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Abstract. This work investigates and validates the viability of Small Language
Models (SLMs) as a cost-effective alternative to Large Language Models (LLMs)
for automation tasks. In response to the high operational and computational
costs inherent in LLMs, the use of specialized SLMs is proposed, demonstrating
potential for optimizing resources. The objective of this project is to develop and
implement practical Artificial Intelligence agents using the low-code n8n plat-
form in conjunction with lightweight self-hosted models based on the Ollama
engine. The application aims to solve everyday problems in academic environ-
ments, but can be easily expanded to other scenarios.

Resumo. Este trabalho investiga e valida a viabilidade dos Pequenos Mode-
los de Linguagem (SLMs) como uma alternativa eficaz e de baixo custo aos
Grandes Modelos de Linguagem (LLMs) para tarefas de automação. Em res-
posta aos elevados custos operacionais e computacionais inerentes aos LLMs,
propõe-se o emprego de SLMs especializados, que demonstrem potencial para
otimizar recursos. O objetivo deste projeto é desenvolver e implementar agen-
tes de Inteligência Artificial práticos, utilizando a plataforma low-code n8n em
conjunto com modelos leves auto-hospedados baseados no motor Ollama. A
aplicação tem como objetivo a resolução de problemas cotidianos em ambi-
entes acadêmicos, mas que podem ser expandidos para outros cenários sem
dificuldades.

1. Introdução
O avanço da Inteligência Artificial (IA), especialmente com o desenvolvimento dos Gran-
des Modelos de Linguagem (LLMs), transformou o cenário tecnológico com sua im-
pressionante capacidade de resolver diversas tarefas cotidianas. Por exemplo, tarefas
como: transcrição de áudio para texto, tradução de idiomas, resumo de documentos
longos, criação de código de programação, são amplamente realizadas por modelos de
IA [Sakib et al. 2025].

Contudo, o sucesso dos modelos de grande escala gera custos significativos e
limitações práticas [Licardo and Tankovic 2025]. O treinamento e a operação de LLMs
demandam recursos computacionais consideráveis, incluindo infraestrutura especializada
e grandes volumes de dados [Sakib et al. 2025]. Por outro lado, existem ainda as desvan-
tagens relacionadas aos custos operacionais gerados pelo uso de serviços de API, a criação
de dependência de fornecedores (vendor lock-in), e crescentes preocupações em relação
ao uso excessivo de energia, água e carbono [Licardo and Tankovic 2025] . Devido à es-
cala massiva e os altos custos computacionais, o uso destas tecnologias na borda da rede



(escolas, faculdades, postos de saúde, etc.), os tornam pouco adequados para implantação
e uso, principalmente devido às restrições de acesso à Internet e problemas relacionados
à latência. [Rang et al. 2025, Nguyen et al. 2024, Sakib et al. 2025].

Uma solução que tem sido estudada na contramão da tendência de uso das LLMs,
são os Pequenos Modelos de Linguagem (SLMs) [Licardo and Tankovic 2025]. Esses
modelos não são tão inteligentes pois a quantidade de parâmetros e dados de treinamen-
tos usados em seu desenvolvimento é limitada. Contudo, os SLMs ganharam atenção
recentemente pela sua capacidade de executar diversas tarefas com recursos computacio-
nais mı́nimos [Sakib et al. 2025, Nguyen et al. 2024].

A existência de cenários que precisam destes tipos de aplicação, mas possuem
poder computacional limitado torna o uso de SLMs, ideais, principalmente para ambien-
tes envolvendo dispositivos móveis e sistemas de borda. Pesquisas mostram que mode-
los menores, quando especializados para um domı́nio, podem atingir desempenho com-
parável ou superior aos LLMs maiores e de propósito geral [Licardo and Tankovic 2025,
Sharma et al. 2024, Li et al. 2023]. Esta abordagem de adaptação ao domı́nio (DAPT)
resulta em uma proposta de valor atraente, com a capacidade de reduzir o Custo Total de
Propriedade (Total Cost Ownership - TCO), ou seja, a soma das despesas necessárias para
adquirir, operar e manter a tecnologia funcionando, em aproximadamente 90% a 95% em
comparação com os LLMs [Sharma et al. 2024].

Este trabalho tem como objetivo o desenvolvimento e a implementação de agen-
tes de IA [Russell and Norvig 2010, Wooldridge 2001] para execução de tarefas simples.
Para isso, será utilizada uma plataforma de automação com baixa produção de código
(low-code) n8n [n8n-io 2025], combinado com modelos leves como, por exemplo, mode-
los da famı́lia Qwen2.5.

Ao utilizar uma plataforma low-code, o alvo da implementação passa a ser a
resolução de problemas, simplificando a integração da lógica de IA com fluxos de trabalho
e sistemas de gerenciamento de processos de negócios, uma área de crescente importância
na ciência da computação [n8n-io 2025, Wooldridge 2001]. Além disso, o trabalho busca
fomentar a resolução prática de problemas complexos com SLMs, saindo do domı́nio
puramente teórico para o aplicado, e contribuindo para a democratização da IA.

Este trabalho está organizado da seguinte forma: a Seção 2 avalia os trabalhos
relacionados, fundamentando a arquitetura de agentes e a viabilidade dos SLMs. Em
seguida, a Seção 3 descreve os Modelos de Linguagem de Baixo Custo (SLMs) e a pla-
taforma de orquestração n8n que utiliza low-code. A Seção 4 detalha a implementação
e a Seção 5 os resultados dos agentes de automação desenvolvidos para os casos de uso
acadêmicos. Por fim, a Seção 6 apresenta a conclusão e os trabalhos futuros.

2. Trabalhos Relacionados

[Retamales et al. 2025], por exemplo, investigou a viabilidade de diferenciar automatica-
mente atendimentos de emergência de atendimentos de rotina. O estudo utilizou o mo-
delo Phi-3 sem treinamento especı́fico, ou seja, o modelo base, para analisar as narrativas
clı́nicas registradas por profissionais de saúde. A validação baseou-se em uma análise re-
trospectiva de 7.036 visitas, confrontada com um ‘padrão-ouro’ estabelecido por auditoria
médica manual em uma amostra estratificada de 384 casos. O modelo demonstrou alta



eficácia na classificação, apresentando sensibilidade de 99,4%, especificidade de 70,4% e
acurácia de 95,3% na detecção de urgências sintomáticas frente a demandas de rotina.

Por outro lado, [Fernandes et al. 2025] investigou a viabilidade de realizar o ajuste
fino supervisionado (Supervised Fine-Tuning - SFT) em modelos de linguagem menores,
especificamente o Llama 2:7B e o Llama 3:8B, para tarefas de raciocı́nio jurı́dico
no Multi state Bar Exam (MBE). O MBE é a fase de múltipla escolha do exame da ordem
dos advogados nos Estados Unidos. A metodologia utilizou um conjunto selecionado de
1.514 questões, cujas respostas foram refinadas pelo modelo Llama 3:70B para seguir
o IRAC, uma estrutura padrão de raciocı́nio jurı́dico que organiza a resposta em Problema
(Issue), Regra (Rule), Aplicação (Application) e Conclusão (conclusion). A validação
utilizou 200 questões do exame MBE de 2022 e avaliou os resultados usando acurácia e
a taxa de erros de parsing (falhas em seguir a formatação). Concluiu-se que o ajuste fino
supervisionado melhora, consideravelmente, a precisão, mesmo com poucos dados.

Em 2024, um segundo estudo [Labrak et al. 2024] comparou a eficácia de mode-
los baseados no Mistral 7B Instruct v0.1 em cenários relacionados à biomedicina. O
estudo comparou o desempenho do modelo base com suas variantes especializadas em
uma coleção de textos da literatura médica e otimizadas por meio de quantização. O ob-
jetivo principal do estudo foi avaliar a capacidade de generalização do modelo, tanto na
versão original quanto nas otimizadas. Para a validação, os autores estabeleceram um
benchmark contendo 10 tarefas de perguntas e respostas do domı́nio em questão. O de-
sempenho foi avaliado utilizando a acurácia como métrica principal, complementada pelo
Erro de Calibração Esperado (ECE) para medir a confiabilidade das predições e pelo ben-
chmark TruthfulQA para verificar a veracidade e a mitigação de alucinações nas respostas
geradas. O TruthfulQA, é um conjunto de testes projetado para induzir o modelo ao erro,
verificando se ele é capaz de distinguir fatos reais de mitos ou falácias, frequentemente
encontradas na Internet.

Por fim, [Chen et al. 2025] abordou o uso de SLMs para tarefas de navegação
robótica multiponto em dispositivos de borda, visando superar as limitações de latência
e privacidade das APIs de grandes modelos. A metodologia realizou um ajuste fino de
parâmetros para padronizar as saı́das em formato JSON com um módulo iterativo, cha-
mado de professor-aluno, onde um LLM robusto (GPT-4) atua como professor forne-
cendo prompts e feedback para refinar o raciocı́nio de SLMs menores, incluindo mode-
los como tau-0.5B, TinyLlama-1.1B, h2o-danube-1.8B e openllama-3B.
Para a validação, os autores conduziram experimentos tanto em simulação quanto em
ambientes do mundo real utilizando um robô guiado por um SLM para se deslocar por
corredores e ambientes complexos. Estes modelos não foram avaliados no trabalho pois
não são multi-linguagem.

3. Fundamentos e Conceitos
Modelos de Linguagem de Grande Escala (LLMs) fornecem desempenho de ponta em
tarefas de compreensão e geração de linguagem natural, no entanto, esse sucesso tem um
custo significativo. Os LLMs usam recursos, de forma intensiva, para treinar e execu-
tar seus modelos, exigindo muito esforço computacional e dados o que, frequentemente,
implica na necessidade de hardware especializado [Nguyen et al. 2024].

Por outro lado, as despesas operacionais, latência e altos custos dificultam a im-



plementação dos LLMs mais avançados em tarefas especializadas, como no comércio
eletrônico.[Licardo and Tankovic 2025]. Além disso, o consumo de energia desses mo-
delos de larga escala tem sido uma preocupação crescente do ponto de vista da IA res-
ponsável [Li et al. 2023]. Dessa forma, é crescente o interesse em Pequenos Modelos de
Linguagem (Small Language Models - SLMs) pois é uma resposta direta aos desafios de
uso dos LLMs.

Os SLMs visam manter a acurácia ou adaptabilidade dos modelos maiores ope-
rando sob restrições estritas de recursos, como hardware de treinamento ou inferência
limitada, largura de banda ou tempo de geração. A definição do que constitui um mo-
delo pequeno é flexı́vel, pois, dependendo do contexto, as classificações são atualizadas.
Por exemplo, o modelo GPT-2, com 1.5 bilhão de parâmetros, já foi classificado como
grande e hoje é menor do que muitos SLMs. O paradigma SLM também enfatiza a im-
portância da qualidade dos dados no treinamento. Modelos como o phi-1.5:1.3B
(1.3 bilhão de parâmetros) alcançaram desempenho comparável a modelos cinco vezes
maiores ao serem treinados em bases de dados de alta qualidade, o que ficou conhecido
como textbook-quality [Li et al. 2023]. Ou seja, o objetivo principal das SLMs é entregar
o máximo possı́vel, com a menor quantidade possı́vel de recursos computacionais.

3.1. Suas vantagens (eficiência, privacidade, custo) e desafios

A adoção de Pequenos Modelos de Linguagem (SLMs) oferece uma resposta prática aos
desafios de custo e escala dos LLMs. Contudo, essa abordagem envolve perda de precisão
(trade-off ) nas respostas. As seções a seguir exploram tanto as vantagens operacionais e
econômicas que os tornam viáveis, quanto os desafios técnicos e de desempenho inerentes
à sua capacidade mais restrita.

3.1.1. Vantagens

Os SLMs são cruciais para a acessibilidade e sustentabilidade da IA em ambientes com
recursos limitados [Australian Institute for Machine Learning (AIML) 2024]. Sendo as-
sim, alguns aspectos são muito importantes, por exemplo, a eficiência e implementação
em dispositivos (edge/on-device), ou seja, os SLMs são ideais para implantação em am-
bientes restritos, como dispositivos móveis, sistemas embarcados e dispositivos de borda
(edge systems), em que o uso de LLMs é impraticável devido às limitações de memória e
poder de processamento dos dispositivos.

Além disso, realizar o processamento localmente reduz o tempo de espera (latência)
que, neste cenário, significa quanto tempo demora para a primeira palavra da resposta ser
gerada. Em seguida, é observado o Custo Total de Propriedade (Total Cost Ownership
- TCO), que é o quanto custa usar um modelo para um domı́nio especı́fico. É possı́vel
diminuir o TCO de 90% a 95% em comparação com modelos de ponta de propósito ge-
ral, com os benefı́cios de custo se tornando mais evidentes à medida que a escala de
implantação se expande; Por fim, a privacidade, pois devido a necessidade de garantir a
privacidade dos dados, isso faz com que empresas ou setores crı́ticos da sociedade exijam
que os modelos sejam implantados em sua própria infraestrutura (on-premises), ou seja,
o uso de SLMs.



3.1.2. Desafios

Os SLMs, apesar de suas vantagens operacionais, enfrentam desafios crı́ticos relacionados
à sua capacidade e implantação. Por exemplo, eles não são capazes de raciocı́nio pro-
fundo, ou seja, em tarefas que exigem avaliação profunda das informações ou instruções
com várias etapas [Kim et al. 2025]. Geralmente, os SLMs são mais propensos a tarefas
baseadas em memorização e heurı́sticas simples.

Outro fator é a perda de precisão (trade-off ) e dependência de hardware es-
pecı́fico, o que significa que os ganhos de eficiência obtidos por meio de técnicas de
otimização, como a quantização1, estão ligados ao hardware e ao ecossistema de software
deste hardware. Por exemplo, a quantização GPTQ de 4 bits, embora tenha reduzido o
uso de VRAM (video RAM) em 41% em uma arquitetura de GPU mais antiga (NVIDIA
T4), resultou, de forma inversamente proporcional, em uma piora de 82% nas inferências
devido ao excesso de quantização [Licardo and Tankovic 2025].

Por fim, ainda existem os problemas éticos e de qualidade (alucinação/viés),
pois os SLMs enfrentam os mesmos problemas que existem nas LLMs, mas por possuı́rem
bases de dados menores ou precisão de parâmetros reduzidas, estão mais suscetı́veis a
alucinação2 e vieses. [Sakib et al. 2025].

3.2. Introdução a Automação Low-Code e a Arquitetura do n8n

Nesta Seção, iremos abordar a relevância das ferramentas low-code para a criação de flu-
xos de trabalho (workflows) e a automação de processos. A plataforma [n8n-io 2025]
combina a automação low-code com capacidades de Inteligência Artificial, permitindo
que o desenvolvimento se concentre na resolução de problemas utilizando blocos de
ações. Essa abordagem simplifica a integração da lógica dos SLMs com os fluxos de
trabalho, possibilitando que o projeto seja direcionado na implementação de agentes de
IA.

A Automação Low-Code (LCA) permite que o desenvolvimento de soluções com-
plexas seja realizado com mı́nimo esforço de codificação, utilizando interfaces visuais.
O n8n se insere neste contexto como uma ferramenta de automação de fluxo de traba-
lho que combina capacidades de IA com automação de processos de negócios. O n8n
adota o tipo de licença fair-code, ou seja, este modelo busca combinar a transparência do
código aberto, que permite a visualização e modificação, com restrições contratuais que
protegem o modelo de negócios do autor [n8n-io 2025].

O n8n opera sobre uma estrutura de workflows e nós. Ou seja, um workflow é defi-
nido como uma coleção de nós para automatizar um processo. Cada nó é um componente
individual que realiza uma tarefa especı́fica e quando estes nós são encadeados, geram um
fluxo de trabalho que realiza uma atividade. O n8n é uma plataforma moderna e utiliza os
dados organizados em JSON (formato de armazenamento de dados de forma hierárquica,

1Técnica de otimização que reduz a precisão dos parâmetros com o objetivo de tornar o modelo menor,
mais rápido e com menor consumo de memória. Em um modelo que utiliza parâmetros de 32 bits (FP32)
ou 16 bits (FP16) em ponto flutuante, esse valor é reduzido, usando quantização, para números inteiros de 8
bits (INT8) ou menos. Um modelo com FP32 convertido para INT8 pode reduzir em até 75% de tamanho.

2Geração de uma resposta que parece plausı́vel, mas que é incorreta, inventada, ou inconsistente com o
contexto.



como um dicionário) e permite otimizações utilizando linguagens como JavaScript ou
Python.

Contudo, o n8n não é apenas uma ferramenta para a criação de workflows simples,
ele permite o uso de nós especializados com integração com modelos de inteligência
artificial como por exemplo o ChatGPT [Openai 2025] ou o Ollama [OLlama 2025]. O
uso desses nós especializados, conhecidos como agentes, são diferentes das cadeias de
processamento de fluxos (quando um nó é encadeado com outro para realizar apenas
tarefas simples). Ou seja, enquanto uma cadeia segue uma sequência predeterminada de
chamadas, um agente usa um modelo de linguagem para determinar quais ações tomar,
atuando como um tomador de decisões, dentro um conjunto pré-determinado de escolhas.

Além disso, agentes são a única opção se o workflow precisa ter memória, ou seja,
precisa lembrar do contexto, o que é essencial para manter conversas contı́nuas e naturais
entre sistemas e usuários, por exemplo. Mas o n8n não está limitado apenas a cadeias ou
agentes, ele possui ferramentas que agem como extensões que podem adicionar, além de
contexto e memória, acesso a APIs de várias ferramentas públicas, bancos de dados ou
mesmo outras cadeias do próprio n8n, gerando fluxos de trabalho aninhados complexos.

4. Metodologia
Neste trabalho foram implementados quatro fluxos de trabalho com o objetivo de de-
terminar a capacidade e funcionalidade, na prática, de modelos SLM. Todos os fluxos
foram executados em um servidor Linux com Debian 12, kernel 6.1.0, Docker 29.0.2. O
Docker [Docker 2023], foi utilizado para permitir a simplificação da integração das fer-
ramentas e tornar as soluções implementadas portáveis entre sistemas. Além disso, as
SLMs foram executadas em uma placa NVIDIA Quadro P1000, com 4GB de VRAM,
com driver na versão 535.247.01 e o CUDA na versão 12.2.

A especificação dos drivers, e versões, é importante nesse cenário, pois a cada
nova versão, atualizações podem mudar os resultados obtidos. Além disso, todos os siste-
mas utilizaram suas versões em contêiner e o dispositivo NVIDIA foi utilizado utilizando
a técnica de passthrough de encaminhamento direto do hardware para o contêiner.

Como descrito anteriormente, foi utilizado o sistema n8n para criação dos fluxos
de tarefas em low code. Para hospedagem dos modelos de IA SLM, utilizou-se o OLlama.
O OLlama é responsável por hospedar e gerenciar o acesso às SLMs. Por exemplo, nele
foram instalados os SLMs:

Tabela 1. Modelos usados no trabalho
Nome Versão Qtd. de Parâmetros

Qwen 2.5 0.5B
Qwen 2.5 1.5B
Qwen 2.5 3B
Llama 3.2 1B
Llama 3.2 3B
Phi 3 3.8B

Neste cenário, o número n em nB, significa o número em bilhões de parâmetros.



Todos os modelos adicionados ao Ollama possuı́am menos de 4Gb para que fosse possı́vel
sua execução totalmente na VRAM da placa de vı́deo, reduzindo o gargalo de execução.
Contudo, o OLlama permite o uso de modelos maiores, segmentando uma fração do mo-
delo na memória RAM do computador e outra fração (até o limite da VRAM), alocado na
memória da placa de vı́deo. Essa fragmentação pode gerar um maior trade off ao gerar as
respostas do modelo as interações.

Contudo, a fim de testar o potencial de integração do n8n, foram utilizados dois
sistemas públicos: o Google Email e Agenda e o Telegram. O Google Agenda e o Gmail
foram utilizados como ferramentas-alvo (atuadores) para os agentes de agendamento e
verificação de trabalhos enviados (seu uso será detalhado nas seções seguintes).

Como o n8n possui suporte a nós para serviços como Google Agenda e Gmail, eles
podem ser usados diretamente nos workflows, ou usados como ferramentas que os agentes
de IA usam para realizar uma ações. De forma prática, um email pode ser enviado e isso
disparar uma ação de um nó no n8n que vai consultar o SLM, via OLlama, e determinar
se deve ou não agendar um compromisso ou responder ao email recebido.

Por outro lado, o Telegam foi utilizado para testar as funcionalidades de chatbot,
uma vez que sua API é gratuita e só precisa que um token seja gerado na ferramenta
deles para criação de um bot de interação com usuários. Ou seja, ele atua como um
canal de comunicação entre agentes, pois ele permite que o sistema (n8n) receba entradas
(comandos do usuário, atuando como sensor, e envie respostas aos agentes (operações de
chat ou callback). As seções a seguir serão divididas em cada uma dos quatro fluxos de
atividades que foram criados para testar e avaliar o uso do n8n e os modelos de SLM.

4.1. Casos de Uso

A fim de avaliar a capacidade de uma SLM em diversos cenários, foram definidos quatro
problemas e como seria possı́vel usá-las para solucioná-los. Contudo, antes de avançar
para os exemplos é necessário entender como funcionam os fluxos do n8n.

Figura 1. Sentido da execução de um fluxo no n8n.

A Figura 1 apresenta o fluxo de como os dados são processados. Embora seja
possı́vel ocorrerem bifurcações, no geral, eles sempre vão iniciar no nó mais a esquerda
até o nó final, mais a direita. Ou seja, o fluxo se inicia no nó de nome “When Executed
by Another Workflow”, que só é acionado por meio de um “gatilho” (trigger) e, após



iniciado, segue para o Agente de IA Information Extractor e assim suscetivamente, até
alcançar um nó terminal. O nó AI Agent atua como um orquestrador dentro do fluxo de
automação. Diferente dos nós convencionais que processam dados linearmente, o Agente
estabelece, dinamicamente, uma topologia estrela durante sua execução. Ao ser acionado,
o nó compila a entrada do usuário junto a uma instrução estrutural (System Message) e
envia esses dados via API para o modelo de linguagem (neste caso, o OLlama).

Em seguida, o modelo analisa a solicitação e determina se é necessária uma ação
externa. Caso isso seja verdadeiro, o Agente interrompe a geração de texto e aciona a
ferramenta (tool) correspondente. No contexto do n8n, essas ferramentas operam fre-
quentemente como subfluxos autônomos. Ou seja, o processamento é desviado para um
novo fluxo independente e, após a lógica do fluxo ser executada, o resultado é retornado
(output) ao nó do Agente. Com este retorno, o Agente consulta o modelo novamente para
sintetizar a resposta final. O ciclo encerra-se apenas quando o modelo julga que a tarefa
foi concluı́da, liberando o fluxo para prosseguir para o próximo nó.

Figura 2. Os nós não conectados no final indicam o fim de fluxo no n8n.

Nas Figuras 1 e 2 o fluxo poderá ser desviado em uma única bifurcação, o nó If,
onde a álgebra booleana determina o desvio do fluxo dependendo se a a condição for sa-
tisfeita (True) e, neste caso, a execução segue pela ramificação superior ou, caso contrário
(False), pela inferior, ativando sequencialmente os nós da rota selecionada. Ao atingir o
último nó da cadeia, o sistema consolida todos os metadados processados e filtrados em
um objeto JSON, que assume um comportamento distinto dependendo do contexto. Ou
seja, se este fluxo operar como um subfluxo (uma ferramenta do Agente), esse JSON é
retornado imediatamente ao nó principal para dar continuidade ao processamento da IA;
caso contrário, se for um fluxo independente, a execução se encerra.

4.1.1. Agendamento de Horário do Professor

O primeiro caso de uso foi o de geração de um fluxo capaz de avaliar a agenda de trabalho
de um professor e interagir com o usuário a fim de conseguir agendar reuniões dentro das
janelas pré-definidas. Neste cenário, o objetivo era que por meio de uma interação de
chat; informando dados como email, nome, e horário desejado; um acadêmico pudesse
requisitar o agendamento de forma automatizada em dias e horários pre-definidos, mas
sem causar colisão com outros agendamentos prévios.



Figura 3. Fluxo principal de execução do agente de agendamento de reuniões.

A Figura 3 mostra como o processo deve ocorrer. Primeiro, o acadêmico interage
com o chat. Ao realizar as requisições, o agente de IA interage com este aluno para
entender a sua demanda. Neste cenário, o agente de IA interpreta as solicitações em
linguagem natural, por exemplo, Quero marcar uma reunião com o professor semana
que vem. Para lembrar de interações anteriores ou salvar o estado de uma conversa uma
memória simples é utilizada (Simple Memory) e o agente de IA é vinculado a API do
OLlama.

Dentre os vários modelos de SLM disponı́veis, o modelo Qwen2.5:3B foi o que
se manteve mais assertivo entre as várias rodadas de execução e testes. Ele demonstrou
uma capacidade robusta em seguir as instruções da systemMessage (mensagens que
são utilizadas para instruir como a SLM deve se comportar), desde que elas sejam extre-
mamente claras e diretas como, por exemplo: Nunca pule nenhum passo. Uma vez que a
interação inicial foi realizada, o agente de IA usa as ferramentas disponı́veis (Tool). No
cenário descrito, foram definidas duas ferramentas: verificarDisponibilidade
e reservarHorario.

O desempenho esperado só foi atingido mediante o envio de diretrizes estritas e
livres de ambiguidade ao modelo via System Message. Além da objetividade, verificou-
se que os SLMs dependem de exemplos concretos para compreender corretamente os
cenários de uso das ferramentas e o fluxo de conversação. Esse conjunto de caracterı́sticas
define o que foi caracterizado neste trabalho como ‘prompts rı́gidos’, uma abordagem que
será utilizada na construção dos comandos nos próximos casos de uso.

A primeira ferramenta, verificarDisponibilidade, acessa a Agenda do
Google e verifica se no horário desejado já existe uma reunião prévia marcada ou não.
Em ambos os casos, a ferramenta reservarHorario só será invocada se existir um
horário disponı́vel. Como descrito anteriormente, o Qwen2.5:3B usa instruções simples
e diretas. No caso, a instrução completa definida foi: Só execute reservarHorario



Figura 4. Sub-Fluxo de Execução (Subworkflow) do Agente de agendamento de
reuniões VerificarDisponibilidade

após o aluno confirmar os dados. Além disso, o Agente usa a hora atual ( $now ) do
servidor como contexto extra.

Cada uma das ferramentas descritas são definidas, recursivamente, como subflu-
xos que são invocados pelo fluxo principal. A Figura 4 mostra o fluxo executado para
verificar os horários já agendados. O subfluxo é simples porque ele só retorna para o
fluxo principal os horários já ocupados no dia desejado e os horários disponı́veis futuros
(mecanismo de sugestão).

Por outro lado, o agendamento em si é um subfluxo bem mais complexo. A Fi-
gura 5 mostra os nós utilizados para validação e inserção de um novo agendamento para
o professor.

Figura 5. Sub-Fluxo de Execução (Subworkflow) do Agente de agendamento de
reuniões ReservarHorario

Uma vez que a ferramenta anterior retornou True para o contexto do acadêmico,
este subfluxo extrai as informações utilizando um nó Extractor Information vin-
culado ao OLlama, . A separação das informações não ocorre por regras simples de texto,



mas sim por meio da imposição de um esquema de dados (schema) ao modelo de lingua-
gem. O nó restringe a saı́da probabilı́stica do Modelo SLM a um formato estruturado pré-
definido (JSON) forçando o modelo a atuar como um extrator estruturado, transformando
a linguagem natural em um objeto JSON contendo estritamente os atributos: nome, email,
assunto e data e hora.

Após a extração, um nó condicional (If) realiza a validação dos dados, verifi-
cando se algum campo obrigatório retornou vazio ou nulo, nesse caso um objeto JSON
contendo {"resultado": false} será retornado. Se a validação for bem-sucedida,
o fluxo verifica uma última vez a disponibilidade no Google Calendar e realiza a inserção
do evento. Por fim, um objeto JSON com resultado true é retornado ao agente principal
que, ao receber esse retorno de sucesso no agendamento, devolve uma resposta positiva
ao acadêmico. Vale ressaltar que, neste fluxo, o primeiro nó do Google Calendar recupera
todos os horários da agenda alocados para a aplicação a partir do horário definido pela
IA. Dessa forma, o próximo nó do Google Calendar irá alocar uma reunião no próximo
horário livre.

Por fim, durante a fase experimental, observou-se que o p Agente de IA utilizado
pelo nó Information Extractor conseguiu ser mais estável na extração de saı́das
estruturadas e padronizadas do que o Agente de IA, mitigando erros de sintaxe e garan-
tindo a integridade dos dados ao longo das execuções.

4.1.2. Lista de Tarefas Seguindo Regras (Pomodoro)

O segundo problema foi criar um mecanismo para gerenciar atividades utilizando como
base a técnica Pomodoro [Cirillo 2018]. O objetivo era receber uma lista de tarefas e or-
ganizá-las em uma Agenda (neste caso foi utilizada a do Google), seguindo a metodologia
Pomodoro3 para a alocação de tempo.

A Figura 4 apresenta o fluxo de execução principal deste agente. O processo se
inicia com o recebimento de mensagens via Telegram (interação por meio de chatbot).
Como os modelos SLM são mais restritos, é necessário evitar o uso de caracteres fora do
padrão ASCII (como acentos e caracteres especiais). Dessa forma, ao receber a mensa-
gem via Telegram, é executado um código que normaliza o texto, ou seja, ele remove os
caracteres como acentos e caracteres especiais antes de enviar a mensagem para o modelo.
Nos testes realizados, isso reduziu alucinações e erros de avaliação do modelo.

Neste cenário, temos a atuação estrita do agente como como um Roteador de
Informações. Diferente de um chatbot, este agente foi configurado com uma System Mes-
sage objetiva e direta com o objetivo de analisar a entrada do usuário e direcioná-la para
a ferramenta (Tool) correta. As ferramentas disponı́veis, no caso desta automação, são
subfluxos para tarefas especı́ficas como: addTask (adicionar tarefas), getTaskList (vi-
sualizar a lista de tarefas), delTask (remoção de tarefas), changePriority (reordenar e
mudar a prioridade de uma tarefa) e None (uso genérico).

Quando o agente principal identifica uma entrada como uma tarefa a ser adici-

3A metodologia Pomodoro define que atividades devem ser realizadas em janelas de 25 minutos com
intervalo de 5 minutos durante quatro sessões e um intervalo de 20 minutos após essas quatro sessões, antes
da próxima.



Figura 6. Fluxo de principal do agente de gerenciamento de tarefas (Pomodoro).

onada, um JSON RAW (sem modificações) com a entrada do usuário é enviada para
a ferramenta addTask. Ao receber esse dado, por meio do nó Information Extractor
(usando o modelo Qwen2.5:3B), um esquema de dados JSON, que define os campos
estruturados da ação (como resumo da tarefa, prazo e prioridade), é usado para extrair a
descrição da tarefa da mensagem.

Em seguida, antes de inserir os dados da tarefa em uma planilha eletrônica (nó
Google Sheets), é realizado um processamento para recuperar as tarefas que já existem
nessa planilha. Neste momento, algumas decisões precisam ser tomadas. Ou a tarefa já
existe ou é ela é uma nova tarefa. Se a tarefa for nova, o fluxo é redirecionado para a
inserção de uma nova tarefa ao final da planilha eletrônica (Append row in sheet). Uma
vez que a nova tarefa foi adicionada na planilha, o subfluxo CompletaAgendaPomodoro
é invocado para encerrar a execução. Por outro lado, se a tarefa já existir, a saı́da é mais
simples, apenas informando ao usuário que uma tarefa com aquele nome já existe na
planilha, evitando duplicações de atividades.

Figura 7. Sub-Fluxo de Execução (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) ListarTarefas

Assim, quando o subfluxo CompletaAgendaPomodoro é invocado, ele reconstrói
a sequência de atividades da agenda conforme novas tarefas são adicionadas, retiradas ou
alteradas. No primeiro passo são recuperados todos as tarefas utilizando a API do Google
Calendar e Sheets. Em seguida, todas as tarefas que já foram executadas são removidas
da agenda.



Após os nós do tipo code transformar a lista de tarefas em uma lista numerada
(JSON), o cruzamento dos dados da lista de tarefas e do calendário ocorre no nó Merge
que unifica as tarefas a fazer e define as restrições como, por exemplo, os horários ocupa-
dos. Infelizmente, alguns tratamentos do n8n não são totalmente livres de programação.
Neste exemplo desenvolvido, foi necessária a implementação de um conversor utilizando
JavaScript.

A alocação das tarefas seguiu as seguintes restrições:

1. A alocação das tarefas deve ocorrer entre 09:00 e 17:00;
2. Não alocar tarefas entre 11:00 e 13:00 (horário de almoço);
3. Utilizar somente dias úteis;
4. Se o horário proposto colidir com um evento existente, o algoritmo avança para o

inı́cio da tarefa para o final desse evento conflitante;
5. Cada tarefa é alocada em um bloco de 30 minutos (25 minutos de foco + 5 minutos

de pausa), conforme a técnica Pomodoro.

Após o cálculo dos horários, os dados passam pelo nó fuso. Esta etapa de trata-
mento de dados é necessária para corrigir a formatação das strings de data geradas pelo
JavaScript, removendo milissegundos e garantindo que o fuso horário local (GMT-04)
seja, corretamente, utilizado. Por fim, o nó Google Calendar (Create an event) cria os
eventos na Agenda com o sufixo [POMODORO], permitindo fácil identificação visual.

Figura 8. Sub-Fluxo de Execução (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) CompletaAgendaPomodoro

Por outro lado, o subfluxo ApagaAgendaPomodoro começa realizando uma o-
peração getAll, que faz uma varredura na agenda do usuário. Essa busca (query) utiliza
uma restrição especı́fica para garantir que outros agendamentos não sejam alterados. Ela
busca, especificamente, pela string [POMODORO].



Uma vez recuperados os objetos dos eventos, o fluxo encaminha seus identifica-
dores únicos (IDs) para o nó subsequente, Delete an event. Este nó realiza a exclusão
iterativa de cada item listado. A existência deste fluxo de limpeza é pré-requisito para o
funcionamento da alocação, pois permite que a grade de horários seja recalculada do zero
a cada nova interação, evitando a duplicidade de tarefas e garantindo que a agenda esteja,
corretamente, no estado mais atual da lista de prioridades.

Figura 9. Sub-Fluxo de Execução (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) ApagaAgendaPomodoro.

Em seguida, no fluxo changePriority, um nó condicional If verifica se a me-
nagem recebida do fluxo principal inicia com “c/”. Em caso negativo, o subfluxo retor-
narListaTarefas é acionado e uma mensagem informando a maneira correta de trocar
prioridades é enviada ao usuário por meio do Telegram. Por outro lado, um nó de Código
lista numerada recebe a lista atual por meio do nó Google Sheets (operação Get row(s) in
sheet) e os ı́ndices fornecidos pelo usuário (ex: “c/ 1 2”), o nó transforma as tarefas em
uma lista numerada. No próximo passo, o nó trocarPrioridade realiza a troca de posições
na lista de acordo com sua numeração e os números recebidos na mensagem do fluxo
principal. Após isso, uma mensagem é enviada ao usuário pelo Telegram informando
que a troca de prioridades foi realizada. Com isso, o último passo é a tabela ser limpa
(Clear sheet), e uma nova lista de tarefas é adicionada na planilha (Append row in sheet),
finalizando a reconstrução do calendário.

Figura 10. Sub-Fluxo de Execução (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) ALterarPrioridade



O subfluxo delTask opera de maneira semelhante ao changePriority. Após o nó
IF verificar se a string recebida começa com r (ex: r/ 2 4). Se a resposta for negativa,
ele retorna uma mensagem ao usuário pelo Telegram. Caso contrário, converte o vetor de
tarefas original em um conjunto de números e usa esses números como filtro, excluindo
os itens selecionados e renumerando os remanescentes, sequencialmente. O fluxo segue
com uma mensagem no Telegram informando a exclusão da tarefa (ou tarefas) e, por fim,
o subfluxo CompletaAgendaPomodoro é invocado.

Figura 11. Sub-Fluxo de Execução (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) delTask

A outra ferramenta disponı́vel é a getTaskList que aciona o subfluxo Retor-
narListaTarefas. Ele atua como um mecanismo de feedback e recuperação de estado
para o usuário. Sua função é informativa, ou seja, ele é acionado quando o agente princi-
pal identifica a intenção de visualização (ferramenta getTaskList) ou quando algum outro
fluxo precisa retornar a lista de tarefas ao usuário. O fluxo começa com a recuperação da
lista de tarefas usando para isso o do nó Google Sheets na operação Get row(s) in sheet.

Dessa forma, quando os retornos são processados, eles são transformados pelo nó
Code que gera a saı́da para o nó do Google Sheets. Essa indexação fornece ao usuário,
tanto o estado da planilha, que funciona como um banco de dados, como os identificado-
res numéricos necessários para executar comandos subsequentes de manipulação, como
remover ou reordenar tarefas. Por fim, o nó Telegram recebe esta string tratada e a envia
ao usuário.

Figura 12. Sub-Fluxo de Execução (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) RetornarListaTarefas



Figura 13. Sub-Fluxo de Execução (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) None

Por fim, o subfluxo None atua como um mecanismo de tratamento de exceções e
interface de ajuda, sendo acionado quando o agente roteador não identifica um comando
de ação explı́cito (como adicionar ou remover tarefas). Ou seja, esse é o gatilho de fuga,
caso nenhuma ferramenta seja selecionada, qualquer que seja o motivo.

A Figura 13, possui dois estágios e ambas envolvem o uso de modelos SLM. No
primeiro estágio, o nó do agente de IA foi configurado com uma persona4 configurado
como um Assistente de Triagem de Diálogo. Neste primeiro estágio foi utilizado o mo-
delo Qwen2.5:3B. Este agente possui uma (System Message) estrita e sua função é
puramente analı́tica, ou seja, ele classifica a intenção da mensagem do usuário em catego-
rias pré-definidas (ex: saudação, pedido de ajuda, relato de erro, etc.) e gera uma resposta
padronizada em inglês, orientando o usuário sobre a sintaxe correta dos comandos dis-
ponı́veis no sistema.

Em seguida, o segundo estágio introduz o agente tradutor. Este nó recebe a res-
posta gerada pelo estágio anterior e utiliza um modelo diferente, o Llama3.2:3B, com
a tarefa, exclusiva, de realizar a tradução do texto de Inglês para o Português do Bra-
sil. Essa divisão de responsabilidades foi necessária pois, após testes empı́ricos, usar o
prompt do primeiro modelo em inglês era mais efetivo do que utiliza-lo em inglês.

Por fim, o nó Telegram envia a resposta traduzida ao usuário, fechando o ciclo de
feedback e garantindo que interações fora do escopo de execução sejam tratadas de forma
instrutiva e natural. Dessa forma, para algumas situações o uso de estratégias hı́bridas
entre múltiplos agentes de IA podem gerar melhores resultados.

4.1.3. Ler Documentos em Busca de Padrões de Interesse

O terceiro caso de uso foi realizar a “leitura” de um documento em PDF (no caso o
Boletim Diário da Universidade), por menções a pessoas (servidores, alunos) ou temas
especı́ficos (tipos de projetos, compra de equipamentos, etc.), evitando a necessidade de
leitura manual completa do documento para encontrar esses assuntos e, possivelmente,
informando ao usuário quando estes padrões ocorriam.

4Perfil de personagem que você atribui ao modelo para moldar o seu estilo de comunicação, personali-
dade, objetivos ou restrições e conjunto de habilidades.



A Figura 14 mostra o seu único fluxo de funcionamento. Ele implementa uma
arquitetura de processamento de documentos longos baseada em filtragem prévia, que
utiliza expressões regulares5 e sumarização generativa6. Este caso de uso, em especial,
devido a limitações do site que fornece o PDF a ser processado, exige o uso de um gatilho.
Esse gatilho ocorre por meio de um Telegram Trigger que espera o envio de um arquivo
(PDF do boletim diário) acompanhado de uma legenda. Esta legenda atua como a variável
de filtragem, contendo a palavra-chave de interesse.

Após a conversão do binário do PDF em texto pelo nó Extract from File, o fluxo de
dados entra em uma etapa de pré-processamento que é executada por três nós de código
consecutivos, visando contornar as limitações de janela de contexto dos SLMs.

Figura 14. Fluxo de Execução (Workflow) do Leitor de Documentos PDF.

O primeiro nó de código, pegar assunto, aplica as expressões regulares para seg-
mentar o texto contı́nuo em blocos lógicos de atos administrativos (iniciados pelo padrão
de data e termos especı́ficos). O algoritmo itera sobre esses blocos e descarta imedi-
atamente qualquer segmento que não contenha a palavra-chave fornecida pelo usuário,
reduzindo o volume de dados.

Em seguida, o nó pegar páginas realiza a extração dos metadados. Ele varre
os blocos filtrados em busca de marcadores de paginação e executa uma normalização
numérica, convertendo a string encontrada em números inteiros e aplicando um incre-
mento unitário (n+ 1) para corrigir a discrepância de indexação entre o texto extraı́do e
a visualização do PDF.

Além disso, antes de enviar o texto para a SLM, o nó limpeza aplica uma técnica
de otimização de inputs (entradas). Caso o texto exceda 2000 caracteres, um algoritmo de
truncagem preserva o cabeçalho (as primeiras 30 linhas), o rodapé (as últimas 10 linhas)
e uma janela de contexto ao redor da palavra-chave, descartando o meio irrelevante. Isso
assegura que o modelo Qwen2.5:3B, utilizado pelo nó Information Extractor, receba as

5Uma sequência de caracteres que define um padrão que pode ser utilizado para procurar textos.
6Processo de criar um resumo baseado em um texto de entrada.



Figura 15. Fluxo de Execução (Workflow) do Agente de Conferência de Trabalhos
Acadêmicos (Parte1).

informações essenciais para extração de dados e com o contexto necessário para entender
o assunto tratado, maximizando a precisão da sumarização.

Por fim, o fluxo itera sobre os resultados processados (Loop Over Items) e envia
um resumo estruturado para o usuário via Telegram, contendo o ato e a página de re-
ferência. Isso encerra o fluxo do caso de uso de busca de padrões em documentos muito
grandes, como são, por exemplo, os boletins de serviço, o diário oficial da união ou livros
em PDF.

4.1.4. Resposta Automatizada de Tarefas de Acadêmicos

O quarto problema foi o de receber os trabalhos de alunos por meio de uma conta de email
e realizar a conferência básica, ou seja, se foi enviado e se possui conteúdo pertinente
ao tema, etc. A solução deste problema utiliza um único fluxo e, por este motivo, se
tornou muito longo e difı́cil de ser retratado em uma única imagem. Desta forma, ele
foi em três partes (Figuras 15, 16 e 17) para melhor visualização e compreensão de seu
funcionamento.

O fluxo desenvolvido implementa uma arquitetura de monitoramento ativo, dife-
rindo dos agentes anteriores que operavam por gatilhos de eventos diretos. A execução é
regida pelo nó Schedule Trigger, configurado para despertar o sistema em intervalos regu-
lares de 10 segundos, garantindo a verificação quase em tempo real de novas submissões
a uma conta de email do Gmail.

O processamento começa por meio do nó Get many messages, que consulta a
API do Gmail filtrando mensagens não lidas com o assunto ”[checkbot]”recebidas
nas últimas 24 horas. O fluxo segue para uma verificação usando um nó if verificar se
possui anexo, que inspeciona o cabeçalho MIME (multipart/mixed). Caso o e-mail
não contenha anexo, o sistema desvia para um fluxo de rejeição (mensagem de erro sem
anexo), notificando o aluno imediatamente.

Confirmada a presença do arquivo, condição true do o nó if verificar se possui
anexo, o nó Get a message realiza o download do binário em anexo ao email, que é



Figura 16. Fluxo de Execução (Workflow) do Agente de Conferência de Trabalhos
Acadêmicos (Parte2).

convertido em texto plano pelo nó Extract from File. Em seguida, o nó Code1, que recebe
um JSON, tanto com o conteúdo do email quanto com o texto do binário, isola a primeira
linha do texto como sendo o metadado “Nome do Aluno”e concatena o restante como o
“Corpo do Trabalho”. Sabe-se que a primeira linha contém o nome do aluno pois essa
formato de email, em tese, seria padronizado anteriormente.

Paralelamente, o sistema carrega a lista de alunos da planilha por meio dos nós
Get row(s) in sheet e listadenomes, formatando essa saı́da como um vetor para a busca.
O nó AI Agent2, impulsionado pelo modelo Qwen2.5:3B, recebe o nome extraı́do do
PDF e a lista de classe. Sua função é a encontrar o aluno na lista e retornar estritamente o
número da linha (RowNumber) correspondente na planilha, caso o nome se encontre na
lista.

Após passar pelo primeiro agente, um nó condicional verifica se o agente anterior
retornou um número inteiro válido (via Regex ˆ[1-9]\d*$), ele fará isso caso o nome
do aluno esteja na lista de alunos, ainda, em caso positivo, o email do aluno é armazenado
na planilha do Google sheets, que serve como banco de dados. Se falhar, o fluxo encerra
enviando um e-mail de “Aluno não identificado”. Se for bem-sucedido, o fluxo avança
para a análise qualitativa.

Nesta etapa, o nó AI Agent (verifica o conteúdo) utiliza o modelo Llama3.2:3B



para realizar uma validação cognitiva. Ele compara o texto do corpo do trabalho (extraı́do
no passo 2) com um tópico de referência injetado pelo nó Assunto do trabalho Javascript.
O modelo retorna um booleano (true/false) indicando se o conteúdo do documento
corresponde ao tema exigido.

Antes de aplicar a lógica de decisão, o sistema necessita localizar o registro exato
do aluno no banco de dados para atualização pois, a partir desse ponto, teremos o JSON
retornado pelo último agente de IA que será necessário para integrar ao JSON gerado a
partir do ponto referente ao aluno que enviou o email processado pelo workflow.

Em seguida, o nó Get row(s) in sheet1 utiliza o ı́ndice da linha (RowNumber),
identificado previamente pelo primeiro agente de IA, para recuperar o estado atual do
aluno na planilha. Em seguida, o nó Code2 atua como um normalizador de dados, inje-
tando metadados auxiliares no objeto JSON para garantir que a estrutura de dados esteja
sincronizada antes de entrar no nó condicional, garantindo que o nó condicional subse-
quente (If) receba uma entrada única e válida contendo os metadados do aluno, preve-
nindo erros de iteração ou perda de referência durante o cruzamento de dados entre ramos
paralelos

Figura 17. Fluxo de Execução (Workflow) do Agente de Conferência de Trabalhos
Acadêmicos (Parte3).

O nó If atua como o portão lógico do sistema. Ele avalia a saı́da booleana gerada
pelo agente de análise semântica anterior. Se o valor de saı́da for estritamente igual a
“true”, o fluxo segue para o ramo de aprovação; caso contrário, desvia para o ramo de
rejeição/alerta.

Caso o trabalho esteja em conformidade com o tema o nó Append or update row in
sheet executa uma operação de Update. Ele marca a coluna “Entregue”como “OK”e, cru-
cialmente, valida a coluna “Conteúdo”também como “OK”, sinalizando que a submissão
foi aceita automaticamente.

Na sequência, o nó Trabalho recebido utiliza a API do Gmail para disparar um



email transacional ao aluno, confirmando o recebimento e a validação preliminar do do-
cumento.

Caso o conteúdo divirja do tema proposto o nó Code realiza uma sanitização do
objeto de dados para garantir que as variáveis de email e nome estejam acessı́veis para os
nós subsequentes de erro.

Em seguida, o nó Conteudo com problema envia um e-mail de alerta ao aluno
com o assunto “Aviso sobre o conteudo”, informando que, embora o arquivo te-
nha sido recebido, o conteúdo aparenta estar incorreto. nó Append or update row in sheet1
atualiza a planilha registrando o recebimento (“Entregue”: “OK”), mas marca as colunas
qualitativas com indicadores de atenção (ex: “Conteúdo”: “?”ou “Ver conteúdo”), aler-
tando o docente para uma revisão manual posterior.

5. Resultados
Esta Seção faz um sumário dos resultados obtidos pela implementação dos quatro meca-
nismos de automação propostos no trabalho, detalhando situações adicionais que ocorre-
ram durante sua implementação e testes.

Agendamento de Horário do Professor:

O agente obteve sucesso na maioria dos casos. Em testes práticos, o sistema conseguiu
interpretar solicitações em linguagem natural (ex: Quero marcar uma reunião com o pro-
fessor na semana que vem), consultar os horários disponı́veis na Agenda do Google, apre-
sentar as opções ao usuário e, após a confirmação, criar o evento com os dados corretos do
acadêmico. O modelo Qwen2.5:3B demonstrou capacidade para seguir as instruções
corretamente, desde que elas fossem extremamente claras e diretas como, por exemplo,
Nunca pule nenhum passo.

Lista de Tarefas Seguindo Regras (Pomodoro):

O agente de roteamento funcionou bem na maioria dos casos. O modelo Qwen2.5:3B
conseguiu diferenciar, com sucesso, a maioria das entradas de diálogo comuns (tratadas
pelo sub-workflow None) de comandos de tarefa. Tarefas enviadas foram corretamente
adicionadas ao Google Sheets e, subsequentemente, o sub-workflow de agendamento
(CompletaAgendaPomodoro ) preencheu a Agenda do Google do usuário com os blocos
Pomodoro. Quanto mudança de prioridade, após vários testes, ficou claro que entradas
do tipo (c/) para mudança e (r/) para remoção funcionaram de forma adequada por serem
simples de serem compreendidas pelo modelo SLM utilizado.

Ler Documentos em Busca de Padrões de Interesse:

O modelo demonstrou eficácia no monitoramento de padrões de interesse. Nos testes,
ao enviar um boletim em PDF com a string “Professor Fulano”(ou apenas o sobrenome
“Sicrano”), o workflow sintetizou o documento de centenas de páginas em alguns poucos
blocos relevantes que mencionavam o nome. O Information Extractor (Qwen2.5:3B)



conseguiu ler os blocos filtrados e retornar um resumo preciso do que se tratava o texto,
por exemplo, Portaria de designação para comissão ou Convocação para reunião e a
página exata da menção. A combinação de filtragem por código e extração por IA foi
capaz de sintetizar o documento. Além disso, embora não implementado, poderia gerar
gatilhos de aviso ao usuário quando o termo desejado aparecesse no documento.

Resposta Automatizada de Tarefas de Acadêmicos:

O sistema automatizou com sucesso o processo de conferência do envio de atividades
acadêmicas. O Agente 1 (Qwen2.5:3B) demonstrou capacidade de identificar cor-
retamente os alunos, mesmo com pequenas variações no nome, na grande maioria das
vezes. Por outro lado, o Agente 2 (Qwen2.5:3B) conseguiu diferenciar, semantica-
mente, trabalhos que estavam dentro do escopo da atividade (True) de trabalhos fora do
tema (False), por exemplo, um trabalho cujo escopo é “Implementação de uma Árvore
AVL”, não deve receber um trabalho cuja resolução é a implementação do BubbleSort.
O workflow também conseguiu, corretamente, atualizar a planilha de controle e envio de
email de confirmação ou aviso ao aluno.

5.1. Modelos SLM Utilizados
A comparação entre os Pequenos Modelos de Linguagem utilizados como motor do
agente de IA nos workflows de automação, tinha como objetivo a redução do trade-off
entre a capacidade de compreensão, acurácia das respostas e eficiência computacional
em hardware de baixo custo. Por exemplo, o Llama 3.2:3B, embora eficiente em
conversação, demonstrou dificuldades significativas no uso das ferramentas (tools) pelo
agentes, com suas versões 1B e 3B apresentando nı́veis elevados de alucinação e inviabi-
lidade prática. Por outro lado, o Phi 3:3.8B) não foi suportado pelo hardware, pois
seu custo operacional (VRAM) e o tempo de inferência foram demasiadamente longos.
Como o n8n tem um timeout de no máximo 10 minutos, este modelo não atendeu aos
requisitos mı́nimos.

Por outro lado, a famı́lia de modelos Qwen 2.5 apresentou o melhor trade-off.
Por exemplo, a versão 0.5B teve baixo desempenho, sendo incapaz de usar ferramentas e
erros frequentes no JSON de saı́da. Já a versão 1.5B teve uma melhora, mas ainda falhou
na avaliação de fluxos de trabalho complexos. Por fim, a versão 3B teve os melhores
resultados, apresentando um bom balanço entre a eficiência computacional (mantendo-
se dentro dos limites do hardware) e a capacidade de realizar as tarefas, compreendendo
entradas (inputs), utilizando ferramentas de forma confiável (saı́da esperada) e gerando
os resultados de forma estruturada e correta.

5.1.1. Resultados do uso de Linguagem Natural pelos Modelos

As Tabela 2 3 e 4 apresentam os resultados dos testes de processamento de linguagem
natural. As três mensagens a seguir foram enviadas para a automação do Pomodoro:

• “Apagar a luz da cozinha antes de dormir” (Texto 1),
• “Preciso que você anote uma coisa para mim” (Texto 2)
• “Bom dia, não esqueça de comprar leite” (Texto 3).



Tabela 2. Comparação de saı́da dos modelos ao receberem a entrada do Texto 1.
A saı́da com estado OK, representa o resultado correto e esperado e Erro, caso
contrário.

Modelo Resposta ao Texto 1 Estado

Qwen 2.5:0.5B

>"tool": "changePriority",

"argument":

"c/ 1 6"

Erro

Qwen 2.5:1.5B
"tool": "addTask",

"argument": "pagar a luz..."
Erro

Qwen 2.5:3B
"Apagar a luz..."

{"r/ 2"}
Erro

Llama 3.2:1B
"type":"func",

"func":{"name":"None"...}
Erro

Llama 3.2:3B ["apagar a luz da cozinha..."] OK

Tabela 3. Comparação de saı́da dos modelos ao receberem a entrada do Texto 2.
Modelo Resposta ao Texto 2 Estado

Qwen 2.5:0.5B
"tool": "addTask",

"arguments": "preciso que voce anote..."
Erro

Qwen 2.5:1.5B
"tool": "addTask",

"argument": "preciso que vc anote isso"
Erro

Qwen 2.5:3B "anote uma coisa" OK
Llama 3.2:1B "Preciso que voce anote uma coisa para mim" OK
Llama 3.2:3B "Preciso que voço anotar uma coisinha..." Erro

Em cada coluna das tabelas são observadas a resposta do modelo ao texto corres-
pondente. Ou seja, a linha para o modelo Qwen 2.5:0.5B para a coluna Resposta ao
Texto 1, representa a resposta do modelo a entrada de Texto 1. Em seguida, a coluna Es-
tado, apresenta o resultado avaliado por um ser humano, se a saı́da foi correta em relação
ao contexto (OK), ou cometeu um erro (Erro). O Erro, neste caso, significa que o modelo
alucinou ou não teve a saı́da esperada.

Tabela 4. Comparação de saı́da dos modelos ao receberem a entrada do Texto 3.
Modelo Resposta ao Texto 3 Estado
Qwen 2.5:0.5B "fazer a lista de compras" OK

Qwen 2.5:1.5B
"tool": "addTask",

"argument": "comprar leite"
Erro

Qwen 2.5:3B "comprar leite" OK
Llama 3.2:1B "’’" Erro
Llama 3.2:3B "comprar leite" OK



A seguir avaliamos a capacidade dos modelos Llama 3.2:3B e Qwen 2.5:3B
ao processar linguagem natural (PLN) em cenários de chat, variando entre solicitações
formais, informais e contextos emocionais. O objetivo foi a proximidade de um res-
posta humana e a coerência do modelo em relação aos textos de entrada fornecidos pelos
usuários. Os outros modelos foram desconsiderados pois suas saı́das foram consideradas
robotizadas (Tabela 5).

Texto 1 (Input): “Bom dia, gostaria de marcar uma reunião”

Llama 3.2:3B> “Olá! Eu sou João, assistente do professor. Você gostaria
de marcar um horário de reunião? Você tem alguns horários disponı́veis: 2025-12-
09T16:00... [Lista de datas]. Qual é o horário que prefere?”

Qwen 2.5:3B> “Olá! Eu sou João, assistente do professor. Você gostaria de
marcar um horário de reunião?”

Texto 2 (Input): “Vê se consegue encaixar uma call rapidinho pra mim hoje.”

Llama 3.2:3B> “Olá! Eu sou João, assistente do professor. Você gostaria de
marcar um horário de reunião?”

Qwen 2.5:3B> “Olá! Eu sou João, assistente do professor. Você gostaria de
marcar um horário de reunião?”

Texto 3 (Input): “Cheguei em casa moı́do do trabalho e ainda tenho que lavar a louça.
Ninguém merece.”

Llama 3.2:3B> “Certo, fico à disposição caso precise. Tenha um ótimo dia!”

Qwen 2.5:3B> “Peço desculpas por sua situação de hoje, mas parece que você
está ocupado. Vamos agendar sua próxima reunião com o professor. Olá! Eu sou João,
assistente do professor. Você gostaria de marcar um horário de reunião?”

A análise comparativa revela uma distinção significativa na qualidade das respos-
tas dos dois modelos. O Llama 3.2:3B demonstrou ser consistente no processamento
de linguagem natural, exibindo proatividade ao buscar dados de agenda quando solici-
tado (Texto 1) e inteligência contextual ao encerrar polidamente a conversa diante de um
desabafo (Texto 3).

Por outro lado, o Qwen 2.5 apresentou um comportamento mecânico, respostas
redundantes, além de dificuldades severas em manter a coerência do fluxo de diálogo.
Portanto, para interfaces de chat que exigem naturalidade e robustez lógica, o modelo
Llama 3.2 se mostrou ser a solução mais adequada.

5.2. Avaliação dos Modelos

A Tabela 5 apresenta uma comparação empı́rica de testes realizados entre os modelos:
Llama 3.2:1B, Llama 3.2:3B, Qwen 2.5:0.5B, Qwen 2.5:1.5B e Qwen
2.5:3B. O modelo Phi 3:3.8B, foi desconsiderado, mesmo ele, aparentemente, usando
o máximo limite da VRAM do hardware, suas respostas excediam o tempo máximo limite
de espera do n8n.



Tabela 5. Dados obtidos nos testes práticos de automação e agendamento em
relação aos modelos de SLM disponı́veis no repositório do OLlama e que não
ultrapassavam o limite de uso da memória VRAM da placa de vı́deo.

Critério Llama 3.2:1B Llama 3.2:3B Qwen 2.5:0.5B Qwen 2.5:1.5B Qwen 2.5:3B

Objetivo Não Sim Não Sim Sim
Consistência - Baixa - Média Alta

Qtd. Aluc. Alta Média Alta Média Baixa
Grau Aluc. Crı́tico Crı́tico Crı́tico Crı́tico Moderado

Tools Falha Não confiável Falha Não confiável Confiável
Chat Bom Fluido/Natural Ruim Direto/Robótico Direto/Robótico
Uso Conversação Conversação Não recomendado Não recomendado Uso na extração de texto

Prompt Baseado em Persona Baseado em Persona Rı́gido Rı́gido Diretivo, claro e curto

É possı́vel observar na Tabela 5 que, em termos de objetivo, os modelos foram
classificados como: sim, quando ele completou o fluxo de trabalho com sucesso e não,
caso contrário. Com relação a consistência, os modelos foram classificados como: alta,
se acertou corretamente as execuções repetidamente, média, se apresentava erros ocasio-
nais gerando instabilidade nas respostas, baixo, se o sucesso era caso isolado ou –, quando
o modelo sempre falhava.

Por outro lado, com relação a Quantidade de Alucinações (Qtd. Aluc.), ou seja,
a quantidade de vezes que o modelo gerava respostas falsas ou erros de lógica, os mode-
los foram classificados como: alta se o modelo tinha alucinações constantes, média se,
ocasionalmente, era necessária intervenção e verificação humana em relação as respostas
e baixa se os erros eram raros e o ı́ndice de precisão satisfatório. Na mesma linha, o Grau
de Alucinação (Grau Aluc.) classifica a severidade do erro cometido. Essa classificação
pode ser: crı́tica, quando o erro quebra a estrutura (ex: JSON inválido) ou impede a
continuidade do fluxo ou moderado, quando o formato está correto, mas o conteúdo da
resposta é impreciso ou parcialmente incorreto, exigindo filtragens adicionais.

Por fim, do ponto de vista operacional em relação a integração com o n8n, os mo-
delos foram categorizados pela sua capacidade de uso como Tool, Chat, caracterı́stica de
Uso do modelo e tipo de Prompt utilizado para instruir o modelo nas interações. Com
relação ao uso como Tool, os modelos foram classificados como confiável, ou seja aciona
a ferramenta correta com os parâmetros certos de forma consistente, não confiável, pois
tenta utilizar usar as ferramentas, mas erra os parâmetros ou o momento de uso, de forma
frequente e, por fim, falha, por não conseguir usar as ferramentas corretas no momento
correto ou ignora o seu uso. Com relação ao Chat apenas determina a capacidade de
conversação em linguagem natural, o Uso, qual a melhor utilização do modelo e, final-
mente, o Prompt, determina como devem ser parametrizadas as informações para que o
modelo funcione corretamente.

5.2.1. Problemas encontrados

O desenvolvimento da solução não seguiu um caminho linear, o percurso até a definição
de configurações e organização dos fluxos de trabalho ideais foi marcado por iterações e
ajustes forçados por limitações práticas. A busca pelo equilı́brio (trade-off) entre eficiência
operacional e precisão nas respostas trouxe à tona problemas crı́ticos, especialmente, com
relação à tendência de alucinação em modelos compactos e à inconsistência ao tratar



instruções (cadeias de comandos) complexas. Na próxima Seção serão discutidas as difi-
culdades encontradas e como cada uma impactou as decisões de design dos sistemas.

5.2.2. Limitações da Janela de Contexto e Estratégias de Mitigação

Uma das restrições técnicas mais severas impostas pelo hardware de baixo custo (NVI-
DIA Quadro P1000) foi a limitação da janela de contexto a 2048 tokens. Durante os testes,
constatou-se uma correlação direta entre a densidade de informação fornecida na entrada
(input) e a taxa de erro. Ou seja, quanto maior a quantidade de texto inserido na janela de
contexto, maior a probabilidade de todos os modelos testados apresentarem alucinações
ou falharem na lógica de raciocı́nio.

Para contornar essa limitação fı́sica e cognitiva dos modelos, a arquitetura dos
fluxos de trabalho (workflows) foi organizada para priorizar a atomicidade das tarefas.
Buscou-se exigir dos agentes ações simples e, extremamente, objetivas, fornecendo ape-
nas o fragmento de informação estritamente necessário para aquela etapa especı́fica, mi-
nimizando o ruı́do.

Um exemplo prático dessa estratégia foi a implementação do Ler Documentos
em Busca de Padrões de Interesse. Devido à impossibilidade de processar documentos
extensos de uma única vez dentro do limite de 2048 tokens, foram utilizadas técnicas de
programação estruturada para realizar uma pré-segmentação do arquivo. O documento
foi segmentado em blocos menores baseados em palavras-chave antes de ser submetido
à inferência do modelo. Dessa forma, a IA atuou apenas na análise semântica de trechos
curtos, reduzindo a carga de contexto e, consequentemente, a incidência de alucinações.

Além disso, a Engenharia de Prompt também precisou ser adaptada. As instruções
(System Messages) foram refinadas para serem extremamente objetivas, curtas e livres de
ambiguidade, garantindo que o pouco espaço disponı́vel na janela de contexto fosse utili-
zado para processamento de dados úteis e não desperdiçado com instruções que poderiam
confundir os modelos menores.

5.3. Descartando o uso de RAGs e Limitações de Embedding

Uma técnica muito utilizada com LLMs são os fluxos de trabalho baseados em Retrieval-
Augmented Generation (RAG). Ou seja, modelos que usam bancos de dados vetoriais
para armazenar informações e responder, rapidamente, a perguntas com contexto.

Infelizmente, devido às restrições de hardware, foi necessário limitar o uso a ape-
nas mecanismos de embedding (ferramentas de separação de palavras e textos curtos),
como o snowflake-arctic-embed:22m. Testes práticos, contudo, revelaram que este mo-
delo, devido ao seu tamanho reduzido, não foi capaz de capturar nuances semânticas
complexas da lı́ngua portuguesa. Essa deficiência gerou um impasse insolúvel relacio-
nado à janela de contexto limitada a 2048 tokens por dois motivos. Primeiro, em cenário
de alta recuperação, tentou-se compensar a baixa precisão do embedding buscando um
número maior de fragmentos (chunks) do banco de dados. O problema ocorreu por que
a quantidade de texto excedia, rapidamente, o limite da janela de contexto, impedindo o
processamento pelo modelo. Segundo, em cenário de baixa recuperação, pois ao reduzir
a quantidade de chunks (pedaços) de texto enviados (para respeitar o limite de memória),



a baixa qualidade vetorial fazia com que os poucos fragmentos retornados fossem irre-
levantes ou desconexos em relação ao contexto fornecido pelo usuário. Isso introduzia
ruı́do no prompt, levando o modelo a gerar alucinações baseadas em premissas falsas.

Diante desse cenário, a implementação do RAG foi considerada inviável para a
configuração de hardware proposta, optando-se pelo uso de programação estruturada para
segmentação de contexto estático.

5.3.1. Limite de tempo de execução do n8n

Em uma tentativa subsequente de viabilizar a arquitetura RAG, buscou-se superar a baixa
precisão semântica substituindo a primeira versão do modelo snowflake de entrada
pela versão snowflake-arctic-embed2:568m. Reconhecendo que este modelo
excedia a capacidade de memória de vı́deo (VRAM) do hardware disponı́vel, a estratégia
adotada consistiu em transferir a carga de trabalho para a CPU. O objetivo era realizar o
povoamento (ingestion) do banco de dados vetorial aceitando um tempo de processamento
elevado, sob a premissa de que a lentidão inicial seria compensada pela disponibilidade
posterior de vetores de alta qualidade para os agentes.

No entanto, essa abordagem encontrou restrições operacionais da plataforma n8n,
especificamente, a sua janela de tempo de execução (execution timeout). O processa-
mento intensivo (via CPU) necessário para gerar embeddings com o modelo de 568M de
parâmetros, elevou a latência do fluxo, fazendo com que as execuções ultrapassassem,
sistematicamente, o limite padrão de 10 minutos.

Foram realizadas extensas tentativas de mitigação técnica para contornar este blo-
queio. Por exemplo, foi realizada uma reconfiguração de variáveis de ambiente no Doc-
ker visando estender os parâmetros de timeout do contêiner. Apesar dos esforços, não
foi possı́vel superar a interrupção forçada dos processos pelo orquestrador. A impossi-
bilidade técnica de processar modelos de embedding robustos dentro da janela de tempo
disponı́vel, somada à incapacidade de alocação em VRAM, tornou a implementação de
um RAG inviável para os problemas definidos neste trabalho.

5.3.2. Perda de Capacidade de Tool Use em Modelos Quantizados

Visando maximizar a eficiência do hardware, explorou-se a utilização de modelos quan-
tizados disponı́veis nativamente na biblioteca do OLlama. O objetivo era utilizar versões
compactas (ex: q4 k m) para reduzir o uso de memória. No entanto, durante a fase de
validação, identificou-se uma limitação funcional nessas versões especı́ficas, ou seja, a
ausência ou degradação da capacidade de Tool Use (ou Function Calling) quando os mo-
delos estavam quantizados.

Os testes demonstraram que, embora esses modelos sejam capazes de interagir
com o usuário por meio de um chat de texto, mimetizando linguagem natural, eles eram
incapazes de retornar um JSON estruturado da forma correta para ser enviado às ferra-
mentas externas. O modelo falhava em reconhecer a instrução, input, necessária para usar
uma ferramenta ou, em outros casos, não gerava o JSON com a sintaxe correta para a
integração.



E, uma vez que a arquitetura de agentes autônomos proposta neste trabalho de-
pende, estritamente, da capacidade do modelo de agir sobre o ambiente por meio de
ferramentas, os modelos quantizados que apresentaram essa deficiência foram conside-
rados inadequados para o escopo da automação, restringindo a seleção aos modelos que,
comprovadamente, suportavam a orquestração de tools.

6. Conclusão
Este trabalho implementou e validou vários fluxos de execução de atividades utilizando
Pequenos Modelos de Linguagem (SLMs), em contraste ao uso de Grandes Modelos de
Linguagem (LLMs), no contexto de execução de operações em ambientes com uso de
hardware com poder computacional restrito. Ou seja, o objetivo era criar soluções de
baixo custo e alta eficiência para automação de problemas utilizando plataformas de low-
code (como o n8n) e placas de vı́deo simples, com não mais do que 4Gb de VRAM (como
a NVIDIA Quadro P1000 utilizada nos experimentos).

Os resultados demonstraram que os agentes de IA desenvolvidos foram capa-
zes de resolver problemas práticos como, por exemplo, o agendamento de reuniões com
acadêmicos ou o monitoramento de documentos buscando por strings especı́ficas, todas
essas soluções recebendo instruções simples em linguagem natural. Foi possı́vel verifi-
car que os modelos foram capazes de utilizar as tools (ferramentas) disponibilizadas nos
workflows do n8n de forma eficaz, acionando sub-workflows para, por exemplo, consultar
a Agenda do Google ou interagir com planilhas eletrônicas, quando necessário.

Contudo, os prompts utilizados com os modelos foram mais importantes do que
era esperado. Foi necessário quebrar as etapas de resolução dos problemas em pedaços
bem pequenos. Isso permitiu que o agente recebesse instruções diretas e objetivas, garan-
tindo que a tarefa fosse executada corretamente. Ou seja, o limite de mensagens que uma
SLM consegue processar são baixos, então as instruções devem ser curtas, principalmente
pelo limite de 2048 tokens de texto.

Além disso, foi necessária programação adicional para permitir que os modelos
conseguissem tratar os problemas corretamente. Ou seja, os agentes trabalharam em con-
junto com códigos de programação para filtrar e formatar dados e saı́das, para garantir a
lógica do processo. Isso acabou criando um sistema hı́brido eficiente.

Por outro lado, na avaliação comparativa, o modelo Qwen 2.5:3B foi o que se
destacou em todos os cenários práticos. Ele apresentou o melhor balanço entre eficiência
computacional e a capacidade de seguir instruções complexas e utilizar ferramentas de
forma confiável. Ou seja, os modelos SLMs são capazes de resolver problemas caso os
comandos enviados a eles sejam simples e as instruções diretas e objetivas.

A vantagem dessa arquitetura é que os modelos se destacam frente à programação
comum, pois podem tomar decisões em cenários onde cada condição possı́vel precisaria
ser pensada e codificada (por exemplo, estruturas condicionais complexas, como cadeias
de IFs para interpretar a variabilidade da intenção do usuário).

Como conclusão deste trabalho, é possı́vel afirmar que usar os modelos SLMs,
quando orquestrados corretamente em plataformas low-code como o n8n, pode resolver
problemas especı́ficos com um baixı́ssimo custo computacional e de desenvolvimento,
democratizando o acesso a soluções de automação inteligente.



6.1. Trabalhos Futuros
Embora este trabalho tenha demonstrado a viabilidade de agentes baseados em SLMs
para tarefas especı́ficas, as limitações técnicas identificadas durante o desenvolvimento
abrem caminhos para diversas linhas de pesquisa futura, visando aumentar a robustez e a
complexidade das automações em hardware de baixo custo. Embora na implementação
atual o uso de RAGs tenha falhado, revisitá-lo usando novos modelos de embeddings
pode tornar o seu uso prático.

Além disso, com a eficiência comprovada do modelo Qwen 2.5:3B, seria in-
teressante investigar sua quantização para uso em sistemas portáveis como Orange Pi,
Raspberry Pi 5 ou Jetson Nano, podem levar a integrações de agentes com SLM para
cenários totalmente desconectados da rede, como escolas ou postos de saúde em locais
remotos ou sem acesso a hardware capaz de processamento usando LLMs.
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