

 15 0 31 16
RA

before

R0
after

half word 1

half word 0 half word 0

 15 0 31 16

N V Z C

– – – –
Altera Corporation 69

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
FILL8
Byte-Fill

Operation: R0 ← (b0RA : b0RA : b0RA : b0RA)

Assembler Syntax: FILL8 %r0,%rA

Example: FILL8 %r0,%o3 ; %r0 gets 4 copies of %o3[0..7]

; first operand must be %r0

Description: The least-significant byte of RA is copied into all four byte-positions in %r0. %r0
is the only allowed destination operand for FILL instructions.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 0 A

15 8 7 0

RA
before

after

byte 3 byte 2 byte 1 byte 0

31 24 23 16

byte 0 byte 0 byte 0 byte 0

15 8 7 031 24 23 16

R0

N V Z C

– – – –
70 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
IF0
Execute if Register Bit is 0

(Equivalent to SKP1 Instruction)

Operation: if (RA[IMM5] == 1)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end
Assembler Syntax: IF0 %rA,IMM5

Example: IF0 %o3,21 ;

ADDI %g0,1 ; increment if bit 21 is clear

Description: Skip next instruction if the single bit RA[IMM5] is 1. If the next instruction is PFX
or PFXIO, then both PFX or PFXIO and the instruction following PFX or PFXIO
are skipped together.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of operand RA
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 IMM5 A

N V Z C

– – – –
Altera Corporation 71

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
IF1
Execute if Register Bit is 1
(Equivalent to SKP0 Instruction)

Operation: if (RA[IMM5] == 0)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end
Assembler Syntax: IF1 %rA,IMM5

Example: IF1 %i3, 7

ADDI %g0,1 ; increment if bit 7 is set

Description: Skip next instruction if the single bit RA[IMM5] is 0. If the next instruction is PFX
or PFXIO, then both PFX or PFXIO and the instruction following PFX or PFXIO
are skipped together.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of operand RA
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 IMM5 A

N V Z C

– – – –
72 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
IFRNZ
Execute if Register is not Zero

(Equivalent to SKPRZ Instruction)

Operation: if (RA == 0)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: IFRNZ %rA

Example: IFRNZ %o3

BSR SendIt ; only branch if %o3 is not zero

NOP ; (delay slot) executed in either case

Description: Skip next instruction if RA is equal to zero. If the next instruction is PFX or PFXIO
then both PFX or PFXIO and the instruction following PFX or PFXIO are skipped
together.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 0 A

N V Z C

– – – –
Altera Corporation 73

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
IFRZ
Execute if Register is Zero
(Equivalent to SKPRNZ Instruction)

Operation: if (RA != 0)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: IFRZ%rA

Example: IFRZ %g3

BSR SendIt ; only call if %g3 is zero

NOP ; (delay slot) executed in either case

Description: Skip next instruction if RA is not zero. If the next instruction is PFX or PFXIO, then
both PFX or PFXIO and the instruction following PFX or PFXIO are skipped
together.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 1 0 A

N V Z C

– – – –
74 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
IFS
Conditionally Execute Next Instruction

Operation: if (condition IMM4 is false)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: IFS cc_IMM4

Example: IFS cc_ne

BSR SendIt ; only call if Z flag set

NOP ; (delay slot) executed in either case

Description: Execute next instruction if specified condition is true, skip if condition is false. If
the next instruction is PFX or PFXIO, then both PFX or PFXIO and the instruction
following PFX or PFXIO are skipped together.

Condition Codes: Settings:

1 These condition
codes have
different
numeric values
for IFS and
SKPS
instructions.

cc_nc 0x0 (not C)

cc_c 0x1 (C)

cc_nz 0x2 (not Z)

cc_z 0x3 (Z)

cc_pl 0x4 (not N)

cc_mi 0x5 (N)

cc_lt 0x6 (N xor V)

cc_ge 0x7 (not (N xor V))

cc_gt 0x8 (Not (Z or (N xor V)))

cc_le 0x9 (Z or (N xorV))

cc_nv 0xa (not V)

cc_v 0xb (V)

cc_hi 0xc (not (C or Z))

cc_la 0xd (C or Z)

Additional alias flags allowed:

cc_cs = cc_c
cc_eq = cc_z

cc_n = cc_mi
cc_vs = cc_v

cc_cc = cc_nc
cc_ne = cc_nz

cc_vc = cc_nv
cc_p = cc_pl

Codes mean execute if. For example, ifs cc_eq means execute if equal

Instruction Format: i4w

Instruction Fields: IMM4 = 4-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 1 0 IMM4
Altera Corporation 75

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
JMP
Computed Jump

Operation: PC ← (RA << 1)

Assembler Syntax: JMP %rA

Example: JMP %o7 ; return

NOP ; (delay slot)

Description: Jump to the target-address given by (RA << 1). Note that the target address is
always half-word aligned for any value of RA.

Condition Codes: Flags: Unaffected

Delay Slot Behavior: The instruction immediately following JMP (JMP’s delay slot) is executed after
JMP, but before the destination instruction. There are restrictions on which
instructions may be used as a delay slot (see “Branch Delay Slots” on page 42).

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 1 0 A

N V Z C

− − − −
76 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
LD
Load 32-Bit Data From Memory

Operation: Not preceded by PFX:
RA ← Mem32[align32(RB)]
Preceded by PFX or PFXIO:
RA ← Mem32[align32(RB + σ(K) × 4))]

Assembler Syntax: LD %rA,[%rB]

Example: Not preceded by PFX:
LD %g0,[%i3] ; load word at [%i3] into %g0
Preceded by PFX:
PFX 7 ; offset by 7 words
LD %g0,[%i3] ; load word at [%i3+28] into %g0
Preceded by PFXIO:
PFXIO 0 ; forces LD to bypass the data cache
LD %g0,[%i3] ; load word at [%i3] into %g0

Description:

1 If the Nios CPU
has a data
cache, the 32-
bit data value
may come from
the cache.

Not preceded by PFX:
Loads a 32-bit data value from memory into RA. Data is always read from a word-
aligned address given by bits 31..2 of RB (the two LSBs of RB are ignored).
Preceded by PFX:
The value in K is sign-extended and used as a word-scaled, signed offset. This
offset is added to the base-address RB (bits 1..0 ignored), and data is read from
the resulting word-aligned address.
Preceded by PFXIO:
Preceding LD by PFXIO is just like preceding LD by PFX (see above), except that,
in a Nios CPU with a data cache, the LD bypasses the cache.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of operand RA
B = Register index of operand RB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 B A

N V Z C

– – – –
Altera Corporation 77

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
LDP
Load 32-Bit Data From Memory (Pointer Addressing Mode)

Operation: Not preceded by PFX:
RA ← Mem32[align32(RP + (IMM5 × 4))]
Preceded by PFX or PFXIO:
RA ← Mem32[align32(RP + (σ(K : IMM5) × 4))]

Assembler Syntax: LDP %rA,[%rP,IMM5]

Example: Not preceded by PFX:
LDP %o3,[%L2,3] ; Load %o3 from [%L2 + 12]

; second register operand must be
; one of %L0, %L1, %L2, or %L3

Preceded by PFX:
PFX %hi(100)
LDP %o3,[%L2,%lo(100)] ; load %o3 from [%L2 + 400]
Preceded by PFXIO:
PFXIO %hi(100)
LDP %o3,[%L2,%lo(100)] ; load %o3 from [%L2 + 400]

Description:

1 If the Nios CPU
has a data
cache, the 32-
bit data value
may come from
the cache.

Not preceded by PFX:
Loads a 32-bit data value from memory into RA. Data is always read from a word-
aligned address given by bits 31..2 of RP (the two LSBs of RP are ignored) plus
a 5-bit, unsigned, word-scaled offset given by IMM5. If Nios has a data cache, the
32-bit data value may come from the cache. This instruction is similar to LD, but
additionally allows a positive 5-bit offset to be applied to any of four base-pointers
in a single instruction. The base-pointer must be one of the four registers: %L0,
%L1, %L2, or %L3.
Preceded by PFX:
A 16-bit offset is formed by concatenating the 11-bit K-register with IMM5 (5 bits).
The 16-bit offset (K : IMM5) is sign-extended to 32 bits, multiplied by four, and
added to bits 31..2 of RP to yield a word-aligned effective address.
Preceded by PFXIO:
Preceding LDP by PFXIO is just like preceding LDP by PFX (see above), except
that in a Nios CPU with a data cache, the LDP bypasses the cache.

Condition Codes: Flags: Unaffected

Instruction Format: RPi5

Instruction Fields: A = Register index of operand RA
IMM5 = 5-bit immediate value
P = Index of base-pointer register, less 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 1 P IMM5 A

N V Z C

− − − −
78 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
LDS
Load 32-Bit Data From Memory (Stack Addressing Mode)

Operation: RA ← Mem32[align32(%sp + (IMM8 × 4))]

Assembler Syntax: LDS %rA,[%sp,IMM8]

Example: LDS %o1,[%sp,3] ; load %o1 from stack + 12

; second register can only be %sp

Description:

1 If the Nios CPU
has a data
cache, the 32-
bit data value
may come from
the cache.

Loads a 32-bit data value from memory into RA. Data is always read from a word-
aligned address given by bits 31..2 of %sp (the two LSBs of %sp are ignored) plus
an 8-bit, unsigned, word-scaled offset given by IMM8.

Conventionally, software uses %o6 (aka %sp) as a stack-pointer. LDS allows
single-instruction access to any data word at a known offset in a 1Kbyte range
above %sp.

Condition Codes: Flags: Unaffected

Instruction Format: Ri8

Instruction Fields: A = Register index of operand RA
IMM8 = 8-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 IMM8 A

N V Z C

− − − −
Altera Corporation 79

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
LRET
Equivalent to JMP %o7

Operation: PC ← (%o7 << 1)

Assembler Syntax: LRET

Example: LRET ; return

NOP ; (delay slot)

Description: Jump to the target-address given by (%o7 << 1). Note that the target address is
always half-word aligned for any value of %o7.

Condition Codes: Flags: Unaffected

Delay Slot Behavior: The instruction immediately following LRET (LRET’s delay slot) is executed after
LRET, but before the destination instruction. There are restrictions on which
instructions may be used as a delay slot (see “Branch Delay Slots” on page 42).

Instruction Format: Rw

Instruction Fields: None (always uses %o7)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

N V Z C

− − − −
80 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
LSL
Logical Shift Left

Operation: RA ← (RA << RB[4..0]), zero-fill from right

Assembler Syntax: LSL %rA,%rB

Example: LSL %L3,%g0 ; Shift %L3 left by %g0 bits

Description: The value in RA is shifted-left by the number of bits indicated by RB [4..0] (bits
31..5 of RB are ignored).

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 B A

31 30 29 2 1 0

 . 0

N V Z C

− − − −
Altera Corporation 81

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
LSLI
Logical Shift Left Immediate

Operation: RA ← (RA << IMM5), zero-fill from right

Assembler Syntax: LSLI %rA,IMM5

Example: LSLI %i1,6 ; Shift %i1 left by 6 bits

Description: The value in RA is shifted-left by the number of bits indicated by IMM5.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 IMM5 A

31 30 29 2 1 0

 . 0

N V Z C

− − − −
82 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
LSR
Logical Shift Right

Operation: RA ← (RA >> RB[4..0]), zero-fill from left

Assembler Syntax: LSR %rA,%rB

Example: LSR %L3,%g0 ; Shift %L3 right by %g0 bits

Description: The value in RA is shifted-right by the number of bits indicated by RB [4..0] (bits
RB[31..5] are ignored). The result is zero-filled from the left.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 B A

31 30 29 2 1 0

 . .0

N V Z C

− − − −
Altera Corporation 83

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
LSRI
Logical Shift Right Immediate

Operation: RA ← (RA >> IMM5), zero-fill from left

Assembler Syntax: LSRI %rA,IMM5

Example: LSRI %g1,6 ; Right-shift %g1 by 6 bits

Description: The value in RA is shifted-right by the number of bits indicated by IMM5. The
result is left-filled with zero.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 IMM5 A

31 30 29 2 1 0

 . .0

N V Z C

− − − −
84 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
MOV
Register-to-Register Move

Operation: RA ← RB

Assembler Syntax: MOV %rA,%rB

Example: MOV %o0,%L3 ; copy %L3 into %o0

Description: Copy the contents of RB to RA.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 B A

N V Z C

− − − −
Altera Corporation 85

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
MOVHI
Move Immediate Into High Half-Word

Operation: h1RA ← (K : IMM5), h0RA unaffected

Assembler Syntax: MOVHI %rA,IMM5

Example: Not preceded by PFX:
MOVHI %g3,23 ; upper 16 bits of %g3 get 23
Preceded by PFX:
PFX %hi(100)
MOVHI %g3,%lo(100) ; upper 16 bits of %g3 get 100

Description: Not preceded by PFX:
Copy IMM5 to the most significant half-word (bits 31..16) of RA. The least
significant half-word (bits 15..0) is unaffected.
Preceded by PFX:
The immediate operand is extended from 5 to 16 bits by concatenating the
contents of the K-register (11 bits) with IMM5 (5 bits). The 16-bit immediate value
(K : IMM5) is copied into the most significant half-word (bits 31..16) of RA. The
least significant half-word (bits 15..0) is unaffected.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of operand RA
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 IMM5 A

N V Z C

− − − −
86 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
MOVI
Move Immediate

Operation: RA ← (0x00.00 : K : IMM5)

Assembler Syntax: MOVI %rA,IMM5

Example: Not preceded by PFX:
MOVI %o3,7 ; load %o3 with 7
Preceded by PFX:
PFX %hi(301)
MOVI %o3,%lo(301) ; load %o3 with 301

Description: Not preceded by PFX:
Loads register RA with a zero-extended 5-bit immediate value (in the range
[0..31]) given by IMM5.
Preceded by PFX:
Loads register RA with a zero-extended 16-bit immediate value (in the range
[0..65535]) given by (K : IMM5).

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 IMM5 A

N V Z C

− − − −
Altera Corporation 87

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
MSTEP
Multiply-Step

Operation: If (R0[31] = = 1)
then R0 ← (R0 << 1) + RA
else R0 ← (R0 << 1)

Assembler Syntax: MSTEP %rA

Example: MSTEP %g1 ; accumulate partial-product

Description: Implements a single step of an unsigned multiply. The multiplier in %r0 and
multiplicand in RA. Result is accumulated into %r0. RA is not affected.

The following code fragment implements a 16-bit × 16-bit into 32-bit multiply. On
entry, %r0 and %r1 contain the multiplier and multiplicand, respectively. The
result is left in %r0.

SWAP %r0 ; Move multiplier into place
MSTEP %r1
MSTEP %r1
MSTEP %r1
… A total of 16 MSTEPs …
MSTEP %r1
; 32-bit product left in %r0

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 0 0 A

N V Z C

− − − −
88 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
MUL
Multiply

Operation: R0 ← (R0 & 0x0000.ffff) x (RA & 0x0000.ffff)

Assembler Syntax: MUL %rA

Example: MUL %i5

Description: Multiply the low half-words of %r0 and %rA together, and put the 32 bit result into
%r0. This performs an integer multiplication of two signed 16-bit numbers to
produce a 32-bit signed result, or multiplication of two unsigned 16-bit numbers
to produce an unsigned 32-bit result.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 0 1 A

N V Z C

− − − −
Altera Corporation 89

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
NEG
Arithmetic Negation

Operation: RA ← 0 – RA

Assembler Syntax: NEG %rA

Example: NEG %o4

Description: Negate the value of RA. Perform two’s complement negation of RA.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 0 1 A

N V Z C

− − − −
90 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
NOP
Equivalent to MOV %g0, %g0

Operation: None

Assembler Syntax: NOP

Example: NOP ; do nothing

Description: No operation.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

N V Z C

− − − −
Altera Corporation 91

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
NOT
Logical Not

Operation: RA ← ~RA

Assembler Syntax: NOT %rA

Example: NOT %o4

Description: Bitwise-invert the value of RA.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 0 0 A

N V Z C

− − − −
92 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
OR
Bitwise Logical OR

Operation: Not preceded by PFX:
RA ← RA | RB
Preceded by PFX:
RA ← RA | (0x00.00 : K : IMM5)

Assembler Syntax: Not preceded by PFX:
OR %ra,%rb
Preceded by PFX:
PFX %hi(const)
OR %ra,%lo(const)

Example: Not preceded by PFX:
OR %i0,%i1 ; OR %i1 into %i0
Preceded by PFX:
PFX %hi(3333)
OR %i0,%lo(3333) ; OR %i0 with 3333

Description: Not preceded by PFX:
Logically-OR the individual bits in RA with the corresponding bits in RB; store the
result in RA.
Preceded by PFX:
The RB operand is replaced by an immediate constant formed by concatenating
the contents of the K-register (11 bits) with IMM5 (5 bits). This 16-bit value is zero-
extended to 32 bits, then bitwise-ORed with RA. The result is written back into
RA.

Condition Codes: Flags:

N: Result bit 31
Z: Set if result is zero; cleared otherwise

Instruction Format: RR, Ri5

Instruction Fields A = Register index of operand RA
B = Register index of operand RB
IMM5 = 5-bit immediate value

Not preceded by PFX (RR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 B A

Preceded by PFX (Ri5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 IMM5 A

N V Z C

∆ – ∆ –
Altera Corporation 93

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
PFX
Prefix

Operation: K ← IMM11 (K set to zero by all other instructions)

Assembler Syntax: PFX IMM11

Example: PFX 3 ; affects next instruction

Description: Loads the 11-bit constant value IMM11 into the K-register. The value in the
K register may affect the next instruction. K is set to zero after every instruction
other than PFX and PFXIO. The result of two consecutive PFX instructions is not
defined.

Condition Codes: Flags: Unaffected

Instruction Format: i11

Instruction Fields: IMM11 = 11-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 IMM11

N V Z C

− − − −
94 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
PFXIO
Prefix with Cache Bypass

Operation: K ← IMM11 (K set to zero by all other instructions)

Assembler Syntax: PFXIO IMM11

Example: PFXIO 3 ; affects next instruction

Description: Loads the 11-bit constant value IMM11 into the K-register. The value in the K
register may affect the next instruction. K is set to zero after every instruction
other than PFX and PFXIO. PFXIO may only be used immediately before either
an LD or LDP instruction. The result of PFXIO before any other instruction is
undefined. See “PFX” on page 94.

PFXIO forces the subsequent LD or LDP memory-load operation to bypass the
data cache (if present), even if the data-cache is enabled.

Condition Codes: Flags: Unaffected

Instruction Format: i11

Instruction Fields: IMM11 = 11-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 0 IMM11

N V Z C

− − − −
Altera Corporation 95

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
RDCTL
Read Control Register

Operation: RA ← CTLk

Assembler Syntax: RDCTL %rA

Example: Not preceded by PFX:
RDCTL %g7 ; Loads %g7 from STATUS reg (%ctl0)
Preceded by PFX:
PFX 2
RDCTL %g7 ; Loads %g7 from WVALID reg (%ctl2)

Description: Not preceded by PFX:
Loads RA with the current contents of the STATUS register (%ctl0).
Preceded by PFX:
Loads RA with the current contents of the control register selected by K. See
“Control Registers” on page 16 for a list of control registers and their indices.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 0 1 A

N V Z C

− − − −
96 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
RESTORE
Restore Caller’s Register Window

Operation: CWP ← CWP + 1
if (old-CWP == HI_LIMIT)
then TRAP #2

Assembler Syntax: RESTORE

Example: RESTORE ; bump up the register window

Description: Moves CWP up by one position in the register file. If CWP is equal to HI_LIMIT
(from the WVALID register) before the RESTORE instruction, then a window-
overflow trap (TRAP #2) is generated.

Condition Codes: Flags: Unaffected

Instruction Format: w

Instruction Fields: None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0

N V Z C

− − − −
Altera Corporation 97

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
RET
Equivalent to JMP %i7

Operation: PC ← (%i7 << 1)

Assembler Syntax: RET

Example: RET ; return

RESTORE ; (restores caller’s register window)

Description: Jump to the target-address given by (%i7 << 1). Note that the target address is
always half-word aligned for any value of %i7.

Condition Codes: Flags: Unaffected

Delay Slot Behavior: The instruction immediately following RET (RET’s delay slot) is executed after
RET, but before the destination instruction. There are restrictions on which
instructions may be used as a delay slot (see “Branch Delay Slots” on page 42).

Instruction Format: Rw

Instruction Fields: None (always uses %i7)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

N V Z C

− − − −
98 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
RLC
Rotate Left Through Carry

Operation: C ← RA[31]
RA ← (RA << 1) : C

Assembler Syntax: RLC %rA

Example: RLC %i4 ; rotate %i4 left one bit

Description: Rotates the bits of RA left by one position through the carry flag.

Condition Codes: Flags:

C: Bit 31 of RA before rotating

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 1 0 1 A

C

31 30 29 2 1 0

 . .

N V Z C

– – – ∆
Altera Corporation 99

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
RRC
Rotate Right Through Carry

Operation: C ← RA[0]
RA ← C : (RA >> 1)

Assembler Syntax: RRC %rA

Example: RRC %i4 ; rotate %i4 right one bit

Description: Rotates the bits of RA right by one position through the carry flag.

If Preceded by PFX: Unaffected

Condition Codes: Flags:

C: Bit 0 of RA before rotating

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 1 1 0 A

C

31 30 29 2 1 0

 . .

N V Z C

– – – ∆
100 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
SAVE
Save Caller’s Register Window

Operation: CWP ← CWP – 1
%sp ← %fp – (IMM8 × 4)
If (old-CWP == LO_LIMIT)
then TRAP #1

Assembler Syntax: SAVE %sp,-IMM8

Example: SAVE %sp,-23 ; start subroutine with new regs

; first operand can only be %sp

Description: Moves CWP down by one position in the register file. If CWP is equal to LO_LIMIT
(from the WVALID register) before the SAVE instruction, then a window-
underflow trap (TRAP #1) is generated.

%sp (in the newly opened register window) is loaded with the value of %fp minus
IMM8 times 4. %fp in the new window is the same as %sp in the old (caller’s)
window.

SAVE is conventionally used upon entry to subroutines to open up a new,
disposable set of registers for the subroutine and simultaneously open up a stack-
frame.

Condition Codes: Flags: Unaffected

Instruction Format: i8v

Instruction Fields: IMM8 = 8-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 IMM8

N V Z C

− − − −
Altera Corporation 101

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
SEXT16
Sign Extend 16-bit Value

Operation: RA ← σ(h0RA)

Assembler Syntax: SEXT16 %rA

Example: SEXT16 %g3 ; convert signed short to signed long

Description: Replace bits 16..31 of RA with bit 15 of RA.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 1 0 0 A

N V Z C

− − − −
102 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
SEXT8
Sign Extend 8-bit Value

Operation: RA ← σ(b0RA)

Assembler Syntax: SEXT8 %rA

Example: SEXT8 %o3 ; convert signed byte to signed long

Description: Replace bits 8..31 of RA with bit 7 of RA.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 1 1 A

N V Z C

− − − −
Altera Corporation 103

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
SKP0
Skip If Register Bit Is 0
(Equivalent to IF1 Instruction)

Operation: if (RA[IMM5] == 0)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: SKP0 %rA,IMM5

Example: SKP0 %g6,11 ; skip if bit 11 is clear

ADDI %6,1 ; increment if bit 11 is set

Description: Skip next instruction if the single bit RA[IMM5] is 0. If the next instruction is PFX
or PFXIO, then both PFX or PFXIO and the instruction following PFX or PFXIO
are skipped together.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of operand RA
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 IMM5 A

N V Z C

− − − −
104 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
SKP1
Skip If Register Bit Is 1

(Equivalent to IF0 Instruction)

Operation: if (RA[IMM5] == 1)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: SKP1 %rA,IMM5

Example: SKP1 %o3,21 ; skip if 21st bit of %o3 is set

ADDI %g0, 1 ; increment if 21st bit is clear

Description: Skip next instruction if the single bit RA[IMM5] is 1. If the next instruction is PFX
or PFXIO, then both PFX or PFXIO and the instruction following PFX or PFXIO
are skipped together.

Condition Codes: Flags: Unaffected

Instruction Format: Ri5

Instruction Fields: A = Register index of operand RA
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 IMM5 A

N V Z C

− − − −
Altera Corporation 105

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
SKPRNZ
Skip If Register Not Equal To 0
(Equivalent to IFRZ Instruction)

Operation: if (RA != 0)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: SKPRNZ %rA

Example: SKPRNZ %g3

BSR SendIt ; only call if %g3 is zero

NOP ; (delay slot) executed in either case

Description: Skip next instruction if RA is not zero. If the next instruction is PFX or PFXIO, then
both PFX or PFXIO and the instruction following PFX and PFXIO are skipped
together.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 1 0 A

N V Z C

− − − −
106 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
SKPRZ
Skip If Register Equals 0

Operation: if (RA == 0)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: SKPRZ %rA

Example: SKPRZ %o3

BSR SendIt ; only call if %o3 is not 0

NOP ; (delay slot) executed in either case

Description: Skip next instruction if RA is equal to zero. If the next instruction is PFX or PFXIO,
then both PFX or PFXIO and the instruction following PFX or PFXIO are skipped
together.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 0 A

N V Z C

− − − −
Altera Corporation 107

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
SKPS
Skip On Condition Code

Operation: if (condition IMM4 is true)
then begin

if (Mem16[PC + 2] is PFX or PFXIO)
then PC ← PC + 6
else PC ← PC + 4

end

Assembler Syntax: SKPS cc_IMM4

Example: SKPS cc_ne

BSR SendIt ; only call if Z flag clear

NOP ; (delay slot) executed in either case

Description: Skip next instruction if specified condition is true. If the next instruction is PFX or
PFXIO, then both PFX or PFXIO and the instruction following PFX or PFXIO are
skipped together.

Condition Codes: Settings:

1 These condition
codes have
different
numeric values
for IFS and
SKPS
instructions.

cc_c 0x0 (C)

cc_nc 0x1 (not C)

cc_z 0x2 (Z)

cc_nz 0x3 (not Z)

cc_mi 0x4 (N)

cc_pl 0x5 (not N)

cc_ge 0x6 (not (N xor V))

cc_lt 0x7 (N xor V)

cc_le 0x8 (Z or (N xor V))

cc_gt 0x9 (Not (Z or (N xorV)))

cc_v 0xa (V)

cc_nv 0xb (not V)

cc_la 0xc (C or Z)

cc_hi 0xd (not (C or Z))

Additional alias flags allowed:

cc_cs = cc_c
cc_eq = cc_z

cc_n = cc_mi
cc_vs = cc_v

cc_cc = cc_nc
cc_ne = cc_nz

cc_vc = cc_nv
cc_p = cc_pl

Codes mean skip if. For example, skps cc_eq means skip if equal

Instruction Format: i4w

Instruction Fields: IMM4 = 4-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 1 0 IMM4
108 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
ST
Store 32-bit Data To Memory

Operation: Not preceded by PFX:
Mem32[align32(RB)] ← RA
Preceded by PFX:
Mem32[align32(RB + (σ(K) × 4))] ← RA

Assembler Syntax: ST [%rB],%rA

Example: Not preceded by PFX:
ST [%g0],%i3 ; %g0 is pointer, %i3 stored
Preceded by PFX:
PFX 3 ; offset by 3 words
ST [%g0],%i3 ; store to location %g0 + 12

Description: Not preceded by PFX:
Stores the 32-bit data value in RA to memory. Data is always written to a word-
aligned address given by bits 31..2 of RB (the two LSBs of RB are ignored).
Preceded by PFX:
The value in K is sign-extended and used as a word-scaled, signed offset. This
offset is added to the base-pointer address RB (bits 1..0 ignored), and data is
written to the resulting word-aligned address.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields A = Register index of operand RA
B = Register index of operand RB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 B A

N V Z C

− − − −
Altera Corporation 109

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
ST16D
Store 16-Bit Data To Memory (Computed Half-Word Pointer Address)

Operation: Not preceded by PFX :
hnMem32[align32(RA)] ← hnR0 where n = RA[1]
Preceded by PFX:
hnMem32[align32(RA + (σ(K) × 4))] ← hnR0 where n = RA[1]

Assembler Syntax: ST16D [%rA],%r0

Example: Not preceded by PFX:
FILL16 %r0,%g7 ; duplicate short of %g7 across %r0
ST16D [%o3],%r0 ; store %o3[1]th short int from

; %r0 to [%o3]
; second operand can only be %r0

Preceded by PFX:
FILL16 %r0,%g3
PFX 5
ST16D [%o3],%r0 ; same as above, offset

; 20 bytes in memory

Description: Not preceded by PFX:
Stores one of the two half-words of %r0 to memory at the half-word-aligned
address given by RA. The bits RA[1] selects which half-word in %r0 get stored
(half-word 1 is the most-significant). RA[0] is ignored.

ST16D may be used in combination with FILL16 to implement a two-instruction
half-word-store operation. Given a half-word held in bits 15..0 of any register %rX,
the following sequence writes this half-word to memory at the half-word-aligned
address given by RA:

FILL16 %r0,%rX

ST16D [%rA],%r0

Preceded by PFX:
The value in K is sign-extended and used as a word-scaled, signed offset. This
offset is added to the base-address RA and data is written to the resulting byte-
address.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 0 1 A

N V Z C

− − − −
110 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
ST16S
Store 16-Bit Data To Memory (Static Half-Word-Offset Address)

Operation: Not preceded by PFX:
hnMem32[align32(RA)] ← hnR0 where n = IMM1
Preceded by PFX:
hnMem32[align32(RA + (σ(K) × 4))] ← hnR0 where n = IMM1

Assembler Syntax: ST16S [%rA],%r0,IMM1

Example: ST16S [%g8],%r0,1

Description: Not preceded by PFX:
Stores one of the two half-words of %r0 to memory at the half-word-aligned address
given by RA + (IMM1 x 2). RA is presumed to hold a word-aligned address. IMM1 selects
which half-word of %r0 is stored (half-word #1 is most significant).

Preceded by PFX:
A 12-bit signed, half-word-scaled offset is formed by concatenating K with IMM1. This
offset (K:IMM1) is half-word-scaled (multiplied by 2), sign-extended to 32 bits, and used
as the half-word-aligned offset for the ST operation. This offset is applied to the base-
address held in RA, which is presumed to be word-aligned.

IMM1 selects which of the two half-words of %r0 are stored at the indicated address
(base + offset).

ST16S may be used in combination with FILL16 to implement a half-word store operation
to a half-word offset from a word-aligned base address. Given a half-word held in bits
15..0 of any register %rX, the following sequence writes this half-word to memory at the
half-word-aligned address given by RA + Y, where RA is presumed to hold a word-
aligned pointer, and Y is an even, signed 13-bit byte offset:

FILL16 %r0,%rX
PFX Ymsbs ; Top 11 bits of Y, incl. sign bit. (= (Y>>2) & 0x7FF)
ST16S [%rA], %r0, Y1 ; Bit 1 of Y (= Y & 2)

Condition Codes: Flags: Unaffected

Instruction Format: Ri1u

Instruction Fields A = Register index of operand RA
IMM1 = 1-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 1 IMM1 0 A

12 11 10 9 8 7 6 5 4 3 2 1 0

Y1 0---------------------- Ymsbs ----------------------Y (offset) =

N V Z C

− − − −
Altera Corporation 111

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
ST8D
Store 8-Bit Data To Memory (Computed Byte-Pointer Address)

Operation: Not preceded by PFX:
bnMem32[align32(RA)] ← bnR0 where n = RA[1..0]
Preceded by PFX:
bnMem32[align32(RA + σ(K) × 4))] ← bnR0 where n = RA[1..0]

Assembler Syntax: ST8D [%rA],%r0

Example: Not preceded by PFX:
FILL8 %r0,%g7 ; duplicate low byte of %g7 across %r0
ST8D [%o3],%r0 ; store %o3[1..0]th byte from

; %r0 to [%o3]
; second operand can only be %r0

Preceded by PFX:
FILL8 %r0,%g3
PFX 5
ST8D [%o3],%r0 ; same as above, offset

; 20 bytes in memory

Description: Not preceded by PFX:
Stores one of the four bytes of %r0 to memory at the byte-address given by RA.
The two bits RA[1..0] select which byte in %r0 get stored (byte 3 is the most-
significant).

ST8D may be used in combination with FILL8 to implement a two-instruction
byte-store operation. Given a byte held in bits 7..0 of any register %rX, the
following sequence writes this byte to memory at the byte-address given by RA:

FILL8 %r0,%rX

ST8D [%rA],%r0

Preceded by PFX:
The value in K is used as a word-scaled, signed offset. This offset is added to the
base-address RA and data is written to the resulting byte-address.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 0 0 A

N V Z C

− − − −
112 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
ST8S
Store 8-bit Data To Memory (Static Byte-Offset Address)

Operation: Not preceded by PFX:
bnMem32[align32(RA)] ← bnR0 where n = IMM2
Preceded by PFX:
bnMem32[align32(RA + (σ(K) × 4))] ← bnR0 where n = IMM2

Assembler Syntax: ST8S [%rA],%r0,IMM2

Example: Not preceded by PFX:
MOVI %g4,12
ST8S [%g4],%r0,3 ; store high byte of %r0 to mem[12]
Preceded by PFX:
PFX 9
ST8S [%g4],%r0,2 ; store byte 2 of %r0 to

; mem[%g4 + 36 + 2]

Description: Not preceded by PFX:
Stores one of the four bytes of %r0 to memory at the address given by RA + (IMM2). RA
is presumed to hold a word-aligned address. IMM2 selects which byte of %r0 is stored
(byte #3 is most significant).

Preceded by PFX:
A 13-bit signed offset is formed by concatenating K with IMM2. This offset (K:IMM2) is
sign-extended to 32 bits and used as the byte-offset for the ST operation. The offset is
applied to the base-address held in RA, which is presumed to be word-aligned.

IMM2 selects which of the four bytes of %r0 are stored at the indicated address (base + offset).

ST8S may be used in combination with FILL8 to implement a byte-store operation to any 13-
bit signed offset from a word-aligned base address. Given a byte held in bits 7..0 of any
register %rX, the following sequence writes this byte to memory at the address given by RA
+ Y, where RA is presumed to hold a word-aligned pointer, and Y is a signed 13-bit byte offset:

FILL8 %r0,%rX
PFX Ymsbs ; Top 11 bits of Y, incl. sign bit. (= (Y>> 2) & 0x7FF)
ST8S [%rA], %r0, Ylsbs ; Bits 1 and 0 of Y (= Y & 3)

Condition Codes: Flags: Unaffected

Instruction Format: Ri2u

Instruction Fields: A = Register index of operand RA
IMM2 = 2-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 1 0 1 1 0 0 IMM2 A

12 11 10 9 8 7 6 5 4 3 2 1 0

Ylsbs---------------------- Ymsbs ----------------------Y (offset) =

N V Z C

− − − −
Altera Corporation 113

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
STP
Store 32-bit Data To Memory (Pointer Addressing Mode)

Operation: Not preceded by PFX:
Mem32[align32(RP + (IMM5 × 4))] ← RA
Preceded by PFX:
Mem32[align32(RP + (σ(K : IMM5) × 4))] ← RA

Assembler Syntax: STP [%rP,IMM5],%rA

Example: Not preceded by PFX:
STP [%L2,3],%g3 ; Store %g3 to location [%L2 + 12]
Preceded by PFX:
PFX %hi(102)
STP [%L2,%lo(102)],%g3 ; Store %g3 to

; location [%L2 + 408]

Description: Not preceded by PFX:
Stores the 32-bit data value in RA to memory. Data is always written to a word-
aligned address given by bits [31..2] of RP (the two LSBs of RP are ignored) plus
a 5-bit, unsigned, word-scaled offset given by IMM5.

This instruction is similar to ST, but additionally allows a positive 5-bit offset to be
applied to any of four base-pointers in a single instruction. The base-pointer must
be one of the four registers: %L0, %L1, %L2, or %L3.

Preceded by PFX:
A 16-bit offset is formed by concatenating the 11-bit K-register with IMM5 (5 bits).
The 16-bit offset (K : IMM5) is sign-extended to 32 bits, multiplied by four, and
added to bits 31..2 of RP to yield a word-aligned effective address.

Condition Codes: Flags: Unaffected

Instruction Format: RPi5

Instruction Fields: A = Register index of operand RA
IMM5 = 5-bit immediate value
P = Index of base-pointer register, less 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 0 P IMM5 A

N V Z C

− − − −
114 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
STS
Store 32-bit Data To Memory (Stack Addressing Mode)

Operation: Mem32[align32(%sp + (IMM8 × 4))] ← RA

Assembler Syntax: STS [%sp,IMM8],%rA

Example: STS [%sp,17],%i5 ; store %i5 at stack + 68

; first register can only be %sp

Description: Stores the 32-bit value in RA to memory. Data is always written to a word-aligned
address given by bits 31..2 of %sp (the two LSBs of %sp are ignored) plus an 8-
bit, unsigned, word-scaled offset given by IMM8.

Conventionally, software uses %o6 (aka %sp) as a stack-pointer. STS allows
single-instruction access to any data word at a known offset in a 1 Kbyte range
above %sp.

Condition Codes: Flags: Unaffected

Instruction Format: Ri8

Instruction Fields: A = Register index for operand RA
IMM8 = 8-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 IMM8 A

N V Z C

− − − −
Altera Corporation 115

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
STS16S
Store 16-bit Data To Memory (Stack Addressing Mode)

Operation: hnMem32[align32(%sp + IMM9 × 2)] ← hnR0 where n = IMM9[0]

Assembler Syntax: STS16S [%sp,IMM9],%r0

Example: STS16S [%sp,7],%r0 ; can only be %sp and %r0

Description: Stores one of the two half-words of %r0 to memory at the half-word-aligned
address given by (%sp plus IMM9 × 2). The least-significant bit of IMM9 selects
which half-word of %r0 is stored (half-word 1 is most significant).

STS16s may be used in combination with FILL16 to implement a 16-bit store
operation to a half-word offset from the stack-pointer in a 1 Kbyte range. Given a
half-word held in bits 15..0 of any register %rX, the following sequence writes this
half-word to memory at the half-word-offset Y from %sp (%sp presumed to hold
a word-aligned address):

FILL16 %r0,%rX

STS16s [%sp,Y],%r0

Condition Codes: Flags: Unaffected

Instruction Format: i9

Instruction Fields: IMM9 = 9-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 IMM9 0

N V Z C

– – – –
116 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
STS8S
Store 8-bit Data To Memory (Stack Addressing Mode)

Operation: bnMem32[align32(%sp + IMM10)] ← bnR0 where n = IMM10[1..0]

Assembler Syntax: STS8S [%sp,IMM10],%r0

Example: STS8S [%sp,13],%r0 ; can only be %sp and %r0

Description: Stores one of the four bytes of %r0 to memory at the byte-address given by (%sp
plus IMM10). The two least-significant bits of IMM10 selects which byte of %r0 is
stored (byte 3 is most significant).

STS8S may be used in combination with FILL8 to implement a byte-store
operation to a byte-offset from the stack-pointer in a 1Kbyte range. Given a byte
held in bits 7..0 of any register %rX, the following sequence writes this byte to
memory at the byte-offset Y from %sp (%sp presumed to hold a word-aligned
address):

FILL8 %r0,%rX

STS8S [%sp,Y],%r0

Condition Codes: Flags: Unaffected

Instruction Format: i10

Instruction Fields: IMM10 = 10-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 IMM10

N V Z C

− − − −
Altera Corporation 117

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
SUB
Subtract

Operation: RA ← RA − RB

Assembler Syntax: SUB %rA,%rB

Example: SUB %i3,%g0 ; SUB %g0 from %i3

Description: Subtracts the contents of RB from RA, stores result in RA.

Condition Codes: Flags:

N: Result bit 31
V: Signed-arithmetic overflow
Z: Set if result is zero; cleared otherwise
C: Set if there was a borrow from the subtraction; cleared otherwise

Instruction Format: RR

Instruction Fields: A = Register index of RA operand
B = Register index of RB operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 B A

N V Z C

∆ ∆ ∆ ∆
118 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
SUBI
Subtract Immediate

Operation: RA ← RA − (0x00.00 : K : IMM5)

Assembler Syntax: subi %rB,IMM5

Example: Not preceded by PFX:
SUBI %L5,6 ; subtract 6 from %L5
Preceded by PFX:
PFX %hi(1000)
SUBI %o3,%lo(1000) ; subtract 1000 from %o3

Description: Not preceded by PFX:
Subtracts the immediate value from the contents of RA. The immediate value is
in the range of [0..31].
Preceded by PFX:
The Immediate operand is extended from 5 to 16 bits by concatenating the
contents of the K-register (11 bits) with IMM5 (5 bits). The 16-bit immediate value
(K : IMM5) is zero-extended to 32 bits and subtracted from register A.

Condition Codes: Flags:

N: Result bit 31
V: Signed-arithmetic overflow
Z: Set if result is zero; cleared otherwise
C: Set if there was a borrow from the subtraction; cleared otherwise

Instruction Format: Ri5

Instruction Fields: A = Register index of RA operand
IMM5 = 5-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 IMM5 A

N V Z C

∆ ∆ ∆ ∆
Altera Corporation 119

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
SWAP
Swap Register Half-Words

Operation: RA ← h0RA : h1RA

Assembler Syntax: SWAP %rA

Example: SWAP %g3 ; Exchange two half-words in %g3

Description: Swaps (exchanges positions) of the two 16-bit half-word values in RA. Writes
result back into RA.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 0 0 0 A

N V Z C

− − − −
120 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
TRAP
Unconditional Trap

Operation: ISTATUS ← STATUS
IE ← 0
CWP ← CWP − 1
IPRI ← IMM6
%o7 ← ((PC + 2) >> 1)
PC ← Mem32[VECBASE + (IMM6 × 4)] << 1

Assembler Syntax: TRAP IMM6

Example: TRAP 2 ;invoke CWP window overflow exception handler

Description: CWP is decremented by one, opening a new register-window for the trap-handler.
Interrupts are disabled (IE ← 0). The pre-TRAP STATUS register is copied into
the ISTATUS register.

Transfer execution to trap handler number IMM6. The address of the trap-handler
is read from the vector table which starts at the memory address VECBASE
(VECBASE is configurable). A 32-bit value is fetched from the word-aligned
address (VECBASE + IMM6 × 4). The fetched value is multiplied by two and
transferred into PC. The address of the instruction immediately following the
TRAP instruction is placed in %o7. The value in %o7 is suitable for use as a
return-address for TRET without modification. The return-address convention for
TRAP is different than BSR/CALL, because TRAP does not have a delay-slot.

A TRAP instruction transfers execution to the indicated trap-handler even if the
IE bit in the STATUS register is 0.

TRAP 0 corresponds to the Nios CPU’s non-maskable exception, and it behaves
differently than exceptions 1 through 63. TRAP 0 cannot be issued by user
software.

Condition Codes: Flags: Unaffected

Delay Slot Behavior TRAP does not have a delay slot. The instruction immediately following TRAP is
not executed before the target trap-handler. The return-address used by TRET
points to the instruction immediately following TRAP.

Instruction Format: i6v

Instruction Fields: IMM6 = 6-bit immediate value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1 0 0 IMM6

N V Z C

− − − −
Altera Corporation 121

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
TRET
Trap Return

Operation: PC ← (RA << 1)
STATUS ← ISTATUS

Assembler Syntax: TRET %ra

Example: TRET %o7 ; return from TRAP

Description: Execution is transferred to the address given by (RA << 1). The value written in
%o7 by TRAP is suitable for use as a return-address without modification.

The value in ISTATUS is copied into the STATUS register (this restores the pre-
TRAP register window, because CWP is part of STATUS).

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 1 1 0 A

N V Z C

− − − −
122 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
USR0
User-defined Instruction

Operation: RA ← RA <user-defined operation> RB

Assembler Syntax: USR0 %rA, %rB

Example: USR0 %o1,%i6

Description: The user can implement a custom operation in hardware and assign it to USR0.
This operation uses 2 registers and places the result in the RA register.

A custom instruction can be single-cycle or multi-cycle. It can be prefixed with the
PFX command to pass in an optional 11-bit value for use within the custom
hardware block.

Condition Codes: Flags: Unaffected

Instruction Format: RR

Instruction Fields: A = Register index of operand RA
B = Register index of operand RB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 B A

N V Z C

− − − −
Altera Corporation 123

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
USRx [x = 1,2,3,or 4]
User-defined Instruction

Operation: RA ← RA <user-defined operation> R0

Assembler Syntax: USRx RA

Example: USR2 %o3

Description: The user can implement a custom operation in hardware and assign it to USR1,
USR2, USR3 or USR4. This operation uses 2 registers but one of them is always
%r0. The result is placed in RA.

A custom instruction can be single-cycle or multi-cycle. It can be prefixed with the
PFX command to pass in an optional 11-bit value for use within the custom
hardware block.

Condition Codes: Flags: Unaffected

Instruction Format: Rw

Instruction Fields: A = Register index of operand A

USR1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 0 0 1 A

USR2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 0 1 0 A

USR3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 0 1 1 A

USR4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 1 0 0 A

N V Z C

− − − −
124 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual 32-Bit Instruction Set

32-Bit

2

Instruction Set
WRCTL
Write Control Register

Operation: CTLk ← RA

Assembler Syntax: WRCTL %rA

Example: Not preceded by PFX:
WRCTL %g7 ; writes %g7 to STATUS reg
NOP ; required
Preceded by PFX:
PFX 1
WRCTL %g7 ; writes %g7 to ISTATUS reg

Description: Not preceded by PFX:
Loads the STATUS register with RA. WRTCL to STATUS must be followed by a
NOP instruction.
Preceded by PFX:
Writes the value in RA to the machine-control register selected by K. See Table 3
on page 15 for a list of the machine-control registers and their indices.

Condition Codes: If the target of WRCTL is the STATUS register, then the condition-code flags are
directly set by the WRCTL operation from bits RA[3..0]. For any other WRCTL
target register, the condition codes are unaffected.

Instruction Format: Rw

Instruction Fields: A = Register index of operand RA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 0 0 A
Altera Corporation 125

32-Bit Instruction Set Nios Embedded Processor 32-Bit Programmer’s Reference Manual
XOR
 Bitwise Logical Exclusive OR

Operation: Not preceded by PFX:
RA ← RA ⊕ RB
Preceded by PFX:
RA ← RA ⊕ (0x00.00 : K : IMM5)

Assembler Syntax: Not preceded by PFX:
XOR %ra,%rb
Preceded by PFX:
PFX %hi(const)
XOR %rA,%lo(const)

Example: Not preceded by PFX:
XOR %g0,%g1 ; XOR %g1 into %g0
Preceded by PFX:
PFX %hi(16383)
XOR %o0,%lo(16383) ; XOR %o0 with 16383

Description: Not preceded by PFX:
Logically-exclusive-OR the individual bits in RA with the corresponding bits in RB;
store the result in RA.
Preceded by PFX:
When prefixed, the RB operand is replaced by an immediate constant formed by
concatenating the contents of the K-register (11 bits) with IMM5 (5 bits). This
16-bit value is zero-extended to 32 bits, then bitwise-exclusive-ORed with RA.
The result is written back into RA.

Condition Codes: Flags:

N: Result bit 31
Z: Set if result is zero, cleared otherwise

Instruction Format: RR, Ri5

Instruction Fields: A = Register index of operand RA
B = Register index of operand RB
IMM5 = 5-bit immediate value

Not preceded by PFX (RR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 B A

Preceded by PFX (Ri5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 IMM5 A

N V Z C

∆ – ∆ –
126 Altera Corporation

Altera Corporation
Index

Index
Symbols

%g0 register 16
%r0 register 16

A

ABS instruction 52
Absolute Value 52
Absolute-jump instructions 32
Add Immediate 54
ADD instruction 53
ADDI instruction 27, 28, 54
Addressing modes 27
AND instruction 28, 55
ANDN instruction 28, 56
Arithmetic

Negation 90
Shift Right 57
Shift Right Immediate 58

ASR instruction 57
ASRI instruction 28, 58

B

BGEN instruction 59
Bit Generate 59
Bitwise Logical

AND 55
AND NOT 56
Exclusive OR 126
OR 93

BR instruction 16, 31, 42, 60
Branch 60
Branch delay slots 32, 41, 42
Branch To Subroutine 61
BSR instruction 16, 31, 42, 61
Byte-Extract

dynamic 67

static 68
Byte-Fill 70

C

Cache Memory 24
Initializing cache memory 26

CALL instruction 16, 32, 42, 62
Call Subroutine 62
CLR_IE (%ctl8) 21
CMP instruction 63
CMPI instruction 28, 64
Compare 63
Compare Immediate 64
Computed Jump 76
Condition code flags 19
Conditional instructions 33
Conditionally Execute Next Instruction 75
Control registers 16
CPU_ID (%ctl6) 20
Current window pointer. See CWP.
CWP

description 18
manipulation, direct 41

D

Data Cache Enable. See DC.
Data memory 21
DC 17
DCACHE (%ctl7) 20
Disable Data Cache During the Following Load

Instruction Prefix 95

E

Equivalent to
IF0 (SKP1) 105
IF1 instruction (SKP0) 104
 127

Index Nios Embedded Processor 32-Bit Programmer’s Reference Manual
IFRZ (SKPRnz) 106
JMP %i7 (RET) 98
JMP %o7 (LRET) 80
MOV %g0, %g0 (NOP) 91
SKP0 instruction (IF1) 72
SKP1 instruction (IF0) 71
SKPRnz instruction (IFRz) 74
SKPRz instruction (IFRnz) 73

Exception handlers
complex 40
simple 40

Exceptions 33
handling 33
internal 35
processing sequence 37
vector table 34

Execute if
Register Bit is 0 71
Register Bit is 1 72
Register is not Zero 73
Register is Zero 74

EXT16D instruction 29, 65
EXT16S instruction 29, 66
EXT8D instruction 29, 67
EXT8S instruction 29, 68

F

FILL16 instruction 23, 30, 69
FILL8 instruction 23, 30, 70
Full width register

indirect 29
indirect with offset 30

G

General-purpose registers 14
GNU compiler/assembler pseudo-instructions

50

H

Half-Word
Extract, Dynamic 65
Extract, Static 66
Fill 69

Hardware interrupt, external sources 34

I

IC 17
ICACHE (%ctl5) 20
IE 17
IF0 instruction 33, 42, 71

equivalent (SKP1) 105
IF1 instruction 33, 42, 72

equivalent (SKP0) 104
IFRnz instruction 33, 42, 73
IFRz instruction 33, 42, 74

equivalent (SKPRnz) 106
IFS instruction 33, 42, 75
IMM11 instruction field 31
Instruction Cache Enable. See IC.
Instructions

5/16-bit immediate value 27
about 14
absolute-jump 32
conditional 33
equivalents 50
format 45
notation details 44
pseudo 50
relative-branch 31
user-defined 123, 124

Internal exceptions 35
Interrupt enable. See IE.
Interrupt priority. See IPRI.
IPRI 18
ISTATUS register 19, 39

J

JMP
%i7, equivalent 98
%o7, equivalent 80
instruction 16, 32, 42, 76

K

K register 16, 27

L

LD instruction 22, 29, 77, 78
LDP instruction 30, 78
128 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Index

Index
LDS instruction 30, 79
Load 32-Bit Data From Memory 77

Pointer Addressing Mode 78
Stack Addressing Mode 79

Logical
Not 92
Shift Left 81
Shift Left Immediate 82
Shift Right 83
Shift Right Immediate 84

LRET instruction 16, 42, 80
LSL instruction 81
LSLI instruction 28, 82
LSR instruction 83
LSRI instruction 28, 84

M

Memory
access 21
reading from 22
writing to 23

Modes, addressing 27
MOV

%g0, equivalent 91
instruction 85

Move
Immediate 87
Immediate Into High Half-Word 86

MOVHI instruction 28, 86
MOVI instruction 28, 87
MSTEP instruction 88
MUL instruction 89
Multiply 89
Multiply-Step 88

N

NEG instruction 90
Nios

instruction set 14
register file 51

Nios CPU
architecture 13
block diagram 41
instructions 43–126

pipeline 41
NOP instruction 91
NOT instruction 92
Notation details, instructions 44

O

Opcode table 47
Operators 50
OR instruction 28, 93

P

Partial width register
indirect 29
indirect with offset 31

Peripherals
reading from 22
writing to 23

PFX instruction 27, 42, 94
PFXIO instruction 20, 27, 29, 42, 95
Pipeline

implementation 41
Prefix 94
Prefix with Cache Bypass 95
Program counter 16
Program-flow control 31
Programmer’s model 15
Pseudo-instructions 50

R

RDCTL instruction 16, 96
Read Control Register 96
Register window

overflow 36
underflow 35
usage 38

Register-indirect
full width 29
full width with offset 30
partial width 29
partial width with offset 31

Registers
%g0 16
%r0 16
about 14
Altera Corporation 129

Index Nios Embedded Processor 32-Bit Programmer’s Reference Manual
control 16
file example 51
general-purpose 14
groups 14
ISTATUS 19, 39
K 16, 27
STATUS 19, 33

Register-to-Register Move 85
Relative-branch instructions 31
Restore Caller’s Register Window 97
RESTORE instruction 18, 34, 97
RET instruction 16, 42, 98
Return address 39
RLC instruction 99
Rotate

Left Through Carry 99
Right Through Carry 100

RRC instruction 100

S

Save Caller’s Register Window 101
SAVE instruction 18, 34, 101
SET_IE (%ctl9) 21
SEXT16 instruction 102
SEXT8 instruction 103
Sign Extend

16-bit Value 102
8-bit Value 103

Skip
If Register Bit Is 0 104
If Register Bit Is 1 105
If Register Equals 0 107
If Register Not Equal To 0 106
On Condition Code 108

SKP0 instruction 33, 42, 104
equivalent (IF1) 72

SKP1 instruction 33, 42, 71, 105
equivalent (IF0) 71

SKPRnz instruction 33, 42, 106
equivalent (IFRz) 74

SKPRz instruction 33, 42, 73, 107
equivalent (IFRnz) 73

SKPS instruction 33, 42, 108
ST instruction 23, 29, 109
ST16D instruction 23, 30, 110

ST16S instruction 30, 111
ST8D instruction 30, 112
ST8Dinstruction 23
ST8S instruction 30, 113
STATUS

(%ctl0) 16
register 19, 33

Status preservation, ISTATUS register 39
Store 16-Bit Data To Memory

Computed Half-Word Pointer Address 110
Stack Addressing Mode 116
Static Half-Word-Offset Address 111

Store 32-Bit Data To Memory 109
Pointer Addressing Mode 114
Stack Addressing Mode 115

Store 8-Bit Data To Memory
Computed Byte-Pointer Address 112
Stack Addressing Mode 117
Static Byte-Offset Address 113

STP instruction 30, 114
STS instruction 30, 115
STS16S instruction 116
STS8S instruction 117
SUB instruction 118
SUBI instruction 28, 119
Subtract 118
Subtract Immediate 119
SWAP instruction 120
Swap Register Half-Words 120

T

TRAP instruction 32, 37, 42, 121
Trap Return 122
TRET instruction 16, 19, 32, 37, 42, 122

U

Unconditional Trap 121
User-defined Instruction 123, 124
USR0 instruction 123
USRx instruction 124

W

WRCTL instruction 16, 125
WRCTL write 41
130 Altera Corporation

Nios Embedded Processor 32-Bit Programmer’s Reference Manual Index

Index
Write Control Register 125
WVALID (%ctl2) 19

X

XOR instruction 28, 126
Altera Corporation 131

	About this Manual
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	Contents
	List of Tables
	Overview
	Introduction
	Audience

	Nios CPU Overview
	Instruction Set
	Register Overview
	General-Purpose Registers
	K Register
	%r0 (%g0) Register
	Program Counter
	Control Registers
	STATUS (%ctl0)
	Data Cache Enable (DC)
	Instruction Cache Enable (IC)
	When the CPU is reset, the instruction cache is disabled and IC is set to 0.
	Interrupt Enable (IE)
	Interrupt Priority (IPRI)
	Current Window Pointer (CWP)
	Condition Code Flags

	ISTATUS (%ctl1)
	WVALID (%ctl2)
	ICACHE (%ctl5)
	CPU_ID (%ctl6)
	DCACHE (%ctl7)
	CLR_IE (%ctl8)
	SET_IE (%ctl9)

	Memory Access Overview
	Reading from Memory (or Peripherals)
	Writing to Memory (or Peripherals)

	Cache Memory
	Initializing Cache Memory
	Bypassing the Data Cache when Reading Peripherals

	Addressing Modes
	5/16-bit Immediate Value
	Full Width Register-Indirect
	Partial Width Register-Indirect
	Full Width Register-Indirect with Offset
	Partial Width Register-Indirect with Offset

	Program-Flow Control
	Relative-Branch Instructions
	Absolute-Jump Instructions
	Trap Instructions
	Conditional Instructions

	Exceptions
	Exception Handling Overview
	Exception Vector Table
	External Hardware Interrupt Sources
	Internal Exception Sources
	Register Window Underflow
	Register Window Overflow

	Direct Software Exceptions (TRAP Instructions)
	Exception Processing Sequence
	Register Window Usage
	Status Preservation: ISTATUS Register

	Return Address
	Simple & Complex Exception Handlers
	Simple Exception Handlers
	Complex Exception Handlers

	Pipeline Implementation
	Direct CWP Manipulation
	Branch Delay Slots

	32-Bit Instruction Set
	ABS
	ADD
	ADDI
	AND
	ANDN
	ASR
	ASRI
	BGEN
	BR
	BSR
	CALL
	CMP
	CMPI
	EXT16D
	EXT16S
	EXT8D
	EXT8S
	FILL16
	FILL8
	IF0
	IF1
	IFRNZ
	IFRZ
	IFS
	JMP
	LD
	LDP
	LDS
	LRET
	LSL
	LSLI
	LSR
	LSRI
	MOV
	MOVHI
	MOVI
	MSTEP
	MUL
	NEG
	NOP
	NOT
	OR
	PFX
	PFXIO
	RDCTL
	RESTORE
	RET
	RLC
	RRC
	SAVE
	SEXT16
	SEXT8
	SKP0
	SKP1
	SKPRNZ
	SKPRZ
	SKPS
	ST
	ST16D
	ST16S
	ST8D
	ST8S
	STP
	STS
	STS16S
	STS8S
	SUB
	SUBI
	SWAP
	TRAP
	TRET
	USR0
	USRx [x = 1,2,3,or 4]
	WRCTL
	XOR

	Index

