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Abstract. This work investigates and validates the viability of Small Language
Models (SLMs) as a cost-effective alternative to Large Language Models (LLMs)
for automation tasks. In response to the high operational and computational
costs inherent in LLMs, the use of specialized SLMs is proposed, demonstrating
potential for optimizing resources. The objective of this project is to develop and
implement practical Artificial Intelligence agents using the low-code n8n plat-
form in conjunction with lightweight self-hosted models based on the Ollama
engine. The application aims to solve everyday problems in academic environ-
ments, but can be easily expanded to other scenarios.

Resumo. Este trabalho investiga e valida a viabilidade dos Pequenos Mode-
los de Linguagem (SLMs) como uma alternativa eficaz e de baixo custo aos
Grandes Modelos de Linguagem (LLMs) para tarefas de automagcdo. Em res-
posta aos elevados custos operacionais e computacionais inerentes aos LLMs,
propde-se o emprego de SLMs especializados, que demonstrem potencial para
otimizar recursos. O objetivo deste projeto é desenvolver e implementar agen-
tes de Inteligéncia Artificial prdticos, utilizando a plataforma low-code n8n em
conjunto com modelos leves auto-hospedados baseados no motor Ollama. A
aplicagcdo tem como objetivo a resolucdo de problemas cotidianos em ambi-
entes académicos, mas que podem ser expandidos para outros cendrios sem

dificuldades.

1. Introducao

O avancgo da Inteligéncia Artificial (IA), especialmente com o desenvolvimento dos Gran-
des Modelos de Linguagem (LLMs), transformou o cendrio tecnolégico com sua im-
pressionante capacidade de resolver diversas tarefas cotidianas. Por exemplo, tarefas
como: transcri¢do de 4udio para texto, traducdo de idiomas, resumo de documentos
longos, criacdo de cddigo de programagdo, sdo amplamente realizadas por modelos de
IA [Sakib et al. 2025].

Contudo, o sucesso dos modelos de grande escala gera custos significativos e
limitacdes préticas [Licardo and Tankovic 2025]. O treinamento e a operagdo de LLMs
demandam recursos computacionais consideraveis, incluindo infraestrutura especializada
e grandes volumes de dados [Sakib et al. 2025]. Por outro lado, existem ainda as desvan-
tagens relacionadas aos custos operacionais gerados pelo uso de servigcos de API, a criacao
de dependéncia de fornecedores (vendor lock-in), e crescentes preocupacoes em relagdo
ao uso excessivo de energia, dgua e carbono [Licardo and Tankovic 2025] . Devido a es-
cala massiva e os altos custos computacionais, o uso destas tecnologias na borda da rede



(escolas, faculdades, postos de saude, etc.), os tornam pouco adequados para implantacdo
e uso, principalmente devido as restricoes de acesso a Internet e problemas relacionados
a laténcia. [Rang et al. 2025, Nguyen et al. 2024, Sakib et al. 2025].

Uma solugdo que tem sido estudada na contramao da tendéncia de uso das LLMs,
sdao os Pequenos Modelos de Linguagem (SLMs) [Licardo and Tankovic 2025]. Esses
modelos ndo sdo tao inteligentes pois a quantidade de parametros e dados de treinamen-
tos usados em seu desenvolvimento € limitada. Contudo, os SLMs ganharam atencdo
recentemente pela sua capacidade de executar diversas tarefas com recursos computacio-
nais minimos [Sakib et al. 2025, Nguyen et al. 2024].

A existéncia de cendrios que precisam destes tipos de aplicacdo, mas possuem
poder computacional limitado torna o uso de SLMs, ideais, principalmente para ambien-
tes envolvendo dispositivos moveis e sistemas de borda. Pesquisas mostram que mode-
los menores, quando especializados para um dominio, podem atingir desempenho com-
paravel ou superior aos LLMs maiores e de propésito geral [Licardo and Tankovic 2025,
Sharma et al. 2024, Li et al. 2023]. Esta abordagem de adaptacdo ao dominio (DAPT)
resulta em uma proposta de valor atraente, com a capacidade de reduzir o Custo Total de
Propriedade (Total Cost Ownership - TCO), ou seja, a soma das despesas necessarias para
adquirir, operar e manter a tecnologia funcionando, em aproximadamente 90% a 95% em
comparacdo com os LLMs [Sharma et al. 2024].

Este trabalho tem como objetivo o desenvolvimento e a implementagdo de agen-
tes de IA [Russell and Norvig 2010, Wooldridge 2001] para execucdo de tarefas simples.
Para isso, serd utilizada uma plataforma de automagdo com baixa produgdo de cédigo
(low-code) n8n [n8n-io 2025], combinado com modelos leves como, por exemplo, mode-
los da familia Qwen2.5.

Ao utilizar uma plataforma low-code, o alvo da implementacdo passa a ser a
resolucdo de problemas, simplificando a integracdo da l6gica de IA com fluxos de trabalho
e sistemas de gerenciamento de processos de negdcios, uma drea de crescente importancia
na ciéncia da computagdo [n8n-io 2025, Wooldridge 2001]. Além disso, o trabalho busca
fomentar a resolucdo prética de problemas complexos com SLMs, saindo do dominio
puramente tedrico para o aplicado, e contribuindo para a democratizacao da IA.

Este trabalho estd organizado da seguinte forma: a Se¢do 2 avalia os trabalhos
relacionados, fundamentando a arquitetura de agentes e a viabilidade dos SLMs. Em
seguida, a Secdo 3 descreve os Modelos de Linguagem de Baixo Custo (SLMs) e a pla-
taforma de orquestracdo n8n que utiliza low-code. A Sec¢ao 4 detalha a implementacao
e a Secdo 5 os resultados dos agentes de automacgao desenvolvidos para os casos de uso
académicos. Por fim, a Secdo 6 apresenta a conclusdo e os trabalhos futuros.

2. Trabalhos Relacionados

[Retamales et al. 2025], por exemplo, investigou a viabilidade de diferenciar automatica-
mente atendimentos de emergéncia de atendimentos de rotina. O estudo utilizou o mo-
delo Phi-3 sem treinamento especifico, ou seja, o modelo base, para analisar as narrativas
clinicas registradas por profissionais de satude. A validagdo baseou-se em uma anélise re-
trospectiva de 7.036 visitas, confrontada com um ‘padrdo-ouro’ estabelecido por auditoria
médica manual em uma amostra estratificada de 384 casos. O modelo demonstrou alta



eficécia na classificacdo, apresentando sensibilidade de 99,4%, especificidade de 70,4% e
acurdcia de 95,3% na deteccdo de urgéncias sintomaticas frente a demandas de rotina.

Por outro lado, [Fernandes et al. 2025] investigou a viabilidade de realizar o ajuste
fino supervisionado (Supervised Fine-Tuning - SFT) em modelos de linguagem menores,
especificamente o0 Llama 2:7B e o Llama 3:8B, para tarefas de raciocinio juridico
no Multi state Bar Exam (MBE). O MBE ¢ a fase de multipla escolha do exame da ordem
dos advogados nos Estados Unidos. A metodologia utilizou um conjunto selecionado de
1.514 questdes, cujas respostas foram refinadas pelo modelo Llama 3:70B para seguir
o IRAC, uma estrutura padrio de raciocinio juridico que organiza a resposta em Problema
(Issue), Regra (Rule), Aplicacdo (Application) e Conclusao (conclusion). A validagcdo
utilizou 200 questdes do exame MBE de 2022 e avaliou os resultados usando acuricia e
a taxa de erros de parsing (falhas em seguir a formatacdo). Concluiu-se que o ajuste fino
supervisionado melhora, consideravelmente, a precisao, mesmo com poucos dados.

Em 2024, um segundo estudo [Labrak et al. 2024] comparou a eficicia de mode-
los baseados no Mistral 7B Instruct v0O.1 em cendrios relacionados a biomedicina. O
estudo comparou o desempenho do modelo base com suas variantes especializadas em
uma cole¢do de textos da literatura médica e otimizadas por meio de quantizagdao. O ob-
jetivo principal do estudo foi avaliar a capacidade de generalizacdo do modelo, tanto na
versdo original quanto nas otimizadas. Para a validacdo, os autores estabeleceram um
benchmark contendo 10 tarefas de perguntas e respostas do dominio em questdao. O de-
sempenho foi avaliado utilizando a acurdcia como métrica principal, complementada pelo
Erro de Calibragao Esperado (ECE) para medir a confiabilidade das predicoes e pelo ben-
chmark Truthful QA para verificar a veracidade e a mitigagcdo de alucinagdes nas respostas
geradas. O TruthfulQA, € um conjunto de testes projetado para induzir o modelo ao erro,
verificando se ele € capaz de distinguir fatos reais de mitos ou falécias, frequentemente
encontradas na Internet.

Por fim, [Chen et al. 2025] abordou o uso de SLMs para tarefas de navegacao
robdtica multiponto em dispositivos de borda, visando superar as limitagdes de laténcia
e privacidade das APIs de grandes modelos. A metodologia realizou um ajuste fino de
parametros para padronizar as saidas em formato JSON com um mddulo iterativo, cha-
mado de professor-aluno, onde um LLM robusto (GPT-4) atua como professor forne-
cendo prompts e feedback para refinar o raciocinio de SLMs menores, incluindo mode-
los como tau-0.5B, TinyLlama-1.1B, h2o-danube-1. 8B ¢ openllama-3B.
Para a validagdo, os autores conduziram experimentos tanto em simulacdo quanto em
ambientes do mundo real utilizando um robd guiado por um SLM para se deslocar por
corredores e ambientes complexos. Estes modelos nao foram avaliados no trabalho pois
nao sao multi-linguagem.

3. Fundamentos e Conceitos

Modelos de Linguagem de Grande Escala (LLMs) fornecem desempenho de ponta em
tarefas de compreensao e geracao de linguagem natural, no entanto, esse sucesso tem um
custo significativo. Os LLMs usam recursos, de forma intensiva, para treinar e execu-
tar seus modelos, exigindo muito esforco computacional e dados o que, frequentemente,
implica na necessidade de hardware especializado [Nguyen et al. 2024].

Por outro lado, as despesas operacionais, laténcia e altos custos dificultam a im-



plementacdo dos LLMs mais avangados em tarefas especializadas, como no comércio
eletronico.[Licardo and Tankovic 2025]. Além disso, o consumo de energia desses mo-
delos de larga escala tem sido uma preocupacdo crescente do ponto de vista da IA res-
ponsavel [Li et al. 2023]. Dessa forma, € crescente o interesse em Pequenos Modelos de
Linguagem (Small Language Models - SLMs) pois € uma resposta direta aos desafios de
uso dos LLMs.

Os SLMs visam manter a acurdcia ou adaptabilidade dos modelos maiores ope-
rando sob restricoes estritas de recursos, como hardware de treinamento ou inferéncia
limitada, largura de banda ou tempo de geracdo. A defini¢do do que constitui um mo-
delo pequeno ¢ flexivel, pois, dependendo do contexto, as classificacdes sdo atualizadas.
Por exemplo, o modelo GPT-2, com 1.5 bilhdo de parametros, ja foi classificado como
grande e hoje € menor do que muitos SLMs. O paradigma SLM também enfatiza a im-
portancia da qualidade dos dados no treinamento. Modelos como o phi-1.5:1.3B
(1.3 bilhao de parametros) alcangaram desempenho comparavel a modelos cinco vezes
maiores ao serem treinados em bases de dados de alta qualidade, o que ficou conhecido
como textbook-quality [Li et al. 2023]. Ou seja, o objetivo principal das SLMs € entregar
0 maximo possivel, com a menor quantidade possivel de recursos computacionais.

3.1. Suas vantagens (eficiéncia, privacidade, custo) e desafios

A adog¢do de Pequenos Modelos de Linguagem (SLMs) oferece uma resposta pratica aos
desafios de custo e escala dos LLMs. Contudo, essa abordagem envolve perda de precisao
(trade-off’) nas respostas. As secOes a seguir exploram tanto as vantagens operacionais e
econdmicas que os tornam vidveis, quanto os desafios técnicos e de desempenho inerentes
a sua capacidade mais restrita.

3.1.1. Vantagens

Os SLMs sao cruciais para a acessibilidade e sustentabilidade da IA em ambientes com
recursos limitados [Australian Institute for Machine Learning (AIML) 2024]. Sendo as-
sim, alguns aspectos sdo muito importantes, por exemplo, a eficiéncia e implementacao
em dispositivos (edge/on-device), ou seja, os SLMs sdo ideais para implantacdo em am-
bientes restritos, como dispositivos méveis, sistemas embarcados e dispositivos de borda
(edge systems), em que o uso de LLMs € impraticdvel devido as limitacdes de memoria e
poder de processamento dos dispositivos.

Além disso, realizar o processamento localmente reduz o tempo de espera (laténcia)
que, neste cendrio, significa quanto tempo demora para a primeira palavra da resposta ser
gerada. Em seguida, é observado o Custo Total de Propriedade (Total Cost Ownership
- TCO), que é o quanto custa usar um modelo para um dominio especifico. E possivel
diminuir o TCO de 90% a 95% em comparagdo com modelos de ponta de proposito ge-
ral, com os beneficios de custo se tornando mais evidentes a medida que a escala de
implantacio se expande; Por fim, a privacidade, pois devido a necessidade de garantir a
privacidade dos dados, isso faz com que empresas ou setores criticos da sociedade exijam
que os modelos sejam implantados em sua propria infraestrutura (on-premises), ou seja,
o uso de SLMs.



3.1.2. Desafios

Os SLMs, apesar de suas vantagens operacionais, enfrentam desafios criticos relacionados
a sua capacidade e implanta¢do. Por exemplo, eles ndo sdo capazes de raciocinio pro-
fundo, ou seja, em tarefas que exigem avaliacdo profunda das informagdes ou instrugdes
com vdrias etapas [Kim et al. 2025]. Geralmente, os SLMs sdo mais propensos a tarefas
baseadas em memorizacao e heuristicas simples.

Outro fator é a perda de precisao (trade-off) e dependéncia de hardware es-
pecifico, o que significa que os ganhos de efici€éncia obtidos por meio de técnicas de
otimizac¢do, como a quantizacdo', estdo ligados ao hardware e ao ecossistema de software
deste hardware. Por exemplo, a quantizacdo GPTQ de 4 bits, embora tenha reduzido o
uso de VRAM (video RAM) em 41% em uma arquitetura de GPU mais antiga (NVIDIA
T4), resultou, de forma inversamente proporcional, em uma piora de 82% nas inferéncias
devido ao excesso de quantizacao [Licardo and Tankovic 2025].

Por fim, ainda existem os problemas éticos e de qualidade (alucinacao/viés),
pois 0os SLMs enfrentam os mesmos problemas que existem nas LLLMs, mas por possuirem
bases de dados menores ou precisdo de parametros reduzidas, estio mais suscetiveis a
alucinacdo? e vieses. [Sakib et al. 2025].

3.2. Introducao a Automacao Low-Code e a Arquitetura do n8n

Nesta Secdo, iremos abordar a relevancia das ferramentas low-code para a criagdo de flu-
xos de trabalho (workflows) e a automacdo de processos. A plataforma [n8n-io 2025]
combina a automacao low-code com capacidades de Inteligéncia Artificial, permitindo
que o desenvolvimento se concentre na resolu¢do de problemas utilizando blocos de
acoes. Essa abordagem simplifica a integracdo da légica dos SLMs com os fluxos de
trabalho, possibilitando que o projeto seja direcionado na implementacdo de agentes de
IA.

A Automacdo Low-Code (LCA) permite que o desenvolvimento de solu¢des com-
plexas seja realizado com minimo esfor¢o de codificacdo, utilizando interfaces visuais.
O n8n se insere neste contexto como uma ferramenta de automacdo de fluxo de traba-
lho que combina capacidades de IA com automagdo de processos de negocios. O n8n
adota o tipo de licencga fair-code, ou seja, este modelo busca combinar a transparéncia do
codigo aberto, que permite a visualizacdo e modificacdo, com restri¢des contratuais que
protegem o modelo de negécios do autor [n8n-io 2025].

O n8n opera sobre uma estrutura de workflows e nds. Ou seja, um workflow € defi-
nido como uma cole¢do de nds para automatizar um processo. Cada né € um componente
individual que realiza uma tarefa especifica e quando estes nds sdo encadeados, geram um
fluxo de trabalho que realiza uma atividade. O n8n € uma plataforma moderna e utiliza os
dados organizados em JSON (formato de armazenamento de dados de forma hierarquica,

Técnica de otimizacdo que reduz a precisdo dos parimetros com o objetivo de tornar o modelo menor,
mais rdpido e com menor consumo de memoria. Em um modelo que utiliza pardmetros de 32 bits (FP32)
ou 16 bits (FP16) em ponto flutuante, esse valor € reduzido, usando quantizagdo, para nimeros inteiros de 8
bits (INT8) ou menos. Um modelo com FP32 convertido para INT8 pode reduzir em até 75% de tamanho.

2Geracido de uma resposta que parece plausivel, mas que é incorreta, inventada, ou inconsistente com o
contexto.



como um diciondrio) e permite otimizagdes utilizando linguagens como JavaScript ou
Python.

Contudo, o n8n ndo é apenas uma ferramenta para a criagao de workflows simples,
ele permite o uso de nds especializados com integracio com modelos de inteligéncia
artificial como por exemplo o ChatGPT [Openai 2025] ou o Ollama [OLlama 2025]. O
uso desses nos especializados, conhecidos como agentes, sdo diferentes das cadeias de
processamento de fluxos (quando um n6 € encadeado com outro para realizar apenas
tarefas simples). Ou seja, enquanto uma cadeia segue uma sequéncia predeterminada de
chamadas, um agente usa um modelo de linguagem para determinar quais acdes tomar,
atuando como um tomador de decisdes, dentro um conjunto pré-determinado de escolhas.

Além disso, agentes sdo a unica opgao se o workflow precisa ter memdria, ou seja,
precisa lembrar do contexto, o que € essencial para manter conversas continuas e naturais
entre sistemas e usudrios, por exemplo. Mas o n8n nao esta limitado apenas a cadeias ou
agentes, ele possui ferramentas que agem como extensdes que podem adicionar, além de
contexto e memoria, acesso a APIs de varias ferramentas publicas, bancos de dados ou
mesmo outras cadeias do préprio n8n, gerando fluxos de trabalho aninhados complexos.

4. Metodologia

Neste trabalho foram implementados quatro fluxos de trabalho com o objetivo de de-
terminar a capacidade e funcionalidade, na pratica, de modelos SLM. Todos os fluxos
foram executados em um servidor Linux com Debian 12, kernel 6.1.0, Docker 29.0.2. O
Docker [Docker 2023], foi utilizado para permitir a simplificagdo da integragao das fer-
ramentas e tornar as solucdes implementadas portaveis entre sistemas. Além disso, as
SLMs foram executadas em uma placa NVIDIA Quadro P1000, com 4GB de VRAM,
com driver na versdo 535.247.01 e o CUDA na versao 12.2.

A especificacdo dos drivers, e versdes, € importante nesse cendrio, pois a cada
nova versao, atualizacoes podem mudar os resultados obtidos. Além disso, todos os siste-
mas utilizaram suas versdes em contéiner e o dispositivo NVIDIA foi utilizado utilizando
a técnica de passthrough de encaminhamento direto do hardware para o contéiner.

Como descrito anteriormente, foi utilizado o sistema n8n para criagdo dos fluxos
de tarefas em low code. Para hospedagem dos modelos de IA SLM, utilizou-se o OLlama.
O OLlama é responsavel por hospedar e gerenciar o acesso as SLMs. Por exemplo, nele
foram instalados os SLMs:

Tabela 1. Modelos usados no trabalho
Nome Versao Qtd. de Parametros

Qwen 2.5 0.5B
Qwen 2.5 1.5B
Qwen 2.5 3B
Llama 3.2 1B
Llama 3.2 3B
Phi 3 3.8B

Neste cendrio, o numero n em nB, significa o nimero em bilhdes de parametros.



Todos os modelos adicionados ao Ollama possuiam menos de 4Gb para que fosse possivel
sua execucao totalmente na VRAM da placa de video, reduzindo o gargalo de execugao.
Contudo, o OLlama permite o uso de modelos maiores, segmentando uma fragdo do mo-
delo na memoria RAM do computador e outra fracdo (até o limite da VRAM), alocado na
memoria da placa de video. Essa fragmentacdo pode gerar um maior trade off ao gerar as
respostas do modelo as interacoes.

Contudo, a fim de testar o potencial de integragdao do n8n, foram utilizados dois
sistemas publicos: o Google Email e Agenda e o Telegram. O Google Agenda e o Gmail
foram utilizados como ferramentas-alvo (atuadores) para os agentes de agendamento e
verificacdo de trabalhos enviados (seu uso serd detalhado nas secdes seguintes).

Como o n8n possui suporte a nds para servigos como Google Agenda e Gmail, eles
podem ser usados diretamente nos workflows, ou usados como ferramentas que os agentes
de IA usam para realizar uma ac¢des. De forma pratica, um email pode ser enviado e isso
disparar uma acdo de um nd no n8n que vai consultar o SLM, via OLlama, e determinar
se deve ou ndo agendar um compromisso ou responder ao email recebido.

Por outro lado, o Telegam foi utilizado para testar as funcionalidades de chatbot,
uma vez que sua API é gratuita e s6 precisa que um token seja gerado na ferramenta
deles para criagdao de um bot de interagdo com usudrios. Ou seja, ele atua como um
canal de comunicagdo entre agentes, pois ele permite que o sistema (n8n) receba entradas
(comandos do usuario, atuando como sensor, € envie respostas aos agentes (operagdes de
chat ou callback). As secdes a seguir serdo divididas em cada uma dos quatro fluxos de
atividades que foram criados para testar e avaliar o uso do n8n e os modelos de SLM.

4.1. Casos de Uso

A fim de avaliar a capacidade de uma SLM em diversos cendrios, foram definidos quatro
problemas e como seria possivel usd-las para soluciond-los. Contudo, antes de avangar
para os exemplos € necessario entender como funcionam os fluxos do n8n.

Sentido principal _’

L2

$127°
® Information diter]  mmilew ) Edit Fields
‘: Extractor —' I@
\ % N g —— Scnitido principal _’
When Executed by Y— If % — ) )
Another Workflow —y -
c 9
. B 1B 10

Google Calendar Create an event Edit Fields1

Ollama Model

Figura 1. Sentido da execugcao de um fluxo no n8n.

A Figura 1 apresenta o fluxo de como os dados sdo processados. Embora seja
possivel ocorrerem bifurcacdes, no geral, eles sempre vao iniciar no né mais a esquerda
até o no final, mais a direita. Ou seja, o fluxo se inicia no n6 de nome “When Executed
by Another Workflow”, que s6 € acionado por meio de um “gatilho” (trigger) e, apds



iniciado, segue para o Agente de IA Information Extractor e assim suscetivamente, até
alcangar um no6 terminal. O né Al Agent atua como um orquestrador dentro do fluxo de
automacdo. Diferente dos nds convencionais que processam dados linearmente, o Agente
estabelece, dinamicamente, uma topologia estrela durante sua execucdo. Ao ser acionado,
o n6 compila a entrada do usudrio junto a uma instrugdo estrutural (System Message) e
envia esses dados via API para o modelo de linguagem (neste caso, o0 OLlama).

Em seguida, o modelo analisa a solicitacdo e determina se € necessdria uma acgao
externa. Caso isso seja verdadeiro, o Agente interrompe a geracao de texto e aciona a
ferramenta (fool) correspondente. No contexto do n8n, essas ferramentas operam fre-
quentemente como subfluxos autonomos. Ou seja, o processamento € desviado para um
novo fluxo independente e, apos a ldgica do fluxo ser executada, o resultado € retornado
(output) ao n6 do Agente. Com este retorno, o Agente consulta 0 modelo novamente para
sintetizar a resposta final. O ciclo encerra-se apenas quando o modelo julga que a tarefa
foi concluida, liberando o fluxo para prosseguir para o préximo no.
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Figura 2. Os nés nao conectados no final indicam o fim de fluxo no n8n.

Nas Figuras 1 e 2 o fluxo podera ser desviado em uma unica bifurcacdo, o no6 If,
onde a dlgebra booleana determina o desvio do fluxo dependendo se a a condicao for sa-
tisfeita (True) e, neste caso, a execugdo segue pela ramificagao superior ou, caso contrario
(False), pela inferior, ativando sequencialmente os nds da rota selecionada. Ao atingir o
ultimo né da cadeia, o sistema consolida todos os metadados processados e filtrados em
um objeto JSON, que assume um comportamento distinto dependendo do contexto. Ou
seja, se este fluxo operar como um subfluxo (uma ferramenta do Agente), esse JSON é
retornado imediatamente ao né principal para dar continuidade ao processamento da [A;
caso contrario, se for um fluxo independente, a execucdo se encerra.

4.1.1. Agendamento de Horario do Professor

O primeiro caso de uso foi o de geragdo de um fluxo capaz de avaliar a agenda de trabalho
de um professor e interagir com o usudrio a fim de conseguir agendar reunides dentro das
janelas pré-definidas. Neste cendrio, o objetivo era que por meio de uma interacdo de
chat; informando dados como email, nome, e horario desejado; um académico pudesse
requisitar o agendamento de forma automatizada em dias e horérios pre-definidos, mas
sem causar colisdo com outros agendamentos prévios.
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Figura 3. Fluxo principal de execucao do agente de agendamento de reunioes.

A Figura 3 mostra como o processo deve ocorrer. Primeiro, o académico interage
com o chat. Ao realizar as requisicdes, o agente de IA interage com este aluno para
entender a sua demanda. Neste cendrio, o agente de IA interpreta as solicitacdes em
linguagem natural, por exemplo, Quero marcar uma reunido com o professor semana
que vem. Para lembrar de interacdes anteriores ou salvar o estado de uma conversa uma
memoria simples € utilizada (Simple Memory) e o agente de IA é vinculado a API do
OLlama.

Dentre os varios modelos de SLM disponiveis, o modelo Qwen2 . 5: 3B foi o que
se manteve mais assertivo entre as varias rodadas de execucao e testes. Ele demonstrou
uma capacidade robusta em seguir as instru¢des da systemMessage (mensagens que
sdo utilizadas para instruir como a SLM deve se comportar), desde que elas sejam extre-
mamente claras e diretas como, por exemplo: Nunca pule nenhum passo. Uma vez que a
interacao inicial foi realizada, o agente de IA usa as ferramentas disponiveis (7ool). No
cenario descrito, foram definidas duas ferramentas: verificarDisponibilidade
e reservarHorario.

O desempenho esperado s6 foi atingido mediante o envio de diretrizes estritas €
livres de ambiguidade ao modelo via System Message. Além da objetividade, verificou-
se que os SLMs dependem de exemplos concretos para compreender corretamente oS
cendrios de uso das ferramentas e o fluxo de conversacdo. Esse conjunto de caracteristicas
define o que foi caracterizado neste trabalho como ‘prompts rigidos’, uma abordagem que
serd utilizada na constru¢cdo dos comandos nos préximos casos de uso.

A primeira ferramenta, verificarDisponibilidade, acessa a Agenda do
Google e verifica se no horério desejado ja existe uma reunido prévia marcada ou nio.
Em ambos os casos, a ferramenta reservarHorario sd serd invocada se existir um
horario disponivel. Como descrito anteriormente, o Qwen2 . 5 : 3B usa instrugdes simples
e diretas. No caso, a instru¢do completa definida foi: So execute reservarHorario
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Figura 4. Sub-Fluxo de Execucao (Subworkflow) do Agente de agendamento de
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apos o aluno confirmar os dados. Além disso, o Agente usa a hora atual ( $now ) do
servidor como contexto extra.

Cada uma das ferramentas descritas sdao definidas, recursivamente, como subflu-
x0s que sdo invocados pelo fluxo principal. A Figura 4 mostra o fluxo executado para
verificar os hordrios ja agendados. O subfluxo é simples porque ele s6 retorna para o
fluxo principal os hordrios ja ocupados no dia desejado e os horarios disponiveis futuros
(mecanismo de sugestao).

Por outro lado, o agendamento em si ¢ um subfluxo bem mais complexo. A Fi-
gura 5 mostra os ndés utilizados para validagdo e inser¢ao de um novo agendamento para

o professor.
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Figura 5. Sub-Fluxo de Execucao (Subworkflow) do Agente de agendamento de
reunioes ReservarHorario

Uma vez que a ferramenta anterior retornou True para o contexto do académico,
este subfluxo extrai as informagdes utilizando um né Extractor Information vin-
culado ao OLlama, . A separacao das informag¢des nao ocorre por regras simples de texto,



mas sim por meio da imposi¢do de um esquema de dados (schema) ao modelo de lingua-
gem. O no restringe a saida probabilistica do Modelo SLM a um formato estruturado pré-
definido (JSON) forcando o modelo a atuar como um extrator estruturado, transformando
a linguagem natural em um objeto JSON contendo estritamente os atributos: nome, email,
assunto e data e hora.

ApO6s a extragdo, um nd condicional (If) realiza a valida¢do dos dados, verifi-
cando se algum campo obrigatdrio retornou vazio ou nulo, nesse caso um objeto JSSON
contendo {"resultado": false} serdretornado. Se a valida¢do for bem-sucedida,
o fluxo verifica uma dltima vez a disponibilidade no Google Calendar e realiza a inser¢ao
do evento. Por fim, um objeto JSON com resultado t rue é retornado ao agente principal
que, ao receber esse retorno de sucesso no agendamento, devolve uma resposta positiva
ao académico. Vale ressaltar que, neste fluxo, o primeiro né do Google Calendar recupera
todos os hordrios da agenda alocados para a aplicag¢do a partir do horario definido pela
IA. Dessa forma, o proximo né do Google Calendar ird alocar uma reuniao no préximo
horério livre.

Por fim, durante a fase experimental, observou-se que o p Agente de IA utilizado
pelond Information Extractor conseguiu ser mais estavel na extragao de saidas
estruturadas e padronizadas do que o Agente de IA, mitigando erros de sintaxe e garan-
tindo a integridade dos dados ao longo das execucdes.

4.1.2. Lista de Tarefas Seguindo Regras (Pomodoro)

O segundo problema foi criar um mecanismo para gerenciar atividades utilizando como
base a técnica Pomodoro [Cirillo 2018]. O objetivo era receber uma lista de tarefas e or-
ganiza-las em uma Agenda (neste caso foi utilizada a do Google), seguindo a metodologia
Pomodoro? para a alocacdo de tempo.

A Figura 4 apresenta o fluxo de execucdo principal deste agente. O processo se
inicia com o recebimento de mensagens via Telegram (interagdao por meio de chatbot).
Como os modelos SLM sao mais restritos, é necessario evitar o uso de caracteres fora do
padrao ASCII (como acentos e caracteres especiais). Dessa forma, ao receber a mensa-
gem via Telegram, é executado um cédigo que normaliza o texto, ou seja, ele remove os
caracteres como acentos e caracteres especiais antes de enviar a mensagem para o modelo.
Nos testes realizados, isso reduziu alucinagdes e erros de avaliacdo do modelo.

Neste cendrio, temos a atuagdo estrita do agente como como um Roteador de
Informagdes. Diferente de um chatbot, este agente foi configurado com uma System Mes-
sage objetiva e direta com o objetivo de analisar a entrada do usudrio e direciona-la para
a ferramenta (7ool) correta. As ferramentas disponiveis, no caso desta automacgdo, sao
subfluxos para tarefas especificas como: addTask (adicionar tarefas), getTaskList (vi-
sualizar a lista de tarefas), delTask (remocdo de tarefas), changePriority (reordenar e
mudar a prioridade de uma tarefa) e None (uso genérico).

Quando o agente principal identifica uma entrada como uma tarefa a ser adici-

3A metodologia Pomodoro define que atividades devem ser realizadas em janelas de 25 minutos com
intervalo de 5 minutos durante quatro sessdes e um intervalo de 20 minutos apds essas quatro sessdes, antes
da préxima.
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Figura 6. Fluxo de principal do agente de gerenciamento de tarefas (Pomodoro).

onada, um JSON RAW (sem modificacdes) com a entrada do usudrio € enviada para
a ferramenta addTask. Ao receber esse dado, por meio do n6 Information Extractor
(usando o modelo Qwen2.5: 3B), um esquema de dados JSON, que define os campos
estruturados da acdo (como resumo da tarefa, prazo e prioridade), € usado para extrair a
descri¢do da tarefa da mensagem.

Em seguida, antes de inserir os dados da tarefa em uma planilha eletronica (n6
Google Sheets), € realizado um processamento para recuperar as tarefas que ja existem
nessa planilha. Neste momento, algumas decisdes precisam ser tomadas. Ou a tarefa ja
existe ou € ela € uma nova tarefa. Se a tarefa for nova, o fluxo é redirecionado para a
inser¢do de uma nova tarefa ao final da planilha eletronica (Append row in sheet). Uma
vez que a nova tarefa foi adicionada na planilha, o subfluxo CompletaAgendaPomodoro
¢ invocado para encerrar a execugdo. Por outro lado, se a tarefa ja existir, a saida é mais
simples, apenas informando ao usudrio que uma tarefa com aquele nome j4 existe na
planilha, evitando duplicacdes de atividades.
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Figura 7. Sub-Fluxo de Execucao (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) ListarTarefas

Assim, quando o subfluxo CompletaAgendaPomodoro € invocado, ele reconstréi
a sequéncia de atividades da agenda conforme novas tarefas sdo adicionadas, retiradas ou
alteradas. No primeiro passo sdo recuperados todos as tarefas utilizando a API do Google
Calendar e Sheets. Em seguida, todas as tarefas que ja foram executadas sdo removidas
da agenda.



Ap6s os nds do tipo code transformar a lista de tarefas em uma lista numerada
(JSON), o cruzamento dos dados da lista de tarefas e do calendario ocorre no n6 Merge
que unifica as tarefas a fazer e define as restricdes como, por exemplo, os horarios ocupa-
dos. Infelizmente, alguns tratamentos do n8n nao sdo totalmente livres de programacao.
Neste exemplo desenvolvido, foi necessaria a implementac¢do de um conversor utilizando
JavaScript.

A alocacdo das tarefas seguiu as seguintes restricoes:

A alocagao das tarefas deve ocorrer entre 09:00 e 17:00;

Nao alocar tarefas entre 11:00 e 13:00 (horario de almogo);

Utilizar somente dias tteis;

Se o horério proposto colidir com um evento existente, o algoritmo avanca para o
inicio da tarefa para o final desse evento conflitante;

5. Cada tarefa é alocada em um bloco de 30 minutos (25 minutos de foco + 5 minutos
de pausa), conforme a técnica Pomodoro.

BN =

Ap0s o célculo dos hordrios, os dados passam pelo né fuso. Esta etapa de trata-
mento de dados € necessdria para corrigir a formatacao das strings de data geradas pelo
JavaScript, removendo milissegundos e garantindo que o fuso hordrio local (GMT-04)
seja, corretamente, utilizado. Por fim, o n6 Google Calendar (Create an event) cria os
eventos na Agenda com o sufixo [POMODORO], permitindo f4cil identificacdo visual.

i
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Figura 8. Sub-Fluxo de Execucao (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) CompletaAgendaPomodoro

Por outro lado, o subfluxo ApagaAgendaPomodoro comeca realizando uma o-
peracdo getAll, que faz uma varredura na agenda do usudrio. Essa busca (query) utiliza
uma restri¢ao especifica para garantir que outros agendamentos nao sejam alterados. Ela
busca, especificamente, pela string [POMODORO] .



Uma vez recuperados os objetos dos eventos, o fluxo encaminha seus identifica-
dores unicos (IDs) para o né subsequente, Delete an event. Este né realiza a exclusao
iterativa de cada item listado. A existéncia deste fluxo de limpeza € pré-requisito para o
funcionamento da alocagdo, pois permite que a grade de horarios seja recalculada do zero
a cada nova interacao, evitando a duplicidade de tarefas e garantindo que a agenda esteja,
corretamente, no estado mais atual da lista de prioridades.

When Executed by Get many events Delete an event
Another Workflow etAll: event elete: event

Figura 9. Sub-Fluxo de Execucao (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) ApagaAgendaPomodoro.

Em seguida, no fluxo changePriority, um né condicional If verifica se a me-
nagem recebida do fluxo principal inicia com ‘“c/”. Em caso negativo, o subfluxo retor-
narListaTarefas ¢ acionado e uma mensagem informando a maneira correta de trocar
prioridades € enviada ao usudrio por meio do Telegram. Por outro lado, um n6 de Cédigo
lista numerada recebe a lista atual por meio do n6 Google Sheets (operagdo Get row(s) in
sheet) e os indices fornecidos pelo usudrio (ex: “c/ 1 2”), o né transforma as tarefas em
uma lista numerada. No préximo passo, o n6 trocarPrioridade realiza a troca de posi¢coes
na lista de acordo com sua numeragdo e os nimeros recebidos na mensagem do fluxo
principal. Apds isso, uma mensagem € enviada ao usudrio pelo Telegram informando
que a troca de prioridades foi realizada. Com isso, o ultimo passo é a tabela ser limpa
(Clear sheet), e uma nova lista de tarefas € adicionada na planilha (Append row in sheet),
finalizando a reconstrucao do calendario.
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Figura 10. Sub-Fluxo de Execucao (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) ALterarPrioridade



O subfluxo delTask opera de maneira semelhante ao changePriority. Apds o n6
IF verificar se a string recebida comeca com r (ex: r/ 2 4). Se aresposta for negativa,
ele retorna uma mensagem ao usudrio pelo Telegram. Caso contrério, converte o vetor de
tarefas original em um conjunto de nimeros e usa esses numeros como filtro, excluindo
os itens selecionados e renumerando os remanescentes, sequencialmente. O fluxo segue
com uma mensagem no Telegram informando a exclusao da tarefa (ou tarefas) e, por fim,
o subfluxo CompletaAgendaPomodoro é invocado.

Clear sheet
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Figura 11. Sub-Fluxo de Execucao (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) delTask

A outra ferramenta disponivel é a get TaskList que aciona o subfluxo Retor-
narListaTarefas. Ele atua como um mecanismo de feedback e recuperacio de estado
para o usudrio. Sua fun¢do € informativa, ou seja, ele € acionado quando o agente princi-
pal identifica a inten¢ao de visualizagao (ferramenta getTaskList) ou quando algum outro
fluxo precisa retornar a lista de tarefas ao usudrio. O fluxo comeca com a recuperacdo da
lista de tarefas usando para isso o do né Google Sheets na operacdo Get row(s) in sheet.

Dessa forma, quando os retornos sdo processados, eles sdo transformados pelo n6
Code que gera a saida para o n6 do Google Sheets. Essa indexacdo fornece ao usudrio,
tanto o estado da planilha, que funciona como um banco de dados, como os identificado-
res numéricos necessarios para executar comandos subsequentes de manipulagdo, como
remover ou reordenar tarefas. Por fim, o n6 Telegram recebe esta string tratada e a envia
a0 usudrio.

)= {8 {o}onfol
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Figura 12. Sub-Fluxo de Execucao (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) RetornarListaTarefas
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Figura 13. Sub-Fluxo de Execugao (Subworkflow) do Agente de Gerenciamento
de Tarefas (Pomodoro) None

Por fim, o subfluxo None atua como um mecanismo de tratamento de excecoes e
interface de ajuda, sendo acionado quando o agente roteador nio identifica um comando
de acdo explicito (como adicionar ou remover tarefas). Ou seja, esse € o gatilho de fuga,
caso nenhuma ferramenta seja selecionada, qualquer que seja o motivo.

A Figura 13, possui dois estagios e ambas envolvem o uso de modelos SLM. No
primeiro est4gio, o né do agente de IA foi configurado com uma persona* configurado
como um Assistente de Triagem de Didlogo. Neste primeiro estdgio foi utilizado o mo-
delo Qwen2.5: 3B. Este agente possui uma (System Message) estrita e sua funcdo €
puramente analitica, ou seja, ele classifica a inten¢do da mensagem do usuario em catego-
rias pré-definidas (ex: saudacdo, pedido de ajuda, relato de erro, etc.) e gera uma resposta
padronizada em inglé€s, orientando o usudrio sobre a sintaxe correta dos comandos dis-
poniveis no sistema.

Em seguida, o segundo estagio introduz o agente tradutor. Este n6 recebe a res-
posta gerada pelo estdgio anterior e utiliza um modelo diferente, 0 L1lama3.2: 3B, com
a tarefa, exclusiva, de realizar a traducdo do texto de Inglés para o Portugués do Bra-
sil. Essa divisdo de responsabilidades foi necessaria pois, apds testes empiricos, usar o
prompt do primeiro modelo em inglés era mais efetivo do que utiliza-lo em inglés.

Por fim, 0 n6 Telegram envia a resposta traduzida ao usudrio, fechando o ciclo de
feedback e garantindo que interac¢des fora do escopo de execucdo sejam tratadas de forma
instrutiva e natural. Dessa forma, para algumas situagdes o uso de estratégias hibridas
entre multiplos agentes de IA podem gerar melhores resultados.

4.1.3. Ler Documentos em Busca de Padroes de Interesse

O terceiro caso de uso foi realizar a “leitura” de um documento em PDF (no caso o
Boletim Didrio da Universidade), por mencdes a pessoas (servidores, alunos) ou temas
especificos (tipos de projetos, compra de equipamentos, etc.), evitando a necessidade de
leitura manual completa do documento para encontrar esses assuntos e, possivelmente,
informando ao usudrio quando estes padrdes ocorriam.

“Perfil de personagem que vocé atribui ao modelo para moldar o seu estilo de comunicagio, personali-
dade, objetivos ou restri¢cdes e conjunto de habilidades.



A Figura 14 mostra o seu tnico fluxo de funcionamento. Ele implementa uma
arquitetura de processamento de documentos longos baseada em filtragem prévia, que
utiliza expressdes regulares® e sumarizacdo generativa®. Este caso de uso, em especial,
devido a limitagdes do site que fornece o PDF a ser processado, exige o uso de um gatilho.
Esse gatilho ocorre por meio de um Telegram Trigger que espera o envio de um arquivo
(PDF do boletim diario) acompanhado de uma legenda. Esta legenda atua como a varidvel
de filtragem, contendo a palavra-chave de interesse.

Ap6s a conversao do binario do PDF em texto pelo né Extract from File, o fluxo de
dados entra em uma etapa de pré-processamento que € executada por trés nds de cédigo
consecutivos, visando contornar as limitacdes de janela de contexto dos SLMs.
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Figura 14. Fluxo de Execucao (Workflow) do Leitor de Documentos PDF.

O primeiro n6 de cddigo, pegar assunto, aplica as expressoes regulares para seg-
mentar o texto continuo em blocos 16gicos de atos administrativos (iniciados pelo padrao
de data e termos especificos). O algoritmo itera sobre esses blocos e descarta imedi-
atamente qualquer segmento que nao contenha a palavra-chave fornecida pelo usuadrio,
reduzindo o volume de dados.

Em seguida, o né pegar pdginas realiza a extracdo dos metadados. FEle varre
os blocos filtrados em busca de marcadores de paginacdo e executa uma normaliza¢do
numérica, convertendo a string encontrada em numeros inteiros e aplicando um incre-
mento unitrio (n + 1) para corrigir a discrepancia de indexacdo entre o texto extraido e
a visualizacao do PDF.

Além disso, antes de enviar o texto para a SLM, o n6 limpeza aplica uma técnica
de otimizacao de inputs (entradas). Caso o texto exceda 2000 caracteres, um algoritmo de
truncagem preserva o cabecgalho (as primeiras 30 linhas), o rodapé (as ultimas 10 linhas)
e uma janela de contexto ao redor da palavra-chave, descartando o meio irrelevante. Isso
assegura que o modelo Qwen2 . 5 : 3B, utilizado pelo n6 Information Extractor, receba as

SUma sequéncia de caracteres que define um padrio que pode ser utilizado para procurar textos.
Processo de criar um resumo baseado em um texto de entrada.
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Figura 15. Fluxo de Execucao (Workflow) do Agente de Conferéncia de Trabalhos
Académicos (Parte1).

informacdes essenciais para extracao de dados e com o contexto necessario para entender
o assunto tratado, maximizando a precisdo da sumarizacao.

Por fim, o fluxo itera sobre os resultados processados (Loop Over Items) e envia
um resumo estruturado para o usudrio via Telegram, contendo o ato e a péagina de re-
feréncia. Isso encerra o fluxo do caso de uso de busca de padroes em documentos muito
grandes, como sdo, por exemplo, os boletins de servi¢o, o diario oficial da unido ou livros
em PDF.

4.1.4. Resposta Automatizada de Tarefas de Académicos

O quarto problema foi o de receber os trabalhos de alunos por meio de uma conta de email
e realizar a conferéncia basica, ou seja, se foi enviado e se possui conteudo pertinente
ao tema, etc. A solugdo deste problema utiliza um unico fluxo e, por este motivo, se
tornou muito longo e dificil de ser retratado em uma unica imagem. Desta forma, ele
foi em trés partes (Figuras 15, 16 e 17) para melhor visualizacdo e compreensdo de seu
funcionamento.

O fluxo desenvolvido implementa uma arquitetura de monitoramento ativo, dife-
rindo dos agentes anteriores que operavam por gatilhos de eventos diretos. A execucao é
regida pelo n6 Schedule Trigger, configurado para despertar o sistema em intervalos regu-
lares de 10 segundos, garantindo a verificacdo quase em tempo real de novas submissdes
a uma conta de email do Gmail.

O processamento comega por meio do né Get many messages, que consulta a
API do Gmail filtrando mensagens nao lidas com o assunto ” [checkbot ] ’recebidas
nas ultimas 24 horas. O fluxo segue para uma verificacdo usando um no6 1if verificar se
possui anexo, que inspeciona o cabe¢calho MIME (multipart/mixed). Caso o e-mail
nao contenha anexo, o sistema desvia para um fluxo de rejeicao (mensagem de erro sem
anexo), notificando o aluno imediatamente.

Confirmada a presenga do arquivo, condi¢cdo t rue do o n6 if verificar se possui
anexo, 0 n0 Get a message realiza o download do bindrio em anexo ao email, que €
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Figura 16. Fluxo de Execucao (Workflow) do Agente de Conferéncia de Trabalhos
Académicos (Parte2).

convertido em texto plano pelo n6 Extract from File. Em seguida, o n6 Codel, que recebe
um JSON, tanto com o conteido do email quanto com o texto do bindrio, isola a primeira
linha do texto como sendo o metadado “Nome do Aluno’e concatena o restante como o
“Corpo do Trabalho”. Sabe-se que a primeira linha contém o nome do aluno pois essa
formato de email, em tese, seria padronizado anteriormente.

Paralelamente, o sistema carrega a lista de alunos da planilha por meio dos nds
Get row(s) in sheet e listadenomes, formatando essa saida como um vetor para a busca.
O n6 Al Agent2, impulsionado pelo modelo Qwen2 . 5: 3B, recebe o nome extraido do
PDF e a lista de classe. Sua funcdo € a encontrar o aluno na lista e retornar estritamente o
nimero da linha (RowNumber) correspondente na planilha, caso o nome se encontre na
lista.

Ap0s passar pelo primeiro agente, um né condicional verifica se o agente anterior
retornou um ndimero inteiro valido (via Regex "~ [1-9]\d*$), ele fard isso caso o nome
do aluno esteja na lista de alunos, ainda, em caso positivo, o email do aluno € armazenado
na planilha do Google sheets, que serve como banco de dados. Se falhar, o fluxo encerra
enviando um e-mail de “Aluno ndo identificado”. Se for bem-sucedido, o fluxo avanca
para a analise qualitativa.

Nesta etapa, o n6 Al Agent (verifica o contetido) utiliza 0 modelo L1ama3.2: 3B



para realizar uma validacao cognitiva. Ele compara o texto do corpo do trabalho (extraido
no passo 2) com um topico de referéncia injetado pelo né Assunto do trabalho Javascript.
O modelo retorna um booleano (t rue/false) indicando se o conteido do documento
corresponde ao tema exigido.

Antes de aplicar a 16gica de decisdo, o sistema necessita localizar o registro exato
do aluno no banco de dados para atualizacao pois, a partir desse ponto, teremos o JSON
retornado pelo dltimo agente de IA que serd necessdrio para integrar ao JSON gerado a
partir do ponto referente ao aluno que enviou o email processado pelo workflow.

Em seguida, o n6 Get row(s) in sheetl utiliza o indice da linha (RowNumber),
identificado previamente pelo primeiro agente de IA, para recuperar o estado atual do
aluno na planilha. Em seguida, o né Code2 atua como um normalizador de dados, inje-
tando metadados auxiliares no objeto JSON para garantir que a estrutura de dados esteja
sincronizada antes de entrar no né condicional, garantindo que o né condicional subse-
quente (If) receba uma entrada tnica e vdlida contendo os metadados do aluno, preve-
nindo erros de iteracao ou perda de referéncia durante o cruzamento de dados entre ramos

Bt fmi
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Get row(s) in sheet] Code2 If \ * +

Code VL —
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Figura 17. Fluxo de Execucao (Workflow) do Agente de Conferéncia de Trabalhos
Académicos (Parte3).

O no If atua como o portdo légico do sistema. Ele avalia a saida booleana gerada
pelo agente de andlise semantica anterior. Se o valor de saida for estritamente igual a
“true”, o fluxo segue para o ramo de aprovagdo; caso contrario, desvia para o ramo de
rejeicao/alerta.

Caso o trabalho esteja em conformidade com o tema o né Append or update row in
sheet executa uma operagao de Update. Ele marca a coluna “Entregue”como “OK’e, cru-
cialmente, valida a coluna “Conteido”também como “OK”, sinalizando que a submissao
foi aceita automaticamente.

Na sequéncia, o n6 Trabalho recebido utiliza a API do Gmail para disparar um



email transacional ao aluno, confirmando o recebimento e a validag¢ao preliminar do do-
cumento.

Caso o conteudo divirja do tema proposto o n6 Code realiza uma sanitiza¢ao do
objeto de dados para garantir que as variaveis de email e nome estejam acessiveis para os
nés subsequentes de erro.

Em seguida, o né6 Conteudo com problema envia um e-mail de alerta ao aluno
com o assunto “Aviso sobre o conteudo”, informando que, embora o arquivo te-
nha sido recebido, o contetido aparenta estar incorreto. né Append or update row in sheetl
atualiza a planilha registrando o recebimento (“Entregue”: “OK”), mas marca as colunas
qualitativas com indicadores de atencao (ex: “Contetido”: “?”ou “Ver conteddo”), aler-
tando o docente para uma revisao manual posterior.

5. Resultados

Esta Se¢do faz um sumdrio dos resultados obtidos pela implementacdo dos quatro meca-
nismos de automacao propostos no trabalho, detalhando situacdes adicionais que ocorre-
ram durante sua implementagao e testes.

Agendamento de Horario do Professor:

O agente obteve sucesso na maioria dos casos. Em testes préticos, o sistema conseguiu
interpretar solicitacdes em linguagem natural (ex: Quero marcar uma reunido com o pro-
fessor na semana que vem), consultar os horérios disponiveis na Agenda do Google, apre-
sentar as opg¢des ao usudrio e, apds a confirmacao, criar o evento com os dados corretos do
académico. O modelo Qwen2.5: 3B demonstrou capacidade para seguir as instrucdes
corretamente, desde que elas fossem extremamente claras e diretas como, por exemplo,
Nunca pule nenhum passo.

Lista de Tarefas Seguindo Regras (Pomodoro):

O agente de roteamento funcionou bem na maioria dos casos. O modelo Qwen2.5:3B
conseguiu diferenciar, com sucesso, a maioria das entradas de didlogo comuns (tratadas
pelo sub-workflow None) de comandos de tarefa. Tarefas enviadas foram corretamente
adicionadas ao Google Sheets e, subsequentemente, o sub-workflow de agendamento
(CompletaAgendaPomodoro ) preencheu a Agenda do Google do usuédrio com os blocos
Pomodoro. Quanto mudanga de prioridade, apds vérios testes, ficou claro que entradas
do tipo (c/) para mudanca e (1/) para remocao funcionaram de forma adequada por serem
simples de serem compreendidas pelo modelo SLM utilizado.

Ler Documentos em Busca de Padroes de Interesse:

O modelo demonstrou eficicia no monitoramento de padrdes de interesse. Nos testes,
ao enviar um boletim em PDF com a string “Professor Fulano”(ou apenas o sobrenome
“Sicrano”), o workflow sintetizou o documento de centenas de paginas em alguns poucos
blocos relevantes que mencionavam o nome. O Information Extractor (Qwen?2.5:3B)



conseguiu ler os blocos filtrados e retornar um resumo preciso do que se tratava o texto,
por exemplo, Portaria de designacdo para comissdo ou Convocagdo para reunido € a
pagina exata da men¢do. A combinagdo de filtragem por codigo e extracdo por IA foi
capaz de sintetizar o documento. Além disso, embora nao implementado, poderia gerar
gatilhos de aviso ao usudrio quando o termo desejado aparecesse no documento.

Resposta Automatizada de Tarefas de Académicos:

O sistema automatizou com sucesso o processo de conferéncia do envio de atividades
académicas. O Agente 1 (Qwen2.5:3B) demonstrou capacidade de identificar cor-
retamente os alunos, mesmo com pequenas variagdes no nome, na grande maioria das
vezes. Por outro lado, 0 Agente 2 (Qwen2.5:3B) conseguiu diferenciar, semantica-
mente, trabalhos que estavam dentro do escopo da atividade (True) de trabalhos fora do
tema (False), por exemplo, um trabalho cujo escopo é “Implementacio de uma Arvore
AVL”, ndo deve receber um trabalho cuja resolucdo é a implementacdao do BubbleSort.
O workflow também conseguiu, corretamente, atualizar a planilha de controle e envio de
email de confirmagao ou aviso ao aluno.

5.1. Modelos SLM Utilizados

A comparacdo entre os Pequenos Modelos de Linguagem utilizados como motor do
agente de A nos workflows de automacao, tinha como objetivo a redugdo do trade-off
entre a capacidade de compreensdo, acurdcia das respostas e eficiéncia computacional
em hardware de baixo custo. Por exemplo, o Llama 3.2:3B, embora eficiente em
conversa¢do, demonstrou dificuldades significativas no uso das ferramentas (tools) pelo
agentes, com suas versdes 1B e 3B apresentando niveis elevados de alucinacdo e inviabi-
lidade prética. Por outro lado, o Phi 3:3.8B) nao foi suportado pelo hardware, pois
seu custo operacional (VRAM) e o tempo de inferéncia foram demasiadamente longos.
Como o n8n tem um timeout de no maximo 10 minutos, este modelo ndo atendeu aos
requisitos minimos.

Por outro lado, a familia de modelos Qwen 2.5 apresentou o melhor trade-off.
Por exemplo, a versdo 0 . 5B teve baixo desempenho, sendo incapaz de usar ferramentas e
erros frequentes no JSON de saida. Ja a versdo 1 . 5B teve uma melhora, mas ainda falhou
na avaliacdo de fluxos de trabalho complexos. Por fim, a versao 3B teve os melhores
resultados, apresentando um bom balango entre a eficiéncia computacional (mantendo-
se dentro dos limites do hardware) e a capacidade de realizar as tarefas, compreendendo
entradas (inputs), utilizando ferramentas de forma confidvel (saida esperada) e gerando
os resultados de forma estruturada e correta.

5.1.1. Resultados do uso de Linguagem Natural pelos Modelos

As Tabela 2 3 e 4 apresentam os resultados dos testes de processamento de linguagem
natural. As trés mensagens a seguir foram enviadas para a automac¢ao do Pomodoro:

* “Apagar a luz da cozinha antes de dormir” (Texto 1),
* “Preciso que vocé anote uma coisa para mim” (Texto 2)
* “Bom dia, ndo esquec¢a de comprar leite” (Texto 3).



Tabela 2. Comparacao de saida dos modelos ao receberem a entrada do Texto 1.
A saida com estado OK, representa o resultado correto e esperado e Erro, caso

contrario.

Modelo Resposta ao Texto 1 Estado
>"tool": '"changePriority",

Qwen 2.5:0.5B | "argument": Erro
"¢/ 1 6"
"tool": "addTask",

Qwen 2.5:1.5B Erro
"argument": "pagar a luz..."
"Apagar a luz..."

Qwen 2.5:3B Erro
{rx/ 27}
"type":"func",

Llama 3.2:1B Erro
"func":{"name":"None"...}

Llama 3.2:3B ["apagar a luz da cozinha..."] OK

Tabela 3. Comparacao de saida dos modelos ao receberem a entrada do Texto 2.

Modelo Resposta ao Texto 2 Estado
"tool": "addTask",

Qwen 2.5:0.5B Erro
"arguments": "preciso que voce anote..."
"tool": "addTask",

Qwen 2.5:1.5B Erro
"argument": "preciso que vc anote isso"

Qwen 2.5:3B "anote uma coisa" OK

Llama 3.2:1B "Preciso que voce anote uma coisa para mim" OK

Llama 3.2:3B "Preciso que vogo anotar uma coisinha..." Erro

Em cada coluna das tabelas sdo observadas a resposta do modelo ao texto corres-
pondente. Ou seja, a linha para o modelo Qwen 2.5:0.5B para a coluna Resposta ao
Texto 1, representa a resposta do modelo a entrada de Texto 1. Em seguida, a coluna Es-
tado, apresenta o resultado avaliado por um ser humano, se a saida foi correta em relacao
ao contexto (OK), ou cometeu um erro (Erro). O Erro, neste caso, significa que o modelo
alucinou ou ndo teve a saida esperada.

Tabela 4. Comparacao de saida dos modelos ao receberem a entrada do Texto 3.

Modelo Resposta ao Texto 3 Estado
Qwen 2.5:0.5B | "fazer a lista de compras" OK
"tool": "addTask",

Qwen 2.5:1.5B Erro

"argument": "comprar leite"
Qwen 2.5:3B "comprar leite" OK
Llama 3.2:1B wroen Erro
Llama 3.2:3B "comprar leite" OK




A seguir avaliamos a capacidade dos modelos Llama 3.2:3BeQwen 2.5:3B
ao processar linguagem natural (PLN) em cendrios de chat, variando entre solicitacdes
formais, informais e contextos emocionais. O objetivo foi a proximidade de um res-
posta humana e a coeréncia do modelo em relagcio aos textos de entrada fornecidos pelos
usudrios. Os outros modelos foram desconsiderados pois suas saidas foram consideradas
robotizadas (Tabela 5).

Texto 1 (Input): “Bom dia, gostaria de marcar uma reuniao”

Llama 3.2:3B> “Old! Eu sou Jodo, assistente do professor. Vocé gostaria
de marcar um hordrio de reunido? Vocé tem alguns hordrios disponiveis: 2025-12-
09T16:00... [Lista de datas]. Qual é o hordrio que prefere?”

Qwen 2.5:3B> “Old! Eu sou Jodo, assistente do professor. Vocé gostaria de
marcar um hordrio de reunido?”

Texto 2 (Input): “Veé se consegue encaixar uma call rapidinho pra mim hoje.”

Llama 3.2:3B> “Old! Eu sou Jodo, assistente do professor. Vocé gostaria de
marcar um hordrio de reunido?”

Qwen 2.5:3B> “Old! Eu sou Jodo, assistente do professor. Vocé gostaria de
marcar um hordrio de reunido?”

Texto 3 (Input): “Cheguei em casa moido do trabalho e ainda tenho que lavar a louca.
Ninguém merece.”

Llama 3.2:3B> “Certo, fico a disposicdo caso precise. Tenha um otimo dia!”

Qwen 2.5:3B> “Peco desculpas por sua situacdo de hoje, mas parece que vocé
estd ocupado. Vamos agendar sua proxima reunido com o professor. Old! Eu sou Jodo,
assistente do professor. Vocé gostaria de marcar um hordrio de reunido?”

A andlise comparativa revela uma distin¢ao significativa na qualidade das respos-
tas dos dois modelos. O Llama 3.2 :3B demonstrou ser consistente no processamento
de linguagem natural, exibindo proatividade ao buscar dados de agenda quando solici-
tado (Texto 1) e inteligéncia contextual ao encerrar polidamente a conversa diante de um
desabafo (Texto 3).

Por outro lado, o Qwen 2.5 apresentou um comportamento mecanico, respostas
redundantes, além de dificuldades severas em manter a coeréncia do fluxo de didlogo.
Portanto, para interfaces de chat que exigem naturalidade e robustez 16gica, o modelo
Llama 3.2 se mostrou ser a solu¢do mais adequada.

5.2. Avaliacao dos Modelos

A Tabela 5 apresenta uma comparacao empirica de testes realizados entre os modelos:
Llama 3.2:1B, Llama 3.2:3B,Qwen 2.5:0.5B, Qwen 2.5:1.5B ¢ Qwen
2.5:3B.OmodeloPhi 3:3.8B, foi desconsiderado, mesmo ele, aparentemente, usando
o maximo limite da VRAM do hardware, suas respostas excediam o tempo méaximo limite
de espera do n8n.



Tabela 5. Dados obtidos nos testes praticos de automacao e agendamento em
relacao aos modelos de SLM disponiveis no repositorio do OLIama e que nao
ultrapassavam o limite de uso da memdria VRAM da placa de video.

Critério ‘ Llama 3.2:1B Llama 3.2:3B Qwen 2.5:0.5B Qwen 2.5:1.5B Qwen 2.5:3B
Objetivo Nao Sim Nao Sim Sim
Consisténcia - Baixa - Meédia Alta
Qtd. Aluc. Alta Média Alta Média Baixa
Grau Aluc. Critico Critico Critico Critico Moderado
Tools Falha Nao confidvel Falha Nao confidvel Confidvel
Chat Bom Fluido/Natural Ruim Direto/Robético Direto/Robético
Uso Conversacio Conversacio Nao recomendado Nao recomendado  Uso na extragdo de texto
Prompt | Baseado em Persona Baseado em Persona Rigido Rigido Diretivo, claro e curto

E possivel observar na Tabela 5 que, em termos de objetivo, os modelos foram
classificados como: sim, quando ele completou o fluxo de trabalho com sucesso e ndo,
caso contrario. Com relacdo a consisténcia, os modelos foram classificados como: alta,
se acertou corretamente as execugdes repetidamente, média, se apresentava erros ocasio-
nais gerando instabilidade nas respostas, baixo, se o0 sucesso era caso isolado ou —, quando
o modelo sempre falhava.

Por outro lado, com relacdo a Quantidade de Alucinacoes (Qtd. Aluc.), ou seja,
a quantidade de vezes que o modelo gerava respostas falsas ou erros de 16gica, os mode-
los foram classificados como: alta se o modelo tinha alucinagdes constantes, média se,
ocasionalmente, era necessaria intervengao e verificagdo humana em relacao as respostas
e baixa se os erros eram raros e o indice de precisao satisfatério. Na mesma linha, o Grau
de Alucinacao (Grau Aluc.) classifica a severidade do erro cometido. Essa classificagdao
pode ser: critica, quando o erro quebra a estrutura (ex: JSON invdlido) ou impede a
continuidade do fluxo ou moderado, quando o formato estd correto, mas o conteudo da
resposta € impreciso ou parcialmente incorreto, exigindo filtragens adicionais.

Por fim, do ponto de vista operacional em relacao a integracdo com o n8n, 0s mo-
delos foram categorizados pela sua capacidade de uso como Tool, Chat, caracteristica de
Uso do modelo e tipo de Prompt utilizado para instruir o modelo nas interagdes. Com
relac@o ao uso como Tool, os modelos foram classificados como confidvel, ou seja aciona
a ferramenta correta com os parametros certos de forma consistente, ndo confidvel, pois
tenta utilizar usar as ferramentas, mas erra os parametros ou 0 momento de uso, de forma
frequente e, por fim, falha, por ndo conseguir usar as ferramentas corretas no momento
correto ou ignora o seu uso. Com relagdo ao Chat apenas determina a capacidade de
conversacao em linguagem natural, o Uso, qual a melhor utilizacdo do modelo e, final-
mente, o Prompt, determina como devem ser parametrizadas as informagdes para que o
modelo funcione corretamente.

5.2.1. Problemas encontrados

O desenvolvimento da solu¢do nio seguiu um caminho linear, o percurso até a defini¢ao
de configuragdes e organizacdo dos fluxos de trabalho ideais foi marcado por iteracoes e
ajustes forcados por limitagdes praticas. A busca pelo equilibrio (trade-off) entre eficiéncia
operacional e precisdo nas respostas trouxe a tona problemas criticos, especialmente, com
relacdo a tendéncia de alucinagdo em modelos compactos e a inconsisténcia ao tratar



instrucdes (cadeias de comandos) complexas. Na proxima Secdo serdo discutidas as difi-
culdades encontradas e como cada uma impactou as decisoes de design dos sistemas.

5.2.2. Limitacoes da Janela de Contexto e Estratégias de Mitigacao

Uma das restrigdes técnicas mais severas impostas pelo hardware de baixo custo (NVI-
DIA Quadro P1000) foi a limitacao da janela de contexto a 2048 fokens. Durante os testes,
constatou-se uma correlacao direta entre a densidade de informagdo fornecida na entrada
(input) e a taxa de erro. Ou seja, quanto maior a quantidade de texto inserido na janela de
contexto, maior a probabilidade de todos os modelos testados apresentarem alucinacdes
ou falharem na légica de raciocinio.

Para contornar essa limitacao fisica e cognitiva dos modelos, a arquitetura dos
fluxos de trabalho (workflows) foi organizada para priorizar a atomicidade das tarefas.
Buscou-se exigir dos agentes acdes simples e, extremamente, objetivas, fornecendo ape-
nas o fragmento de informacdo estritamente necessario para aquela etapa especifica, mi-
nimizando o ruido.

Um exemplo pratico dessa estratégia foi a implementacdo do Ler Documentos
em Busca de Padroes de Interesse. Devido a impossibilidade de processar documentos
extensos de uma unica vez dentro do limite de 2048 tokens, foram utilizadas técnicas de
programagdo estruturada para realizar uma pré-segmentacdo do arquivo. O documento
foi segmentado em blocos menores baseados em palavras-chave antes de ser submetido
a inferéncia do modelo. Dessa forma, a IA atuou apenas na andlise semantica de trechos
curtos, reduzindo a carga de contexto e, consequentemente, a incidéncia de alucinagdes.

Além disso, a Engenharia de Prompt também precisou ser adaptada. As instrugdes
(System Messages) foram refinadas para serem extremamente objetivas, curtas e livres de
ambiguidade, garantindo que o pouco espacgo disponivel na janela de contexto fosse utili-
zado para processamento de dados tuteis e nao desperdicado com instru¢des que poderiam
confundir os modelos menores.

5.3. Descartando o uso de RAGs e Limitacoes de Embedding

Uma técnica muito utilizada com LLMs sdo os fluxos de trabalho baseados em Retrieval-
Augmented Generation (RAG). Ou seja, modelos que usam bancos de dados vetoriais
para armazenar informacdes e responder, rapidamente, a perguntas com contexto.

Infelizmente, devido as restri¢coes de hardware, foi necessario limitar o uso a ape-
nas mecanismos de embedding (ferramentas de separacdo de palavras e textos curtos),
como o snowflake-arctic-embed:22m. Testes praticos, contudo, revelaram que este mo-
delo, devido ao seu tamanho reduzido, ndo foi capaz de capturar nuances semanticas
complexas da lingua portuguesa. Essa deficiéncia gerou um impasse insoldvel relacio-
nado a janela de contexto limitada a 2048 fokens por dois motivos. Primeiro, em cenario
de alta recuperacao, tentou-se compensar a baixa precisao do embedding buscando um
nimero maior de fragmentos (chunks) do banco de dados. O problema ocorreu por que
a quantidade de texto excedia, rapidamente, o limite da janela de contexto, impedindo o
processamento pelo modelo. Segundo, em cenario de baixa recuperacao, pois ao reduzir
a quantidade de chunks (pedacgos) de texto enviados (para respeitar o limite de memoria),



a baixa qualidade vetorial fazia com que os poucos fragmentos retornados fossem irre-
levantes ou desconexos em relagdo ao contexto fornecido pelo usudrio. Isso introduzia
ruido no prompt, levando o modelo a gerar alucina¢des baseadas em premissas falsas.

Diante desse cendrio, a implementacao do RAG foi considerada invidvel para a
configuracdo de hardware proposta, optando-se pelo uso de programagao estruturada para
segmentagdo de contexto estatico.

5.3.1. Limite de tempo de execucio do n8n

Em uma tentativa subsequente de viabilizar a arquitetura RAG, buscou-se superar a baixa
precisao semantica substituindo a primeira versao do modelo snowflake de entrada
pela versdo snowflake-arctic—-embed2:568m. Reconhecendo que este modelo
excedia a capacidade de memoria de video (VRAM) do hardware disponivel, a estratégia
adotada consistiu em transferir a carga de trabalho para a CPU. O objetivo era realizar o
povoamento (ingestion) do banco de dados vetorial aceitando um tempo de processamento
elevado, sob a premissa de que a lentidao inicial seria compensada pela disponibilidade
posterior de vetores de alta qualidade para os agentes.

No entanto, essa abordagem encontrou restri¢oes operacionais da plataforma n8n,
especificamente, a sua janela de tempo de execucdo (execution timeout). O processa-
mento intensivo (via CPU) necessario para gerar embeddings com o modelo de 568M de
parametros, elevou a laténcia do fluxo, fazendo com que as execucdes ultrapassassem,
sistematicamente, o limite padrao de 10 minutos.

Foram realizadas extensas tentativas de mitigacdo técnica para contornar este blo-
queio. Por exemplo, foi realizada uma reconfiguracdo de varidveis de ambiente no Doc-
ker visando estender os parametros de timeout do contéiner. Apesar dos esforcos, niao
foi possivel superar a interrup¢do forcada dos processos pelo orquestrador. A impossi-
bilidade técnica de processar modelos de embedding robustos dentro da janela de tempo
disponivel, somada a incapacidade de alocacio em VRAM, tornou a implementacao de
um RAG invidvel para os problemas definidos neste trabalho.

5.3.2. Perda de Capacidade de Tool Use em Modelos Quantizados

Visando maximizar a eficiéncia do hardware, explorou-se a utilizacao de modelos quan-
tizados disponiveis nativamente na biblioteca do OLlama. O objetivo era utilizar versdes
compactas (ex: g4_k_m) para reduzir o uso de memoria. No entanto, durante a fase de
validagdo, identificou-se uma limitacao funcional nessas versdes especificas, ou seja, a
auséncia ou degradacdo da capacidade de Tool Use (ou Function Calling) quando os mo-
delos estavam quantizados.

Os testes demonstraram que, embora esses modelos sejam capazes de interagir
com o usudrio por meio de um chat de texto, mimetizando linguagem natural, eles eram
incapazes de retornar um JSON estruturado da forma correta para ser enviado as ferra-
mentas externas. O modelo falhava em reconhecer a instrucao, input, necessaria para usar
uma ferramenta ou, em outros casos, ndo gerava o JSON com a sintaxe correta para a
integracao.



E, uma vez que a arquitetura de agentes autbnomos proposta neste trabalho de-
pende, estritamente, da capacidade do modelo de agir sobre o ambiente por meio de
ferramentas, os modelos quantizados que apresentaram essa deficiéncia foram conside-
rados inadequados para o escopo da automacgao, restringindo a selecao aos modelos que,
comprovadamente, suportavam a orquestracdo de fools.

6. Conclusao

Este trabalho implementou e validou vérios fluxos de execucao de atividades utilizando
Pequenos Modelos de Linguagem (SLMs), em contraste ao uso de Grandes Modelos de
Linguagem (LLMs), no contexto de execucdo de operagdes em ambientes com uso de
hardware com poder computacional restrito. Ou seja, o objetivo era criar solugdes de
baixo custo e alta eficiéncia para automacao de problemas utilizando plataformas de low-
code (como o n8n) e placas de video simples, com nao mais do que 4Gb de VRAM (como
a NVIDIA Quadro P1000 utilizada nos experimentos).

Os resultados demonstraram que os agentes de 1A desenvolvidos foram capa-
zes de resolver problemas praticos como, por exemplo, o agendamento de reunides com
académicos ou o monitoramento de documentos buscando por strings especificas, todas
essas solugdes recebendo instru¢des simples em linguagem natural. Foi possivel verifi-
car que os modelos foram capazes de utilizar as fools (ferramentas) disponibilizadas nos
workflows do n8n de forma eficaz, acionando sub-workflows para, por exemplo, consultar
a Agenda do Google ou interagir com planilhas eletronicas, quando necessario.

Contudo, os prompts utilizados com os modelos foram mais importantes do que
era esperado. Foi necessdrio quebrar as etapas de resolucdo dos problemas em pedacos
bem pequenos. Isso permitiu que o agente recebesse instrucdes diretas e objetivas, garan-
tindo que a tarefa fosse executada corretamente. Ou seja, o limite de mensagens que uma
SLM consegue processar sao baixos, entdo as instrucdes devem ser curtas, principalmente
pelo limite de 2048 tokens de texto.

Além disso, foi necessdria programacao adicional para permitir que os modelos
conseguissem tratar os problemas corretamente. Ou seja, os agentes trabalharam em con-
junto com cddigos de programagdo para filtrar e formatar dados e saidas, para garantir a
l6gica do processo. Isso acabou criando um sistema hibrido eficiente.

Por outro lado, na avaliacdo comparativa, o modelo Qwen 2.5: 3B foi o que se
destacou em todos os cendrios praticos. Ele apresentou o melhor balanco entre eficiéncia
computacional e a capacidade de seguir instru¢des complexas e utilizar ferramentas de
forma confiavel. Ou seja, os modelos SLMs sdo capazes de resolver problemas caso os
comandos enviados a eles sejam simples e as instrucoes diretas e objetivas.

A vantagem dessa arquitetura é que os modelos se destacam frente a programacao
comum, pois podem tomar decisdes em cendrios onde cada condi¢do possivel precisaria
ser pensada e codificada (por exemplo, estruturas condicionais complexas, como cadeias
de IFs para interpretar a variabilidade da intenc@o do usuério).

Como conclusdo deste trabalho, € possivel afirmar que usar os modelos SLMs,
quando orquestrados corretamente em plataformas low-code como o n8n, pode resolver
problemas especificos com um baixissimo custo computacional e de desenvolvimento,
democratizando o acesso a solucdes de automacao inteligente.



6.1. Trabalhos Futuros

Embora este trabalho tenha demonstrado a viabilidade de agentes baseados em SLMs
para tarefas especificas, as limitacOes técnicas identificadas durante o desenvolvimento
abrem caminhos para diversas linhas de pesquisa futura, visando aumentar a robustez e a
complexidade das automagdes em hardware de baixo custo. Embora na implementagao
atual o uso de RAGs tenha falhado, revisitd-lo usando novos modelos de embeddings
pode tornar o seu uso pratico.

Além disso, com a eficiéncia comprovada do modelo Qwen 2.5: 3B, seria in-
teressante investigar sua quantizacdo para uso em sistemas portaveis como Orange Pi,
Raspberry Pi 5 ou Jetson Nano, podem levar a integracdes de agentes com SLM para
cendrios totalmente desconectados da rede, como escolas ou postos de saide em locais
remotos ou sem acesso a hardware capaz de processamento usando LLMs.
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