Public

TRABALHO DE CONCLUSAO DE CURSO

Micro C

Um Compilador Académico

Autor: Pedro Henrique Ferreira Carvalho Faculdade de Computacao (FACOM) UFMS
Orientador: Prof. Brivaldo Alves da Silva Junior Dezembro de 2025 «

O Problema

« Compiladores sao a base da
computacao, mas ferramentas
modernas (GCC, LLVM) sao massivas e
complexas, contendo milhoes de
linhas de codigo.

- Existeuma lacuna claraentre a teoria
do "Livro do Dragdo"e a praticareal
de construcao de um compilador.

Questao de Trabalho

Como construir uma ferramenta
que transforme essa
complexidade que € um
compilador em algo acessivel
para o aprendizado?

Objetivos do Trabalho

Objetivo Geral

Projetar, implementar e validar um compilador funcional para a linguagem
Micro C, gerando codigo binario executavel de forma didatica.

Objetivos Especificos

Definir a linguagem Micro C (subconjunto do C).

Implementar o Front-End(Analise Léxica, Sintaticae Semantica).

Implementar o Back-End (Geracao de IR e Assembly x86-64).

Validar com algoritmos (Bubble Sort, Fibonacci).

Metodologia: A Pipeline

Arquitetura baseada em fases distintas, desenvolvidaem C.

Scanner Parser Semantic IR Gen Assembly

(Tokens) - (AST) - (Tabelas) - (TAC) - (x86-64)
Front-End (Analise) Back-End (Sintese)
Entende o que o codigo faze Geracao de codigo de maquina

valida regras. para o processador.

Public

Metodologia: O Ciclo de Vida Completo

Comparacao entre a implementacao interna do Micro C e as ferramentas externas.

& COMPILADOR MICRO C as INFRAESTRUTURA & FUTURO
[1. Analise Léxica Micro C (Otimizacao de Caodigo) @ Futuro
2. Andlise Sintatica Micro C
6. Montagem (Assembler)
3. Andlise Semantica Micro C
7. Linkedicao (Linker)
[4. Geragao de IR Micro C
[5. Geragao de Assembly Micro C

Estratégia: O projeto concentra esforcos nas 5 fases principais da compilacao (Esquerda), traduzindo cédigo

- fonte Micro C até Assembly x86-64.

Afase de Otimizagdo foi abstraida por fins de simplicidade, e a transformacéo final em binario é delegada ac* +~
GCC.

A Linguagem Fonte: Micro C

\
A CPADRAO: MANUAL
] = Um Subconjunto do C
pri ntf(’ a) ’ Mantém a sintaxe familiar (int, if, for), mas remove
ponteiros e structs complexas para reduzir a curva de
7 aprendizado.
%, O compilador resolve o
formato para vocé! = Abstracio Didatica
Foco na logica, ndo na burocracia. Enquanto o C exige
N gerenciamento manual de formatos (%d, %s), o Micro C
© MICRO C: AUTOMATICO ElosiEl s,
(a);
%4 COMO FUNCIONA
1. Frontend: Identifica tipo na Tabela de
/ Simbolos.

2. Backend: Gera assembly com "%d"
automaticamente.

Public

Exemplo Base: soma.mcc

Soma .mcc

© Proposito
L int mainQ { Validar o ciclo de compilacdo completo do Micro C na sua forma
2 int a; mais fundamental.
> int b; Funcionalidades Testadas:
‘a=10; . ~ L .
b Declaracdo e alocacao de variaveis locais.
5b = 20;

: printa + b); Operacdo aritmética (+) e atribuicao.

7 return O,

o}

Chamada de funcao externa (print) via ABI.

Este codigo simples sera nosso guia. Vamos acompanhar como
esses dados (a, b) viajam por todas as 5 fases do compilador.

Fase 1- Analise Léxica

total = 10 ;
LEXEMA "10"
PADRAO [0-9]+
TOKEN INTEGERCONST
FLUXO
int a ; //var

11}
Espacos
//var

& Afuncionalidade

Ler o codigo-fonte caractere por caractere e agrupa-los em
unidades de significado.

& ATrade Léxica

Lexema: O texto real ("10").

Padrao: Aregra ([0-9]+).

Token: A categoria abstrata (INTEGERCONST).

»’ Limpeza de Ruido
O Scanner descarta tudo que nao é essencial para a légica:
espacgos em branco, quebras de linhas e comentarios (//).

A ldentificacdo de Erros
Padrao Desconhecido: Caracteres invalidos (ex: @) geram token
UNDEF.

String Aberta: Encontrar eor antes de fechar aspas indica string
malformada.

Public

Fase 1- Analise Léxica: Lookahead

Entrada:

ifx @ - 10)

Outro Caractere

Token: LT (<)

Devolve o char
para o buffer.

Scanner |é <

O,

E l<l 0u l<=l?
(Preciso ver
0 proximo)

A O Desafio

O caractere < € ambiguo.

Ele pode ser um operador simples (menor
gue) ou o inicio de um operador composto
(menorou igual).

64 A Solucao: Lookahead
Implementamos uma funcao que permite ao
scanner espiar o futuro sem se
comprometer.

Como Funciona:

1. O scanner consome o <.

2. Ele verifica o préximo caractere.

3. Sefor =, consome e cria LEQ.

4. Caso contrario, cria LT e devolve o proxirap.

N

Public

Fase 1: Produto Final - A Cadeia de Tokens

TIPO

INT

MAIN

ID

SEMICOLON

ID

PLUS

ID

RPAREN

RETURN

EOF

[...

LEXEMA

int

main

a

20 Tokens Processados ..

)

return

EOCF

-1

LINHA

Sucesso

O scanner processou o cddigo fonte e
gerou com sucesso uma cadeia linear
de 31tokens.

K Separagio Logica
Crucial para as proximas fases:

« Tipo: Para o Parser (ex: PLUS)

+ Lexema: Para a Semantica
(ex: valor '10' ou nome 'a")

1) Precisdodo DFA
O autdémato provou sua capacidade de
diferenciar palavras reservadas de
identificadores e capturar
operadores.

.= Rastreabilidade

O numero da linha é preservado
em cada token, garantindo mensagerg

de erro precisas no futuro. AR

10

Fase 2 - Analise Sintatica

ENTRADA (TOKENS)

INT ID

Q

PARSER

SEMI

Gerar AST

A\ Ero: Esperado ;'

¥ 0OObijetivo
Validar a Gramatica. O parser verifica se o codigo obedece
rigorosamente as regras estruturais da linguagem Micro C.

:= ARegra
A ordem dos tokens importa. O parser verifica se a fila
faz sentido.

Valido: int a;
X Invdlido: a—nt:
(Ordem errada)

B Resultado

Se a sequéncia for valida, avancamos para a construcao da
estrutura (AST). Se ndo, um erro sintatico é reportado
imediatamente.

11

Public

Public

Fase 2 - A Hierarquia de Precedéncia

Resolvendoa + b * c usando a estrutura da]
gramatica. O Conceito

Para garantir a precedéncia correta, o Parser organiza o
codigo como uma arvore viva.

g HPressao Fator (A Folha)

(+) A unidade basica e final. Nimeros e variaveis (a, b).
Nao se divide mais.

Termo (O Ramo)
a Termo As conexdes internas que seguram as folhas. Resolve
(*) operacoes fortes (*, /) e se conecta a raiz.

(Expressao (A Raiz)
b C 2 A base de tudo. Agrupa os ramos e define o resultado
final da soma (+, -).

__

{ Visualizagao: Note como o ramo da multiplicacdo (b * &)
i precisa ser resolvido antes de chegar naraizda soma. -

Fase 2 - Produto Final: A Estrutura Hierarquica

ARVORE SINTATICA ABSTRATA(AST)

NO_PROGRAMA
NO_DEFINICAO_FUNCAO

NO_TIPO (INT)
NO_ID(Nome: main)
NO_BLOCO
NO_DECLARACAO_VARIAVEL
NO_TIPO (INT)
NO_ID(Nome:a)
NO_DECLARACAO_VARIAVEL
NO_TIPO (INT)
NO_ID(Nome:b)
NO_ATRIBUICAO
NO_ID(Nome:a)
NO_CONST_INT (Valor: 10)
NO_ATRIBUICAO
NO_ID(Nome:b)
NO_CONST_INT (Valor: 20)
NO_PRINT

NO_ID(Nome:a)
NO_ID(Nome:b)
NO_RETORNO
NO_CONST_INT (Valor: 0)

O Produto Limpo
A AST é a representacdo fiel do programa. cada
declaragdo, atribuicdo e constante esta mapeada como
um no especifico.

41 Hierarquia de Escopo

Visualmente, vemos que NO_DECLARACAO e
NO_ATRIBUICAO sao irmaos e filhos do mesmo
NO_BLOCO, definindo a ordem de execugao.

O Parser agrupou corretamente a operacdo: a soma (PLUS)
€ a raiz da sub-arvore, e os operandos a e b sao seus
filhos diretos.

il OMapa

Esta estrutura completa € o mapa que guiara a préxima

fase (Analise Semantica) para validar tipos e escopgs.
S

13

Public

Public

Fase 3 - Analise Semantica

&

FNTRADRAST ¥ 0Objetivo

Validar se a estrutura gramatical (AST) possui coeréncia
l6gica e significado dentro das regras do Micro C.

Qgﬂgsﬁt‘i'g; 4 0 Cérebro do Compilador

Esta fase gera a Tabela de Simbolos, armazenando
informagdes sobre cada identificador (como escopo, tipo
e categoria).

& Preparacao para o Back-End
Além de validar, o analisador calcula e armazena o Offset de

Memoria. Semisso, o gerador de Assembly ndo saberia
onde guardar os dados na pilha.

SAIDA: TABELA DE SiIMBOLOS

14

Fase 3 - Regras de Integridade: Tipos e Limites

SITUACZ\O A: JUIZ DE TIPOS
int x = 'A';

Tipagem Estrita
X O compilador proibe operacoes mistas (ex: somar INT
INT com STRING) e atribuicbes invdlidas, garantindo a

consisténcia matematica dos dados.
A Erro: Tipos Incompativeis

~= SITUAGAO B: INSPETOR DE VETORES - E. Validacao de Vetores

. Categoria: Impede o uso de vetor como variavel
simples (v = 10 éproibido).

» Checagem: O analisador verifica se constantes
de indice (v(15]) estouram o limite declarado,
prevenindo corrupcao de memoria.

int v[10]; v[15] = O;

Tam: 10

® Erro: indice 15 excede tamanho 10

15

Public

Fase 3 - Produto Final: O Contexto Semantico

ESC NOME

0

main

TIPO

INT

INT

INT

CATEGORIA

Var Local

Var Local

Funcéo

OFFSET (MEM)

LABEL

1¥1 Mapeamento de Memoéria
A coluna Offset prova que o compilador ja
alocou espago na pilha. aestaem -4 e b logo

abaixo em -8.

Gerenciamento de Escopo
A hierarquia esta clara: main é 0, enquanto as
variaveis vivem no escopo Local (1), protegidas de
acesso externo.

Validacaode Tipos
A operacao a + b foi aprovada porque a tabela
garante que ambos 0s nomes se referem a dados do
tipo INT.

16

Public

Fase 4 - Geracao de IR

A Representacao Intermediaria como decisdo de
arquitetura.

Micro C (Alto Nivel)

if(a < b)

:= IR(TAC - Baixo Nivel)

t0 =a<b
if falsetO gotoL1

Linearizacéo e Simplificagcdo da légica

Public

<
<

Decisaode Arquitetura

A IR atua como uma representagao de baixo nivel. Ela
recebe o Front-End (que valida o Micro C) e comega
trabalhar no Back-End (que gera a IR e assembly).

Independéncia de Maquina

O Cddigo de Trés Enderegos (TAC) gerado € abstrato. Ele
nao possui registradores fisicos (como %eax) nem
instrugbes complexas de CPU, apenas logica pura.

P7 1N
T 1]
7

O Grande Diferencial: Portabilidade

Esta arquitetura permite que o mesmo Front-End gere cédigg.
para ARM ou RISC-V no futuro, bastando apenas trocar o
tradutor final, sem reescrever o compilador.

17

Public

Fase 4 - Do Hierarquico ao Linear: A Traducao

IF

t0 =a<b

if_false t0 goto
L1 2

X =1 3)

L1l: (Ponto de Saida) [3

< O Mecanismo: Tree Walker

O compilador visita os nds na ordem exata da
execucao: primeiro resolve a condicao (1), sobe
para o IF (2) tomar a decisao, e se verdadeiro,
desce para o bloco (3).

& Decomposicao

Note que a arvore hierarquica é desmontada em
passos simples. Cada né visitado gera uma
instrucdo correspondente na lista linear a direita.

18

Fase 4 - Produto Final: Codigo de Trés Enderecos

{ FONTE (soma.mcc)

int main()
{int a,b;

a= 10;
b= 20;
print@+ b);

return 0,

B, SAIDA (TAC)

main:
a =10

b =20
t0 =a+ b

print_int £0

return 0

1= Linearizagao

Note que cada linha contém no maximo uma
operagdo, simplificando a vida do
processador.

& Variavel Temporaria (t0)

O compilador detectou a expressaoa + b
dentro do print e a extraiu.

Criou t0 para segurar o resultado,

garantindo que a soma ocorra antes da
impressao.

A fungao genérica print foi substituida pelo
opcode especifico print_int, instruindo
explicitamente o Back-End sobre qual roting, ¢z

sistema chamar.
‘ N\

19

Public

Fase 5 - Geracao de Assembly

ENTRADA (IR)

Objetivo i t0 =a+b
Traduzir a IR abstrata para instrugdes reais x86-64. S J

1. LOAD (movl)
Sintaxe e Estratégia CPU (Registradores) |

—-.\

var a

Sintaxe AT&T :
Aordem correta é:
Instrugao Origem, Destino

mov]l $10, %eax @

%eax

var b

2. ADD
Load-Operate-Store:
A CPU nao soma memodria diretamente: 1. Carregar

(Load) 2. Calcular (Operate) 3. Salvar (Store) var t0]

20

Public

Fase 5 - Anatomia do Stack Frame

Como o compilador organiza dados e fluxo de execugdo na memoaria.

O Ponto de Referéncia (%rbp)

O Base Pointeré o marco zero. Todo acesso € relativo a
ele, evitando confusao quando a pilha cresce ou diminui.

Pardmetro 2 24(%rbp)
Parametros (+)
e 10oP) U AZonaReservada
D Retorno Existe uma barreira vital de 16 bytes que nao usamos
para dados:

& RBPAntigo

» 8(%rbp): Guarda o enderego para onde a CPU deve pular
ao fim da fungao.

» 0(%rbp): Salva o contexto anterior, permitindo que a
funcao continue de onde parou.

Variaveis (-)
Acima (+): Parametros empilhados por quem chamou.
Abaixo (-): Variaveis criadas pela fungao atual.

21

Fase 5 - Produto Final: Codigo Assembly

B Saida

Completa (soma.s)

.section .rodata

.L.str.int: .string "%d\n"
.L.str.char: .string "%c\n"
.L.str.str: .string "%s\n"

main:

movq
subq

mov1
mov1
mov 1
mov 1
mov1
mov 1
add1
mov1

leaq
mov]1
xor]
subq
call
addg

mov1
movq
popq
ret

text .

globl main

pushg %rbp

%rsp, %rbp
$256, %rsp

$10, %eax

%eax, —4(%rbp)
$20, %eax

%eax, -8(%rbp)
—-4(%rbp), %eax
-8(%rbp), %ebx
%ebx, %eax
%eax, -128(%rbp)

.L.str.int(%rip), %rdi
-128(%rbp), %esi

%eax, %eax

$8, %rsp

printf

$8, %rsp

$0, %eax
%rbp, %rsp
%rbp

S Dados Estaticos
Strings de formatacao (%d, %c, %s) geradas
automaticamente na se¢ao .rodata.

€ Prélogo
Configuracao do Stack Frame com 256 bytes para
variaveis locais e temporarios.

Ldgica
Operacdo Load-Operate-Store completa:
carrega de-4 e -8, soma em %eax e salva em -128.

O ABI System V
Argumentos em %rdi e %esi. Alinhamento de

pilha (subg $8) antes dachamadacall printf.

22

Public

Resultados e Validacao

Validacao de Sucesso

Bubble Sort
fib(5 i i
, Valida Lacos (5) Fibonacci
5 1 4 1 4 5 Aninhados e Valida Recursao Multipla e Stack
) acesso a Frame.
Arrays.
O Testes de Falha
A Fase 1 (Léxico) <[> Fase 2 (Sintatico) & Fase 3 (Semantico)
int valor = 10 ﬂ; int a = 5 | | int x = "texto";
Erro Lexico: Token indefinido '@’ Erro Sintatico na linha 9: Token Erro Semantico na linha 7:
encontrado na linha 11 inesperado. Esperado: SEMICOLON Atribuicao de tipos incompativeis.

- - 7 - ~ - ‘ >
O compilador Micro C € funcional e robusto na deteccao de erros, cumprindo seu papel

em ser didatico.

23

Public

Public

Trabalhos Futuros

Evoluindo de fermramenta didatica para um compilador robusto.

Otimizacao de Cédigo Poder da Linguagem (Ponteiros)
Implementacao de algoritmos na IR (ex: Suporte completo a aritmética de ponteiros e
eliminacao de codigo morto) e Alocagao de alocacao dinamica , habilitando estruturas
Registradores, superando a estratégia ingénua de dados complexas como Listas e Arvores.

de Load-Operate-Store.

Expansao de Tipos \Q Independéncia Total
(X

Adicao de tipos de nimeros de ponto Desenvolvimento de um Montador e Linker
flutuante como float e double. préprios, eliminando a dependéncia do GCC
para gerar o binario final.

Aarquitetura modular da IR facilita a expansao futura para outras arquiteturas de hardware, con -
ARM e RISC-V.

24

Public

Micro C: Uma Ferramenta para o Ensino

int a = "texto";

lss PADRAO (GCC) S.1 MICRO C(TUTOR)

warning: .

initialization makes Erro: T1 pos

integer from pointer incompativels.

without a cast Esperado: INT
Encontrado:
STRING

Norma Técnica

Mensagens Humanizadas

Diferente de compiladores industriais que priorizam
velocidade, o Micro Cprioriza a clareza. Ele explica o0 que deu
errado e por que, ajudando o iniciante a corrigir a légica.

Analise com Feedback

Afases do front-end atua como um analisador
rigoroso, ensinando conceitos de Tipagem e Escopo antes

mesmo do programa rodar.

Futuro: Otimizacao Educativa
A eliminagéo de Codigo Morto na IR no apenas limpara o
binario, mas gerara alertas pedagdgicos:
"Atencéo: O codigo apos o 'return’ nunca sera executado.”

L

. . s .)
Transformar o compilador de uma ferramenta que apenas cospe binarios em uma ferramenta
que ensina boas praticas.

25

Consideracoes Finais

Demoaratizacao do

Conhecimento

Quebrar a barreira de entrada de
temas complexos como
Compiladores, tornando o
impossivel acessivel e
compreensivel para qualquer
estudante.

=

Educacao Acessivel

O Micro Ccumpre seu propdésito
ao transformar a teoria abstrata
em pratica tangivel. Aprendemos a
programar nao apenas usando,
mas construindo a ferramenta.

Public

()

Contribuicao Open
Source

Um compilador completo com
codigo-fonte aberto (GPLv3),
disponivel para estudo,
modificagéo e evolugéo por
toda a comunidade.

Deixamos de ser apenas usuarios de ferramentas para nos

tomamos criadores delas.

26

Acessibilidade do Codigo

Comparativo de Linhas de Codigo & Curva de Aprendizado

= LLVM

~35.5 Milhoes

~4k

{# GCC
~15 Milhoes

Leve o suficiente para ser lido, entendido e
modificado em um Unico semestre.

A Inviavel para ser didatico

A simplididade do Miao C ndo é uma falta de recurso,
€ 0 seu maior trunfo pedagagico.

Obrigado!

Perguntas?

	Slide 1: Micro C Um Compilador Acadêmico
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Fase 2 - Produto Final: A Estrutura Hierárquica
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Comparativo de Linhas de Código & Curva de Aprendizado
	Slide 28: Obrigado!
	Slide 29: Perguntas?

