
Micro C
Um Compilador Acadêmico

Autor: Pedro Henrique Ferreira Carvalho

Orientador: Prof. Brivaldo Alvesda SilvaJunior

Faculdade de Computação (FACOM)- UFMS

Dezembro de 2025

TRABALHO DE CONCLUSÃO DE CURSO

• Compiladores são a base da

computação, mas ferramentas

modernas (GCC,LLVM) são massivas e

complexas, contendo milhões de

linhas de código.

• Existeuma lacuna claraentre a teoria

do "Livro doDragão"e a práticareal

de construção de um compilador.

Questão de Trabalho

Como construir uma ferramenta

que transforme essa

complexidade que é um

compilador em algo acessível

para o aprendizado?

O Problema

2

Objetivo Geral

Projetar,implementar e validarum compilador funcional para a linguagem

Micro C,gerando código binário executável de forma didática.

Objetivos Específicos

• Definir a linguagem MicroC (subconjunto do C).

• Implementar o Front-End(Análise Léxica,Sintáticae Semântica).

• Implementar o Back-End(Geração de IR e Assembly x86-64).

• Validar com algoritmos (Bubble Sort, Fibonacci).

Objetivosdo Trabalho

3

Arquitetura baseada em fases distintas, desenvolvida em C.

Front-End (Análise)

Entende o que o código faze

valida regras.

Back-End (Síntese)

Geraçãode código de máquina

para o processador.

Scanner

(Tokens)

Parser

(AST)

Semantic

(Tabelas)

IR Gen

(TAC)

Assembly

(x86-64)

Metodologia: A Pipeline

4

Comparação entre a implementação interna doMicroCe as ferramentasexternas.

COMPILADOR MICRO C

1.Análise Léxica Micro C

2. Análise Sintática Micro C

3. Análise Semântica Micro C

4. Geração de IR Micro C

5. Geração de Assembly Micro C

INFRAESTRUTURA & FUTURO

(Otimização deCódigo) Futuro

6. Montagem (Assembler) GCC

7. Linkedição (Linker) GCC

Estratégia: Oprojeto concentra esforços nas 5 fases principais da compilação (Esquerda), traduzindo código

- fonte Micro Caté Assembly x86-64.

A fase de Otimização foi abstraída por fins de simplicidade, e a transformação final em binário é delegada ao

GCC.

Metodologia: O Ciclo de Vida Completo

5

UmSubconjuntodoC
Mantém a sintaxe familiar (int, if, for), mas remove

ponteiros e structs complexas para reduzir a curva de

aprendizado.

Abstração Didática
Foco na lógica, não na burocracia. Enquanto o Cexige

gerenciamento manual de formatos (%d, %s), o Micro C

abstrai isso.

COMO FUNCIONA

1. Frontend: Identifica tipo na Tabela de
Símbolos.
2. Backend: Gera assembly com "%d"
automaticamente.

C PADRÃO:MANUAL

printf("%d" , a);

O compilador resolve o

formato para você!

MICRO C: AUTOMÁTICO

print(a);

A Linguagem Fonte: Micro C

soma.mcc

Propósito

Validar ociclode compilação completo doMicroCna sua forma
mais fundamental.

Funcionalidades Testadas:

Este códigosimples será nosso guia. Vamos acompanharcomo
esses dados(a, b) viajampor todasas5fasesdocompilador.

1

2

3

4

int main() {

int a;

int b;

a = 10;

b = 20;5

6

7

print(a + b);

return 0;

}8

Declaração e alocação de variáveis locais.

Operação aritmética (+) e atribuição.

Chamadade funçãoexterna (print) via ABI.

Exemplo Base:soma.mcc

7

FLUXO

int a ; //var

[INT] [ID] [SEMI] Espaços
//var

Afuncionalidade

Ler o código-fonte caractere por caractere e agrupá-los em

unidades de significado.

ATríade Léxica

Lexema: Otexto real ("10").

Padrão: Aregra ([0-9]+).

Token:Acategoria abstrata (INTEGERCONST).

Limpezade Ruído

O Scanner descarta tudo que não é essencial para a lógica:

espaços em branco, quebras de linhas e comentários (//).

Identificação de Erros

Padrão Desconhecido:Caracteres inválidos (ex: @) geram token

UNDEF.

String Aberta: Encontrar EOF antes de fechar aspas indica string

malformada.

total

LEXEMA "10"

PADRÃO [0-9]+

TOKEN INTEGERCONST

= 10 ;

Fase 1- Análise Léxica

8

ODesafio

• Ocaractere < é ambíguo.

• Ele podeser umoperador simples (menor

que) ouo iníciodeumoperador composto

(menorou igual).

A Solução:Lookahead

Implementamosuma funçãoquepermite ao

scannerespiar o futurosemse

comprometer.

ComoFunciona:

1.O scanner consome o <.

2. Eleverifica o próximo caractere.

3. Sefor =, consome e cria LEQ.

4. Casocontrário, cria LTe devolve o próximo.

Entrada:

if(x

Scanner lê <

< = 10)

É '<' ou '<='?

(Preciso ver
o próximo)

Token: LT(<)
Devolve o char

para o buffer.

Token: LEQ(<=)
Consomeambos

oscaracteres.

Outro Caractere É '='

Fase 1- Análise Léxica: Lookahead

9

TIPO LEXEMA LINHA

INT int 1

MAIN main 1

ID a 3

SEMICOLON ; 3

[... 20 Tokens Processados ...]

ID a 9

PLUS + 9

ID b 9

RPAREN) 9

RETURN return 11

EOF EOF 13

Sucesso

O scannerprocessouo código fonte e

geroucom sucessoumacadeia linear

de 31 tokens.

SeparaçãoLógica

PrecisãodoDFA

O autômatoprovousuacapacidadede

diferenciar palavras reservadas de

identificadores e capturar

operadores.

Rastreabilidade

O númeroda linhaé preservado
emcada token,garantindomensagens

de erro precisas no futuro.

Crucial para as próximas fases:

• Tipo: Para o Parser (ex: PLUS)

• Lexema: Para a Semântica
(ex: valor '10' ou nome 'a')

Fase 1: Produto Final - A Cadeia de Tokens

10

OObjetivo

Validar a Gramática.Oparser verifica se ocódigoobedece

rigorosamenteàs regras estruturaisda linguagemMicroC.

ARegra
Aordem dos tokens importa.Oparser verifica se a fila
faz sentido.

Válido: int a;

Inválido: a int;

(Ordemerrada)

Resultado

Se a sequência for válida, avançamos para a construção da

estrutura (AST). Se não, um erro sintático é reportado

imediatamente.

ENTRADA (TOKENS)

INT ID SEMI

PARSER

Gerar AST

Erro: Esperado ';'

Fase 2 - Análise Sintática

11

Resolvendoa + b * c usando a estruturada
gramática. O Conceito

Para garantir a precedência correta, o Parser organiza o

código como uma árvore viva.

Fator (AFolha)

Aunidadebásica e final. Números e variáveis (a, b).
Nãose dividemais.

Termo (O Ramo)

Asconexões internas que seguram as folhas.Resolve
operações fortes (*, /) e se conecta à raiz.

Expressão (ARaiz)

Abasede tudo. Agrupa os ramose define o resultado
final dasoma (+, -).

Visualização: Notecomooramoda multiplicação(b * c)
precisa ser resolvidoantesde chegarna raiz da soma.

Expressão

(+)

a Termo

(*)

b c

Fase 2 - A Hierarquia de Precedência

12

Fase 2 - Produto Final: A Estrutura Hierárquica

O ProdutoLimpo

A AST é a representação fiel do programa. cada

declaração, atribuição e constante está mapeada como

um nó específico.

Hierarquia deEscopo

Visualmente, vemos que NO_DECLARACAO e

NO_ATRIBUICAO são irmãos e filhos do mesmo

NO_BLOCO, definindo a ordem de execução.

ARVORESINTATICA ABSTRATA(AST) -

NO_PROGRAMA

NO_DEFINICAO_FUNCAO

NO_TIPO(INT)

NO_ID(Nome:main)

NO_BLOCO

NO_DECLARACAO_VARIAVEL

NO_TIPO(INT)

NO_ID(Nome:a)

NO_DECLARACAO_VARIAVEL

NO_TIPO(INT)

NO_ID(Nome:b)

NO_ATRIBUICAO

NO_ID(Nome:a)

NO_CONST_INT(Valor: 10)

NO_ATRIBUICAO

NO_ID(Nome:b)

NO_CONST_INT(Valor: 20)

NO_PRINT

NO_OP_BINARIA (PLUS)

NO_ID(Nome:a)

NO_ID(Nome:b)

NO_RETORNO

NO_CONST_INT(Valor: 0)

Validação da Precedência

O Parser agrupou corretamente a operação: a soma (PLUS)

é a raiz da sub-árvore, e os operandos a e b são seus

filhos diretos.

OMapa
Estaestrutura completa é o mapa que guiará a próxima

fase (Análise Semântica) para validar tipos e escopos.

13

OObjetivo

Validar se a estrutura gramatical (AST)possui coerência

lógica e significado dentro das regras do Micro C.

O Cérebrodo Compilador

Esta fase gera a Tabela de Símbolos, armazenando

informações sobre cada identificador (como escopo, tipo

e categoria).

Preparação para o Back-End

Além de validar, o analisador calcula e armazena o Offset de

Memória. Sem isso, o gerador de Assembly não saberia

onde guardar os dados na pilha.

ENTRADA: AST

SAÍDA: TABELADESÍMBOLOS

NOME TIPO OFFSET

a INT -4

main FUNC LBL

Analisador
Semântico

Calcula Offsets &Tipos

Fase 3 - Análise Semântica

14

TipagemEstrita

Ocompilador proíbe operações mistas (ex:somar INT

com STRING) e atribuições inválidas,garantindo a

consistência matemática dos dados.

Validaçãode Vetores

Categoria: Impedeo usodevetor comovariável

simples (v = 10 éproibido).

Checagem: O analisador verifica se constantes

de índice (v[15]) estouram o limite declarado,

prevenindo corrupção de memória.

Erro: Tipos Incompatíveis

SITUAÇÃO A:JUIZDE TIPOS

int x = 'A';

x

INT

'A'

CHAR

SITUAÇÃO B: INSPETOR DE VETORES

int v[10]; v[15] = 0;

0 1 2 ... 9

Tam: 10

Erro: Índice 15excede tamanho 10

15

Fase 3 - Regras de Integridade: Tipos e Limites

15

ESC NOME TIPO CATEGORIA OFFSET (MEM)

1 a INT Var Local

1 b INT Var Local

0 main INT Função

MapeamentodeMemória

A coluna Offset prova que o compilador já

alocou espaçona pilha. a está em -4 e b logo

abaixo em -8.

Gerenciamentode Escopo

A hierarquia está clara: main é 0, enquanto as

variáveis vivem no escopo Local (1), protegidas de

acessoexterno.

ValidaçãodeTipos

A operação a + b foi aprovada porque a tabela

garante que ambosos nomes sereferem a dados do

tipo INT.

-4(%rbp)

-8(%rbp)

LABEL

Fase 3 - Produto Final: O Contexto Semântico

16

A Representação Intermediária comodecisão de
arquitetura.

Micro C (Alto Nível)

if (a < b)

IR(TAC- Baixo Nível)

t0 = a < b

if_false t0 gotoL1

Linearização e Simplificação da lógica

Decisãode Arquitetura

AIRatua como uma representação de baixo nível. Ela

recebe o Front-End (que valida o Micro C) ecomeça

trabalhar no Back-End (que gera a IR e assembly).

Independência de Máquina

O Código de TrêsEndereços (TAC) gerado é abstrato. Ele

não possuiregistradores físicos (como %eax) nem

instruções complexas de CPU,apenas lógica pura.

O Grande Diferencial: Portabilidade

Estaarquitetura permite que o mesmo Front-End gere código

para ARM ou RISC-Vno futuro, bastando apenas trocar o

tradutor final, sem reescrever o compilador.

Fase 4 - Geração de IR

17

O Mecanismo: Tree Walker

Ocompiladorvisita osnósna ordemexata da

execução:primeiro resolve a condição (1), sobe

para o IF (2) tomar a decisão,e severdadeiro,

descepara obloco (3).

Decomposição

Note que a árvore hierárquicaé desmontadaem

passossimples.Cada nó visitado gera uma

instrução correspondentena lista linear à direita.

t0 = a < b (1)

if_false t0 goto
L1

(2)

x = 1 (3)

L1: (Ponto de Saída)

IF

2

<

1

=

3

Fase 4 - Do Hierárquico ao Linear: A Tradução

18

Linearização

Note que cada linha contém no máximo uma

operação, simplificando a vida do

processador.

Variável Temporária (t0)

O compilador detectou a expressão a + b

dentro do print e a extraiu.

Criou t0 para segurar o resultado,

garantindo que a somaocorra antes da

impressão.

Resoluçãode I/O

A função genérica print foi substituída pelo

opcode específico print_int, instruindo

explicitamente o Back-Endsobre qual rotina de

sistema chamar.

FONTE (soma.mcc)

int main()

{int a,b;

a = 10;

b = 20;

print(a+ b);

return 0;

}

SAÍDA (TAC)

main:

t0

a =10

b =20

=a+ b

print_intt0

return 0

Fase 4 - Produto Final: Código de Três Endereços

19

Objetivo
Traduzir a IR abstrata para instruções reais x86-64.

Sintaxe e Estratégia

Sintaxe AT&T :

Aordem correta é:

Instrução Origem, Destino

movl $10, %eax

Load-Operate-Store:
ACPUnão soma memória diretamente: 1. Carregar

(Load) 2. Calcular (Operate) 3. Salvar (Store)

ENTRADA (IR)

t0 = a + b

var a

var b

var t0

MEMÓRIA (Stack)

%eax

1. LOAD (movl)

CPU(Registradores)

2. ADD (+)

3. STORE(movl)

Fase 5 - Geração de Assembly

20

Comoo compilador organiza dados e fluxo de execução na memória.

O PontodeReferência (%rbp)

OBasePointeré o marcozero. Todoacessoé relativo a

ele, evitandoconfusãoquandoa pilha cresceoudiminui.

AZonaReservada

Existeumabarreira vital de 16bytes quenãousamos

para dados:

8(%rbp): Guardao endereçoparaondea CPUdevepular
ao fimda função.
0(%rbp): Salvao contextoanterior,permitindoquea

funçãocontinuedeondeparou.

GeografiadosDados

Acima (+):Parâmetrosempilhados por quem chamou.

Abaixo (-):Variáveis criadaspela função atual.

Parâmetros (+)

Variáveis (-)

Parâmetro 2 24(%rbp)

Parâmetro 1 16(%rbp)

Retorno 8(%rbp)

RBPAntigo 0(%rbp)

VarLocal1

VarLocal2

-4(%rbp)

-8(%rbp)

Temporários -128(%rbp)

Fase 5 - Anatomia do Stack Frame

21

Saída Completa (soma.s)

Dados Estáticos
Stringsde formatação (%d, %c, %s) geradas
automaticamentena seção .rodata.

Prólogo
ConfiguraçãodoStackFramecom256bytespara
variáveis locais e temporários.

Lógica

OperaçãoLoad-Operate-Store completa:

carrega de-4 e -8, somaem%eax e salva em-128.

ABI System V

Argumentos em%rdi e %esi. Alinhamento de

pilha (subq $8) antes da chamadacall printf.

.section .rodata

.L.str.int: .string "%d\n"

.L.str.char: .string "%c\n"

.L.str.str: .string "%s\n"

.text .globl main

main:

pushq %rbp

movq %rsp, %rbp

subq $256, %rsp

movl $10, %eax

movl %eax, -4(%rbp)

movl $20, %eax

movl %eax, -8(%rbp)

movl -4(%rbp), %eax

movl -8(%rbp), %ebx

addl %ebx, %eax
movl %eax, -128(%rbp)

leaq .L.str.int(%rip), %rdi

movl -128(%rbp), %esi

xorl %eax, %eax

subq $8, %rsp

call printf

addq $8, %rsp

movl $0, %eax

movq %rbp, %rsp
popq %rbp

ret

Fase 5 - Produto Final: Código Assembly

22

Validação de Sucesso

Testes de Falha

O compilador Micro C é funcional e robusto na detecção de erros, cumprindo seu papel
em ser didático.

Resultados e Validação

23

Evoluindode ferramenta didática para umcompilador robusto.

Aarquitetura modular da IRfacilita a expansãofutura para outras arquiteturas de hardware, como

ARM e RISC-V.

Otimização de Código

Implementação de algoritmos na IR (ex:

eliminação de código morto) e Alocação de

Registradores, superando a estratégia ingênua

de Load-Operate-Store.

Poder da Linguagem (Ponteiros)
Suporte completo a aritmética de ponteiros e

alocação dinâmica , habilitando estruturas

de dados complexas como Listas e Árvores.

Expansão de Tipos
Adição de tipos de números de ponto

flutuante como float e double.

Independência Total

Desenvolvimento de um Montador e Linker

próprios, eliminando a dependência do GCC

para gerar o binário final.

Trabalhos Futuros

24

Mensagens Humanizadas

Diferente de compiladores industriais que priorizam

velocidade, o Micro Cprioriza a clareza. Ele explica o que deu

errado e por que, ajudando o iniciante a corrigir a lógica.

Análise com Feedback

Afases do front-end atua como um analisador

rigoroso, ensinando conceitos de Tipagem e Escopo antes

mesmo do programa rodar.

Futuro: Otimização Educativa

Aeliminação de CódigoMorto na IRnão apenas limpará o

binário, mas gerará alertas pedagógicos:

"Atenção: Ocódigo após o 'return' nunca será executado."

Transformar o compilador de uma ferramenta que apenas cospe binários em uma ferramenta

que ensina boas práticas.

int a = "texto";

PADRÃO (GCC)

warning:

initialization makes

integer from pointer

without a cast

Norma Técnica

MICROC(TUTOR)

Erro: Tipos
incompatíveis.
Esperado: INT
Encontrado:
STRING

Focono Aluno

Micro C: Uma Ferramenta para o Ensino

25

Democratizaçãodo
Conhecimento

Quebrar a barreira de entrada de

temas complexos como

Compiladores, tornando o

impossível acessível e

compreensível para qualquer

estudante.

EducaçãoAcessível

OMicro Ccumpre seu propósito

ao transformar a teoria abstrata

em prática tangível. Aprendemos a

programar não apenas usando,

mas construindo a ferramenta.

Contribuição Open
Source

Um compilador completo com

código-fonte aberto (GPLv3),

disponível para estudo,

modificação e evolução por

toda a comunidade.

“
Deixamos de ser apenas usuários de ferramentas para nos

tornarmos criadores delas.

Considerações Finais

26

Comparativo de Linhasde Código& Curvade Aprendizado

Inviável para ser didático

AsimplicidadedoMicro Cnãoéumafalta derecurso,

éoseumaior trunfopedagógico.

~4k
MICRO C

Leve o suficientepara ser lido, entendidoe

modificado em um único semestre.

LLVM

~35.5 Milhões

GCC

~15Milhões

AcessibilidadedoCódigo

Obrigado!

Perguntas?

	Slide 1: Micro C Um Compilador Acadêmico
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Fase 2 - Produto Final: A Estrutura Hierárquica
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Comparativo de Linhas de Código & Curva de Aprendizado
	Slide 28: Obrigado!
	Slide 29: Perguntas?

