Pós-Graduação: Tese defendida no Doutorado em Ciência da Computação ganha prêmio no Concurso de Teses em Qualidade de Software do Brasil
A Tese defendida pelo Professor Dr. Vitor Mesaque Alves de Lima ganhou o prêmio de 3º lugar no Concurso de Teses em Qualidade de Software, no XXIII Simpósio Brasileiro de Qualidade de Software, realizado em Salvador (BA). O trabalho, intitulado “Opinion Mining for App Reviews: Identifying and Prioritizing Emerging Issues for Software Maintenance and Evolution”, foi defendido em 2023 e teve orientação do Professor Dr. Ricardo Marcondes Marcacini.
A Tese pode ser acessada pelo link: https://link.ufms.br/yPHSl
Resumo: A mineração de opinião para avaliações de aplicativos tem como objetivo analisar os comentários dos usuários nas lojas de aplicativos para apoiar as atividades de engenharia de software, principalmente a manutenção e evolução de software. Identificar prontamente problemas emergentes, como bugs, é um dos principais desafios na manutenção da qualidade do software. No entanto, analisar manualmente esses comentários é um desafio devido à grande quantidade de dados textuais. Métodos baseados em aprendizado de máquina têm sido empregados para automatizar a mineração de opinião e lidar com essa questão. Embora métodos recentes tenham alcançado resultados promissores na extração e categorização de problemas a partir das opiniões dos usuários, os estudos existentes concentram-se principalmente em auxiliar os engenheiros de software a explorar o comportamento histórico dos usuários em relação às funcionalidades do aplicativo e não exploram mecanismos de deteção de tendências e classificação de risco de problemas emergentes. Além disso, os estudos anteriores não abrangem o processo completo de análise de problemas e riscos por meio de uma abordagem não supervisionada. Este projeto de doutorado avança o estado da arte na mineração de opinião para reviews de aplicativos, propondo uma abordagem não supervisionada para identificar e priorizar problemas emergentes. Nosso objetivo é minimizar o tempo entre a ocorrência de um problema e sua correção, permitindo uma rápida identificação do problema. Propomos duas novas abordagens que (i) identifica possíveis requisitos de software defeituosos e treina modelos preditivos para antecipar requisitos com maior probabilidade de avaliação negativa e (ii) detecta problemas a partir de avaliações, classifica-os em uma matriz de risco com níveis de priorização e monitora sua evolução ao longo do tempo. Adicionalmente, apresentamos uma abordagem de construção da matriz de risco usando os recentes Large Language Models (LLMs). Processamos mais de 6.6 milhões de comentários de usuários para avaliar nossa proposta, identificando e classificando o risco associado a quase 270.000 problemas. Os resultados demonstram a competitividade de nossa abordagem não supervisionada em comparação com modelos supervisionados existentes. Comprovamos que as opiniões extraídas dos comentários dos usuários fornecem percepções importantes sobre os problemas e riscos associados aos aplicativos, que podem ser detectados antecipadamente para mitigar seu impacto. Nosso processo de mineração de opinião implementa a análise automatizada de problemas, com priorização baseada em risco e monitoramento temporal.