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O Problema

« Compiladores sao a base da
computacao, mas ferramentas
modernas (GCC, LLVM) sao massivas e
complexas, contendo milhoes de
linhas de codigo.

- Existeuma lacuna claraentre a teoria
do "Livro do Dragdo"e a praticareal
de construcao de um compilador.

Questao de Trabalho

Como construir uma ferramenta
que transforme essa
complexidade que € um
compilador em algo acessivel
para o aprendizado?



Objetivos do Trabalho

Objetivo Geral

Projetar, implementar e validar um compilador funcional para a linguagem
Micro C, gerando codigo binario executavel de forma didatica.

Objetivos Especificos

Definir a linguagem Micro C (subconjunto do C).

Implementar o Front-End(Analise Léxica, Sintaticae Semantica).

Implementar o Back-End (Geracao de IR e Assembly x86-64).

Validar com algoritmos (Bubble Sort, Fibonacci).



Metodologia: A Pipeline

Arquitetura baseada em fases distintas, desenvolvidaem C.

Scanner Parser Semantic IR Gen Assembly

(Tokens) - (AST) - (Tabelas) - (TAC) - (x86-64)
Front-End (Analise) Back-End (Sintese)
Entende o que o codigo faze Geracao de codigo de maquina

valida regras. para o processador.



Public

Metodologia: O Ciclo de Vida Completo

Comparacao entre a implementacao interna do Micro C e as ferramentas externas.

& COMPILADOR MICRO C as INFRAESTRUTURA & FUTURO
[ 1. Analise Léxica Micro C (Otimizacao de Caodigo) @ Futuro
2. Andlise Sintatica Micro C
6. Montagem (Assembler)
3. Andlise Semantica Micro C
7. Linkedicao (Linker)
[ 4. Geragao de IR Micro C
[ 5. Geragao de Assembly Micro C

Estratégia: O projeto concentra esforcos nas 5 fases principais da compilacao (Esquerda), traduzindo cédigo

- fonte Micro C até Assembly x86-64.

Afase de Otimizagdo foi abstraida por fins de simplicidade, e a transformacéo final em binario é delegada ac* +~
GCC.



A Linguagem Fonte: Micro C

\
A CPADRAO: MANUAL
] = Um Subconjunto do C
pri ntf( ’ a) ’ Mantém a sintaxe familiar (int, if, for), mas remove
ponteiros e structs complexas para reduzir a curva de
7 aprendizado.
%, O compilador resolve o
formato para vocé! = Abstracio Didatica
Foco na logica, ndo na burocracia. Enquanto o C exige
N gerenciamento manual de formatos (%d, %s), o Micro C
© MICRO C: AUTOMATICO ElosiEl s,
(a);
%4 COMO FUNCIONA
1. Frontend: Identifica tipo na Tabela de
/ Simbolos.

2. Backend: Gera assembly com "%d"
automaticamente.
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Exemplo Base: soma.mcc

Soma .mcc

© Proposito
L int mainQ { Validar o ciclo de compilacdo completo do Micro C na sua forma
2 int a; mais fundamental.
> int b; Funcionalidades Testadas:
‘a=10; . ~ L .
b Declaracdo e alocacao de variaveis locais.
5b = 20;

: printa + b); Operacdo aritmética (+) e atribuicao.

7 return O,

o}

Chamada de funcao externa (print) via ABI.

Este codigo simples sera nosso guia. Vamos acompanhar como
esses dados (a, b) viajam por todas as 5 fases do compilador.



Fase 1- Analise Léxica

total = 10 ;
LEXEMA "10"
PADRAO [0-9]+
TOKEN INTEGERCONST
FLUXO
int a ; //var

11}
Espacos
//var

& Afuncionalidade

Ler o codigo-fonte caractere por caractere e agrupa-los em
unidades de significado.

& ATrade Léxica

Lexema: O texto real ( "10" ).

Padrao: Aregra ( [0-9]+ ).

Token: A categoria abstrata ( INTEGERCONST ).

»’ Limpeza de Ruido
O Scanner descarta tudo que nao é essencial para a légica:
espacgos em branco, quebras de linhas e comentarios (//).

A ldentificacdo de Erros
Padrao Desconhecido: Caracteres invalidos (ex: @) geram token
UNDEF.

String Aberta: Encontrar eor antes de fechar aspas indica string
malformada.
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Fase 1- Analise Léxica: Lookahead

Entrada:

ifx @ - 10)

Outro Caractere

Token: LT (<)

Devolve o char
para o buffer.

Scanner |é <

O,

E l<l 0u l<=l?
(Preciso ver
0 proximo)

A O Desafio

O caractere < € ambiguo.

Ele pode ser um operador simples (menor
gue) ou o inicio de um operador composto
(menorou igual).

64 A Solucao: Lookahead
Implementamos uma funcao que permite ao
scanner espiar o futuro sem se
comprometer.

Como Funciona:

1. O scanner consome o <.

2. Ele verifica o préximo caractere.

3. Sefor =, consome e cria LEQ.

4. Caso contrario, cria LT e devolve o proxirap.

N
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Fase 1: Produto Final - A Cadeia de Tokens

TIPO

INT

MAIN

ID

SEMICOLON

ID

PLUS

ID

RPAREN

RETURN

EOF

[...

LEXEMA

int

main

a

20 Tokens Processados ..

)

return

EOCF

-1

LINHA

Sucesso

O scanner processou o cddigo fonte e
gerou com sucesso uma cadeia linear
de 31tokens.

K Separagio Logica
Crucial para as proximas fases:

« Tipo: Para o Parser (ex: PLUS)

+ Lexema: Para a Semantica
(ex: valor '10' ou nome 'a")

1) Precisdodo DFA
O autdémato provou sua capacidade de
diferenciar palavras reservadas de
identificadores e capturar
operadores.

.= Rastreabilidade

O numero da linha é preservado
em cada token, garantindo mensagerg

de erro precisas no futuro. AR
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Fase 2 - Analise Sintatica

ENTRADA (TOKENS)

INT ID

Q

PARSER

SEMI

Gerar AST

A\ Ero: Esperado ;'

¥ 0OObijetivo
Validar a Gramatica. O parser verifica se o codigo obedece
rigorosamente as regras estruturais da linguagem Micro C.

:= ARegra
A ordem dos tokens importa. O parser verifica se a fila
faz sentido.

Valido: int a;
X Invdlido: a—nt:
(Ordem errada)

B Resultado

Se a sequéncia for valida, avancamos para a construcao da
estrutura (AST). Se ndo, um erro sintatico é reportado
imediatamente.
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Fase 2 - A Hierarquia de Precedéncia

Resolvendoa + b * c usando a estrutura da ]
gramatica. O Conceito

Para garantir a precedéncia correta, o Parser organiza o
codigo como uma arvore viva.

g HPressao Fator (A Folha)

(+) A unidade basica e final. Nimeros e variaveis (a, b).
Nao se divide mais.

Termo (O Ramo)
a Termo As conexdes internas que seguram as folhas. Resolve
(*) operacoes fortes (*, /) e se conecta a raiz.

( Expressao (A Raiz)
b C 2 A base de tudo. Agrupa os ramos e define o resultado
final da soma (+, -).

__________________________________________________________________________________________

{ Visualizagao: Note como o ramo da multiplicacdo (b * &)
i precisa ser resolvido antes de chegar naraizda soma. -



Fase 2 - Produto Final: A Estrutura Hierarquica

ARVORE SINTATICA ABSTRATA(AST)

NO_PROGRAMA
NO_DEFINICAO_FUNCAO

NO_TIPO (INT)
NO_ID(Nome: main)
NO_BLOCO
NO_DECLARACAO_VARIAVEL
NO_TIPO (INT)
NO_ID(Nome:a)
NO_DECLARACAO_VARIAVEL
NO_TIPO (INT)
NO_ID(Nome:b)
NO_ATRIBUICAO
NO_ID(Nome:a)
NO_CONST_INT (Valor: 10)
NO_ATRIBUICAO
NO_ID(Nome:b)
NO_CONST_INT (Valor: 20)
NO_PRINT

NO_ID(Nome:a)
NO_ID(Nome:b)
NO_RETORNO
NO_CONST_INT (Valor: 0)

O Produto Limpo
A AST é a representacdo fiel do programa. cada
declaragdo, atribuicdo e constante esta mapeada como
um no especifico.

41 Hierarquia de Escopo

Visualmente, vemos que NO_DECLARACAO e
NO_ATRIBUICAO sao irmaos e filhos do mesmo
NO_BLOCO, definindo a ordem de execugao.

O Parser agrupou corretamente a operacdo: a soma (PLUS)
€ a raiz da sub-arvore, e os operandos a e b sao seus
filhos diretos.

il OMapa

Esta estrutura completa € o mapa que guiara a préxima

fase (Analise Semantica) para validar tipos e escopgs.
S
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Fase 3 - Analise Semantica

&

FNTRADRAST ¥ 0Objetivo

Validar se a estrutura gramatical (AST) possui coeréncia
l6gica e significado dentro das regras do Micro C.

Qgﬂgsﬁt‘i'g; 4 0 Cérebro do Compilador

Esta fase gera a Tabela de Simbolos, armazenando
informagdes sobre cada identificador (como escopo, tipo
e categoria).

& Preparacao para o Back-End
Além de validar, o analisador calcula e armazena o Offset de

Memoria. Semisso, o gerador de Assembly ndo saberia
onde guardar os dados na pilha.

SAIDA: TABELA DE SiIMBOLOS
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Fase 3 - Regras de Integridade: Tipos e Limites

SITUACZ\O A: JUIZ DE TIPOS
int x = 'A';

Tipagem Estrita
X O compilador proibe operacoes mistas (ex: somar INT
INT com STRING ) e atribuicbes invdlidas, garantindo a

consisténcia matematica dos dados.
A Erro: Tipos Incompativeis

~= SITUAGAO B: INSPETOR DE VETORES - E. Validacao de Vetores

. Categoria: Impede o uso de vetor como variavel
simples (v = 10 éproibido).

» Checagem: O analisador verifica se constantes
de indice ( v(15]) estouram o limite declarado,
prevenindo corrupcao de memoria.

int v[10]; v[15] = O;

Tam: 10

® Erro: indice 15 excede tamanho 10

15
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Fase 3 - Produto Final: O Contexto Semantico

ESC NOME

0

main

TIPO

INT

INT

INT

CATEGORIA

Var Local

Var Local

Funcéo

OFFSET (MEM)

LABEL

1¥1 Mapeamento de Memoéria
A coluna Offset prova que o compilador ja
alocou espago na pilha. aestaem -4 e b logo

abaixo em -8.

Gerenciamento de Escopo
A hierarquia esta clara: main é 0, enquanto as
variaveis vivem no escopo Local (1), protegidas de
acesso externo.

Validacaode Tipos
A operacao a + b foi aprovada porque a tabela
garante que ambos 0s nomes se referem a dados do
tipo INT.

16
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Fase 4 - Geracao de IR

A Representacao Intermediaria como decisdo de
arquitetura.

Micro C (Alto Nivel)

if(a < b)

:= IR(TAC - Baixo Nivel)

t0 =a<b
if falsetO gotoL1

Linearizacéo e Simplificagcdo da légica

Public

<
<

Decisaode Arquitetura

A IR atua como uma representagao de baixo nivel. Ela
recebe o Front-End (que valida o Micro C) e comega
trabalhar no Back-End (que gera a IR e assembly).

Independéncia de Maquina

O Cddigo de Trés Enderegos (TAC) gerado € abstrato. Ele
nao possui registradores fisicos (como %eax) nem
instrugbes complexas de CPU, apenas logica pura.

P7 1N
T 1]
7

O Grande Diferencial: Portabilidade

Esta arquitetura permite que o mesmo Front-End gere cédigg.
para ARM ou RISC-V no futuro, bastando apenas trocar o
tradutor final, sem reescrever o compilador.
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Fase 4 - Do Hierarquico ao Linear: A Traducao

IF

t0 =a<b

if_false t0 goto
L1 2

X =1 3)

L1l: (Ponto de Saida) [3

< O Mecanismo: Tree Walker

O compilador visita os nds na ordem exata da
execucao: primeiro resolve a condicao (1), sobe
para o IF (2) tomar a decisao, e se verdadeiro,
desce para o bloco (3).

& Decomposicao

Note que a arvore hierarquica é desmontada em
passos simples. Cada né visitado gera uma
instrucdo correspondente na lista linear a direita.
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Fase 4 - Produto Final: Codigo de Trés Enderecos

{ FONTE (soma.mcc)

int main()
{int a,b;

a= 10;
b= 20;
print@+ b);

return 0,

B, SAIDA (TAC)

main:
a =10

b =20
t0 =a+ b

print_int £0

return 0

1= Linearizagao

Note que cada linha contém no maximo uma
operagdo, simplificando a vida do
processador.

& Variavel Temporaria (t0)

O compilador detectou a expressaoa + b
dentro do print e a extraiu.

Criou t0 para segurar o resultado,

garantindo que a soma ocorra antes da
impressao.

A fungao genérica print foi substituida pelo
opcode especifico print_int, instruindo
explicitamente o Back-End sobre qual roting, ¢z

sistema chamar.
‘ N\
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Fase 5 - Geracao de Assembly

ENTRADA (IR)

Objetivo i t0 =a+b
Traduzir a IR abstrata para instrugdes reais x86-64. S J

1. LOAD (movl)
Sintaxe e Estratégia CPU (Registradores) |

—-.\

var a

Sintaxe AT&T :
Aordem correta é:
Instrugao Origem, Destino

mov]l $10, %eax @

%eax

var b

2. ADD
Load-Operate-Store:
A CPU nao soma memodria diretamente: 1. Carregar

(Load) 2. Calcular (Operate) 3. Salvar (Store) var t0 ]

20
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Fase 5 - Anatomia do Stack Frame

Como o compilador organiza dados e fluxo de execugdo na memoaria.

O Ponto de Referéncia (%rbp)

O Base Pointeré o marco zero. Todo acesso € relativo a
ele, evitando confusao quando a pilha cresce ou diminui.

Pardmetro 2 24(%rbp)
Parametros (+)
e 10oP) U AZonaReservada
D Retorno Existe uma barreira vital de 16 bytes que nao usamos
para dados:

& RBPAntigo

» 8(%rbp): Guarda o enderego para onde a CPU deve pular
ao fim da fungao.

» 0(%rbp): Salva o contexto anterior, permitindo que a
funcao continue de onde parou.

Variaveis (-)
Acima (+): Parametros empilhados por quem chamou.
Abaixo (-): Variaveis criadas pela fungao atual.
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Fase 5 - Produto Final: Codigo Assembly

B Saida

Completa (soma.s)

.section .rodata

.L.str.int: .string "%d\n"
.L.str.char: .string "%c\n"
.L.str.str: .string "%s\n"

main:

movq
subq

mov1
mov1
mov 1
mov 1
mov1
mov 1
add1
mov1

leaq
mov]1
xor]
subq
call
addg

mov1
movq
popq
ret

text .

globl main

pushg %rbp

%rsp, %rbp
$256, %rsp

$10, %eax

%eax, —4(%rbp)
$20, %eax

%eax, -8(%rbp)
—-4(%rbp), %eax
-8(%rbp), %ebx
%ebx, %eax
%eax, -128(%rbp)

.L.str.int(%rip), %rdi
-128(%rbp), %esi

%eax, %eax

$8, %rsp

printf

$8, %rsp

$0, %eax
%rbp, %rsp
%rbp

S Dados Estaticos
Strings de formatacao (%d, %c, %s) geradas
automaticamente na se¢ao .rodata.

€ Prélogo
Configuracao do Stack Frame com 256 bytes para
variaveis locais e temporarios.

# Ldgica
Operacdo Load-Operate-Store completa:
carrega de-4 e -8, soma em %eax e salva em -128.

O ABI System V
Argumentos em %rdi e %esi. Alinhamento de

pilha (subg $8) antes dachamadacall printf.

22
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Resultados e Validacao

Validacao de Sucesso

Bubble Sort
fib(5 i i
, Valida Lacos (5) Fibonacci
5 1 4 1 4 5 Aninhados e Valida Recursao Multipla e Stack
) acesso a Frame.
Arrays.
O Testes de Falha
A Fase 1 (Léxico) <[> Fase 2 (Sintatico) & Fase 3 (Semantico)
int valor = 10 ﬂ; int a = 5 | | int x = "texto";
Erro Lexico: Token indefinido '@’ Erro Sintatico na linha 9: Token Erro Semantico na linha 7:
encontrado na linha 11 inesperado. Esperado: SEMICOLON Atribuicao de tipos incompativeis.

- - 7 - ~ - ‘ >
O compilador Micro C € funcional e robusto na deteccao de erros, cumprindo seu papel

em ser didatico.
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Trabalhos Futuros

Evoluindo de fermramenta didatica para um compilador robusto.

Otimizacao de Cédigo Poder da Linguagem (Ponteiros)
Implementacao de algoritmos na IR (ex: Suporte completo a aritmética de ponteiros e
eliminacao de codigo morto) e Alocagao de alocacao dinamica , habilitando estruturas
Registradores, superando a estratégia ingénua de dados complexas como Listas e Arvores.

de Load-Operate-Store.

Expansao de Tipos \Q Independéncia Total
(X

Adicao de tipos de nimeros de ponto Desenvolvimento de um Montador e Linker
flutuante como float e double. préprios, eliminando a dependéncia do GCC
para gerar o binario final.

Aarquitetura modular da IR facilita a expansao futura para outras arquiteturas de hardware, con -
ARM e RISC-V.
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Micro C: Uma Ferramenta para o Ensino

int a = "texto";

lss PADRAO (GCC) S.1 MICRO C(TUTOR)

warning: .

initialization makes Erro: T1 pos

integer from pointer incompativels.

without a cast Esperado: INT
Encontrado:
STRING

Norma Técnica

Mensagens Humanizadas

Diferente de compiladores industriais que priorizam
velocidade, o Micro Cprioriza a clareza. Ele explica o0 que deu
errado e por que, ajudando o iniciante a corrigir a légica.

Analise com Feedback

Afases do front-end atua como um analisador
rigoroso, ensinando conceitos de Tipagem e Escopo antes

mesmo do programa rodar.

Futuro: Otimizacao Educativa
A eliminagéo de Codigo Morto na IR no apenas limpara o
binario, mas gerara alertas pedagdgicos:
"Atencéo: O codigo apos o 'return’ nunca sera executado.”

L

. . s . )
Transformar o compilador de uma ferramenta que apenas cospe binarios em uma ferramenta
que ensina boas praticas.
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Consideracoes Finais

Demoaratizacao do

Conhecimento

Quebrar a barreira de entrada de
temas complexos como
Compiladores, tornando o
impossivel acessivel e
compreensivel para qualquer
estudante.

=

Educacao Acessivel

O Micro Ccumpre seu propdésito
ao transformar a teoria abstrata
em pratica tangivel. Aprendemos a
programar nao apenas usando,
mas construindo a ferramenta.
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()

Contribuicao Open
Source

Um compilador completo com
codigo-fonte aberto (GPLv3),
disponivel para estudo,
modificagéo e evolugéo por
toda a comunidade.

Deixamos de ser apenas usuarios de ferramentas para nos

tomamos criadores delas.
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Acessibilidade do Codigo

Comparativo de Linhas de Codigo & Curva de Aprendizado

= LLVM

~35.5 Milhoes

~4k

{# GCC
~15 Milhoes

Leve o suficiente para ser lido, entendido e
modificado em um Unico semestre.

A Inviavel para ser didatico

A simplididade do Miao C ndo é uma falta de recurso,
€ 0 seu maior trunfo pedagagico.



Obrigado!



Perguntas?
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